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Abstract

Music streaming services use recommendation systems to improve the customer

experience by generating favorable playlists and by fostering the discovery of new music.

State of the art recommendation systems use both collaborative filtering and

content-based recommendation methods. Collaborative filtering suffers from the cold

start problem; it can only make recommendations for music for which it has enough

user data, so content-based methods are preferred. Most current content-based

recommendation systems use convolutional neural networks on the spectrograms of

track audio. The architectures are commonly borrowed directly from the field of

computer vision. It is shown in this study that musically-motivated convolutional

neural network architectures outperform architectures that are highly-optimized for

image-related tasks. A content-based recommendation model is built using

musically-motivated deep learning architectures. The model is shown to be able to map

an artist onto an artist embedding space where its nearest neighbors by cosine similarity

are related artists and make good recommendations. It is also shown that metadata,

such as lyrics, artist origin, and year, significantly improve these mappings when

combined with raw audio data.

Keywords: deep learning; music recommendation, embeddings,

musically-motivated architectures
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Content-Based Music Recommendation using Deep Learning

Introduction

Recommendation systems influence consumers by presenting them with artifacts

that consumers are likely to have a positive response to. These systems have broad

applications but are primarily employed to increase some form of utility for the

consumer which in turn benefits the producer. Some examples of this include consumers

being more likely to stay with a certain streaming service that recommends content

they like or shopping more frequently at stores that provide useful item comparisons

and recommendations. For music services, recommendation can improve a consumer’s

experience by supporting his or hers discovery of new music, generating favorable radio

stations, and curating playlists.

While there may be some concerns over privacy or meddling, recommender

systems are generally a positive phenomenon, and their use is becoming ubiquitous

online where data are abundant. This research focuses on building a better

understanding of the audio signal processing and machine learning concepts that are

fundamental to music recommendation systems and ignores any ethical discussions that

may be related to the topic (Fule & Roddick, 2004; Van Wel & Royakkers, 2004).

Statement of the Problem

Two main methods are generally used by music recommendation systems:

collaborative filtering and content-based recommendation. Collaborative filtering

employs user behavior data (liked/disliked tracks, play counts, skip counts, playlists,

etc.) to predict what a specific user might like by cross referencing that data with other

users. Content-based recommendation attempts to model similarity using only simple

descriptors, such as human labeled ‘genres’ or features derived from Fourier-based

analysis on the raw audio signal. The general principals are consistent across different

methods, but the specifics or novel approaches to both collaborative filtering and

content-based recommendation vary widely and a general best practice has yet to be

established.

Most industry approaches to music recommendation combine multiple methods
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into so called ‘hybrid’ methods, which tend to perform better compared to existing

methods (Katarya & Verma, 2018). Two popular music streaming services, Spotify and

Pandora, serve as good examples of hybrid recommendation systems that tend to favor

either collaboration or content-based recommendation. Spotify’s hybrid strategy

combines collaborative filtering on user behavior with natural language processing (to

gain insight into the context of music by scraping the web) and deep learning (to

understand the qualities of raw audio signals) to infer similarity (Ciocca, 2017).

Pandora keeps comprehensive music metadata in the form of about 400 descriptive

‘genes’ carefully chosen by domain experts that describe a particular piece of music

from which similarity can be measured (Howe, 2009). Spotify and Pandora have both

been successful financially, and anecdotal evidence suggests that their users are

responding positively to their recommendation services (Ciocca, 2017; Howe, 2009).

However, both of these approaches to music recommendation can still be improved.

Music recommendation systems currently face a few challenges. The main

challenge for collaborative filtering is the cold start problem, which is when a new user

or track is introduced into the ecosystem. There will not be enough data to provide

accurate recommendations in these cases. Another more nuanced example of the cold

start problem can occur for listeners with unique or niche tastes in music. When there

are not enough similar listeners (a threshold of similar users in some niche is not

reached) recommendations will typically trend towards popularity. It may be slow or

impossible to generate enough data for certain niches to benefit, so these users never

really get their ‘start.’ This phenomenon is associated with the long tail- a small

percentage of tracks generate the most play counts (Anderson, 2004).

Content-based recommendation comes with its own set of challenges, the main one

being the lack of a ground truth. Genres are a good example. Genre labellings are

meant to group similar sounding music together, but a study done by Gjerdingen and

Perrott (2008) found that assigning a music clip as one of ten genres proved difficult for

most people. Individual perspectives on music vary widely and content-based

approaches will always suffer from data that lack the full description. Cultural,
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emotional, and contextual factors can influence a person’s perception of music. If a

perfect measure of raw audio content similarity existed, two very similar songs

recommended could still be perceived by someone as completely different: for example,

suppose one song happened to bring up a positive memory for one person and did the

opposite for another person. This would be a bad recommendation for the second

person. Content-based similarity measures of something as complex as music is still a

difficult problem.

Purpose of the Study

State of the art music recommendation systems use hybrid collaborative filtering

and content-based recommendation methods but still struggle to classify and

recommend newly-introduced or niche music. Because content-based methods are well

suited for solving the cold start problem, they are the the focus of this study. More

specifically, this study investigates different content-based approaches to genre

recognition and recommendation. Multiple Fourier-based representations of audio are

compared. The effects of metadata on recommendation are also explored. Finally,

different deep learning models are trained and tested. The results of experimentation

are used to propose a content-based recommendation model.

Significance of the Study

Because deep learning for content-based music recommendation is still a relatively

new area of study, an investigation of different deep learning methods may further the

development of the field. Recent deep learning breakthroughs in the fields of computer

vision and natural language processing are translatable to content-based music

recommendation. However, a direct translation is not ideal, so musically motivated

deep learning architectures are proposed. This study also attempts to gain insight into

how song lyrics, album artwork, song release year, and artist origin affect music

recommendation.
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Literature Review

Recommendation resides in the domains of data science and machine learning, but

music recommendation also requires audio signal processing and musicology (for

understanding the domain). More broadly, music recommendation can draw from

branches of psychology, physiology, philosophy, and anthropology. Understanding the

human connection to music is an ongoing research effort that spans many branches of

science. An algorithm that truly understands music will require much more research in

these areas. Currently, the state of the art recommendation systems use hybrid

collaborative and content-based filtering methods, leveraging massive pools of data to

make recommendations. Methods that take into account cultural, social, contextual, or

emotional aspects of music are beginning to appear in the literature, but these avenues

are new and have not been explored fully.

Early Content-Based Methods

Content-based recommendations leverage the simple concept that there are

intrinsic similarities between some songs and obvious differences between others. If a

user listens to a certain song then songs that are ‘close’ to that song by some measure

make good recommendations, depending on the measure. Music similarity is a

continuing research effort that currently relies heavily on the field of music information

retrieval (MIR), which is concerned with the extraction of useful information from raw

audio signals. One popular sub-task of MIR in the literature is music genre recognition

(MGR): classifying an audio signal (with or without metadata) into one or more genres.

MGR, MIR and content-based methods face interesting challenges. Datasets for MIR

are hard to generate due to copyright. Most datasets used in MGR are from private

collections, so results are hard to replicate (Sturm, 2012b). Also, using genre labels as

ground truth is flawed because genre itself can be dynamic or vague; the boundaries

between genres are increasingly becoming blurred (Patch, 2016). Despite these

challenges, progress has been made in extracting useful features from raw audio and

metadata to construct similarity measures, clusters, and labels.
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Features. The early literature of MIR has been heavily focused on discovering

which features derived from audio signals are most emblematic of the music and

somewhat focused on which algorithms are best at understanding or applying these

features. The features extracted fall (very) roughly into three main categories:

low-level, rhythmic, and tonal. Early work done by Tzanetakis and Cook (2002) used

features of these three categories for MGR and is frequently cited. Other feature

categories exist as well, such as high-level descriptors (e.g. ‘danceability’) (Laurier,

Herrera, Mandel, & Ellis, 2007; Maillet, Eck, Desjardins, & Lamere, 2009).

Audio features. A common technique for analyzing a raw audio signal is to

use the Discrete Fourier Transform (DFT) to get a spectral representation, the

amplitude and phase of the signal in the frequency domain. The Short-Time Fourier

Transform (STFT) is used to get a time-varying spectral representation, a spectrogram.

Timbral characteristics of sound can be derived from the spectrum.

The spectral centroid is a common feature extracted from the spectrum. It is the

location of the center mass of the magnitude of the spectrum and is a characteristic of

the spectral shape of a sound. It corresponds roughly to the ‘brightness’ of the sound.

Another measure of spectral shape, the spectral roll-off frequency, is the frequency of

which some threshold of energy falls below it. It is calculated by splitting the spectrum

at some energy interval, usually around 85%, where sounds above it are more likely to

be noise and sounds below it are more likely to be important harmonics. The spectral

flux is a measure of how much the signal is changing and is a characteristic of timbre; it

is also used for onset detection. The zero-crossing rate is a time domain feature that

corresponds to the amount of sign change in a signal, which can indicate percussiveness

or noise. These features are used in the literature for MGR with varying results

(Benetos & Kotropoulos, 2008; Laurier et al., 2007; T. Li, Ogihara, & Li, 2003;

McKinney & Breebaart, 2003; Peng, Li, & Ogihara, 2007; Tzanetakis & Cook, 2002).

