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Preface and Acknowledgements 

 

I find animals fascinating. Growing up, I would use my one hour of screen time to watch 

Steve Irwin wrestle crocodiles and all kinds of diverse animals before going out into my 

backyard to catch garter snakes and give my best “Crikey” when I found one. I poured over 

books about endangered species and was enthralled watching a cheetah hunt a Thompsons 

gazelle or big horn sheep lock into an intense duel on some rocky slopes. I was amazed by the 

fauna that inhabited every corner of the globe. However, I never really gave much thought to the 

flora that surrounds all these animals, providing the habitat in which they live and the food that 

they eat.  

In molecular and cellular biology, I did an independent project on the carotenoids found 

in plant leaves that protect the plant from photoinhibition (Latowski, Kuczyńska, & Strzałka 

2011). I then compared the difference in these photosynthetic pigments between plants that used 

different forms of photosynthesis, C3 and CAM photosynthesis. In writing the paper I found 

myself drawn to the literature on the different photosynthetic pathways. I had never really 

considered the intricacies and importance of plants in the world. Plants provide the primary 

production for almost all ecosystems and provide vital habitat to so many species.  

In Advanced Primate Ecology, I was able to study in a lowland tropical rainforest in 

Costa Rica. There I examined the different tree use techniques in white faced capuchins and 

mantled howler monkeys. Craning my neck to find the monkeys amidst the massive trees, 

masked by verdant foliage, I was struck by the incredible importance that plants play in 

providing habitat for animal life. The monkeys lived amongst a tapestry of trees, vines and 

bromeliads providing them with ample amounts of food and shelter. We live in a world that is 
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dominated by plants. This thesis has allowed me to dive deeper into that world of plants and 

made me reconsider how important plants and photosynthesis are to life on Earth.  

Composing this Thesis has been quite a journey and I am really grateful to so many 

people who helped along the way. I would like to thank my Advisor and Reader, Dr. Sakulich 

and Dr. Schreier for their guidance and expertise in writing this Thesis. Dr. Sakulich, thank you 

for your belief in my ability and your patience and flexibility in helping me find my path in this 

Thesis and throughout my time at Regis. Dr. Schreier, thank you for your careful edits in helping 

me compose this paper and giving me the opportunity to immerse myself in the field. I would 

also like to thank my parents and friends for putting up with my constant worrying about this 

project and never ending talk about photosynthesis. I would also like to acknowledge the Regis 

University Honors Department, Dr. Howe and Dr. Narcisi, for challenging me to become the best 

student I can be. Finally, to my honors cohort, thanks for keeping me on track with school, I 

wouldn’t have made it this far without you all and can’t wait to see what exciting things lie ahead 

for you all.
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Introduction: The Power of Plants 

  

The world’s biodiversity is mind boggling. Since the formation of the Earth some 4.6 

billion years ago, life has proliferated throughout the planet, colonizing almost all available 

niches. From the deepest ocean vents to the air above us, life has persisted and evolved to adapt 

to any circumstances. Homo sapiens have only been around for a miniscule portion of Earth 

history yet have induced extreme changes in such a short amount of time. Our presence can be 

felt from trash in the deepest parts of the ocean, to the greenhouse gases we pump into the air. 

Yet, we are not the first organisms to have profound impacts on a global scale. Ancient 

cyanobacteria, whose descendants still persist today, are responsible for the oxygenation of the 

Earth’s atmosphere roughly 2.4 billion years ago through a remarkable process, oxygenic 

photosynthesis (Martin et al. 2018). The global change that this event causes resulted in the death 

of millions of species that did not have the ability to adjust to an oxygenated world, yet 

eventually led to aerobic organisms, such as humans.  

After the Great Oxygenation Event, life continued to diversify and die off, with some 

green algae able to leave the Earth’s early oceans to take over dry land. From these early algae, 

the dominant form of photosynthesizing life has become terrestrial plants, accounting for a 

whopping 80% of the Earth’s total biomass, by far the most dominant kingdom of life (Bar-On 

2018). These remarkable life forms capture the abundant energy of solar radiation and convert it 

into organic molecules through the remarkable process of photosynthesis. Plants form the basis 

of primary production for the majority of the biosphere. As such, human beings owe their very 

existence to plants and have been cultivating them for centuries and relying on their natural 

states for even longer. Yet in recent decades, humans have created a global agriculture system 

that, while providing food for a rapidly growing human population, has upended nutrient cycles 
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on a disastrous scale and impacted the global climate through direct emissions and land use 

changes. Stemming from a lack of focus on the incredible diversity of edible plants, modern 

industrial agriculture has shifted towards monocultured crops to feed a burgeoning animal 

population. Understanding the functions of plant photosynthesis allows humans to create an 

agricultural system that is more in-line with natural processes while sustaining human and non-

human life. Plants have the ability to capture CO2 from the atmosphere and remediate harmful 

pollutants from the environment. Seeing as humans emerged in a world dominated by plants, 

greenery has been shown to improve human happiness and well-being. Plants are essential to life 

on Earth and their unique, powerful properties are often overlooked. 

This thesis argues that there needs to be a concerted shift in human imagination and land 

management from an anthropocentric, extractive mindset, towards a human society that not only 

includes plants, but recognizes their incredible power to restore a balanced climatic system, 

remediate harmful pollutants from human recklessness and inspire a more peaceful, connected 

world. Dismantling human hubris begins with the recognition that humans owe their very 

existence to the remarkable capacity of photosynthetic organisms to provide humans with the 

very air that we breath, the fossil fuels we burn and the food we eat.  

 

 

Chapter 1: Global Atmospheric Influencers: Oxygenic Phototrophs and Homo sapiens 

 

 Energy is defined as the ability to do work. While the first law of thermodynamics states 

that energy cannot be created or destroyed, it can only change form (Energy 2017) . As the world 

begins to see a change in climate driven by anthropogenic forces, it is fascinating to consider that 

ancient photosynthesizing organisms harnessed so much of the energy that is now being released 

into the atmosphere through the burning of fossil fuels. These ancient plants captured the energy 
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of the sun into organic molecules through a remarkable process called photosynthesis and in 

doing so, provided an ancient form of stored energy that modern humans have exploited to build 

a complex, energy rich civilization. Unfortunately, the massive release of energy into the 

atmosphere from stored sources in the geosphere has upended the composition of the Earth’s 

atmosphere, trapping more solar radiation inside the Earth and thus heating the planet (Berner 

2003). Humans have taken the gift of stored energy left over by photosynthesizing organisms to 

create a world that is increasingly dominated by humans, leaving both human and non-human 

life vulnerable to changes. However, this is not the first time that the Earth has experienced 

dramatic shifts in atmospheric composition from biologic origins.  

Organisms have an impact on the environment around them as they struggle to survive 

and pass on their genes. Some biologic alterations to the environment are more consequential 

than others. Perhaps the most striking atmospheric change induced by organic life is the Great 

Oxygenation Event that occurred roughly 2.4 billion years ago. This compositional change in 

Earth’s atmosphere is thought to be one of the most important events in Earth history as oxygen 

is an essential component of complex life (Martin et al. 2018). It occurred through the advent of 

the most momentous biologic process on Earth, oxygenic photosynthesis. This process 

fundamentally changed the composition of the atmosphere to include oxygen. It is remarkable to 

imagine tiny cyanobacteria influencing geologic processes on a global scale. Yet, as Louis 

Pasteur, the great 19th century microbiologist put it, “The role of the infinitely small in nature is 

infinitely great” (Louis Pasteur Quotes, n.d.). Thus, examining the geologic and evolutionary 

history of photosynthesis is essential to understanding the present conditions on Earth. Looking 

to past global changes can give insights into the current age of human domination and provide 

context to the rapid rate at which humans have initiated global changes.  
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From The Soup to The Salad: A Brief Review of the Evolution of Oxygenic Photosynthesis 

 Photosynthesis has a long, complex evolutionary history that has major implications for 

life on Earth. It is hard to imagine the planet 3.8 billion years ago, as it was radically different 

from the world in which we currently exist. Looking back at both the geologic history and 

phylogenetic trees can provide insights into the origins of photosynthesis in living organisms. 

The conditions that gave rise to life and photosynthesis are important to understanding the 

current forms of photosynthesis employed by extant taxa. The oxidation of water is of major 

consequence for the evolution of life and occurred through one special molecule that split 

oxygen from water. The proliferation of oxygen in the atmosphere is thought to have been 

generated by cyanobacteria oxidizing H2O, inadvertently producing O2 as a biproduct through a 

special molecule called photosystem II. This molecule is the only known place in nature where 

oxygen is oxidized and this process, called oxygenic photosynthesis began to pump oxygen into 

the atmosphere starting around 2.4 billion years ago. This marked the beginning of a process 

called the Great Oxygenation Event, which eventually went on to kill the majority of life on 

Earth but led to the development of aerobic life (Fisher, Hemp & Valentine 2016). However, 

photosynthetic primary production is believed to have emerged 3.4 billion years ago (Martin et 

al. 2016). Thus, life on Earth and phototrophy emerged in an anoxic environment. This also 

implicates biologic phototrophy as the mechanism for increased oxygenation in the Earth, 

allowing for a major diversification of life.  

