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Chapter 1

Introduction

Biomathematics as a field has grown substantially over the last 50 years. It has

found success in modeling biological phenomena in a variety of areas ranging from

ecology to molecular biology [Mackey and Maini, 2015]. Furthermore, the continued

development of biomath may be invaluable in understanding current challenges in

biology, such as predicting the effects of climate change on different ecosystems. All

successful interdisciplinary research depends different types of scientists having the

ability to understand and collaborate well with each other. Traditionally, mathemati-

cians are exclusively trained in theoretical systems, while biologists usually work in

experimentally driven laboratory settings. As a result, collaboration can lead to mis-

communications and fundamental misunderstandings about both the system being

studied and the mathematical tools being used. I argue that until biomath becomes

fully integrated into biology such miscommunications cannot be avoided and the field

will not reach its full potential.
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Chapter 2

Rashevsky’s New Biologists

Nicolas Rashevsky is a somewhat controversial figure in mathematical biology. As

one of the field’s founders, Rashevsky established the first degree granting program

for mathematical biology, the first mathematical biology journal, and helped to legit-

imize the field [Shmailov, 2016, Abraham, 2004]. However, many biologists consid-

ered Rashevsky’s work to be misguided and generally uninformative. In fact, most of

Rashevsky’s greatest failures happened because he was unable to convince biologists

that his work was relevant [Shmailov, 2016]. Even Rashevsky’s legacy is tarnished

as many modern day biomathematicians either do not know who he is or distance

themselves from his work. [Abraham, 2004]. However, I believe Rashevsky’s career

is worth studying because the origins of biomath are crucial in understanding the

current identity and limitations of the field.

Rashevsky was born on September 20, 1899 and he grew up in a small Ukraine

village. In 1919, he earned a PhD in mathematical physics from the University of

Kiev. After the USSR invaded the Ukraine, Rashevsky found his career stifled and

moved to Prague. His family would eventually immigrate to the United States, where

he would work as a researcher and instructor at various institutions. Rashevsky’s

interest in biology was inspired by a chance meeting with a biologist at a social event
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[Shmailov, 2016]. According to one of Rashevsky’s students, “[Rashevsky] asked the

biologist whether the thermodynamic mechanism on which he was working was the

way biological cells divided. He was told that (1) nobody knew how biological cells

divided and moreover, (2) nobody could know how biological cells divided, because

this was biology” [Rosen, 1991]. Rashevsky was challenged by this notation and his

work began to focus on the biological applications of physics.

Rashevsky envisioned mathematical biology as a field that would function simi-

larly as mathematical physics. His version of a mathematical biologist would not be

driven by data or observations. Instead, they will adopt the mathematical approach

of making fundamental assumptions about a biological system and considering the

consequences. He would begin by studying simple cases for which he would eventually

add complexity to better reflect reality. Rashevsky argued that this approach will

help to overcome the complexity of biology and describe the general characteristics of

a system. Rashevsky strongly felt that the theory developed by mathematical biology

has value in itself, even if it did not explain or guide experiments [Shmailov, 2016].

However, later in his career he did argue that mathematical biologists should still

attempt to guide experiments and should generally strive to make useful predictions

about biological systems [Cull, 2007].

For the most part, the biological community did not accept Rashevsky’s methods,

even going as far as to not credit him with accurate findings. For example, Rashevsky

proposed the following model nerve of excitation

de
dt

= KI − k(e− e0)

di
dt

= MI −m(i− i0).

The value K, k, M and m are constants, I represents current, e the excitatory process,

and i the inhibitory one. Rashevsky verified his model with previously available
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experimental results. Around 3 years later Archibald Hill, a physiologist, published

a similar model

de
dt

= KI − k(e− e0)

di
dt

= M(e− e0)−m(i− i0).

Despite both models having the same general behavior [Shmailov, 2016], the phys-

iological community credited Hill with the discovery as his method was based on

experimentation.