A more complex representation of the spectral shape of a sound is the

Mel-Frequency Cepstral Coefficients (MFCCs). The MFCCs are derived using the mel

scale, a close approximation of the human auditory response (Stevens, Volkmann, &
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Newman, 1937). MFCCs can represent complex characteristics with low dimensionality;

typically, only the first 13 coefficients are used. MFCCs were used mostly for speech

recognition until Logan (2000) popularized the idea of using MFCCs for MIR, of which

many followed (Aucouturier & Pachet, 2002; Aucouturier, Pachet, & Sandler, 2005;

Benetos & Kotropoulos, 2008; Berenzweig, Logan, Ellis, & Whitman, 2004;

Bertin-Mahieux, Eck, Maillet, & Lamere, 2008; Flexer, Schnitzer, Gasser, & Widmer,

2008; Karpov & Subramanian, 2002; Laurier et al., 2007; Lee, Shih, Yu, & Su, 2007;

T. Li et al., 2003; T. L. Li & Chan, 2011; Maillet et al., 2009; Mandel & Ellis, 2005;

McKinney & Breebaart, 2003; Pampalk, 2005; Pampalk, Flexer, & Widmer, 2005; Peng

et al., 2007; Shao, Xu, & Kankanhalli, 2004; Tzanetakis & Cook, 2002).

The first MFCC is a measure of energy and is normally excluded and obtained by

other means. The energy of an audio frame can be measured in the time domain or in

the frequency domain and can be an indication of activity, loudness, or perceived

intensity (Benetos & Kotropoulos, 2008; T. Li et al., 2003; Maillet et al., 2009;

McKinney & Breebaart, 2003; Tzanetakis & Cook, 2002). Laurier et al. (2007) found

loudness to be particularity good at discriminating between some moods for a mood

classification task.

Rhythmic characteristics of music like beat and time signature can be estimated

through various methods that detect salient periodic patterns (T. Li et al., 2003;

Tzanetakis & Cook, 2002). Beat tracking and onset detection are useful tools for

detecting segments within a song. Music made specifically to dance to, ballroom music

for example, will have a high correlation with tempo. However, rhythmic features are

rarely used on their own in the literature for MGR since most popular Western music is

in common time and distinguishing genre by beat and tempo alone is nearly impossible.

Rhythmic features are mainly used in conjunction with other features.

Tonal descriptors are generally the most abstract or complicated to extract. These

features attempt to describe harmony and pitch through various methods (T. Li et al.,

2003; McKinney & Breebaart, 2003; Tzanetakis & Cook, 2002). Tonal descriptors can

predict with some certainty the key (Laurier et al., 2007), scale, sequence of chords, and
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the predominant melody of a song. Lidy, Rauber, Pertusa, and Quereda (2007) used

tonal and rhythmic methods to produce a symbolic representation of raw audio in the

form of MIDI information, which improved genre classification accuracy over using

timbral features alone. Müller, Kurth, and Clausen (2005) showed that chroma-based

features work well for identifying different interpretations of the same piece of classical

music because they capture melodic and harmonic characteristics while being robust to

variations in timbre, tempo, and dynamics.

Other audio features found in the literature include constant-q transforms (CQT)

(Schörkhuber & Klapuri, 2010), octave-based spectral contrast (Jiang, Lu, Zhang, Tao,

& Cai, 2002; Lee et al., 2007), discrete wavelet transforms (DWT) (T. Li & Ogihara,

2004; T. Li et al., 2003; Peng et al., 2007), linear prediction cepstral coefficients

(LPCCs) (Karpov & Subramanian, 2002; Shao et al., 2004), autocorrelation coefficients

(Maillet et al., 2009), and dissonance (McKinney & Breebaart, 2003).

Metadata. Generally, two types of metadata can describe any given song:

subjective and true. True labels are anything that is not subjective, i.e. artist, album,

year, lyrics, etc. Subjective labels include things like tags and genres. Tags can be any

subjective labels given to a song, artist, or album, usually as words or short phrases. In

most databases, tags are applied by users. This can make tags noisy, especially if the

system does not restrict what a tag can be. In these cases, tags are often genres and

sub-genres. Genre is the most common source of ground truth for recommendation and

MIR tasks, but tags can be used as well (Bertin-Mahieux et al., 2008). Web scraping for

information is another way to get more contextual, social, or emotional metadata, such

as from critical reviews, social media contexts, or information from wikis (Berenzweig et

al., 2004).

Methods. Just as there were many different audio features or representations to

consider, the methods by which to apply these features in the pre-deep learning

literature varied widely with no best practices emerging. A few examples include

Gaussian mixture models, used by Aucouturier and Pachet (2002), Aucouturier et al.

(2005), Berenzweig et al. (2004), Jiang et al. (2002), and Pampalk (2005), non-negative
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tensor factorization (an extension on non-negative matrix factorization (Holzapfel &

Stylianou, 2008)), used by Benetos and Kotropoulos (2008) and Panagakis, Benetos,

and Kotropoulos (2008), and hidden Markov models, used by Karpov and Subramanian

(2002) and Shao et al. (2004). Even simple designs like using Euclidean distance as a

similarity measure showed promise during this time (T. Li & Ogihara, 2004).

The number of features (dimensionality) from audio analysis can depend on the

size of the feature window and how far apart these windows are placed (hop size).

Window level features are sometimes aggregated by means and variances, or by the

running means and variances of previous windows (Tzanetakis & Cook, 2002). For a

specific example, Bertin-Mahieux et al. (2008) used features gathered with a window

size of 100ms every 25ms and compressed them into means and standard deviations

over every 50 windows. Other statistical descriptors of features can include median,

skewness, kurtosis, minimum values, and maximum values (Lidy et al., 2007). Mandel

and Ellis (2005) make the assumption that “songs with the same MFCC frames in a

different order should be considered identical” and use a ‘bag of frames’ approach to

MFCC features. Bergstra, Casagrande, Erhan, Eck, and Kégl (2006) compressed the

window-level features into song-level features by fitting independent Gaussians to each

feature. Windows, hop sizes, segmentation, and compression strategies vary in the

literature and are influenced by computation and memory constraints.

Most of the audio feature-based efforts limited audio samples to around 30

seconds mainly due to the availability of data and the restriction placed on most

machine learning model inputs. However, Aucouturier et al. (2005) went a step further

from their earlier work (Aucouturier & Pachet, 2002) and used the entire length of the

song, segmenting it into “sections of homogeneous timbre.” Their results were not

definitively better than those from their earlier research using shorter audio clips;

however, in both cases the evaluation methods were qualitative. Mandel and Ellis

(2005) did show advantages of using full tracks instead of 30 second clips. Song

segmentation techniques are more effective when using full tracks. Shao et al. (2004)

segmented songs not by timbre but by rhythmic structure, which they argued “captures
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the natural structure of music genres better”. Segmentation is not fully explored in the

literature and could be a useful research direction.

Ever-increasing computing power allowed many researchers to improve upon past

results by using machine learning algorithms like K-Means (Berenzweig et al., 2004;

Peng et al., 2007; Tzanetakis & Cook, 2002) and KNN (Tzanetakis & Cook, 2002) for

music classification using metadata (artist, genre, year) alongside audio features, or

AdaBoost for general music classification (Bergstra et al., 2006). FilterBoost, a similar

algorithm to AdaBoost, was used by Bertin-Mahieux et al. (2008) as an ‘autotagger’ for

automatically assigning social tags to tracks using audio features. Support Vector

Machines were used for music mood classification (Laurier et al., 2007), genre

classification (T. Li et al., 2003; Lidy & Rauber, 2005; Wang, 2016), artist classification

(Mandel & Ellis, 2005) and emotion detection (T. Li & Ogihara, 2004). Artificial neural

networks were used to recommend music with some success (Oord, Dieleman, &

Schrauwen, 2013). Some more unique approaches found include collaborative filtering of

radio station playlists for custom playlist generation (Maillet et al., 2009), latent

Markov embedding for playlist prediction (Chen, Moore, Turnbull, & Joachims, 2012),

and genre classification using song lyrics (Bou-Rabee, Go, & Mohan, 2012; Mayer,

Neumayer, & Rauber, 2008).

Results. While it should stand to reason that MGR classification accuracies

across the corpus of the early experimental work should be easy to compare, this is not

the case. Most of the experimental work used private datasets where replication is not

possible. The lack of good public benchmarking datasets is evident by the widespread

use of the GTZAN dataset (Tzanetakis & Cook, 2002), which is shown to contain

replicas, mislabeling, and distortions (Sturm, 2012a). Therefore, accuracy results of

MGR systems that use the GTZAN dataset, of which there are many, should be viewed

with skepticism. However, that does not mean that the discipline had not moved

forward. Feature engineering was the focus of early experimentation and many novel

music-related features extracted from raw audio were proposed and tested. The early

MIR/MGR and music recommendation literature was heavily-focused on this front, and
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some clearly superior features, such as MFCCs, emerged as a result.

Modern Approaches

While the early work has been focused on feature engineering and machine

learning, more recent approaches are focused on deep learning; this has the advantage of

learning which features are most suitable for a task by using a deep, hierarchical

structure. In the case of end-to-end learning, the raw waveform of a song can be used as

input to a deep model without the need to engineer any features at all (Dieleman &

Schrauwen, 2014; Thickstun, Harchaoui, & Kakade, 2016). The number of deep learning

related articles represented at conferences of The International Society for Music

Information Retrieval (ISMIR) increased from 2 in 2010 to 16 in 2016, a trend that is

observed in the fields of computer vision and natural language processing as well (Choi,

Fazekas, Cho, & Sandler, 2017).

Deep neural networks (DNNs) have been used in the literature (Jeong & Lee,

2016; Sigtia & Dixon, 2014), but convolutional neural networks (CNNs) (Costa,

Oliveira, & Silla Jr, 2017; Oord et al., 2013) and recurrent neural networks (RNNs)

(Choi, Fazekas, Sandler, & Cho, 2017) are much more common. Most content-based

MIR research focuses on audio-based features only, leaving metadata out. Metadata is

rarely mentioned and even more rarely the focus. However, metadata focused research

does exist in the literature. Oramas, Nieto, Barbieri, and Serra (2017) reported that the

addition of album artwork and album reviews to an audio-based model improved the

results of a music genre classification task. Additionally, both Bou-Rabee et al. (2012)

and Mayer et al. (2008) show that using lyrics can improve the accuracy of music

classification tasks.
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Theoretical Basis

Music Theory

The basic elements of music are rhythm, melody, harmony, timbre, and texture.