Looking at the geologic record for evidence of early life gives some sort of time frame 

for when the first organisms appeared and provides context for emergence of the first 

phototrophs. Evidence from the 3.8 billion year old Isua Greenstone Belt in Greenland is thought 



 

5 

 

to indicate the presence of early life through banded iron formations and graphite containing the 

organic carbon 13 isotope (Tashiro et al. 2017, Olsen 2006). Olsen, reviewing the literature in 

2006, found the organic carbon 13 percentages to be within the range for possible H2 driven 

photosynthesis. A decade later Tashiro et al. 2017 found enough evidence to support the claim 

that organic life was responsible for the rock formations. However, these data are inconclusive 

and a more easily agreed upon sign of early life comes from the microfossils found in the 3.4 

billion year old Strelly Pool Formation in Australia (Betts et al. 2018; Sugitani et al. 2015; Olsen 

2006). These microfossils show a non-random pattern of carbon isotopic heterogeneity that 

cannot be explained through abiotic phenomena. The lenticular flanged microfossils held their 

structural, morphological integrity and cahin-like attachments under acid extraction (Sugitani et 

al. 2015). This provides a definitive place to root biologic origin and used by Betts et al. as the 

place to root their molecular timescale analysis of early life evolution.  

Regardless of the exact date of the earliest records of life, before photosynthesis, the only 

significant source of electrons to power primary production was from H2 produced in geothermal 

vents. This process, called serpentinization, oxidizes Fe2+ minerals in the crust to produce H2 that 

is released in the discharge of the hydrothermal vents into the water surrounding the vents 

(Martin et al. 2018). The serpentine reaction can be simplified to 3FeO + H2O → H2 + Fe3O4 

(Sleep, Bird and Pope 2011). This H2 can then be used by early organisms to reduce CO2. Thus, 

the earliest lifeforms prior to the advent of photosynthesis were likely restricted to areas where 

serpentinization was occurring. These early organisms were reliant on the Earth’s geochemical 

interactions to survive. It is thought that these early organisms may be similar to extant acetogens 

that employ the Wood-Ljungdal reductive pathway to produce acetate (Ragsdale & Pierce 2008). 
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With this pathway, these organisms are able to create a source of organic carbon and was likely 

the first form of metabolism around the hydrothermal vents.  

These same hydrothermal vents are thought to be the initial environment for 

photoautotrophs to capture light in a reaction center. (Martin et al. 2018). The lower intensity 

light from the hydrothermal vents would reduce the risk of photooxidation (photoinhibition) that 

results from the intense oxidizing power of chlorophyl induced by intense UV light that would 

be irradiating the early Earth in the photic zone of the ocean. Without atmospheric ozone 

providing protection from strong UV radiation, it would have been challenging for early 

phototrophs to deal with UV intensity (Wellman & Strother 2015). Additionally, the 

concentration of life around hydrothermal vents would suggest that phototrophic metabolism 

would originate in this environment (Martin et al. 2018). Regardless of the exact origin of the 

first photoautotrophs, anaerobic photosynthesis was the only way forward for phototrophs, until 

the all-important Great Oxygenation event 2.4 Billion years ago. The leap between anaerobic 

photosynthesis and aerobic photosynthesis was of critical importance for the development of not 

only aerobic life, but more broadly the global Earth system. 

Through looking at past climatic conditions and conserved phototrophic lineages, we can 

infer the original electron donor, although there is still much debate. It is unlikely that H2 was 

used by the original phototroph because chemolithotrophy was already a finely tuned processes 

and the investment in a reaction center and chlorophyl would not be beneficial towards the end 

goal of carbon fixation. H2S is likely the first electron donor as it has a low redox potential (-

270mV) and was abundant in early oceans (Martin et al. 2018; Olsen 2006). Indeed, many extant 

cyanobacteria lineages have anaerobic sulfide generated photosynthesis conserved. The inclusion 

of H2S in metabolism freed life from the constraints of the low light intensity hydrothermal 
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vents. A cyanobacteria cultured from a sulfide spring was found to utilize both aerobic and 

anerobic photosynthesis. The cyanobacteria could switch from aerobic to anerobic 

photosynthesis seamlessly, induced by changing levels of sulfur in the environment. The late 

protozoic ocean was likely euxinic, meaning there is no oxygen but large amounts of H2S, thus 

showing the importance of sulfide in the evolution of photosynthesis (Klatt et al. 2015). In this 

oxygen deprived world, utilizing both aerobic and anerobic respiration likely fueled primary 

production and conferred advantages to organisms that could utilize both pathways. The ability 

to switch rapidly between metabolisms would be essential to early photosynthetic organisms 

ability to survive a changing Earth.  

The colonization of land by the plant kingdom was a remarkable event in evolutionary 

history that resulted in major physiologic changes to the early cells that emerged from the water. 

Land plants account for the basis of almost all primary growth in terrestrial ecosystems. They are 

a monophyletic lineage that can trace its origin to a group of green algae that underwent 

physiologic changes to reproduce in full contact with the atmosphere around 470 million years 

ago during the Silurian Period. Likely not the first organisms to transition out of the water onto 

the land, nor the last, these early green algae are without a doubt the most important land 

colonizers as this lineage as gone on to cultivate the conditions that we currently find ourselves 

in (Delwiche & Cooper 2015). Of the three bacterial lineages with plastids the glaucophytes, red 

algae and green algae, green algae is the group from which land plants emerged. The extant 

lineage of green algae that are most closely related to land plants are the charophytes (Delwiche 

& Cooper 2015; Welwich & Strother 2015). Thus, modern land plants share similar morphologic 

characteristics to charophytes including the primary plastids that contain both chlorophyl a and b. 
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With the emergence of land plants, the colonization of terrestrial environments was possible. 

From this small group of single celled organisms, incredible diversity has emerged.  

While there is some discussion of unresolved plant taxonomy, the Plant Kingdom is 

generally broken into 12 phyla under two broad categories, the vascular and nonvascular plants. 

The nonvascular plants consist of 3 phyla, Hepaticophyta (liverworts), Bryophyta (mosses), and 

Anthocerophyta (horn worts). The vascular plants are broken into two broad categories, seed 

containing and seedless plants. The seedless plant phyla include Pterophyta (ferns), Psilophyta 

(whisk ferns), Lycophyta (club mosses), and Arthrophyta (horsetails). These plants reproduce 

through spores and are the ancestral predecessors to the seed bearing plants. The seed bearing 

plants are further broken down into two categories, gymnosperms and angiosperms. The 

gymnosperm phyla are (Gnetophyta, Cycadophyta, Ginkgophyta, Coniferophyta), and the 

angiosperm phyla is (Anthophyta) (Hader 2018). This final group, the angiosperms, have grown 

to become the dominant autotrophs for land ecosystems. 

The angiosperms, or flowering plants, are the most abundant and diverse group of land 

plants. They form the major source of primary production for almost all terrestrial systems. Of 

the calculated 550 gigatons of carbon biomass distributed through the four kingdoms of life, 

plants make up 450 gigatons of the biomass on Earth (Bar-On et al. 2018). The angiosperms 

have become incredibly prominent and human life would not be possible without them. It can be 

easy to forget the importance of microscopic life when standing under the shade of a massive oak 

or eating a juicy apple. Yet, it is essential that future research focuses on the origins of 

photosynthesis in early organisms, especially further inquiry into phototrophic microbial forms 

of life. This provides insight into the earliest forms of metabolism and allows a richer 

understanding of extant plant physiology. Additionally, understanding the evolutionary history of 
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plants can whittle away at the anthropocentric mindset that modern human society has 

propagated.  

 

The Great Oxygenation Event 

 The current atmospheric concentration of O2 is about 21% (Fisher, Hemp, Valentine 

2016), making it the second most abundant gas after nitrogen in Earth’s atmosphere. Yet for 

much of Earth’s history, oxygen was not present in more than trace amounts. Sedimentary rocks 

deposited before 2.4 billion years are rich in minerals, like pyrite (FeS2) and siderite (FeCO3), 

that are quickly oxidized and destroyed in the presence of even trace amounts of oxygen. Thus, 

large quantities of oxygen were not present before 2.4 billion years ago (Fisher, Hemp and 

Valentine 2016). However, there is sufficient evidence to conclude that there was small amounts 

of oxygen in the atmosphere as much as 300 million years before the Great Oxygenation Event 

in quantities higher than the expected rate of oxygen formation from geologic processes. Thus, 

oxygenic photosynthesis may have an earlier inception than initially thought. With aerobic 

photosynthesis pumping oxygen into the atmosphere for 300 million before large scale climatic 

changes are seen, the importance of oxygenic photosynthesis as the only substantial method of 

creating oxygen in the atmosphere is clear as well as the large timescale that is needed for global 

effects to take place (Crowe et al. 2013). Thus, the Great Oxygenation Event is not a discrete 

event, but a continual process that involved many millions of years of oxygen accumulation. 

First, the oxygen was absorbed into the Earth’s oceans before they became oversaturated, and the 

oxygen began entering the atmosphere (Fisher, Hemp and Valentine 2016). Yet, basically all of 

Earth’s oxygen is from the splitting apart of the water molecule and the release of O2 as a 

biproduct from organic, life processes. Incredibly, thought there is great diversity in oxygenic 
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phototrophs, there is only enzyme that is known to split apart water, photosystem II. This 

remarkable protein has been conserved in all oxygenic phototrophs and is responsible for 

essentially all oxygen on Earth (Lubitz, Chrysina & Cox 2019). Photosystem II is conserved 

throughout all aerobic photosynthesizing species, making it one of the most common and 

essential molecules to life on Earth (Lubitz, Chrysina & Cox).  

 The first organisms to experience the increase of atmospheric O2 were likely unequipped 

to handle this new molecule. Oxyphotobacteria is the lineage of cyanobacteria that are thought to 

have the earliest ancestors of oxygenic photosynthesis and created novel ways to deal with 

reactive oxygen species (Fisher, Hemp & Valentine 2016). Reactive oxygen species are 

molecules such as peroxides, superoxide and singlet oxygen that can cause oxidative stress in 

cellular functioning and likely caused the extinction of many organisms that were not able to 

cope with these reactive molecules. Modern photosynthetic organisms have developed many 

enzymes to get rid of these problematic molecules through many years of evolution (Fisher, 

Hemp & Valentine 2016). However, the changes induced by the sudden appearance of oxygen 

resulted in the disappearance of many organisms that could not adapt to this new environmental 

reality. Figure 1 from Lubitz, Chrysina & Cox 2019 shows some of the milestones in the 

evolutionary history of oxygenic photosynthesis. It emphasizes the immense time scale over 

which life evolved and diversified.  
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This massive change in atmospheric composition allowed for the proliferation of animals life and 

ultimately humans.  