Perhaps, Rashevsky’s own habits caused his rejection from the physiological com-

munity. In his works, he would often compare himself to great scientists such as

Kepler, Newton, and Einstein [Shmailov, 2016]. Worst still, many physiologists felt

that Rashevsky made exaggerated claims and was over confident in his conclusions.

The most devout experimentalists were also uneasy with his approach of modeling

overly simplified cases then gradually introducing complexity. This can partially be

explained by Rashevsky not being formally trained in biology [Abraham, 2004]. How-

ever, he was not interested in joining the biological community. Rather, he wanted to

invent a new field and as a result, he felt the need to distance himself from existing

fields within biology.

Rashevsky spend a large portion of his career as a professor at the University

of Chicago. However, his inability to connect with experimentalists lead to several

cases of internal friction. For example, he was removed from the department of phys-

iology because the department head was an adamant experimentalists and disliked

Rashevsky’s work. Surprisingly, this ultimately lead to Rashevsky receiving his own

research group [Abraham, 2004].

The group’s creation represents a major turning point in Rashevsky’s career as

it enabled him to recruit students, host seminars, and raise the profile of his field
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worldwide. However, the group had difficulties getting journals to publish their work.

Many thought that their research was too mathematical for biology journals and too

biological for mathematical journals[Shmailov, 2016]. This prompter Rashevsky to

create the first mathematical biology journal: The Bulletin of Mathematical Biology.

The journal became the group’s main publication outlet and it still exists today.

Over time, the group continued to grow and eventually became the Committee on

Mathematical Biology, an entity with the power to grant PhDs [Cull, 2007].

Rashevsky’s person work focused over a broad set of biological systems but he

rarely explored a topic in depth. Over his career, he researched cell biology, nervous

systems, and topics in sociology. As a result, his work was often criticized for sharing

similarity in methods instead of a common subject matter. Though unusual, this

habit is understandable since Rashevsky’s main goal was not to be a mathematical

biologist. Rather, he was attempting to pioneer a new field and to his credit, many

of his ideas were further developed and eventually made a meaningful contribution

to biology. However, his reputation was damaged to the point where a large portion

of the scientific community did not take his work seriously [Shmailov, 2016].

The 1950’s would pose significant problems for Rashevsky’s Committee on Math-

ematical Biology. The cold war was in full stride and Senator Joseph McCarthy’s

anti-communist campaign spurred investigations in to the political leanings of aca-

demics. It was clear that Rashevsky was a not a communist, since he was a mem-

ber of Ukraine’s anti-communist White Guard. However, many committee mem-

bers had far left ideologies and became the target of investigations. To protect

such members, all individuals in the committee refused to sign loyalty oaths and

Rashevsky disobeyed orders to remove specific committee members. Consequently,

the University of Chicago severely cut the committee’s funding and it became dif-

ficult for the group obtain grants. This challenging work environment made many
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researchers transfer to other institutions and the committee was reduced to two mem-

bers [Cull, 2007, Shmailov, 2016].

While certainly a setback, the committee was able to survive. Many of Rashevsky’s

collaborators from other institutions rallied together and published a letter in Science

denouncing the Universities treatment of the committee. Additionally, Rashevsky was

able to secure funding for the Bulletin of Mathematical Biology, ensuring the journal’s

survival without university support. Overtime, the program’s reputation was restored

and by 1960 the committee secured a 5 year NIH training grant of an amount over

$500,000. This grant was a significant turning point for mathematical biology as it

funded a generation of researchers and legitimized the field to other universities. As a

result, universities nationwide became interested in mathematical biology and started

forming their own research groups[Shmailov, 2016].

However, the committee’s good fortune did not last. In the 1960s, Rashevsky

was ready to retire and a new committee chairman had to be selected. Rashevsky

wanted his successor to share his vision of a theoretically based mathematical biol-

ogy and was adamant that the position be filled by one of his colleagues. On the

other hand, the university wanted to give the committee a more experimental focus

and sought out an outside hire. After several years of internal conflict, the univer-

sity appointed Jack Cowan as the new chairman effective 1967. Cowan immediately

changed the focus and methods of the committee. Within a year, Rashevsky’s origi-

nal committee was almost unrecognizable. The university even changed the commit-

tee’s name to the Department of Theoretical Biology and Biophysics. The changes

prompted many of the groups experienced members to leave. Additionally, several

funding agencies began reevaluating the committee’s new curriculum and by 1970

the committee lost most of its major grants, including the one awarded by the NIH.