The main purpose of Western music theory is to “describe various pieces of music in

terms of their similarities and differences in these elements” (Schmidt-Jones, 2013).

Music can be grouped into genres based on these elements similarities and differences;

therefore, effective music recommendation and MIR/MGR tasks require domain

knowledge in music theory. The following concepts should be kept in mind when

developing deep learning architectures for music applications.

Rhythm. Rhythm can be best described as the flow of music or as the duration

and placement of pitch (notes) and silence (rests) in time (Schmidt-Jones, 2013). It is a

set of regular or irregular patterns that are usually built off the beat. The beat is the

underlying steady and regular pulse of a piece of music; it is what one would tap one’s

foot to while listening. It is also what allows people at a concert to clap in

synchronization with each other during a musical performance. The speed of the beat is

called the tempo, which is measured in beats per minute (bpm). Tempo can help set the

“character or mood” (Clendinning & Marvin, 2016) of a piece of music. Music played

slowly can “can impart a feeling of extreme somberness,” whereas music played quickly

can seem “happy and bright” (Pilhofer & Day, 2015).

Rhythm and beat are described using a time signature, which specifies how many

beats are present in each measure (a division of music, also called a bar), where a note

value constitutes one beat, and “provides a framework of strong and weak beats against

which the rhythms are heard” (Clendinning & Marvin, 2016). Music in different time

signatures can “feel different, both to listen to and to play” (Pilhofer & Day, 2015).

Western genres like rock, jazz, and country are usually written in ‘common time,’ but,

some genres use more complex time signatures like ‘math rock.’ Time signatures of

non-Western music can be highly irregular as well (Pilhofer & Day, 2015). More

complex rhythmic analysis includes changing tempos, complex time signatures,

syncopation, anacrusis, and hemiola.
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Melody. The melody is simply a sequence of notes or differences in pitch across

time. The melody is usually musically satisfying and memorable; it is the part of a song

one would hum (Pilhofer & Day, 2015). A melody may rise and fall slowly with small

pitch changes between notes (conjunct), or quickly with large pitch changes (disjunct)

(Schmidt-Jones, 2013). A group of notes that fit together and express a melodic ‘idea’ is

called a melodic phrase (Schmidt-Jones, 2013). Even shorter than a phrase is a motif

which can occur frequently with or without variation in a piece of music (Schmidt-Jones,

2013). An artist’s use of melody is unique, and some melodic techniques are common

across genres. In much popular Western music for example, songs usually contain two

main melodies (the chorus and the verse) and will sometimes contain a third (the

bridge). Although separating chorus from verse by melody is a simplistic example,

audio analysis of melodies can help detect the form of a piece of music.

Harmony. A pitch is a complex sound wave that has a certain fundamental

frequency and many overtones. The amplitude of the wave is the loudness of the pitch

(measured in decibels), or in musical terms, the dynamic level. A pitch is an octave

higher than another if it is twice the frequency; it sounds like a ‘higher’ version of the

same note. A tone or a note is simply a sound with a particular pitch, duration, and

loudness; instruments are designed to produce tones. Harmony is the result of more

than one pitch sounding at the same time. Each overtone over the fundamental

frequency of a pitch is also an example of harmony, as the overtones are part of a

harmonic series where each overtone frequency is an integer multiple of the

fundamental frequency. Harmony is one of the most complex and highly-developed

elements of Western music theory (Schmidt-Jones, 2013).

Although harmony is a broad and complex concept, it can be summed up

abstractly as which pitches sound ‘good to our ears’ or how pitches ‘go together’

mathematically. This manifests itself in Western music in concepts like balancing

consonance and dissonance, intervals, scales, major/minor keys, the circle of fifths, and

chords and chord progressions. Similar songs may share similar harmonic structure. For

example, music in a major key tends to sound more cheerful and exciting, whereas
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music in a minor key tends to sound more sad and solemn (Schmidt-Jones, 2013).

Specific chords or scales can be more common in certain styles of music as well.

Timbre. Every musical instrument sounds unique (irrespective of pitch,

duration, or loudness) because of its timbre. A sound wave from an instrument is made

up of three fundamental parts: attack, harmonic content, and decay. The attack is the

initial sound made from an instrument and it is “the most distinguishing aspect of a

note” (Pilhofer & Day, 2015). A sound wave’s harmonic content is all of the different

frequencies of which it is composed. The human ear does not hear all the separate

frequencies; instead, it hears the whole complex wave as the ‘color’ of the sound

(Schmidt-Jones, 2013). The decay is the rate at which the sound dissipates. A plucked

guitar string will ring out, while a note played on a flute is sustained. Timbre can

influence the ‘feel’ of a piece of music. For example, guitars with metal strings sound

crisp and aggressive, while guitars with nylon stings sound softer and more ‘mellow’

(Pilhofer & Day, 2015). Entire songs can impart different feelings or emotions by use of

“timbral variation” (Clendinning & Marvin, 2016).

Texture. Texture refers to the “number and alignment of individual voices or

instrumental lines in a composition” (Clendinning & Marvin, 2016). It is how much is

‘going on’ or how many layers there are in a piece. The overall quality of sound is

determined by this layering. Some terms used to describe texture include thick, thin,

bass heavy, and rhythmically complex (Schmidt-Jones, 2013). There are three main

types of texture. Monophonic textures contain only one melodic line, like one hand

playing a melody on piano or someone whistling a tune (Schmidt-Jones, 2013).

Homophonic textures are the most common in Western music. They contain one clearly

melodic line with accompaniment or chords (Schmidt-Jones, 2013). Polyphonic textures

have more than one independent melody occurring at the same time, like in a round

(Schmidt-Jones, 2013).

Audio Signal Processing

STFT spectrograms. The STFT spectrogram is a time-frequency

representation of an audio signal derived by iteratively applying the DFT on a small
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window and then shifting it across the time domain by some hop length. The output is

a complex-valued matrix with the amplitude and phase of each frequency at each time

frame. In essence, it is a way of extracting the contributions of the frequencies present

in a signal. The spectrogram is a more intuitive representation of the raw waveform.

Four different audio clips are presented to highlight this fact. While some information

may be gained from the phase spectrum, it is ignored throughout this study where only

the amplitude spectrum of the STFT is considered.

Figure 1 shows both the amplitude spectrum of a short piano phrase of five notes

played staccato and the amplitude spectrum of a cello double-stop where the open D

string remains constant below a short seven note phrase on the A string. The

fundamental frequencies and harmonics of each piano note are clearly defined and,

because it is played staccato, the attacks and segments of each note are clearly visible in

the spectrogram. For the cello double-stop, the fundamental frequencies and harmonics

of both the D and A strings can be seen clearly as well, even though the notes are being

played together.

Figure 2 shows both the amplitude spectrum of a seven second clip of a song

labeled ‘blues’ in the GTZAN dataset (“I’m In The Mood” by John Lee Hooker) and

the amplitude spectrum of the sound of the ocean waves crashing off Miami Beach.

Even a homophonic song like Hooker’s is represented well by the STFT because music is

structured sound. The structure of music can be better appreciated when compared to

a stochastic signal like the ocean sound. The cello, piano, and ocean sound were

obtained from freesound.org (Font, Roma, & Serra, 2013).

Mel-scaled STFT spectrograms and MFCCs. An STFT spectrum can be

mapped onto the mel basis, resulting in a spectrum that scales in a logarithmic way to

more closely match the human auditory response. The frequency bin sizes increase as

frequencies increase. The idea is that a human can better recognize differences at lower

pitch ranges than at higher pitch ranges, an ability that scales logarithmically. For

example, a human can more easily tell the difference between pitches at 100Hz and

200Hz than at 10000Hz and 10100Hz, even though the difference in pitch in each
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example is 100Hz. Figure 3 presents a comparison of the STFT spectrogram and its

mel-scaled counterpart. A machine learning model may be able to more easily

understand a mel-scaled STFT than an unscaled STFT.

The amplitudes of the spectrum obtained by taking the discrete cosine transform

of the mel-scaled STFT are the MFCCs. This ‘spectrum-of-a-spectrum’ representation

describes in low dimensionality the overall shape of the spectral envelope. MFCCs are

commonly used in machine learning tasks involving audio. For music applications,

MFCCs are related to the timbral and textural quality of music. Given a mel-scaled

STFT, a deep learning model should be able to learn this representation on its own if it

were deemed useful. The first 12 MFCCs of a short piano phrase are shown in Figure 4.

Constant-Q transforms and chromagrams. Similar to the mel-scaled

STFT, a constant-q transform (Brown, 1991) groups frequencies into logarithmically

spaced bins. The constant-q transform is a more musically-motivated transformation,

however, where frequencies are binned by the frequencies of musical notes. For example,

C1 on a commonly-tuned piano is about 32Hz and C7 is about 2093Hz. Frequencies

can be binned logarithmically the same way that notes are spaced out. The frequency

difference of one semitone between lower notes is much less than that of higher notes.

The transformation groups frequencies into the same number of bins per octave so that

the lower octaves will have higher frequency resolutions. Figure 5 confirms which notes

were played in the cello double-stop audio file by plotting the constant-q spectrogram

using a ‘Note’ axis. Essentially, the constant-q transform acts as a ‘note identifier.’