Scrutinizing the ways that ancient photosynthetic organisms have influenced global 

geologic processes provides context to the current changes that the Earth is undergoing, 

catalyzed by the actions of humans. If microscopic cyanobacteria were able to cause the 

extinction of thousands of species of organisms and fundamentally alter the course of life 

history, imagine the kinds of lasting changes that humans are imposing upon the planet with our 

newly synthesized materials and alterations in land use. Waters et al. (2016) noted that the 

amount of novel anthropogenic materials such as ceramics, concrete and new organic polymers, 

is the greatest expansion of new materials on Earth since the Great Oxygenation Event 2400 

billion years ago. While changes to atmospheric oxygen have ultimately resulted in human life, 



 

12 

 

they were catastrophic for organisms that were not adapted to an oxygenated world. Yet, this 

change occurred over a span of some 600 million years and still caused mass extinction (Crowe 

et al. 2013). In contrast, the changes that humans have begun to induce on the planet have taken 

a matter of decades, with some potentially devastating consequences for both human and non-

human life. The rate at which humans have been able to alter global geochemical processes 

stands in sharp contrast to the vast majority of Earth’s changes throughout geologic time. The 

scale and rate of human disturbance has led some geologists to declare a new geologic epoch, the 

Anthropocene.  

 

Plants and Anthropogenic Climate Change 

Earth’s climate is once again changing. The year 2019 was 0.98 degrees C warmer than 

the long-term average (“Climate Change” 2019). The last 19 of the 20 warmest years on record 

have happened since 2001. The extent of Artic Sea ice in September is decreasing 12% every 

decade (“Climate Change” 2019). The signs of a changing climate are myriad and troubling for 

both human and non-human life. This anthropogenic induced climate change is indeed the result 

of human activity, primarily through alterations to the carbon cycle through the burning of fossil 

fuels. Interestingly, these fossil fuels are composed of ancient marine algae. The ancient algae 

harnessed the energy of the sun through photosynthesis to produce organic carbon. When the 

algae died, they dropped to the bottom of the ocean and were crushed through under extreme 

weight and pressure to become the fossil fuels, namely oil and natural gas, which humans are 

now extracting and burning (Berner 2003; Chapman 2013). This has led to unprecedented, rapid 

warming of Earth’s climatic system as massive quantities of CO2 are released into the 

atmosphere. It is remarkable to consider that ancient plants are the basis for this change in 
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atmospheric composition. Human activity has become so influential and consequential that we 

have altered geochemical processes on such a scale that a new geologic epoch has been formally 

proposed by geologists.  

 The Holocene was ratified as the current geologic epoch in by the International Geologic 

Congress in 1885. This epoch describes the interglacial period of the past roughly 12-10 

thousand years (Steffen, Crutzen, & McNeill 2007). However, in the past two decades, 

geologists have proposed a new formal geologic epoch, the Anthropocene. This is a hotly 

debated topic as it has profound implications for the future of human endeavors. Waters et al. 

(2016) found that the physical markers of the proposed Anthropocene are enough to conclude 

that the Anthropocene could be formalized as its own geologic epoch. Among the stratigraphic 

markers included in the analysis was the extreme increase in atmospheric concentration of CO2 

compared with past atmospheric conditions preserved in Antarctic ice cores. From this historic 

geologic marker, an incredible increase in CO2 concentrations have been recorded. Since 1850 

CO2 concentrations have risen 120ppm with the rate increasing to roughly 2ppm per year for the 

past 50 years. Additionally, the methane concentrations during the Holocene ranged from 590 -

760 parts per billion. In 2004 it was an astounding 1700ppb (Waters et al. 2016). These 

remarkable changes can be attributed to the rampant burning of fossil fuels by humans in the past 

century and a half. However, the changes to atmospheric greenhouse gas concentrations are just 

one of the extraordinary changes that humans have wreaked on the Earth. Though humans have 

altered the global carbon budget, we share this planet with special neighbors that are able to 

harness the power of the sun to capture some of this carbon. Human beings need to recognize 

that power plants burning fossilized plants created this mess and conversely, the photosynthetic 



 

14 

 

power of plants can help humans return the globe to a more balanced world; one where the 

dominant force on Earth is not Homo sapiens but organisms that harness the power of the sun. 

Just like the ancient photosynthesizing algae that compose fossil fuels, modern plants 

capture carbon from the air to build their organic molecules through photosynthesis. Thus, one of 

the simplest and effective ways to capture atmospheric CO2 is through plants, as discussed later 

in this paper in further detail. Seeing that plants are the primary production for most ecosystems, 

when land is left to natural processes, plants take back over, capturing and sequestering carbon. 

Protecting natural ecosystems in their wild state is essential to reducing the amount of CO2 in the 

atmosphere. However, humans still need to provide food and shelter to an ever growing human 

population. Thus, deciphering a balance between meeting human needs while maintaining a 

planetary system that can support vast quantities of human and non-human life is essential in the 

coming decades. Through studying plants and their remarkable physical properties, human 

beings can hope to reverse some of the incredible changes that have been wreaked on the globe 

and led to the Anthropocene.  

 

 

Chapter 2: Plant Based Energy: Examining a Plant Powered Life 

 

Food has always been at the center of human civilizations. From the hominid hunter 

gatherers to the complex farming civilizations along river valleys, the means of food production 

dictate the foundations of a human society. In modern times, thanks to the Green Revolution 

following World War II, food production has skyrocketed to provide for an exploding 

population. This revolution involved the intensification of agriculture to produce higher yields 

through synthetic fertilizers, mechanization and genetically modified crops. While these 
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technologic advances have led to a reduction in global hunger and allowed for the human 

population to continually increase, there have been some troubling repercussions that need to be 

addressed if humans hope to create a world that allows for human and non-human life to 

flourish.  

Among the challenges presented by modern intensive agriculture, is the increasingly 

apparent greenhouse gas emissions associated with food production, which accounts for close to 

30% of the world’s greenhouse gas emissions (Clark et al. 2020). The lack of food for 800 

million people who go to bed hungry each night and the dearth of nutrition in the processed food 

we do consume, with one in two Americans suffering from pre-diabetes or type two diabetes, 

leaves much to be desired from our current means of food production (Hyman 2019). 

Additionally, the excessive use of nitrogen based fertilizers that are applied in copious amounts 

to produce monocultured crops have disrupted the natural rhythms of aquatic nutrient cycles, 

resulting in ecological chaos (Soumare 2020). Through the continued monoculture of row crops 

grown intensively under repeated tillage and pesticide application, soil degradation has 

accelerated, as plants are unable to retain soil year round and replenish vital nutrients.  

The massive amounts of CO2 in the atmosphere, the degradation of topsoil, nutritious 

food and eutrophied aquatic systems are problems that all arise from a lack of connection with 

food production in industrialized nations and a focus on quantity over quality. However, Dr. 

Mark Hyman points out in his most recent book, Food Fix, that there is a better way forward and 

plants can help in the fight against climate change and lack of nutrition. As he puts it, “We have 

the technology, it’s low cost, it’s available globally, and it has been proven and tested (for 

billions of years). It’s called photosynthesis” (Hyman 2019 p. 285). Dr. Hyman lays out many of 

the issues with the global food system and promotes a growing movement for producing food 
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that focuses on a regenerative means of production that take into account the natural nutrient 

cycles of the land to grow healthy, abundant food. Grounded with in-depth knowledge of plant 

physiology and ecosystem dynamics, humans have the capability of creating a regenerative 

method of producing food; a system built upon the foundation of terrestrial ecosystems, plants. 

Thus, understanding the remarkable process of photosynthesis that plants utilize to grow is 

essential to creating a food system that embraces plants.  

 

Plant Photosynthetic Pathways: Harnessing the Power of the Sun 

 

Almost all the energy in the food we eat is initially generated by a fusion reaction within 

our Solar System’s Sun. The energy is released through photons of light that radiate across time 

and space before some reach Earth’s atmosphere. Some of this light is first captured by a protein 

complex called photosystem II, initiating the first of the two photosynthetic processes, called the 

light dependent cycle. The second part of the cycle is known as the light independent processes 

or the Calvin-Benson-Basham cycle. The goal of photosynthesis is to produce glucose and other 

carbon molecules to be used in the physiology of the cell with the basic equation being 6CO2 + 

6H20 + light = C6H12O6 + 6O2 (Winter 2019). There have been three recorded methods of 

achieving this common metabolic goal in plant physiology named C3, C4 and CAM 

photosynthesis, with many unique plants that display intermediaries of these varieties (Winter 

2019). These three photosynthetic pathways are remarkably similar, and all share the light 

dependent cycle as it is one of the fundamental processes that allows life to proliferate on this 

planet.  
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The light dependent cycle is used to gather the energy from the sun in the form of solar 

radiation. This energy is then stored with the addition of a phosphate group to adenine 

diphosphate, ADP, creating Adenine Triphosphate, ATP, and the addition of a hydrogen atom to 

NADP+, creating NAPDH. This is accomplished through the generation of a chemiosmotic 

gradient within the thylakoid membrane (Keiler, Mackerness, Holmes 2003; Kothe et al. 2013). 