Eventually, Cowan transferred to the mathematics department and the committee
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was disbanded[Shmailov, 2016].

The current field of biomath remembers Rashevsky with a mixed legacy. His life’s

work did plant the seeds that would grow into the field of biomath. Most of his

work was too theoretical to be of any immediate use to scientists. However, some of

his models were further developed into revolutionary ideas. For example, his early

models of neural nets were developed into a form that is fundamental to artificial

intelligence. Many of his students helped to establish biomath programs at other

institutions and his journal, Bulletin of Mathematical Biology, still exists today. Re-

gardless, the following generation of mathematical biologists felt the need to distance

themselves from Rashevsky and as a result the field was renamed as “biomathemat-

ics”. Rashevsky’s ultimate legacy is not his research but rather his efforts to create an

interdisciplinary field that uses math as a guide instead of a way to interpreted data.

Rashevsky’s failed research career represents a cautionary tale about the limitations

of inaccessible theory. Ideally, biomath should eventually be used to inform biology.

However, Rashevsky lacked the biological training needed to effectively communicate

with experimentalists. This shows that the field of biomath was born with a fun-

damental wedge between biologists and mathematicians. Rashevsky was unable to

overcome this wedge because he did not attempt to advocate his work to biologists.

This shows that in order for biomath to inform biology, biomathematicians have the

responsibility to reach out to experientialists and make their results relevant.

7



Chapter 3

Patterns of Protein Domains in

Mycobacteria

This chapter will contain a section of biologically relevant background information

and the write up of my summer research. The write up section is technical, however

the chapter as a whole can be understood without it.

3.1 Background

Proteins are biomolecules that are often composed of multiple sub-units known as

domains. A protein can be thought of a Lego model, such as a Lego car. In this

metaphor, a protein domain would be a set specialized parts of the model, such as

the parts that make up the wheels. Domains are especially useful because they provide

a basis to compare two different proteins. For example, we can say a Lego tank is

similar to a Lego car because they both have wheel domains. Similarly, a Lego tank

is fairly different then a Lego boat because a boat has no wheels.

Mycobacteria are a group of bacteria that are omnipresent in the environment,

but are especially common in soil and water. These bacteria are clinically relevant
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and are the focus of many research groups. Mycobacteria species have been separate

into two categories. One group contains all members species of the Mycobacterium

tuberculosis complex. While the nontuberculous mycobacteria (NTM) group is com-

posed of all other mycobacteria species. Mycobacterium tuberculosis has historically

been a major pathogen. Additionally, recent years have seen an increase in NTM

infections [Prevots and Marras, 2015]. NTMs are difficult to diagnose as they often

resemble tuberculosis infections [Raju et al., 2016]. NTMs are often treated with an

extended antibiotic regimen [Henry et al., 2004] which can cause harmful side effects.

3.2 Write up

3.3 Introduction

Mycobacteria pose a significant health risk worldwide, with M. Tuberculosis killing

over a million people annually [(WHO), 2018]. Additionally, infections by nontuber-

culous mycobacteria (NTM) are becoming more prevalent in many regions [Prevots and Marras, 2015].

NTMs are omnipresent in the environment [Falkinham, 2009] and often act as op-

portunistic pathogens[Cook, 2010]. This demonstrates that mycobacteria are able

to colonize a variety of environments, including the human body. It would there-

fore be useful to identify proteins that allow mycobacteria to survive within the

human body. However, the function of many mycobacteria proteins are unknown

[Kumar et al., 2017]. Therefore, identifying clinically relevant protein domains is a

more feasible approach. In this paper, we study trends of domain occurrence and

enrichment across 118 proteomes from a diverse set of mycobacteria species. It is

our hope that this study can identify domains that would help future studies into

parthenogenesis.
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3.4 Methods