As stated before, a pitch is an octave higher than another if it is twice the

frequency; it sounds like a ‘higher’ version of the same note. In Western music theory,

the pitch classes are: C, C#, D, D#, E, F, F#, G, G#, A, A#, B. Wrapping the

constant-q spectrum into these 12 pitch classes results in a chromagram. For example,

the frequencies A1(55Hz) and A2(110Hz) would fall into the same bin. Similar to how

MFCCs are a lower-dimensional representation of the mel-scaled STFT, a chromagram

can be thought of as a lower-dimensional representation of a constant-q transform (or an

STFT). Instead of capturing timbre and texture like MFCCs, chromagrams can capture
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harmony and melody. They are robust to changes in timbre and texture; a melody

played on two different instruments would have the same chromagram. Chromagrams

do, however, have to make assumptions about the tuning and temperament of a piece of

music. The chromagram of a cello-double stop is shown in Figure 6.
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Methodology

Two main hypotheses drive the following experiments. The first hypothesis is that

CNN architectures exist that are better or more efficient for music-related tasks than

for image-related tasks. The second hypothesis is that raw audio data are not

representative enough for machine learning models to make acceptable

recommendations. Metadata, including but not limited to lyrical data, artist

geographical origin, and song release year, are needed to provide emotional, cultural,

and historical context when making recommendations. The hypotheses will be tested by

training and evaluating various machine learning models on three different datasets.

Another goal of this Thesis is to build a content-based recommendation model.

All work was done using the Python1 (version 3.6.8) programming language.

Machine learning models were defined and trained using the Keras2(version 2.2.4) API

with a TensorFlow3 (version 1.12.0) backend on a NVIDIA GeForce GTX 1080 Ti GPU.

The audio signal processing library LibROSA was used for extracting features from raw

audio.4 All code can be found in the GitHub repository.5

Datasets

The Free Music Archive dataset. The Free Music Archive (FMA) dataset

(Defferrard, Benzi, Vandergheynst, & Bresson, 2017) is a collection of 106, 574 Creative

Commons-licensed high-quality audio tracks. The dataset is split by the authors into

three main datasets (small, medium, large), each split into 80% training, 10%

validation, and 10% testing sets filtered for artists to be represented in one set only to

avoid the producer effect (Flexer, 2007). The medium subset contains 24, 976 tracks,

each labeled with one of 16 different genres, and it is used for a multiclass classification

task. The large subset contains 104, 284 tracks, each labeled with any number of 161

1 https://www.python.org/

2 https://keras.io/

3 https://www.tensorflow.org/

4 https://librosa.github.io/librosa/

5 https://github.com/RyanWhitell/Deep-Learning-for-Music-Recommendation

https://www.python.org/
https://keras.io/
https://www.tensorflow.org/
https://librosa.github.io/librosa/
https://github.com/RyanWhitell/Deep-Learning-for-Music-Recommendation
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different genres, and it is used for a multi-label classification task. Although this

dataset contains some metadata for each track, only the 30 second audio clips and genre

labellings are used. To foster future comparisons and reproducibility of this work, the

suggested subsets and splits are adhered to.

The WebAPI dataset. The WebAPI dataset consists of 158, 844 tracks from

26, 683 unique artists and 74, 351 unique albums. Each track contains a 30 second audio

clip and a lyrics text file. Each track is associated with one album and one artist. Each

album contains a release year and an album art image file, and every artist contains a

list of related artists, genre labels, and latitude and longitude coordinates of the artist’s

originating location. Therefore, every track at the track level has lyrical and raw audio

data, at the album level has album cover art and release year data, and at the artist

level has related artist, genre, and location data. The data are obtained through various

datasets and web application programming interfaces (APIs). Table 1 matches each

feature with a list of its sources.

The WebAPI dataset is diverse. It contains artists from 153 different countries

whose careers span 102 years (between 1917 and 2019) and are labeled with 2347

unique genres. The WebAPI dataset is also highly unbalanced. Artists in this dataset

originate mostly in the United States (46.16%), the United Kingdom (12.49%), Canada

(4.73%), and Australia (2.57%). 52.04% of tracks were released in the past 10 years,

25.82% in the early 2000s, 11.18% in the 1990s, and around 4% each in the 1980s,

1970s, and 1960s. Also, 50% of the artists can by labeled using only 178 genres.

Because it is diverse, the WebAPI dataset exhibits the long tail phenomenon (see

Figure 7). This fact will be true for any large catalog of music. Therefore, an

unbalanced dataset is desired over a balanced dataset.

The most represented country is the United States, although exploring this

dataset by country is only for convenience. Machine learning models will be given more

geographically precise information (latitudes and longitudes) to train on. Differences

between cities and regions within the same country could be important, especially in

larger countries like the United States.
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Music of the past can be separated neatly by decade. In the West, music of the

50s, 60s, 70s, 80s, and 90s is usually understood to have its own distinct styles and

genres. Most of the music in the dataset was released in the past 20 years, however.

The top occurring genres include variants of ‘rock’, ‘pop’, ‘metal’, ‘hip hop’, and

‘country’. Under-represented genres are geographical genres like ‘chinese metal’ and

‘victoria bc indie’, specific sub-genres like ‘ambient dub techno’ and ‘ska jazz’, and

extremely niche genres like ‘ambient psychill’, ‘breakcore’, and ‘gothic doom’. Genres

are not used to train machine learning models.

The dataset is split into 80% training, 10% validation, and 10% testing sets that

are filtered for artists to be represented in one set only. It is also split in a way that

maintains equal artist representation ratios of locations, years, and genres. The main

motivations behind building the WebAPI dataset are to gather data that have a useful

ground truth for recommendation (related artists) and to gather data that have reliable

metadata (lyrics, album art, release year, location) to test how much influence metadata

has on recommendation when used in conjunction with raw audio data. Note that this

dataset contains some incorrectly-labeled data due to the imperfect process of scraping

the web and various APIs. However, this small amount of noise is negligible and can be

ignored.

Cifar-100. The Cifar-100 dataset (Krizhevsky & Hinton, 2009) consists of

small color images divided into 100 classes. The purpose of including an unrelated

image dataset is to benchmark musically-motivated CNN architectures against a

common CNN architecture that is optimized for image-related tasks.

Features

Spectral features. All audio was sampled at 22050Hz. This downsampled

most of the audio tracks in the FMA dataset by half, cutting the subsequent

computation and memory requirements for that dataset by half. Listening to the audio

and visualizing spectral representations confirmed that most of the information is

retained at 22050Hz. As is common practice in MIR, a compressive nonlinearity was

applied to the magnitude of each spectral representation as X 7→ 10× log10(X2) to
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better approximate the human auditory response. Inputs to deep learning models are

normalized to have zero mean and a standard deviation of one.

The STFT parameters were chosen to maximize detail while keeping computation

and memory usage reasonably small. The Fast Fourier Transform (FFT) size was chosen

to be 4096, using a power of two optimizes the FFT algorithm. The window was chosen

to match the FFT size in length and to use a Hann window function with a hop length

of 1/4 of the window length. These parameters correspond roughly to a 185ms window

applied every 46ms. STFT analysis on a 30s clip of audio results in a 2049× 643

complex valued tensor that describes the magnitude and phase of the sinusoids present

in each time window. The output of the FFT for real-valued signals is symmetric, so

only half of the output is maintained. Only the magnitude of the complex value is used.

Some other STFT parameter decisions that were experimented with and

considered include using the Blackman-Harris window function, a smaller hop length,

and zero-padding the window. The Blackman-Harris window has a larger main-lobe

bandwidth than the Hann window and requires a larger FFT size and window length to

match the Hann frequency peak detection; because of memory considerations, this was

not used. Using a smaller hop length also increased the size of the resultant tensor, and

a hop of 1/4 the window seemed a good compromise for most applications. Using a

smaller window size than the FFT and zero-padding the window would create a

smoother spectrum, but the differences were negligible, so for increased simplicity the

window was chosen to always match the FFT size.

As is the case for deep learning, Fourier-based analysis has many tuneable

hyperparameters to consider. Larger window lengths improve the resolution of

frequency and harmonic content, and smaller window lengths improve the resolution of

the attacks and segments. Two separate spectrums could have been produced that favor

either time or frequency separately, which then could have been analyzed in parallel

with the results then combined. Instead, a good time-frequency compromise was used

for all analyses due to time and memory considerations.

Some models were trained using the bottom half of the STFT spectrogram. For
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music, lower frequencies are more important. The advantage of mel-scaled STFTs and

constant-q transforms is that they reduce the resolution of higher frequencies

logarithmically, reducing the dimensionality of the audio representation while

maintaining the important information. Cutting the STFT spectrogram in half is a

crude way of reducing the dimensionality from 2049× time to 1024× time, while

keeping most of the important spectral information. The mel-scaled spectrograms are

created using a mel basis of size 256, reducing the dimensionality further to 256× time.

A further reduced representation can be achieved by taking the first 13 MFCCs

(discarding the first) resulting in a 12× time tensor. The musically-motivated

constant-q transform is implemented using 24 bins per octave, starting at C1(∼ 32.7Hz)

over seven octaves. The result is a spectrogram of size 168× time. Wrapping this result

into 12 pitch classes results in a 12× time chromagram. Each representation makes

trade-offs between size and resolution.

Metadata. All album art is 640px× 640px with 0− 255 RGB color channels.

Different sized images are scaled to match. Pixel values are compressed into the range

[0, 1] by dividing each pixel value by 255 before being used as input to any deep learning

model. Latitude, longitude, and year data are all normalized to have zero mean and a

standard deviation of one before being used as input into any deep learning model.

Lyrical data requires more pre-processing than other metadata. Lyrics are

transformed into lists of integers that map to words. The integer that is one greater

than the total number of words used is reserved for infrequent words for some models

that don’t use the entire vocabulary. The input of lyrics into a model will always first

go through an embedding layer that maps an integer into a vector representation of that

word. Lyric data is always batched. The integer 0 (not a word) is prepended to a lyric

list until all lyric lists in a batch are the same length as the longest lyric list in that

batch. The subsampling method, as proposed by Mikolov, Sutskever, Chen, Corrado,

and Dean (2013), is used to probabilistically drop words by their frequency in each

batch.
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Deep Learning Architectures

Convolutional neural networks.