However, to capture the energy, life has created a fascinating method of harnessing energy, 

while inadvertently cultivating the conditions for other lifeforms to evolve with the splitting of 

H2O and the production of O2. Roughly 3 billion years ago, cyanobacteria utilized a light driven 

enzyme (photosystem II) to split apart the water molecule into molecular oxygen and hydrogen 

powering the reduction of CO2 into organic carbon molecules. Though oxygenic photosynthetic 

organisms are extremely diverse, they all share the same cellular machinery to split apart water, 

inadvertently providing oxygen for aerobes to breath (Lubitz, Chrysina & Cox 2019). 

Photosystem II, or Ps2, is a remarkable complex of proteins that first captures an electron 

from solar radiation in the light harvesting complex composed of chlorophyl and carotenoid 

pigments, though there is much diversity in this area among species. Incredibly, Ps2 oxidizes 

oxygen, splitting apart the two hydrogen atoms from the lone oxygen atom. This is the only 

known biologic reaction where oxygen is oxidized (Lubitz, Chrysina & Cox 2019). The freed 

electrons are then excited by the incoming energy of the sun captured in light harvesting 

complexes. The electron is then transported down a series of protein complexes in the thylakoid 

membrane. This creates a chemiosmotic potential of H+ ions in the thylakoid. These H+ ions 

then diffuse out of the thylakoid through ATP synthase and NADP+ reductase, creating ATP and 

NADPH to be used to produce sugars. These two molecules are then used as the energy source 

for the Calvin-Benson-Basham  Cycle, which produces the saccharides needed for life processes 
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to occur (Kothe et al. 2010; Winter 2019). It is in the beginning of the second step that the 

changes in metabolic pathways bifurcates in known plant species. Three categories of 

photosynthesis are generally described, C3, C4 and CAM photosynthesis.   

 

C3 Photosynthesis 

 Accounting for roughly 85% of described plant species, C3 photosynthesis is the most 

common variety of photosynthetic pathways (Sage 2014). It gets its name from the first stable 

carbon molecule synthesized, Phosphoglycerate, is a three-carbon molecule. These carbon atoms 

will then go through additional intermediates to be eventually synthesized into Glyceraldehyde 3 

phosphate, G3P. This can then be used to synthesize any carbon-based sugar needed by the plant. 

This is the most common way for plants to perform photosynthesis. However, to decarboxylate 

the carbon, the enzyme Ribulose 1, 5 biphosphate carboxylase/oxygenase or Rubisco for short, 

can not only react with CO2, it can also react with O2. Rubisco, which is responsible for the 

carbon capture to begin the Calvin Cycle in every plant cell, becomes inefficient when too much 

O2 is present, resulting in a process called photorespiration. This is where the CAM and C4 

metabolic pathways are thought to be selected to reduce photorespiration and make the plants 

more efficient (Sage 2011).  

Photorespiration is an evolutionary accident that occurs when the enzyme in plants that 

first fixes the carbon from the CO2 molecule, Rubisco or Ribulose 1, 5 biphosphate 

carboxylase/oxygenase, mistakenly fixes oxygen onto the Ribulose Biphosphate molecule, 

creating a two carbon molecule, Phosphoglycolate (2PG) instead of Phosphoglycerate (G3P). 

This is likely due to photosynthesis first developing in an anoxic world. All oxygenic 

photosynthetic organisms have developed a photorespiratory pathway to get rid of the toxic 
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products of photorespiration and reduce carbon loss (Dellero et al. 2016). Essentially 2PG goes 

through intermediaries to reach the final goal of G3P to be assimilated into the Calvin Cycle. The 

most consequential of these intermediaries is glycine, which must be decarboxylated through the 

Glycine Decarboxylation Complex to produce serine. This is then synthesized into glycerate, 

which is finally utilized to produce the G3P product. Clearly, this oxygenase activity by Rubisco 

utilizes a significant amount of energy to reach the starting point for the carboxylase products. 

This enzyme is so bad at its job, that in C3 plants, half of all Rubisco activity is oxygenase 

activity, resulting in costly photorespiration for the plant (Ulf-Ingo, Westhoff & Dario 2016). In 

fact, Rubisco is such an inefficient enzyme and plants have to produce such vast quantities of it, 

that it is the most abundant soluble protein on Earth (Edwards, Franceschi, & Voznesenskaya, 

2004). However, some plants have developed specialized ways to reduce photorespiration 

through anatomic and biochemical adaptations.  

 

C4 Photosynthesis: Fixing Photorespiration 

Avoiding photorespiration is so advantageous to plants, that C4 photosynthesis has 

evolved at least 65 times independently, making it one of the most convergent evolutionary 

pathways ever discovered (Sage, Khoshravesh, & Sage, 2016). To date, 7500 species of C4 

plants have been identified (Sage 2011). Intriguingly, only angiosperms have been found to 

perform C4 photosynthesis, with the majority of these lineages being found in three higher plant 

families, the grass family (Poaceae), the sedge family (Cyperaceae) and the rush family 

(Chenopodiaceae) (Sage 2011; Edwards, Franceschi & Voznesenskaya 2004). Rubisco 

oxygenase activity is more active at higher temperatures, likely why the majority of C4 plants are 

found in arid environments, where selection for carbon fixation without the threat of 
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photorespiration is thought to be most beneficial. Even though C4 plant species account for 

roughly 3% of known angiosperms, C4 plants are estimated to produce between 20-30% of 

terrestrial productivity. This is due to their predominance in grasses found in the expansive 

tropical and subtropical grasslands (Edwards, Franceschi & Voznesenskaya 2004). Additionally, 

C4 crop plants include maize and sugarcane, which are staple crops in many countries.  

C4 photosynthesis is characterized by spatially separating the fixation of CO2 by 

Phosphenol Pyruvate Carboxylase (PEPC), into a four carbon molecule and the subsequent 

transfer of this four carbon molecule to be decarboxylated and concentrated around Rubisco. 

This spatial compartmentalization is highlighted by dimorphic chloroplasts, wherein pyruvate pi 

dikinase (PPDK), which creates PEPC, is contained in one chloroplast type and Rubisco in 

another (Edwards, Franceschi & Voznesenskaya 2004). The classic C4 photosynthesis is 

characterized by Kranz anatomy, which consists of two different cell layers, the mesophyll cells 

and bundle sheath cells, coordinating the initial fixation of CO2 with PEP carboxylase in the 

cytosol of the mesophyll cells and the successive transport of CO2 to the bundle sheath cells for 

decarboxylation and utilization in the chloroplasts containing Rubisco. Kranz bundle sheath cells 

surround the vascular bundle and typically have more numerous chloroplasts, thick cell walls to 

reduce CO2 leakage and are more tightly packed, reducing the intercellular space to facilitate 

diffusion of CO2 between the cells. In these bundle sheath cells; Rubisco utilizes the now 

decarboxylated carbon and begins the Calvin Cycle unhindered by the costly O2 molecule and 

photorespiration. 

There are three kinds of biochemical Kranz type C4 photosynthesis based on the 

decarboxylase enzyme used in the bundle sheath cells (Edwards, Franceschi & Voznesenskaya 

2004). These are NADP malic enzyme (NADP-ME), NAD malic enzyme (NAD-ME) and PEP 



 

21 

 

carboxykinase (PEP-KE). In all three types, the mesophyll cells contain the initial carbon fixing 

PEPC in the cytosol, while the decarboxylases and Rubisco are centered in the bundle sheath cell 

chloroplasts. The chloroplasts in each cell type not only differ in quantities of enzymes contained 

within, but also the quantities of grana and thylakoids, thus being referred to as dimorphic. 

However, not all C4 plants have definitive Kranz anatomy such as the aquatic plant Hydrilla 

verticillate and Borszczowia aralocaspica that achieve C4 photosynthesis within a single cell 

(Pederson 2020; Voznesenskaya et al. 2001). Additionally, there are some plants that display C3-

C4 intermediaries within their anatomical structures and biochemical pathways (Sage, 

Khoshravesh, & Sage, 2014).  

In photorespiration one of the main intermediaries between the initial oxygenase activity 

of Rubisco creating 2 PG and the final product of G3P is glycine. To decarboxylate this 

molecule, the glycine decarboxylase enzyme, GDC, is one of the most costly enzymes to build as 

it requires four subunits. In C3 plants, this occurs in the mitochondria of the mesophyll cells. 

However, some plants that utilize predominately C3 photosynthesis, in that they fix carbon with 

Rubisco, have developed a glycine shuttle that moves the glycine to the adjacent bundle sheath 

cells to be decarboxylated with the GDC, producing serine. The serine is then sent back to the 

original mesophyll cell, where it is utilized by mesophyll chloroplasts to produce G3P and 

continue the regular Calvin Cycle (Sage, Khoshravesh, & Sage, 2014; Schlüter & Weber 2016). 

Intermediates that utilize a glycine shuttle to activate the bundle sheath cells in photosynthetic 

processes are becoming more widely discovered and are viewed as evolutionary intermediaries 

between C3 and C4 photosynthesis. 

Incredibly, some plants have been found to perform C4 photosynthesis within single 

cells. This challenges the long held idea that Kranz anatomy, with dual cell processes, as the only 
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method to perform C4 photosynthesis. One such plant is Suaeda aralocaspica, which is able to 

complete single cell C4 photosynthesis through dimorphic chloroplasts which compartmentalize 

the cell into two distinct categories, the carbon fixation portion and the decarboxylation portion. 

Near the distal end are the chloroplasts containing PPDK to create PEPC and in the proximal 

end, farther away from the air diffusing in is the Rubisco containing chloroplasts (Koteyva et al. 

2016). With the finding that single cells can find perform C4 photosynthesis, many additional 

species will likely be uncovered that perform C4 photosynthesis or some version of C3-C4 

intermediaries. This has great consequence for work looking to make important C3 crops, such 

as wheat and rice, more efficient and drought tolerant. Identifying ways to create transgenic 

crops that utilize C4 photosynthesis to reduce photorespiration is a growing field of research and 

could be a viable way to increase crop yields (Schuler et al. 2016). The final known version of 

photosynthesis has already created an ingenious way of preventing water loss and 

photorespiration through temporally spacing its carbon fixation.  

