Lateral Corticospinal Tract and Dorsal Column Damage: Predictive Relationships With Motor and Sensory Scores at Discharge From Acute Rehabilitation After Spinal Cord Injury

Document Type

Article

Publication Date

1-1-2021

Abstract

Objective: To determine if lateral corticospinal tract (LCST) integrity demonstrates a significant predictive relationship with future ipsilateral lower extremity motor function (LEMS) and if dorsal column (DC) integrity demonstrates a significant predictive relationship with future light touch (LT) sensory function post spinal cord injury (SCI) at time of discharge from inpatient rehabilitation. Design: Retrospective analyses of imaging and clinical outcomes. Setting: University and academic hospital. Participants: A total of 151 participants (N=151) with SCI. Interventions: Inpatient rehabilitation. Main Outcome Measures: LEMS and LT scores at discharge from inpatient rehabilitation. Results: In 151 participants, right LCST spared tissue demonstrated a significant predictive relationship with right LEMS percentage recovered (β=0.56; 95% confidence interval [CI], 0.37-0.73; R=0.43; P<.001). Left LCST spared tissue demonstrated a significant predictive relationship with left LEMS percentage recovered (β=0.66; 95% CI, 0.50-0.82; R=0.51; P<.001). DC spared tissue demonstrated a significant predictive relationship with LT percentage recovered (β=0.69; 95% CI, 0.52-0.87; R=0.55; P<.001). When subgrouping the participants into motor complete vs incomplete SCI, motor relationships were no longer significant, but the sensory relationship remained significant. Those who had no voluntary motor function but recovered some also had significantly greater LCST spared tissue than those who did not recover motor function. Conclusions: LCST demonstrated significant moderate predictive relationships with lower extremity motor function at the time of discharge from inpatient rehabilitation, in an ipsilesional manner. DC integrity demonstrated a significant moderate predictive relationship with recovered function of LT. With further development, these neuroimaging methods might be used to predict potential deficits after SCI and to provide corresponding targeted interventions.

This document is currently not available here.

Share

COinS