The Time/Frequency Favoring hypothesis. The best-performing CNN

architectures on the ImageNet dataset (Russakovsky et al., 2015) and thus some of the

most popular and regularly-used architectures for general image-related tasks include

ResNet (He, Zhang, Ren, & Sun, 2015), VGGNet (Simonyan & Zisserman, 2014),

Inception (Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016), and Xception (Chollet,

2017). One thing they have in common is the use of square kernels (usually 3× 3) for

convolutions and pooling operations. Because of the statistical invariance of objects in

images in both the horizontal and vertical axes, square kernels make sense for mapping

spacial correlations and are well suited for image-related tasks. Spectrograms, however,

do not share the same kind of statistical invariance, so it is assumed that there exists a

music domain specific architecture that is more efficient and/or that outperforms the

state-of-the-art architectures used for image-related tasks.

Rhythm and melody are horizontal elements of music, and they are described

across the time domain. The vertical elements of music include harmony, timbre, and

texture, and they lie in the frequency domain. Suppose the spectrogram dimensions are

H ×W , then a convolution with a kernel of size 1× n should only be capable of

mapping horizontal elements, and a convolution with a kernel of size n× 1 should only

be capable of mapping vertical elements. It is hypothesized that forcing a CNN to favor

either time or frequency by using wide or tall kernels will allow it to learn richer

musically-inspired features more efficiently than a model using square-shaped kernels.

As an initial experiment of this hypothesis, consider an edge-detecting 3× 3 kernel

with a weight of 8 in the middle and a weight of −1 in each surrounding pixel. Such a

kernel will detect edges vertically and horizontally when convolved over an image.

Flattening this kernel to shapes 9× 1 and 1× 9 while keeping the 8 in the middle will

create kernels that detect only horizontal and vertical edges, respectively. The results of

these convolutions are presented in Figure 8. Note that a square kernel is capable of

acting as an exclusive vertical or horizontal edge detector by zeroing out some of the
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weights.

A deep model will learn the best representation of the data given enough

examples and time. For example, if the horizontal elements happen to be the most

representative of the data in a MGR task, the model hypothetically could set the

activations to zero in the sides of a square kernel, effectively making it a n× 1 kernel.

Most of the CNN architectures in the MIR literature, if even specified, use typical

square kernels, and they show good results (Murauer & Specht, 2018; Nanni, Costa,

Aguiar, Silla Jr, & Brahnam, 2018). However, some literature suggests that more

musically-motivated architectures should be preferred.

X. Li, Li, Fern, and Raich (2016) analysed the cross-correlation between

neighboring pixels of all examples in a dataset to derive an optimal kernel shape that

when used in a CNN showed improvements over traditional architectures in model

generalization capability, robustness to hyperparameter tuning, and classification

accuracy. The authors applied the method to natural images (in which they justified

the use of square kernels), bioacoustic spectrograms, and gene sequence data. For

bioacoustic spectrograms, the correlations appeared strongest in the horizontal and

vertical directions. Pons, Lidy, and Serra (2016) propose that using wide and tall CNN

kernels will capture more musically-motivated features from spectrograms. Empirical

evidence suggests that using a variety of n× 1 kernels (Pons, Slizovskaia, Gong, Gómez,

& Serra, 2017) or a variety of 1× n kernels (Pons & Serra, 2017) in the first layer of a

CNN might help it learn musically-relevant features with fewer parameters.

Architectures. To test the validity of favoring time and/or frequency, three

CNN architectures are proposed. A fourth architecture is used only on album artwork

and is not related to spectrograms. Some experimentation went into deciding on the

final architecture designs, including using different activation functions, residual layers,

deeper and wider designs, and global max pooling at the output.

Simple. The Simple architecture (Figure 9) is inspired by, and is a simplified

version of, the Xception architecture. The input first goes through two convolutions

with 3× 3 kernels and of stride 2 each to reduce dimensionality. This is followed by
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depthwise separable convolutions with 3× 3 kernels and max pooling layers with 3× 3

kernels and strides of 2 until a global average pooling layer. The output of the global

average pooling layer is fed into a fully-connected (dense) layer that reduces the output

to the number of classes. Unless directly followed by a max pooling layer, each

convolution layer is followed by a rectified linear unit (ReLU) activation function (Nair

& Hinton, 2010). A ReLU activation function is applied after each max pooling layer as

well. Unlike the Xception architecture, no residual layers are used in this simple

version. As in the Xception architecture, batch normalization layers follow every

convolutional layer.

Time. In the Time architecture (Figure 10), six different convolutional layers are

applied to the input and concatenated before following the same pattern as in the

Simple architecture. The six input convolutions have different 1× n kernels. The

varying value for n is meant to capture different musical concepts. A large n should be

able to detect rhythm or tempo, and a small n should be able to more efficiently detect

onsets and attacks. Like the Simple architecture, the concatenated input follows layers

of depthwise separable convolutions and pooling layers with batch normalization and

ReLU activation functions. Unlike the Simple architecture, the convolutional layers

have 1× 9 kernels, and the max pooling layers are meant to reduce the dimension of

frequency with 2× 1 kernels and 2× 1 strides. Also, a convolution with valid padding

and a kernel of F × 1, where F is the height dimension of the input, the output of the

previous layer, is used to flatten the frequency dimension to 1 before the global average

pooling layer.

Freq. The Freq architecture (Figure 11) is exactly the same as the Time

architecture but with reversed kernels, max pooling layers that reduce the dimension of

time with 1× 2 kernels and 1× 2 stride, and a flattening of time before the global

average pooling layer at the output instead of frequency.

Albums. The CNN trained on album artwork is a copy of the MobileNetV2

architecture, a small but powerful CNN architecture for image tasks (Sandler, Howard,

Zhu, Zhmoginov, & Chen, 2018).
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Recurrent neural networks. RNNs are designed to model data that contains

temporal dependencies by incorporating memory into their construction. RNNs are

already well-suited for sequential data like audio and text, so little experimentation

went into the construction of their architectures. Both Long Short-Term Memory Cells

(LSTMs) (Hochreiter & Schmidhuber, 1997) and Gated Recurrent Units (GRUs) (Cho

et al., 2014) are used.

Architectures.

RNN. The RNN architecture (Figure 12) is a stack of 3 GRU layers, all with an

output dimension of 256 fed into a final dense layer at the output.

LargeRNN. The LargeRNN architecture (Figure 13) is a stack of 3 LSTM layers

with increasing output dimensions of 256, 512, and 1024 fed into a final dense layer at

the output.

Lyrics. The Lyrics architecture (Figure 14) is the same as the LargeRNN

architecture, but it contains an embedding layer at the input that transforms an input

word into a 200 dimensional vector before being fed into the RNN. The embedding layer

in this architecture is not pre-trained. It is learned during training on lyrical data.

Ensembles.

Architectures.

TimeFreq. The TimeFreq architecture (Figure 15) is a stacked ensemble of the

trained Time and Freq models that takes as input the logits from both trained

architectures and feeds them into a neural network consisting of dense layers with ReLU

activation functions. This architecture uses 50% dropout and 0.002 L2 normalization to

combat overfitting.

TimeFreqAvg. TimeFreqAvg is simply the mean of the Time and Freq

architecture outputs.

GenreEnsemble. The GenreEnsemble architecture (Figure 15) combines the

output logits of the Time and Freq models trained on halved STFT spectrograms,

mel-scaled STFT spectrograms, and constant-q transforms with two RNN models

trained on chromagrams and MFCCs. All inputs are concatenated and fed into a neural

network consisting of dense layers with ReLU activation functions. This architecture



CONTENT-BASED MUSIC RECOMMENDATION 32

uses 50% dropout and 0.002 L2 normalization to combat overfitting. The

GenreEnsemble architecture is specialized for and only trained on the medium subset of

the FMA dataset for the purpose of achieving the highest possible accuracy in

classifying 16 genres.

Recommendation. The Recommendation model architecture (Figure 17) is a

stacked ensemble that uses the outputs of all models trained on the WebAPI dataset as

inputs. No models are trained on the year or location data, so these data are used

directly in the Recommendation architecture. The architecture consists of dense layers

with ReLU activation functions. The Recommendation architecture is specialized for

and only trained on the WebAPI dataset.

Different combinations of inputs can be used to train varying versions of the

Recommendation architecture. Five different versions are trained in order to make

comparisons: the RecommendationByLyrics, RecommendationByAlbums,

RecommendationByYear, and RecommendationByLocation architectures, which use only

the audio-based model outputs concatenated with the output of the Lyrics architecture,

the output of the Albums architecture, with years as input, or with location as input,

respectively. The final architecture, the RecommendationByAudioOnly architecture,

uses only the outputs of the six audio-based models.

Experimental Design

The two datasets used in this study serve different purposes. The FMA was used

to test audio-based models for genre recognition, and the WebAPI dataset was used as

the basis for the proposed Recommendation model. The WebAPI dataset was also used

to investigate the effects metadata has on recommendations. Both datasets were used

to test The Time/Freq Favoring Hypothesis. All models were trained by optimizing

some loss function, depending on the task, with the Adam method matching the

hyperparameter values as suggested by Kingma and Ba (2014). The learning rate,

however, differed depending on the model. All models were trained with small batch

sizes of either 6, 8, 16, or 32, depending on the model. Every model was trained using

early stopping to avoid overfitting, in which after each epoch, a validation metric was
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calculated using the validation set, if it did not improve for some number epochs

training stopped and the best model was saved. Most models were trained once with

the same learning rate but a few were trained a second or third time with decreasing

learning rates. These training strategies were the result of careful experimentation, but

they are not ideal due to the infinite scope of tuneable parameters.

Single genre recognition. The medium subset of the FMA dataset contains

25, 000 tracks each with a unique genre label and a 30 second audio file, 24 of which

were found to be faulty and were removed from the set. The single genre recognition

task on the medium subset of the FMA dataset is a multiclass classification problem

with unbalanced labels (Table 2). An F1micro score was used as the figure of merit on

this task and is defined by Equation 1.