 

CAM Photosynthesis 

The third described metabolic pathway is called Crassulaceae Acid Metabolism. This is 

because it was first described in the Crassulaceae Family and uses malic acid as an intermediate 

for carbon storage. The main component of CAM is the temporal spacing of photosynthetic 

activity throughout a 24 hour period. This method fixes CO2 through the stomata at night into 

malic acid utilizing Phosphenol Pyruvate as the carbon acceptor and Phosphenol Pyruvate 

Carboxylase (PEPC) as the carbon fixing enzyme, similar to C4 photosynthesis except during 

dark hours. Unlike C4 though, the malate is then stored in the mesophyll cell vacuole overnight 

until it is transported out in the morning to be decarboxylated and refixed by Rubisco when the 
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sunlight returns. The returning radiation stimulates the cycle and with the stomata tightly closed, 

the cell begins the process of utilizing the available CO2 with Rubisco and initiating the Calvin 

Cycle (Barrow and Cockburn 1981). This process is categorized into a roughly four periods 

throughout the day, as shown in Figure 2. From Black and Osmond 2003.

 

 

Temporally spacing out the carbon fixation not only allows the Calvin Cycle to produce 

carbon-based sugars without the threat of photorespiration reducing the efficiency of the process 

but most importantly, opening the stomata during the nighttime hours reduces the amount of 

water loss. CAM plants can be so efficient at utilizing water that Charles Darwin once hung a cut 

succulent, Echeveria stolonefira, upside down and observed the roots begin to grow down and 

branches grow up. This member of the Crassulaceae family was able to persist without any 

external water, as CAM is so efficient at preserving water (Black and Osmond 2003). Spacing 

out the temporal and spatial fixing of CO2 indicates the evolutionary advantage of reducing 
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photorespiration and retaining water (Winter 2019; Brautigan et al. 2017). Conserving water is 

essential for all plants, especially in arid environments and has led many species to develop 

methods to fluctuate between C3 photosynthesis and the water conserving CAM photosynthesis. 

There is increasing research on the amount of plant species that utilize this remarkable form of 

metabolism and the different forms that this water saving technique can appear, even some that 

can shift from C3-CAM and back again. 

Increasing amounts of research have unearthed the intricacies and plasticity within the 

phenomena known as Crassulaceae Acid Metabolism. Characterized by the 24 hour 

photosynthetic cycle, there has been a remarkable number of species, from diverse plant families, 

that utilize CAM. CAM has been found in 33 families of terrestrial and aquatic plants, 

comprising roughly 15,000-20,000 species (Black and Osmond 2003). However, this number is 

constantly increasing as the physiologic mechanisms of CAM are continually teased out. One of 

the most incredible findings is that CAM can be induced under stress in certain plants. 

Increasingly, evidence has pointed to numerous categories of CAM. 

The most straightforward version of CAM is the constitutive or obligate CAM plants, 

such as Sedum lanceolatum (Gou et al. 2017). These plants are characterized by photosynthetic 

tissues that consistently mature to utilize a 24 hour photosynthetic cycle wherein the plant fixes 

all or almost all of its CO2 at night from phosphoenolpyruvate into malate by the enzyme 

phosphoenolpyruvate carboxylase (PEPC). The CO2 is then decarboxylated in the cytosol and 

utilized by RUBISCO in the Calvin cycle (Winter 2019). These plants always utilize this 

pathway in mature photosynthetic tissue. Typically, constitutive CAM plants live in arid 

conditions and rely heavily on the sequestration of water to survive.  
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Facultative CAM is when plants that typically utilize C3 photosynthesis are induced to 

switch to CAM through some kind of environmental stressor. This was first uncovered in the 

succulent, Mesembryanthemum crystallinum, when it was found to switch to a nightly CO2 

fixation cycle when watered with high salinity H20. Incredulous, the scientific community 

concluded that this was part of a natural ontological switch. Yet, under successive experiments, 

Mesembryanthemum crystallinum was found to complete its whole life cycle using C3 

photosynthesis when grown under ideal conditions (Winter 2019). Originally from the Sinai 

desert, this succulent has been introduced across the world and now grows in the wild throughout 

North America, Europe and Africa. The ability to switch photosynthetic pathways may have 

contributed to its widespread success as its incredible plasticity in photosynthesis enables it to 

adapt to different environmental stressors, while maximizing metabolic output. 

Some of the most surprising species that have been found to utilize CAM come from the 

tropics, as CAM is thought to be most beneficial in arid conditions. One intriguing group of 

plants that displays large plasticity in photosynthetic pathway is the Clausia genus. It contains 

300-370 species which have species that utilize constitutive CAM, facultative CAM and purely 

C3 plants (Winter & Holtum 2014). One species of note, Clausia pratensis, is a woody shrub 

that displays the only documented complete transition from CAM to C3 and back during the life 

cycle of a single leaf (Winter and Holtum 2014). This incredibly plasticity in metabolism is 

remarkable and has positive implications for utilizing these hardy plants to reduce soil erosion in 

places that have both a dry and wet season.  

 

Focusing on Plant Based Agriculture 
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 There is a major problem with modern industrial agriculture, humans have forgotten the 

power of plants. The incredible process of photosynthesis is able to harness the energy of the sun 

to create food for people to eat. Plants utilizing this process form the basis of primary production 

for so many ecosystems and has led to a remarkable diversity of plants. Yet only 12 plant species 

are responsible for 75% of the food humans eat, with 60% of that being made up of the big three, 

corn, wheat and rice. Additionally, close to 1/3 of the crops humans produce are processed to 

make animal feed to satiate the burgeoning animal population which is growing to keep up with 

the human population’s appetite for meat (Hyman 2019). The lack of diversity in crop 

production is driven by mass production to create staple food that can be refined rapidly and 

cheaply into processed food, much of it to be fed to animals. Reminding ourselves of the 

diversity of plants and working towards cultivating more varieties can lead to a more healthy and 

wholistic agricultural system.  

Humans are heterochemotrophs, meaning they must break down organic molecules 

through cellular respiration to produce energy containing molecules, like ATP and NADH to 

power cellular processes. Since humans have to eat food containing organic molecules to power 

our cells, they rely on plants to harness the sun’s energy to first make organic carbon through 

photosynthesis. Yet so much of this energy is inefficiently directed towards livestock, rather than 

humans. The emphasis on meat consumption rather than primarily plant based diets has led to 

some of the more disastrous changes imposed on the Earth by human forces. 

Humans and livestock have truly taken over the world. The wild mammalian biomass has 

decreased by a factor of 6 from pre-human times, while the total mammalian biomass has 

increased fourfold from 0.04 GT C to 0.17 GT C (Bar-On 2018). Humans have removed the 

large mammals from ecosystems the world over and replaced them with large quantities of 
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animals for human consumption. The removal of large mammals from some ecosystems can 

have deleterious effects on the rhythms of that environment. Take the American Great Plains for 

example, where millions of bison once roamed across a never ending sea of grasses and 

wildflowers (Hyman p. 286). Indigenous peoples utilized all parts of the bison to provide food, 

make shelter from its hide and fashion tools from its bones. In Lakota spirituality, humans are 

descended from bison and thus treated with reverence and a sense of brotherhood. With the 

arrival of American pioneers and their misconstrued notion of a manifest destiny, the bison were 

identified as the life support to the peoples the American Government and systematically 

removed. Hunters were hired to exterminate the massive ungulates, expunging them in obscene 

quantities to a few remaining bison hiding in the remote mountains of Yellowstone, leaving the 

Indigenous peoples of the plains little choice but to surrender to the U.S. government and move 

onto reservations. These massive ungulates acted as a keystone species on the plains ecosystem. 

Their hooves churned up the soil aerating it and their dung served to move nutrients across vast 

areas. Their selective grazing left grass root systems largely intact, while shearing the nutrient 

rich blades, promoting grass regeneration from intact roots and in turn capturing and storing 

large amounts of carbon (Hyman, p.286). In the past century, humans have replaced these great 

herds with even greater quantities of ungulates, cows, though in contained feeding operations 

that can contain thousands of cows in a few acres. In fact, 97% of native grassland in North 

America has been lost since European colonization (“North American Bird” 2011), replaced by 

monocultured row crops. Instead of large mammals churning up soil and grazing grasses across 

vast swathes of land, many of these animals are trapped within a few acres.  

Confined Animal Feeding Operations, CAFOs, are factories for mass producing animals 

in an efficient and cost effective method. Characterized by unsanitary conditions meant to 
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produce massive quantities of animals for rapid human consumption, CAFO numbers have 

exploded in recent decades. In 2019, U.S. Confined Animals Feeding Operations produced 8.7 

billion animals to be slaughtered (Gilbert 2020). Remarkably, these vast complexes of animals 

have become so large, and the human influence so great, that humans and domesticated 

mammals account for 96% of land mammalian biomass. Human biomass accounts for 0.06 GT C 

while mammalian agriculture, predominately cattle and pigs, is 0.1 GT C. The wild mammalian 

biomass accounts for only 0.007 GT C. (Bar-on 2018). While biomass is directly proportional to 

the size of animals being measured, and humans and cows are heavy animals, the incredible 

scale of animal agriculture is evident. As median wealth has risen across the world, an increase 

in animal agricultural efficiency has corresponded with an increase in meat consumption across 

the globe. In China, meat production rose 250% from 1986 to 2012 (Gilbert 2020). The appetite 

for meat is likely to continue to increase as more world economies become developed. However, 

production of large amounts of animals naturally requires vast amounts of plants to be produced 

at cheap prices to fatten up the animals for slaughter.  

