Title

The influence of conventional T2 MRI indices in predicting who will walk outside one year after spinal cord injury

Document Type

Article

Publication Date

1-1-2021

Abstract

Context/Objective: Magnetic resonance imaging (MRI) indices of spinal cord damage are predictive of future motor function after spinal cord injury (SCI): hyperintensity length, midsagittal tissue bridges, and Brain and Spinal Injury Center (BASIC) scores. Whether these indices are predictive of outdoor walking after SCI is unknown. The primary purpose was to see if these MRI indices predict the ability to walk outdoors one-year after SCI. The secondary purpose was to determine if MRI indices provide additional predictive value if initial lower extremity motor scores are available. Design: Retrospective. Clinical T2-weighted MRIs were used to quantify spinal cord damage. Three MRI indices were calculated: midsagittal ventral tissue bridges, hyperintensity length, BASIC scores. Setting: Academic hospital. Participants: 129 participants with cervical SCI. Interventions: Inpatient rehabilitation. Outcomes Measures: One year after SCI, participants self-reported their outdoor walking ability. Results: Midsagittal ventral tissue bridges, hyperintensity length, and BASIC scores significantly correlated with outdoor walking ability (R = 0.34, P < 0.001; R = −0.25, P < 0.01; Rs = −0.35, P < 001, respectively). Using midsagittal ventral tissue bridges and hyperintensity length, the final adjusted R 2 for model 1 = 0.19. For model 2, the adjusted R 2 using motor scores alone = 0.81 and MRI variables were non-significant. All five participants with observable intramedullary hemorrhage reported they were unable to walk one block outdoors. Conclusions: The MRI indices were significant predictors of outdoor walking ability, but when motor scores were available, this was the strongest predictor and neither midsagittal tissue bridges nor hyperintensity length contributed additional value. MRI indices may be a quick and convenient supplement to physical examination when motor testing is unavailable.

This document is currently not available here.

COinS