Given that TPg, FPg, and FNg are the numbers of true positives, false positives,

and false negatives for the given genre g, the F1micro score is calculated as:

Pmicro =
∑16

g=0 TPg∑16
g=0 TPg + ∑16

g=0 FPg

(1a)

Rmicro =
∑16

g=0 TPg∑16
g=0 TPg + ∑16

g=0 FNg

(1b)

F1micro = 2× Pmicro ×Rmicro

Pmicro +Rmicro

(1c)

For multiclass classification, the last layer of each network is a softmax activation

function that calculates the probability that the input data belongs to each label,

resulting in a 16 dimensional vector representing each of the 16 unique genres.

Categorical cross entropy between this vector and a vector of true probabilities (one in

the direction of its true label and zeros elsewhere) is used as the loss function.

Multiple genre recognition. The large subset of the FMA dataset contains

106, 574 tracks, each with multiple genre labels and a 30 second audio file, 2, 290 of

which were found to be faulty and were removed from the set. The multiple genre

recognition task on the large subset of the FMA dataset is a multi-label classification

problem with unbalanced labels. Each track is labeled with any number of the 161

unique genres. Like the medium subset, this dataset is unbalanced. Two figures of merit
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are used to evaluate the performance. The first is mean squared error,

MSE = 1
161

161∑
i=1

(~yi − ~xi)2 (2)

given the model output in logits as ~x and the true labels as ~y. The second is Hamming

loss,

HL = 1
161

161∑
i=1

~yi ⊗ ~xi (3)

given the model output predictions as ~x, the true labels as ~y, and the exclusive-or

function donated as ⊗. The mean of these two metrics is used over multiple tracks.

For multi-label classification, the last layer of each network is a sigmoid activation

function which pushes each logit (each label) toward either zero or one. The resulting

161 dimensional vector represents the probability that the input data should be labeled

with any of the 161 unique genres. In this case, 0.5 is used as the threshold; rounding

the vector along each dimension results in a vector with a one in the direction of each

predicted label and zeros elsewhere. Binary cross entropy calculated individually on

every label is used as the loss function.

Content-based recommendation. The WebAPI dataset contains 158, 844

tracks from 26, 683 artists. Every artist is related to up to 20 other artists. The

assumption is made that artist relationships are the ground truth for recommendation.

In this case, if a user likes artist A and artist A is related to artist B, then the

probability that the user likes artist B is higher than the probability that the user likes

an artist selected at random. Also, if artist C is related to artist B but not artist A,

then the probability that the user likes artist C is higher than the probability that the

user likes an artist selected at random but lower than the probability that the user likes

artist B. Artist relationships are also assumed to be free from the effects of the long tail;

niche artists are related to niche artists and are not always related to the most similar

popular artists. The last assumption is that artist relationships are based not just on

genre and audio content, but on contextual, emotional, cultural, and historical factors

as well. For example, a ‘christian metal’ band may sound very similar to a ‘death metal’

band, but they should never be related. This example is a counter-argument to the

claim that machine learning models can fully categorize music on raw audio alone.
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These assumptions are made after extensive exploration of the data and

consideration of their source. Artist relationships are taken from the Spotify API.

Spotify is the largest music streaming service in the world by number of paid listeners

(Wikipedia contributors, 2019). As discussed earlier, Spotify analyses users’ listening

behavior and playlist generation (collaborative filtering) and deploys deep learning

models on different music features, along with scraping the web (content-based), to

develop recommendations and artist relationships (Ciocca, 2017). This ongoing effort

results in comprehensive artist relationship mapping that can be transformed into a N

dimensional embedding (latent) space that preserves relationships through some vector

similarity metric (Hoff, Raftery, & Handcock, 2002). With an embedding space, a

content-based recommendation model can make recommendations on tracks and artists

that do not exist in the catalog by mapping new data onto the embedding space and

returning its nearest neighbors. Additionally, this type of model is not subject to the

cold start problem because it is able to directly position a new artist into a relevant

position in a music catalog or aid a human in doing so.

Training artist embeddings. To train artist embeddings, all artists included

in the WebAPI dataset and who appear as related artists are first mapped onto 109, 883

indexes. Each index corresponds to a row in an initially randomly-weighted embedding

table. The embeddings are trained like every other model in this study, using the Adam

optimization algorithm. The inputs to the model are the index of an artist and the

index of a context artist which are mapped by the embedding table into embedding

vectors. The similarity of the two embedding vectors are calculated using cosine

similarity,

similarity = cos(θ) = ~eartist · ~econtext

‖~eartist‖‖~econtext‖
(4)

which ranges between −1 (exactly opposite) to 1 (exactly similar). The cosine similarity

metric is then fed into a sigmoid function at the output. This dataflow is visualized in

Figure 18. The context artist is either a related artist or a random artist. Related

artists have a desired label of 1 and random artists have a desired label of 0. Binary

cross entropy is used as the loss function. As the model trains, it will update the
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weights of the embedding table so that similar artists will have high similarity, pushing

the output to 1, and random artists will have low similarity, pushing the output to 0. It

is possible that a related or closely-related artist is picked as a random artist but the

effects of this is negligible over many training examples and epochs.

Regression. Mapping input data to an embedding space is a machine learning

regression task. For each model, the output activation function is removed. The

resulting output vector of logits is compared with the artist embedding that it is trying

to predict, with negative cosine similarity as a loss function. For every track, each

model trains on that track’s artist embedding. Recommendations can be made at the

track level or at the album or artist level by averaging outputs.

Every model is trained on the WebAPI dataset. Once trained, the output

inferences on the following models are saved and used as input to the Recommendation

model: the Time and Freq models on mel-scaled STFTs and constant-q spectrograms,

the LargeRNN models on chromagrams and MFCCs, the Albums model on album cover

art, and the Lyrics model on lyrics. The Recommendation model also receives as direct

input both location and year data.
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Results

Single Genre Recognition

The results of the single genre recognition task for each CNN-based model is

outlined in Table 3. The F1micro scores are too close to make any significant

conclusions, but a few interesting observations can be made. Firstly, the Time

architecture actually outperformed the Simple architecture in most cases. Secondly, the

TimeFreq architecture had the highest F1micro for every spectral representation. One

should note that the Time, Freq, and TimeFreq architectures are much smaller by

number of parameters than the Simple architecture.

As a baseline test for validating the Simple architecture, each CNN-based model

was trained on the Cifar-100 image dataset, the results of which are presented in

Table 4. The Simple architecture achieved the highest F1micro score by a large margin

on this dataset. This validates the strength of the Simple architecture on image data

and proves that the architecture’s poor performance on spectrograms isn’t due to a flaw

in the architecture itself or a bug in the code. The Time and Freq architectures

performed similarly. Interestingly, the TimeFreq architecture failed to learn anything

and made predictions at random. This suggests that the Time and Freq architectures

are learning conflicting features on images but complimentary features on spectrograms.

An attempt was made to achieve the highest F1micro score possible using the

GenreEnsemble architecture. The resultant model combines the output logits of the

Time and Freq models, which were trained on halved STFT spectrograms, mel-scaled

STFT spectrograms, and constant-q transforms, with two RNN models that were

trained on chromagrams and MFCCs. The RNN models trained on chromagrams and

MFCCs achieved F1micro scores of 0.467522 and 0.516142 respectively (both models

contain 1, 000, 976 total parameters). These are slightly lower scores than the

CNN-based counterparts, but they were included in the GenreEnsemble because they

might be capable of learning different temporal features that the CNN-based models

miss. The GenreEnsemble model achieved an F1micro score of 0.654998 with 3, 157, 406

total parameters.
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Multiple Genre Recognition

The results of the multiple genre recognition task for each CNN-based model is

outlined in Table 5. These results match what was observed in the single genre

recognition task: the Time architecture outperformed the Simple architecture in all

cases, and the TimeFreq architecture had the lowest mean squared error and Hamming

loss for every spectral representation. Averaging the outputs of the Time and Freq

models trained on halved STFT spectrograms, mel-scaled STFT spectrograms, and

constant-q transforms results in a mean squared error of 0.014926 and a Hamming loss

of 0.018012.

Content-Based Recommendation

The loss function and figure of merit for any model training on artist embeddings

is cosine similarity. The higher the similarity, the better the recommendations.

However, this metric is only as good as the ground truth, which in this case is the

artist’s embeddings themselves. To get a sense of how well the embedding model is able

to map artists into vectors, a comparison is made between an artist’s related artists and

its nearest neighbors in the embedding space. This requires two equally sized sets,

Arelated and Aembeddimg where Aembeddimg is the N nearest neighbors of an artist in

embedding space where N = |Arelated|. For most artists, |Arelated| = 20. These sets are

compared using the Jaccard similarity coefficient, a set similarity metric defined as the

size of the intersection divided by the size of the union of the two sets. The average

Jaccard similarity coefficient over every artist in the embedding space was equal to

0.548842. This means with some certainty that all artists most likely maintained at

least 50% of their related artists as nearest neighbors in the embedding space.

Another way to interpret the embedding space is by using T-distributed

Stochastic Neighbor Embedding (t-SNE) (Maaten & Hinton, 2008) to reduce the

embedding space to two dimensions for visualization. Clear clusters are visible when

visualizing the t-SNE embeddings by country (Figure 19) and genre (Figure 20).

Clusters are less clear when visualizing the t-SNE embeddings by year (Figure 21). This

is likely due to the way years are calculated, which is by taking the average of the
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artist’s tracks release years. Plotting a few distinct artists with two levels of related

artists results in the closest clustering (Figure 22). Some expected patterns can be seen

in each plot. For example, at around −40,−40 Jamaican reggae music is observed in

the country, genre, and artist plots.