To feed the vast quantities of cattle confined in these farms, massive amounts of feed 

must be generated. To ensure a competitive price for the cattle, feed must be inexpensive and 

easy to process. Thus, vast monocultures of corn and soy are becoming ubiquitous across the 

globe with the seeds being controlled by a handful of companies. In the U.S. 36% of the corn 

grown is fed directly to animals in feedlots (Gilbert 2020). In 2018, Monsanto’s seeds accounted 

for 90% of U.S. corn, 91% of cotton and 94% of soybeans grown (Hyman 2019 p. 267). This 

seed monopoly held by Monsanto, which recently merged with Bayer, rakes in massive revenues 

from not only seeds but also the associated fertilizers and pesticides that these seeds are 

genetically modified to respond to. Thus, Monsanto has both a lateral monopoly in the market 
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but also a vertical monopoly, controlling means of production along all steps of the supply chain. 

Since 1/3 of the crops go straight to producing animals, big seed companies like Monsanto have 

a vested interest in continuing the mass production of animals in CAFOS, perpetuating a vicious 

cycle of overproduction that has deleterious impacts on global and local systems.  

This continued planting of commodity crops is tied directly to legislation that perpetuates 

the cycle. Every five years, the United States Congress passes what is known as the Farm Bill. 

This omnibus spending bill incorporates everything from conservation initiatives to food 

assistance programs, making it one of the most influential pieces of legislation that the Federal 

Government enacts (“What is the Farm Bill” 2019). It is first drafted in the Senate and House 

Committees on Agriculture before being debated on the floor of the Congress and eventually 

signed into law by the President. The current bill, titled The Agricultural Improvement Act of 

2018, was signed into law by President Trump in December of 2018 and expires in 2023, when a 

new bill will be drafted (“What is the Farm Bill” 2019). One of the largest problems with the 

Farm Bill is the vast subsidies for certain commodity crops. While subsidizing the food system is 

certainly necessary in that the typical market forces of supply and demand do not apply to food 

(i.e., shortage of food means hungry people), only a few kinds of commodity crops are 

subsidized, leading to those crops being overproduced. Of course, farmers should have crop 

insurance to protect them and their families from a failed crop, especially due to weather events. 

However, farmers get trapped into a cycle of repeating the same commodity crops as “specialty 

crops,” such as nuts, fruit and vegetables are not covered under the federal farm crop insurance ( 

Barth 2019). This omission of healthy, nutrient dense foods ensnares the American agricultural 

system into producing vast amounts of the same monocultured crops that can be easily 

processed.  
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When monocultured row crops, such as corn and soy are planted year after year, they 

degrade the soil of the vital minerals that enrich plant growth like nitrogen and phosphorous. In 

order to replace the disappearing nutrients, vast quantities of relatively cheap fertilizers can be 

applied to continue production. These fertilizers are created through a process known as the 

Haber-Bosch process (Gilbert et al. 2014). This remarkable feat of capturing atmospheric 

nitrogen has been one of the most consequential acts of all time and a major reason why the 

Earth is able to support such a robust population of humans through increasing crop yields 

(Christopher 2017). However, the advent and subsequent overuse of nitrogen based fertilizers 

has upended the natural nitrogen cycle and is causing many problems with nutrient loading in 

aquatic ecosystems.  

 

Eutrophication: Upending the Balance of Nutrient Cycles 

The Haber-Bosch process was a created by two German scientists in 1913, just before the 

beginning of WW I. This remarkable feat of chemical engineering captures atmospheric nitrogen 

and converts it into ammonia with the equation N2 + 3H2 → 2NH3 (Gilbert et al. 2014). 

Ammonia is essential for plant growth and is thus a major component of fertilizers. However, 

ammonia is also a major component of many types of explosive and incendiary devices. During 

the two world wars, ammonia was produced on massive scales to create weapons of war that 

resulted in the death of millions of people. When the wars finally ended, the Green Revolution 

was catalyzed by the large production capabilities of ammonia factories. With these facilities 

pumping out new and improved pesticides and fertilizers, crop production soared. The amount of 

nitrogen based fertilizers have increased from 10 megatons in 1950 to 170 megatons in 2013 

(Gilbert et al. 2013). However, only 50% of the nitrogen fertilizer is actually taken up by the 
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plants when applied on fields due to denitrification, NH3 volitization, leaching and runoff 

(Gilbert et al. 2013).  When these excess nutrients flow into the rivers and streams, the change in 

nutrient concentrations can create complex problems for aquatic ecosystems. 

Eutrophication occurs when an overabundance of nutrients builds up in a system. These 

compounds, namely nitrogen and phosphorous, are usually limiting nutrients to algal growth in 

these waterways. Nitrogen is typically limiting in marine systems while phosphorous is usually 

the limiter in freshwater systems (Gilbert et al. 2014). When increased quantities of limiting 

nutrients are no longer constraining algal growth, harmful algal blooms can occur in which an 

overabundance of photosynthesizing cells can choke the system. Some of the algal species are 

not toxic on their own, while some forms of cyanobacteria can be extremely harmful to humans 

(Gilbert et al. 2014). As the vast quantities of algae die, their carbon is utilized by detritivore 

bacteria that eat the dead organic material. Many of the bacteria species respire and utilize all of 

the available oxygen in the water leading to anoxic conditions. Furthermore, many aquatic plants 

are not able to survive as the surface dwelling algae have blocked out all the sunlight needed for 

photosynthesis, so no fresh oxygen can be produced, leading to a dead zone where no or little 

aerobic life can persist. These tragic dead zones can be observed on massive scales at the mouth 

of large rivers. Marine dead zones are increasing across the globe, especially in areas that use 

large amounts of fertilizer in crop production (Lin et al. 2020). Creating ways to measure 

eutrophication levels is of tantamount importance towards incentivizing the reduction of 

fertilizer runoff. 

One way to measure the eutrophication level is to assess the chlorophyl content in the 

water, as this is indicative of the photosynthesizing cells, be they cyanobacteria, dinoflagellates 

or algae, that proliferate when released from nutrient constraints. Categorized into five groups 
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based on the concentration of chlorophyl ranging from 0mg/L to the highest at over 25mg/L, this 

is the most direct way to measure the intensity of algal blooms (Lin et al. 2020). The chlorophyl 

content is taken with other measurements like dissolved oxygen and nutrient levels to determine 

the severity and likelihood of harmful algal blooms. The problem of eutrophication and harmful 

algal blooms highlights the urgent need for humans to reconsider the methods in which they 

produce food. Incentivizing and prioritizing finding a balance with natural nutrient cycling to 

ensure a healthy and productive human society and natural systems is essential to continue 

human flourishing. One way to combat the excessive use of pesticides is to take a new approach 

to crop production that views farms as interconnected systems of living things interacting with 

each other, much like how one would view a naturally occurring ecosystem. At the center of this 

farm ecosystem is the incredible complexity of plants. 

 

Regenerative Agriculture: A Wholistic Approach 

  

 

The regenerative agriculture movement focuses on managing farm outputs as part of a 

comprehensive system. Regenerative Agriculture has become a buzzword over the past several 

years and utilized by many to incorporate numerous diverse agricultural practices. However, one 

of the major components of this movement is promoting healthy soil, which is composed of 

millions of microbes and heavily influences the quality of plant production (Christopher 2017). 

One of the keys points made by many regenerative agriculture proponents is the ability of 

healthy soil to draw down CO2 from the atmosphere, helping to mitigate climate change. 

Creating healthy soil can be achieved through managing farms as interconnected systems, rather 

than simply blank slates on which to construct CAFOs or plant rows of monoculture crops. This 

regenerative agriculture movement has the capacity to regenerate soil, increase biodiversity and 
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complement natural nutrient cycles, rather than disrupt them. Yet, the question remains, can 

these practices be scaled up to feed a human population of 7.8 billion? 

One of the biggest benefits with regenerative agriculture is the focus on encouraging 

natural sources of nutrients for plants to utilize. In contrast to inputting large amounts of nitrogen 

based fertilizers, regenerative agriculture focuses on capturing nitrogen through naturally 

occurring nitrogen fixing bacteria that live symbiotically in the root structures of many plant 

species, like legumes. The nitrogen fixing prokaryotes form a symbiosis in the root nodules of 

their host plants where the plant provides 12 g of glucose to the associated bacteria for 1 gram of 

biologically usable nitrogen in the form of ammonium (Soumare et al. 2020). Introducing 

legume cover crops such as alfalfa and lupin are ways to increase soil nitrogen availability 

without the need for synthetic fertilizers. Thus, focusing on plant mediated methods of enhancing 

production is essential to creating a more regenerative agriculture system and reducing overuse 

of fertilizer. However, many ranchers suggest that animals should be integral players in a 

holistically managed farm as they are a consequential part of many ecosystems and can help the 

growth of plants through disturbance and nutrient cycling. 

Grass raised beef is a controversial, complex topic. While CAFOS are unequivocally bad 

for environmental health globally and locally, could a reduction of meat consumption coupled 

with sustainably raised beef be a part of the solution to creating a more wholistic agricultural 

system? Dr. Hyman lays out the case for grass fed beef in the final chapter of his book, Food Fix, 

citing the benefits of multipaddock grazing simulating the movements of large herds across 

grasslands, much like the aforementioned bison of the Great Plains. The shearing of the grass 

blade, leaving the root balls intact stimulated regrowth in the plant and more carbon sequestered 

in the roots. One study conducted on White Oak Farms in Georgia found a net carbon 
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sequestration from land grazed by holistically managed cattle herds through all steps of 

production (Hyman, 2019 p. 319).  

Throughout the book Hyman promotes the benefits of grass-fed beef for prompting 

carbon sequestration. While I agree that the studies cited show the benefit of grazing animals to 

the health and carbon sequestration potential of some ecosystems, the scale at which this labor 

intensive process would need to be applied makes me skeptical of the possibility that this sort of 

wholistic grazing can be implemented broadly enough to maintain current meat consumption 

while reducing emissions. However, encouraging people to minimize meat consumption and 

look for equitably sourced food is beneficial towards reducing climate emissions. Yet, grass 

raised beef cannot compete on a global scale with CAFO raised meat. 

