Amputee Locomotion: Joint Moment Adaptations to Running Speed Using Running-Specific Prostheses after Unilateral Transtibial Amputation

Document Type


Publication Date



Objective The objective of this study was to investigate three-dimensional lower extremity joint moment differences between limbs and speed influences on these differences in individuals with lower extremity amputations using running-specific prostheses. Design Eight individuals with unilateral transtibial amputations and 8 control subjects with no amputations ran overground at three constant velocities (2.5, 3.0, and 3.5 m/sec). A 2 × 2 × 3 (group × leg × speed) repeated-measures analysis of variance with Bonferroni adjustments determined statistical significance. Results The prosthetic limb generated significantly greater peak ankle plantarflexion moments and smaller peak ankle varus, knee stance extension, knee swing flexion, knee internal rotation, hip stance flexion, hip swing flexion, hip swing extension, hip valgus, and hip external rotation moments than the intact limb did. The intact limb had greater peak hip external rotation moments than control limbs did, but all other peak moments were similar between these limbs. Increases in peak hip stance and knee swing flexion moments associated with speed were greater in the intact limb than in the prosthetic limb. Conclusion Individuals with amputation relied on the intact limb more than the prosthetic limb to run at a particular speed when wearing running-specific prostheses, but the intact joints were not overloaded relative to the control limbs.

This document is currently not available here.