The exploration of the embedding space suggests that it is a satisfactory ground

truth for training deep learning models. Therefore, the cosine similarity between the

true artist embedding and a model’s predicted artist embedding has a correlation with

good recommendations and proper placements in the embedding space. The results of

this regression task are presented in Table 6. The validity of The Time/Freq Favoring

Hypothesis is further strengthened by these results. Again, the TimeFreqAVG

architecture performed better, and with fewer total parameters, than did the Simple

architecture. The Lyrics model, when compared to audio-based models, performed

about the same. The Albums model on its own did not perform well. However, the

RecommendationByAlbums architecture slightly outperformed the

RecommendationByAudioOnly architecture, meaning that there might be some

correlation between album artwork and recommendation; however, more

experimentation here is needed. Both lyrics and location data were able to greatly

improve the audio-based model when combined.

As expected, the Recommendation architecture attained the highest average

cosine similarity on the testing set. This trained model was used to make

recommendations for artists in the testing set by averaging the embedding predictions

over every track available from the artist. A few of the recommendations made by the

model are shown in Table 7. Trained on the WebAPI dataset, this model did well

recognizing music that is distinct in genre like ‘contemporary christian’ bands, music

that is highly regional, like ‘OPM’ in the Philippines, and music unique in sound

relative to the rest of the catalog, like ‘cathedral choir’ music. This model was able to

successfully place conforming music into broad groups but had trouble with more

unique music. For example, the Vermont ‘jam band’ Phish, known for their distinct

style and blending of genres, should be recommended along with other unique ‘jam
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bands’ like Tea Leaf Green or the Disco Biscuits. Instead, this model puts Phish next to

‘alternative’ acts like Cake and ‘folk-pop’ artists like Pete Yorn. Whether or not these

are related artists is a matter of opinion, but using the related artist data as a ground

truth reveals that these bands are a separated by few degrees; relative to the rest of the

catalog however, they are still close. In fact, after scrutinizing many recommendations

at random, it is arguable that the model never makes obvious mistakes. Even seemingly

unrelated artists like Ravi Shankar, a composer of Hindustani classical music, and the

Irish family band Claanad, which the model recommends, share some musical

characteristics. In this case, the model might be finding similarities between the sitar

and the mandolin. However, more data would likely improve the model.
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Conclusion

The proposed content-based recommendation model is not entirely content-based.

The model is trained on a ground truth built using both collaborative and

content-based methods. This might make it a ‘hybrid’ model since it depends on

collaborative filtering to develop the artist embedding space. Regardless, the model

does use only content-based inputs. This means that it is not affected by the cold start

problem, which makes it useful in a production environment that can not handle the

scale of manual new music introduction. Touching on an earlier example, this is the

problem Pandora faces with The Music Genome Project, which is essentially a

human-powered embedding model (Howe, 2009). Carefully but manually labeling a

particular piece of music with 400 descriptive ‘genes’ by domain experts is the same

concept behind training a machine learning model to produce artist embeddings. In

fact, the embedding dimension of 800 was chosen to show how easy it would be for a

machine learning model to double the dimension of the music vector representation

produced by The Music Genome Project. The Music Genome Project is a good idea,

but its implementation does not scale.

One way of improving the model would be to improve the artist embeddings.

Cosine similarity was used because of its simplicity. However, cosine similarity is a

directional similarity metric. A distance metric that considers both direction and

magnitude, like euclidean distance, might provide improved embeddings. Also, using

embeddings at the track level is possible and might improve the resolution of

recommendations. Another possible route is to create multiple models and multiple

embedding spaces that increase in resolution. The proposed content-based

recommendation model is trained on a very diverse dataset, and it is able to map artists

in the ‘general’ direction. A general model, like the one proposed, could point to a more

specific model that is trained on a less diverse area of consideration. Improving the

embedding space and experimenting with different model resolutions are worthwhile

research topics.

The Lyrics architecture was on par with the audio-based architectures, even
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though little experimentation or consideration went into the construction of the

architecture. However, the lyrics data are mostly English, so it is possible that the

Lyrics architecture performed well because it could distinguish between different

languages, not because it was understanding the meaning behind the words. A more

balanced dataset could provide clearer results in this regard. Improving the Lyrics

architecture is one worthy direction of future research, especially with recent

breakthroughs in natural language processing and understanding. Lyrics could be the

most representative feature for content-based recommendation. Recommendation on

album artwork, however, does not seem to be a useful pursuit.

The imbalance of the dataset was shown most clearly when considering the year

feature. The performance of the RecommendationByYear architecture was much worse

than expected. The earlier one goes back in time, the more likely it is that artists of

that era are related because of the lack of representation. Unfortunately, data was

sparse for artists of the 40s, 50s, 60s, 70s, and 80s. The dataset also lated full track

lengths. Possible avenues such as song segmentation could not be explored because the

audio data was limited to 30 second clips. Access to full length tracks would likely

improve a content-based recommendation model.

Although the proposed content-based recommendation model is returning similar

artists by genre and origin, the quality of the recommendations is ultimately unknown.

The assumption was made that related artists are the ground truth for

recommendation, and the model was evaluated accordingly. However, the value of each

recommendation is ultimately up to the consumer, and this study lacked ‘online’

evaluation methods like A/B testing and surveys. Despite this, however, a few

arguments can still be made. Firstly, strong experimental evidence suggests the validity

of both The Time/Frequency Favoring Hypothesis and the hypothesis that raw audio

data are not representative enough for machine learning models to make acceptable

recommendations. Secondly, for every dataset and task, the musically-motivated

TimeFreq architecture outperformed the computer vision optimized Simple architecture.

Finally, the addition of metadata strengthened every model.
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Table 1

WebAPI dataset features and sources

Feature Sources

Artist Name Spotify1

Artist Origin MusicBrainz2, simplemaps3, Wikipedia4, Google Maps5, MSD Artist Locations

Dataset6, Musixmatch7

Artist Genres Spotify

Related Artists Spotify

Album Name Spotify

Album Art Spotify

Album Year Spotify

Track Name Spotify

Track Audio Spotify

Track Lyrics Musixmatch, Genius8, AZLyrics9, LyricWiki10, Kaggle Dataset 111, Kaggle

Dataset 212, Kaggle Dataset 313, Kaggle Dataset 414

1 https://developer.spotify.com/documentation/web-api/
2 https://musicbrainz.org/doc/Development/XML_Web_Service/Version_2
3 https://simplemaps.com/data/world-cities
4 https://www.mediawiki.org/wiki/API:Main_page
5 https://developers.google.com/maps/documentation/
6 https://labrosa.ee.columbia.edu/millionsong/sites/default/files/AdditionalFiles/artist_location.txt
7 https://developer.musixmatch.com/documentation
8 https://docs.genius.com/
9 https://www.azlyrics.com/
10 https://github.com/rhnvrm/lyric-api
11 https://www.kaggle.com/rakannimer/billboard-lyrics
12 https://www.kaggle.com/artimous/every-song-you-have-heard-almost
13 https://www.kaggle.com/gyani95/380000-lyrics-from-metrolyrics
14 https://www.kaggle.com/mousehead/songlyrics

https://developer.spotify.com/documentation/web-api/
https://musicbrainz.org/doc/Development/XML_Web_Service/Version_2
https://simplemaps.com/data/world-cities
https://www.mediawiki.org/wiki/API:Main_page
https://developers.google.com/maps/documentation/
https://labrosa.ee.columbia.edu/millionsong/sites/default/files/AdditionalFiles/artist_location.txt
https://developer.musixmatch.com/documentation
https://docs.genius.com/
https://www.azlyrics.com/
https://github.com/rhnvrm/lyric-api
https://www.kaggle.com/rakannimer/billboard-lyrics
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Table 2

FMA dataset medium subset splits

Label Training Validation Testing Label Training Validation Testing

Rock 5676 711 710 Classical 495 62 62

Electronic 5048 631 632 Old-Time / Historic 408 51 51

Experimental 1799 225 224 Jazz 306 39 42

Hip-Hop 1752 220 220 Country 142 18 39

Folk 1214 152 174 Spoken 94 18 18

Instrumental 1043 131 152 Soul-RnB 94 12 12

Pop 945 122 119 Blues 58 8 8

International 814 102 102 Easy Listening 13 2 6

Note. This dataset is highly unbalanced but the ratios of tracks in each set per genre is consistent.
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Table 3

CNN-based single genre recognition results

Results

Spectral Representation Architecture F1micro Total Parameters

STFT TimeFreq 0.627382 190, 510

Time 0.612991 84, 500

Simple 0.611046 733, 736

Freq 0.585375 62, 602

STFT Halved TimeFreq 0.630494 173, 366

Time 0.597822 67, 988

Simple 0.595488 733, 736

Freq 0.582264 61, 970

Mel-Scaled STFT TimeFreq 0.627771 160, 682

Time 0.619992 55, 700

Simple 0.609102 733, 736

Freq 0.584986 61, 574

Constant-Q TimeFreq 0.619214 159, 294

Time 0.615714 54, 292

Simple 0.584208 733, 736

Freq 0.544535 61, 594

MFCCs TimeFreq 0.550758 157, 200

Simple 0.549592 733, 736

Time 0.549203 53, 140

Freq 0.506807 60, 652

Chromagram TimeFreq 0.536756 157, 200

Time 0.495138 53, 140

Simple 0.492804 733, 736

Freq 0.478802 60, 652
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Table 4

Cifar-100 multiclass classification results

Architecture F1micro Total Parameters

Simple 0.5708 819, 980

Freq 0.4684 73, 288

Time 0.4540 73, 288

TimeFreq 0.0100 243, 828
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Table 5

CNN-based multiple genre recognition results

Results

Spectral Representation Architecture Hamming Loss Mean Squared Error Total Parameters

STFT Halved TimeFreqAVG 0.018139 0.015105 204, 488

Time 0.018441 0.015461 105, 253

Simple 0.018578 0.015624 882, 361

Freq 0.018678 0.015580 99, 235

Mel-Scaled STFT TimeFreqAVG 0.018142 0.015101 190, 416

Time 0.018464 0.015377 92, 965

Simple 0.018489 0.015461 882, 361

Freq 0.018728 0.015674 98, 839

Constant-Q TimeFreqAVG 0.018349 0.015314 190, 416

Time 0.018475 0.015602 91, 557

Simple 0.018681 0.015716 882, 361

Freq 0.018682 0.015684 98, 859
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Table 6