A recent study from the World Resource Institute found that many areas of regenerative 

agriculture can produce large benefits for reducing agricultural Green House Gas emissions. Yet, 

the authors were skeptical of the ability of regenerative agriculture to be scaled up effectively 

enough to make a significant impact on agricultural emissions (Ranganathan et al. 2020). For 

example, the use of cover crops in 85% of agricultural land could sequester 18% of total 

agricultural emissions in the U.S. Unfortunately, cover crops are presently used in only 4% of 

U.S. cropland (Ranganathan, Waite, Searchinger & Zionts 2020). However, if legislation was 

passed to incentivize farmers to try and adopt regenerative practices to access federal subsidies, 

there could be a significant improvement in the adoption of more environmentally friendly 

practices. Finding ways to combine practical policy with good science will define the future of 

agriculture in the U.S.  

Photosynthesizing organisms have tremendous power to impact the systems in which 

they exist. From sequestering carbon in soil, providing healthy food to humans or exploding 
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algal numbers wreaking havoc on ecosystem dynamics, the power of harnessing the suns energy 

is of major consequence for the global system. Finding a balance with natural nutrient cycles to 

reduce the overproduction of harmful photosynthetic organisms while maximizing output of crop 

plants to fulfill human needs is essential towards creating a more wholistic, regenerative system 

of food production. Understanding the unique properties within each plant is imperative in 

creating a more equitable world. Whether it is the unique photosynthetic mechanisms housed in a 

plant mesophyll cell or the symbiotic relationship with fungi in a plants root system, researching 

the complexities of plants should be a key in producing an agricultural system that not only 

provides food for to support human life, but also allows for the sustained vitality of wild spaces 

and organisms.  

 

 

 

Chapter 3: Recognizing and Utilizing the Virtues of Plants to Better Human Life 

 

  

Terrestrial Forests As Carbon Sinks 

Trees are some of the most successful land plants, with large swathes of land dominated 

by these incredible pioneers. Forests have provided human beings with lumber, food and 

aesthetic value for generations. Consequentially, they sequester vast quantities of the greenhouse 

gas carbon dioxide through photosynthesis, reducing the amount of human expelled CO2 and 

thus keeping the climate in check. All told, terrestrial forests sequester 2.4 +- 0.4 petagrams 

annually with the current total carbon stock in forests at 861 petagrams. Interestingly, this carbon 

is not only stored in the biomass but spread out between multiple components of the forest 

ecosystem with 44% stored in the soil to 1m, 42% in living biomass, 8% in deadwood and 5% in 

the litter (Pan et al. 2011). With less than half of total forest carbon being conserved in living 
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biomass, these data accentuate the need to protect intact forest systems to sequester the most 

carbon. When forests are lost, it is not only the large carbon based trees that are removed as a 

carbon sink but also the soil, deadwood and leaf litter that are no longer sequestering carbon. 

Especially when these forests remnants are then burned to clear the land, carbon emissions 

skyrocket as the carbon in the trees is released into the atmosphere. Based on the unique 

properties of individual forests, carbon storage percentages differ among global forest types. Of 

the three broad forest types, tropical forests store 471 PgC, boreal forests store 272 PgC and 

temperate forests hold 119 PgC. Interestingly, tropical forests store 55% of their carbon in living 

biomass while boreal forests hold only 20% in biomass and 60% in the soil (Pan et al. 2011). 

This is due to the favorable growing conditions in tropical forests where any available carbon is 

recycled through decomposers and utilized immediately by surrounding plants. When this forest 

is chopped down to make room for agriculture, the soil is nutrient poor and massive amounts of 

carbon are released into the atmosphere. Additionally, these now barren lands that used to hold 

such high densities of plant life are extremely vulnerable to soil erosion. With a decrease in soil 

quality, producing crops requires vast amounts of fertilizers (Pan et al. 2011). Unfortunately, the 

global loss of forests shows few signs of abating. 

Deforestation to make room for agriculture, namely ranching and crop production, have 

decimated forests in recent decades. In the Brazilian Amazon, a total of 169,126  km2 of forest 

was cut down between 2001-2010. This deforestation accounted for roughly 4195 Tg C of 

aboveground biomass lost, which produced 1530 Tg of carbon released into the atmosphere 

(Numata et al. 2011). The disappearance of this incredible carbon sink is extremely 

consequential for global and local carbon capture. As tropical forests have poor soils but high 

biomass, protecting standing tropical rainforest is imperative to conserving the most carbon 
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possible through natural processes. Yet, the insatiable desire for humans to eat meat is the major 

driver of deforestation in the Brazilian Amazon as more and more forest is turned into pastures 

for cattle (Numata et al. 2011). The destruction of forest for beef is a remarkably inefficient 

process for optimizing land use productivity in areas where tropical rainforests naturally occur, 

especially in capturing and sequestering carbon. However, finding solutions that work with 

natural systems can be a challenge as humans need to produce food and money to survive. 

Finding ways to protect forest systems while providing for human flourishing is of tantamount 

importance in the coming decades. However, a few recent global initiatives have been picking up 

steam to combat deforestation. 

Though deforestation has been an issue for decades, a new campaign has shed fresh light 

on the subject and gained much popularity in the media. The Trillion Trees campaign is a 

collaboration between some heavy hitters in the conservation world, Birdlife International, The 

Wildlife Conservation Society and The World Wildlife Fund, to “connect funders with forest 

conservation ventures and inspire the world to protect and restore 1 trillion trees by 2050” (The 

Vision). This project has gained steam as prominent youtubers, like the well known Mr. Beast 

got in on the action launching campaigns of their own with the Arbor Day foundation to plant 20 

million trees (Calma 2021). Even former President Donald Trump turned into a tree hugger, 

signing an executive order in October of 2020 detailing the United States commitment to 

assisting in the global campaign in conjunction with the World Economic Forum in Davos. He 

and First Lady Melania Trump planted a new tree on the White House Lawn and is quoted 

saying, “On this special occasion, we are renewing our strong national commitment on 

conserving the wonder of God’s creation. We’re also honoring our country’s heritage of 

conservation through the One Trillion Tree Initiative, which is a very big deal” (“Trump 
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Administration,” 2020). Clearly, the Trillion Trees campaign has reached a large audience and 

entered popular media. It is a straightforward way to think about the benefits of forests in 

capturing large amounts of carbon. Yet, the scientific study that generated these initiatives has 

received some significant push back from the scientific community indicating that it is perhaps 

not as big of a deal as the former President believes it to be. 

The initial study that generated so much of the hype for reforestation was published in the 

journal Science on July 15, 2019 with the lead author, Jean-Francois Bastin working from the 

Crowther Lab in Zurich, Switzerland. The authors used satellite data of currently protected land 

to build a predictive model using environmental variables to determine where forest restoration 

may be possible. They found that there is currently 0.9 billion hectares of land that could support 

reforestation and determined that when mature, these forests could capture and store 205 

Gigatons of carbon (Bastin et al. 2019). These findings indicated that a massive amount of 

carbon could be stored simply through reforestation efforts. To be exact 205 GT would be close 

to 1/3 of the historic carbon emissions since the dawn of the Industrial Revolution (Veldman et 

al. 2019). This led to the aforementioned hype train of media that followed the trillion trees 

campaign. If accounting for 1/3 of human produced CO2 could be as simple as planting one 

trillion trees, society wouldn’t have to worry so much about the amount of carbon used each year 

as long as we had trees to suck it right back up. However, these data may have been 

miscalculated according to a scathing rebuke of the paper published shortly after. 

A critique of the paper authored by 45 scientists and published in the journal Science a 

few months after the initial report, with the lead author Joseph Veldman of Texas A&M 

University, claimed that many of the methods utilized by Bastin et al. were flawed. Specifically, 

the review disputed the author’s quantification of carbon stored in the mature forests, claiming 
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that 205 GtC was 5 times too high. They believed the more accurate amount of carbon that 

would be sequestered is closer to 42 GtC. The critique also noted that Bastin et al. included 

afforestation of vast swathes of grassland into their calculations, which through fire regimes and 

herbivores have historically been free of woody plants, allowing grasses to take over. Planting 

forests in these areas would not only deplete the biodiversity held in grasslands, but would not 

even capture more carbon than healthy, intact grasslands (Veldman et al. 2019). The discrepancy 

in the amount of carbon stored by reforestation highlights the imperative for peer review in the 

scientific process. With the amount of media attention, the initial article got, there was a massive 

push for reforestation to help reduce the carbon dioxide in the atmosphere. Whole campaigns 

were launched on the basis of planting trees. It seemed like an easy and uncontroversial process 

that could reduce some of the human caused global warming being experienced. Yet, with the 

data so skewed to suggest such a large amount of carbon could be stored, the campaign to plant 

one trillion trees may not be so straight forward in its benefits for sequestering carbon. 

While forests acting as large carbon sinks is certainty the case, the degree to which they 

can help mitigate the worst effects of climate change remains to be seen. With the media storm 

surrounding the trillion tree campaign, the power of plants is being shouted to the world. Yet, 

this highlights the challenges associated with working towards a decarbonized economy and an 

atmospheric composition more compatible with historic ranges, ecology and conservation is 

extremely complex. Undoubtedly forests play a vital role in drawing down carbon out of the 

atmosphere; but focusing solely on their role in the carbon cycle omits so much of the benefits 

that forests bestow on the world. Tropical forests are the biodiversity hotspots of the world 

harboring incredible species of plants and animals, many of which are still to be formally 

recognized by science. Instead of the mantra of planting a trillion trees to mitigate climate 
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change, more emphasis needs to be placed on protecting the intact forest that remains, as well as 

protecting the other incredible, unique ecosystems on planet Earth, such as grasslands and 

deserts. Forests don’t need humans to plant saplings to recreate them. Trees have been surviving 

and reproducing in a constantly changing world for millennia. All nature requires is protection 

from the long arm of man to be able to reestablish. Thus, perhaps a better campaign for 

ecological protection is in order. 