3.4.1 Data compilation

This work utilized the Pfam domain composition of 118 proteomes of various species

of mycobacteria. A Pfam domain is a distinct functional sub-unit of a protein which

is identified using a Hidden Markov Model[El-Gebali et al., 2018]. Our dataset was

composed of all 117 mycobacteria proteomes listed on the main 2019 Pfam site, as

well as the proteome for M. abscessus sp. abscessus which was retrieved from the

Pfam FTP site. The domain composition of a proteome contains information on

the number of sequences that correspond to a domain and the number of times each

domain occurs. For this study, we only consider the number of times each domain

occurs as it best reflects enrichment.

We organized the data on domain occurrences into a structure that will be re-

ferred to as the Occurrence Domain Matrix or the ODM. In the ODM, columns

represent different mycobacteria proteomes and rows correspond to various domains.

The matrix entries represent the number of times a particular domain occurs in the

corresponding proteome. The ODM was constructed using an iterative process. The

process began by adding a new column to the existing matrix to represent an addi-

tional mycobacteria proteome. Then the process compared the domains from the new

proteome with the domains already present in the domain matrix. If a domain was

already present, the corresponding row was updated in the new proteome column. If

a domain was not already in the matrix, then a new domain row was added and the

new proteome column was updated.
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3.4.2 Enrichment detection

We consider a proteome to be enriched with a specific domain if it has a domain

occurrence that is significantly above average. We identified enrichment by finding

upper outliers in the domain occurrence from the set of all proteome that contain

the domain. Outliers were determined by finding values greater than max{3 · Sn, 15}

above the median. The expression Sn, described in [Rousseeuw and Croux, 1993], is

an ancillary statistic given by the formula

Sn = c ∗medi{medj|xi − xj|}.

We used Sn because it is a robust statistic that does not assume a symmetric dis-

tribution. All calculations for Sn were done using a pre-existing matlab program

[Jones, 2019]. Outliers were required to be at least 15 above the median to ensure

that enrichment will always imply a large disparity from the median. We consider

enrichment to be significantly above average expression among all proteomes that

contain a domain. Thus, we only look for outliers among the non-zero values of

domain occurrence.

3.4.3 Formation of Groups

To assist with finding notable domains, we separated the proteomes into groups with

similar domain compositions. We utilized a dendrogram based on Jaccard similarity

indices [Beagle, 2019] and observed 44 proteomes formed a distinct cluster. The ma-

jority of proteomes in this cluster were from rapid growing species, with the exception

of M. triviale. Therefore, we will refer to this cluster as the rapid growing group.
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Figure 3.1: This dendrogram is constructed using Jaccard similarity indices between

proteomes. Proteomes colored red correspond to rapid growing species, blue corre-

spond to slow growing species, green is intermediate growing species, and grey is

unknown.

We observed a cluster of 57 proteomes that primarily belonging to slow growing

species. We will refer to this cluster as the slow growing group. We further divided the

slow growing group into three subgroups based on less distinct clustering behavior.

These will be referred to as slow subgroups. The slow subgroup 1 is comprised of

36 proteomes, slow subgroup 2 is made up of 13 proteomes and slow subgroup 3 is

comprised of 8 proteomes. We proceed by identifying differences in domain behaviors
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between these groups. There were a total of 17 proteomes that are not included in

any groups. These include proteome from rapid and slow growing species. The slow

group is primarily comprised of proteomes from potentially clinical species. However,

slow subgroup 2 contains pathogenic species such as M. tuberculosis, M. kansasii, and

M. ulcerans.

Figure 3.2: This dendrogram is constructed using Jaccard similarity indices between

proteomes. Proteomes in the rapid group are colored red. Proteomes in slow subgroup

1 are colored blue. Proteomes in slow subgroup 2 are colored green. Proteomes in

slow subgroup 3 are colored yellow.
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3.4.4 Filtering Behaviors

