Muscle fat infiltration following whiplash: A computed tomography and magnetic resonance imaging comparison

Document Type


Publication Date



Here we present a secondary analysis from a parent database of 97 acutely injured participants enrolled in a prospective inception cohort study of whiplash recovery after motor vehicle collision (MVC). The purpose was to investigate the deep and superficial neck extensor muscles with peri-traumatic computed tomography (CT) and longitudinal measures of magnetic resonance imaging (MRI) in participants with varying levels of whiplash-related disability. Thirty-six underwent standard care imaging of the cervical spine with CT at a level-1 trauma designated emergency department. All 36 participants were assessed with MRI of the cervical spine at <1-week, 2-weeks, 3-, and 12-months post-injury and classified into three groups using initial pain severity and percentage scores on the Neck Disability Index (recovered (NDI of 0–8%), mild (NDI of 10–28%), or severe (NDI ≥ 30%)) at 3-months post MVC. CT muscle attenuation values were significantly correlated to muscle fat infiltration (MFI) on MRI at one-week post MVC. There was no significant difference in muscle attenuation across groups at the time of enrollment. A trend of lower muscle attenuation in the deep compared to the superficial extensors was observed in the severe group. MFI values in the deep muscles on MRI were significantly higher in the severe group when compared to the mild group at 1-year post MVC. This study provides further evidence that the magnitude of 1) deep MFI appears unique to those at risk of and eventually transitioning to chronic WAD and that 2) pre- or peri-traumatic muscular health, determined by CT muscle attenuation, may be contribute to our understanding of long-term recovery.

This document is currently not available here.