The 30 by 30 campaign is an international collaboration of conservation groups seeking 

to preserve 30% of the ocean and land for natural processes by 2030. Spearheaded by the 

National Geographic Society and the Campaign For Nature along with over 100 other 

conservation non-profits including the Nature Conservancy, this crusade aims to preserve 

biodiversity while also mitigating climate change. While the trillion trees website (1t.org) has a 

resources tab with numerous videos and articles detailing the benefits that forests bring, it does 

not have quite as extensive a library as the website for the Campaign for Nature, which contains 

a treasure trove of published papers in major scientific journals arranged by topic ranging from 

biodiversity to protecting indigenous and local communities (“Science Page” 2021). The 

inclusion of hundreds of peer reviewed papers, as well as large UN reports shows the scientific 

credibility behind the benefits of simply protecting wild spaces.  

This expansive array of scientific data has clearly caught the eye of some influential 

figures as President Joe Biden signed an executive order on January 27, 2020 to commit the 

United States to protecting 30% of land and water for management to preserve biodiversity. The 

U.S. currently protects 26% of its ocean but only 12% of land, or 389 million acres. To reach 

30% by 2030, the U.S. will have to protect an additional 440 million acres for a total of 729 

million acres set aside for spaces (Sala, Huey, & Toensing 2021). This ambitious goal is going to 
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be a massive uphill battle as that is an incredible amount of land that needs to be protected. Yet, 

with many in the country becoming more environmentally conscious, it could become a reality. 

Regardless of whether Biden or the U.S. Federal Government can actually achieve this lofty 

goal, it shows a commitment to conservation that has been very much lacking at the Federal level 

since the environmental movement of the 1960s and 70s. People are finally waking up to the 

importance of preserving wild spaces and the new administration is taking note. 

Forests can act as carbon sinks and be extremely beneficial towards reducing the effects 

of Anthropogenic climate change. Yet, only valuing forests for their ability to soak up carbon 

fails to take into account the full role that trees play on the Earth. Advocating for the protection 

of forests and the reforestation of many areas is terrific and the more publicity that conservation 

has in the public is phenomenal. However, taking a more nuanced stance to incorporate the 

ecosystem as a whole is critical in maintaining biodiversity as well as combatting climate 

change. A comprehensive understanding of the many interactions that happen on the ecosystem 

level is essential in preserving wild spaces for future generations of humans and the diverse 

organisms that inhabit this world. 

 

 

 

Regrowing the Human Connection to the Natural World 

 

  

As we have seen, plants are essential to the health of our planet. Yet, plants have the 

capacity to benefit human lives in very direct, intimate ways. Human beings arose in a world 

dominated by plants. Our ancestors relied on knowledge of the interactions between species to 

survive. They utilized the myriad properties of plants, such as the abundance of fruit, nuts and 

animals that survived in community to find sustenance. This forms the basis of the biophilia 
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hypothesis by ecologist E.O. Wilson, which states that humans have an innate tendency to focus 

on life and life-like processes. Having an affinity for nature is hard wired into our genes. Yet, 

modern life largely removes humans from contact with the biologic world and replaces it with 

human constructed buildings and screens. In modern times, most urban dwellers now spend 80-

90% of their time indoors (Deng & Deng 2018), separated from the natural world in which their 

ancestors arose; a world dominated by plants. The move towards a digital life has only increased 

thanks to the COVID-19 global pandemic that has turned so much of the global economy and 

way of life upside-down. A marked shift to a digital environment has only served to increase 

human isolation from the outdoors and natural processes. The human habitat is now encapsulated 

by four walls and centralized around a screen. Thus, reexamining the ways that human beings 

can directly connect with the natural world, dominated by plants, is of tantamount importance for 

not only increasing human physical health, but also reinvigorating the human spirit and 

combatting negative mental health.  

Cultivating plants indoors can have marked benefits for air quality. Phytoremediation is 

the process of utilizing plants and their symbiotic microorganisms to remove harmful pollutants. 

One of the most researched components of phytoremediation is the removal of volatile organic 

compounds, VOCs, from indoor air. VOCs are commonly found in indoor environments and can 

lead to serious harm for human health. The five major volatile organic compounds found in 

indoor spaces are formaldehyde, benzene, toluene, ethylbenzene, and xylene (Kwang et al. 

2018). Remediating these compounds through house plants and their associated microorganisms 

was first researched by NASA scientists trying to create a more livable environment for 

astronauts leaving Earth’s atmosphere. One of the pioneers in the field, B.C. Wolverton, a NASA 

scientists summed up his report on plant benefits in creating a livable environment by saying, “If 
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man is to move into closed environments, on Earth or in space, he must take along nature’s life 

support system, plants” (“Plants Clean” n.d.). Incorporating plants into indoor spaces has the 

potential to drastically improve the health of humans. 

Different plant species utilize different methods for removing VOCs, some more 

efficiently than others. The VOCs are typically absorbed through the leaves either through an 

open stomata or through the compounds sticking to the waxy cuticle, where they are then slowly 

absorbed into the leaf. Once absorbed inside the plant, VOCs are transported through the phloem 

with photosynthate to the root systems where they can be metabolized. Benzene, toluene and 

xylene are broken down into intermediates before reaching fumaric acid, which can be utilized in 

the TCA cycle. Formaldehyde is changed into formic acid and then CO2 to be utilized in the 

Calvin cycle (Kwang et al. 2018). Only a few plant species have been studied in their ability to 

remove VOCs, with marked differences in efficiency. One CAM photosynthesizing succulent, 

Crassula portulacea, was found to remove benzene at a rate of 724.9 (μg m−2 d−1) ( Liu et al. 

2007). Not all plants can break down the VOCs internally, some rely on the associated microbes 

that live in their root systems to metabolize the pollutants, indicating the importance of 

symbiosis in plants and their symbiotic microbes. Whether through the enzymes found within the 

plant leaves or the microbes that live alongside plants, improving indoor air quality through 

phytoremediation is a cost effective way to generate a more healthy environment for humans to 

thrive in.  

Plants not only have a remarkable ability to create healthy air for humans to live in, they 

also stimulate our mental well-being, pointing towards our affinity to natural processes. In 

hospital rooms adorned with plants and flowers, patients reported less pain and felt less anxious 

than patients that had rooms without any plants. The patients surrounded by plants even had 
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lower cytosolic blood pressure than those without (Park & Mattson 2009). This emphasizes the 

human need for connection with the natural world. 

Interacting with the natural world has tremendous benefits not only to human physical 

health, but also to mental health. In his most recent book, Our Wild Calling, nature write Richard 

Louv describes the ways animal encounters, especially wild animals, can influence our lives. 

Louv challenges humanity to connect with our fellow life forms on this planet describing how 

certain special encounters with wild creatures can release humans from ego, allowing us “a 

doorway into another world” (Louv 2019, p.6). Louv goes on to describe a myriad of physical 

and psychological health benefits associated with a connection to the natural world such as an 

increased attention span, mental health alleviation and better physical condition. In addition, he 

writes frequently about the ability nature has to “reset our and wonder awe.” When one stops to 

consider the complexity of life, the intricacies and interconnectedness of the biosphere becomes 

apparent.  

Louv highlights many explorers and researchers who have had connections with wild 

animals that transcended the species barrier to create a momentary or lifelong connection with 

another sentient being. The connection with nature is essential to creating a more humble 

attitude. Human hubris, our tendency to view ourselves as the dominant species that has mastery 

over the world, is what has led us to the challenges we face in the Anthropocene. The disconnect 

from natural systems and species have led to human caused destruction of natural systems. The 

decimation of species, denigration of ecosystems and anthropogenic climate change, have grown 

from a misconstrued notion that humans have dominion over the Earth, rather than being an 

integral part of its interconnected processes and systems. Humans fail to view themselves as part 

of the world, not the owners of it. Louv quotes an environmental educator named Norah 
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L’Eespérance near the end of the book who encapsulates this thinking, “The more I have learned 

about ecology and the story science tells us of the unfolding universe, the more my language has 

changed in my teaching. When I talk about the planet Earth, I no longer say, ‘we are on the 

Earth.’ Now I talk about ‘the planet we are a part of.’ It’s a small change in words but a big shift 

in consciousness: we’re not separate from everything else on the planet, we are actually, literally, 

completely a part of it” (Louv 2019, p.264). Rhetoric matters and beginning to deconstruct the 

ways in which humans view themselves as the center of the world creates a new ethic of a 

collectivist, worldwide mindset. Placing human action in the context of a dynamic ecosystem of 

interconnected parts is the vision that future human development must undertake. Only then can 

human activity begin to progress in a sustainable manner. 

Reconsidering the role that plants play in human lives has the capacity to create a richer 

connection with the natural processes that govern life on Earth. Plants may not be as charismatic 

as the polar bears or pandas, yet they are essential to life on this planet. We must constantly be 

reminded of the power within each tiny photosynthesizing cell to create oxygen for humans to 

breath. Realizing human reliance on other life forms will release humanity from the all-

consuming anthropocentric pride. When released from human hubris, we will realize that we are 

not masters of the Earth, but rather members of a living, breathing community reliant on the 

unique qualities that sustain different forms of life. Cultivating this sense of humility has the 

capacity to catalyze human action to consider the interconnectedness of world processes and 

proceed with actions that are in communion with living systems to support human and non-

human life’s ability and right to flourish.   
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