Embedding regression results

Results

Features Architecture Cosine Similarity Total Parameters

Mel-Scaled STFT TimeFreqAVG 0.4043262 520, 250

Time 0.4025255 257, 188

Simple 0.3799719 1, 537, 336

Freq 0.3306473 263, 062

Constant-Q TimeFreqAVG 0.3937517 518, 862

Freq 0.3791033 263, 082

Simple 0.3787154 1, 537, 336

Time 0.3503861 255, 780

MFCCs LargeRNN 0.3105006 8, 973, 088

Chromagram LargeRNN 0.2704273 8, 973, 088

Lyrics Lyrics 0.3660617 108, 755, 200

Album Artwork Albums 0.2045787 3, 282, 784

All Features Recommendation 0.5669792 50, 522, 912

All Audio Features + Lyrics RecommendationByLyrics 0.5404221 42, 753, 312

All Audio Features + Location RecommendationByLocation 0.5387914 41, 540, 384

All Audio Features + Year RecommendationByYear 0.4962294 41, 409, 312

All Audio Features + Album Artwork RecommendationByAlbums 0.4875399 42, 753, 312

All Audio Features RecommendationByAudioOnly 0.4848066 39, 311, 136

Note. These results are obtained by averaging the cosine similarity of every track in the testing split. The total

parameters for the recommendation models do not include the parameters of the models they combine.
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Table 7

Recommendation examples

Artist Genres Origin Years Active

33Miles ccm, christian music, worship Franklin, TN, USA 2005-present

Britt Nicole ccm, christian music, worship Kannapolis, NC, USA 2003-present

Plumb ccm, christian music, worship Indianapolis, IN, USA 1997-present

Jamie Grace ccm, christian music, worship Atlanta, GA, USA 2009-present

Macklemore & Ryan Lewis dance pop, pop, pop rap Seattle, WA, USA 2008-2017

Chiddy Bang indie pop rap, philly rap, pop rap Philadelphia, PA, USA 2009-present

Lupe Fiasco chicago rap, pop rap, rap, hip hop Chicago, IL, USA 2000-present

Mike Posner dance pop, pop, pop rap Detroit, MI, USA 2008-present

Three 6 Mafia crunk, dirty south rap, gangster rap Memphis, TN, USA 1991-2012

Bun B deep southern trap, dirty south rap Port Arthur, TX, USA 1987-present

Mike Jones dirty south rap, gangster rap, hip hop Houston, TX, USA 2001-present

Slim Thug crunk, deep southern trap, dirty south rap Houston, TX, USA 1998-present

Opeth alternative metal, death metal Stockholm, Sweden 1989-present

Storm Corrosion progressive metal Stockholm, Sweden 2010-2012

Soen alternative metal, djent, jazz metal Sweden 2010-present

Blackfield neo-progressive, progressive metal United Kingdom 2001-present

Norwich Cathedral Choir british choir, cathedral choir Norwich, England Unknown

Boston Symphony Orchestra classical, classical performance, orchestra Boston, MA, USA 1881-present

St. Paul’s Cathedral Choir british choir, cathedral choir, choral London, England 1127-present

Choir of King’s College, Cambridge british choir, choral Cambridge, England Unknown

Chad Brownlee canadian country, contemporary country BC, Canada 2003-present

David Nail contemporary country, country, country pop Kennett, MO, USA 2001-present

Jana Kramer contemporary country, country, country dawn Rochester Hills, MI, USA 2002-present

High Valley alberta country, canadian country Alberta, Canada 1997-present

Aretha Franklin classic soul, jazz blues, memphis soul Memphis, TN, USA 1956-2018

Wilson Pickett classic rock, classic soul, memphis soul Prattville, AL, USA 1955-2006

Gladys Knight & The Pips classic soul, mellow gold, motown Atlanta, GA, USA 1952-1989

Billy Preston funk, soul Houston, TX, USA 1956-2005

Ali Zafar desi, desi hip hop, filmi, ghazal Lahore, Pakistan 2003-present

Rahat Fateh Ali Khan desi, filmi, modern bollywood Faisalabad, Pakistan 1985-present

Atif Aslam desi, filmi, modern bollywood Wazirabad, Pakistan 2004-present

Kailash Kher desi, filmi, indian folk Meerut, India 2003-present

Angeline Quinto classic opm, opm Manila, Philippines 2003-present

Juris classic opm, opm Davao City, Philippines 2003-present

Gary Valenciano classic opm, opm, papuri Manila, Philippines 1978-present

Toni Gonzaga classic opm, opm, papuri Rizal, Philippines 1997-present

Note. The context artist is bolded.
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Figure 1 . Top: STFT spectrogram of a short piano phrase. The melody can be

obtained by extracting the fundamental frequencies of each segment to determine the

notes and analyzing the segments to determine the duration. The harmonics of each

note are clearly defined as horizontal lines. Bottom: STFT spectrogram of a cello

double-stop. The loudest frequency appears to be a harmonic and not a fundamental.

The lowest frequency is the persistent D string and the pyramid pattern is made from

the climb and fall phrase played on the A string (A3 −B3 − C4 −B3 − A3).
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Figure 2 . Top: STFT spectrogram of a blues song. The onsets of the drum beats are

clear from the vertical bars and the melody is visible horizontally. The rhythm of a song

is quite clear; the tempo and time signatures can be estimated from this representation.

Note, the harmonics of the singing voice are represented as wavy lines. Bottom: STFT

spectrogram of the ocean. Stochastic sounds do not have clearly defined structure. If

the phase spectrogram was included, it would very much look like random noise.
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Figure 3 . Top: The STFT spectrogram of a short piano phrase. Bottom: The same

STFT spectrogram mapped onto the mel basis. Note that the frequency axis scales

logarithmically. The lower frequencies are accentuated.
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Figure 4 . The first 12 MFCCs of a short piano phrase.
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Figure 5 . The cello double-stop notes consist of a D3 played below a seven note phrase

that goes A3 −B3 − C4 −D4 − C4 −B3 − A3. These notes are clearly labeled in the

spectrogram.
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Figure 6 . Chromagram of a cello double-stop. The highest pitch class energies belong

to D and A.
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Figure 7 . Long tail visualized on location, genre, and year data of the WebAPI dataset.
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Figure 8 . Edge detecting kernels of different sizes applied to the short piano phrase

shown in (a). Each convolution is followed by a ReLU activation function which filters

out much of the noise. All kernels have a weight of 8 in the middle pixel and −1

elsewhere. The 3× 3 kernel of (b) detects and amplifies both horizontal edges

(frequencies, harmonies) and vertical edges (attacks, onsets). However, the frequencies

in (c) and the onsets in (d) are much more clear then they are in (b).
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Figure 9 . The Simple architecture. A model with this architecture trained on the

Cifar-100 dataset does not contain the first two max pooling layers because the images

are small (32× 32) and do not need to be reduced as much as spectrograms. The

output size and activation function of this model depend on the dataset and task. Not

shown: ReLU activation functions and batch normalization.
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Figure 10 . The Time architecture. A model with this architecture trained on the

Cifar-100 dataset uses strides of 1× 1 on the six input convolutions. All models that

use spectrograms as input use strides of 1× 2 on the six input convolutions to reduce

the time dimension. Also, the max pooling layers reduce the frequency dimension for all

inputs except for chromagrams and MFCCs which are already reduced in frequency.

The output size and activation function of this model depends on the dataset and task.

Not shown: ReLU activation functions and batch normalization.
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Figure 11 . The Freq architecture. A model with this architecture trained on the

Cifar-100 dataset or with chromagrams or MFCCs as input use strides of 1× 1 on the

six input convolutions. Otherwise, strides of 2× 1 are used to reduce the frequency

dimension. Unlike the Time architecture which uses the same kernel shape regardless of

the input, the kernels of the Freq architecture depend on the input. This is because all

spectrograms have a time dimension of 643 from a constant track length of 30 seconds,

but the frequency dimension varies depending on the spectral representation. The

output size and activation function of this model depends on the dataset and task. Not

shown: ReLU activation functions and batch normalization.
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Figure 12 . The RNN architecture. GRU layers always have a dimension of 256. The

output size and activation function of this model depends on the dataset and task.
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Figure 13 . The LargeRNN architecture. LSTM layers increase in size. The output size

and activation function of this model depends on the dataset and task.
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Figure 14 . The Lyrics architecture. This architecture is the same as the LargeRNN

architecture but with an embedding layer at the input for each word in the vocabulary.

The final dense layer size matches the chosen artist embedding vector dimension (800)

and has no activation at the output.
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Figure 15 . The TimeFreq architecture.
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Figure 16 . The GenreEnsemble architecture.
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Figure 17 . The Recommendation architecture. The block widths roughly correspond to

the size of each layer. Every dense layer is followed by a ReLU activation function. The

inputs from the Time, Freq, LargeRNN, Albums, and Lyrics models are 800 dimensional

vectors which are reduced by deep networks into 512 dimensional vectors. Latitude (lat)

and longitude (lng) inputs are combined and increased to 512 dimensional vectors by

dense layers. The year input is simply increased by supplying it as input into a 512

dimensional dense layer. All eight 512 dimensional vectors are concatenated before

being fed into the final three dense layers.
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Figure 18 . The artist embedding model. The context artist is either a related artist or

a random artist. The embedding table is trained so that artist embeddings of related

artists are similar, pushing the output to 1, and artist embeddings of random artist are

dissimilar, pushing the output to 0.
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Figure 19 . t-SNE by Country
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Figure 20 . t-SNE by Genre



CONTENT-BASED MUSIC RECOMMENDATION 78

Figure 21 . t-SNE by Era
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Figure 22 . t-SNE by Artist
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