We identified three commonly occurring domain behaviors between groups: exclusive

domains, missing domains, and widely enriched domains. An exclusive domain is

one that generally in one group and uncommon in every other group. We defined an

exclusive domain as being present in 90% of proteomes in one group and at most 10%

of proteomes in the other group. The subgroup clusters are less distinct from each

other and thus we defined exclusive domains to be in 85% of proteomes in one group

and at most 15% of proteomes in the other groups. A missing domain is one that is

uncommon in one group but is generally present in every other group. Missing was

defined as being in 90% of proteomes in other groups and in only 10% of proteomes

in the observed group. A widely enriched domain is a one that is enriched in a 25%

of proteomes in a group.
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3.5 Results

Domain RG% SG% SS1% SS2% SS3% function
BCA ABC TP C 100 0 0 0 0 transporter
Na H antiport 1 100 8.9 2.9 0 50 membrane
BPD transp 2 100 5.4 5.7 7.7 0 transporter
SBP bac 6 100 3.6 0 0 25 solute-binding
Xan ur permease 100 5.4 0 1.5 12.5 permeases
GntP permease 97.7 0 0 0 0 permeases
DUF456 97.7 8.9 11.4 7.7 0 unknown
TGT 97.7 0 0 0 0 transferase
Vut 1 97.7 0 0 0 0 transporter
PepSY TM 95.4 0 0 0 0 peptidases
PGPGW 95.4 5.4 5.7 7.7 0 transmembrane
DUF2207 93.2 8.9 5.7 0 37.5 unknown
OHCU decarbox 93.2 3.6 0 1.5 0 enzyme
LysE 93.2 7.1 2.9 23.1 0 translocator
DUF218 93.2 3.6 5.7 0 0 unknown
PE PPE C 2.3 100 100 100 100 immunostimulation/virulance
Sbt 1 2.3 94.6 97.1 100 75 transporter

Table 3.1: This table shows exclusive and missing domains for each group. The
middle columns represent the percentage of proteomes that contain a domain in a
group or subgroup. The rightmost column describes the function of the domain’s
family as described by Pfam. The top section is the set of domains that are exclusive
to the rapid/slow groups.
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Domain RG% SG% SS1% SS2% SS3% function
Cyt-b5 22.7 28.6 8.6 92.3 12.5 tRNA-splicing ligase
Stealth CR1 0 25.0 5.7 92.3 0 stealth protein
Stealth CR2 0 26.8 8.6 92.3 0 stealth protein
TENA THI-4 95.4 25.0 14.3 7.7 100 enhancer enzymes
ELFV dehydrog N 59.1 17.9 2.9 7.7 100 dehydrogenase
Ectoine synth 61.4 17.9 5.7 0 100 ectoine synthase
DUF4126 93.2 25.0 14.3 7.7 100 unknown
DUF309 72.7 23.2 14.3 0 100 unknown
ELFV dehydrog 59.1 17.9 2.9 7.7 100 dehydrogenase
RF3 C 93.2 12.5 0 0 87.5 release factor
GGACT 13.6 17.9 8.6 0 87.5 cyclotransferase
ScdA N 0 12.5 0 0 87.5 repair of iron-sulphur clusters
CopC 100 71.4 91.4 0 100 blue copper protein
DUF1775 45.4 73.2 94.3 0 100 unknown
SpoIIE 100 85.7 100 100 0 sporulation protein
DUF2752 100 85.7 100 100 0 unknown
Peripla BP 3 97.7 82.1 94.3 100 0 transcriptional regulator
LacI 97.7 80.3 94.3 92.3 0 transcriptional regulator
Peroxidase 100 85.7 100 100 0 catalyst
Voltage CLC 95.4 80.4 91.4 100 0 chloride channel
Sulphotransf 75.0 83.9 97.1 100 0 synthesis of sulpholipid-1
DUF2277 95.4 80.4 91.4 100 0 unknown
Pro dh 95.4 83.9 97.1 100 0 dehydrogenase
NicO 31.8 82.1 97.1 92.3 0 nickel-transport
DUF2332 22.7 78.6 91.4 92.3 0 unknown

Table 3.2: This table shows exclusive and missing domains for each subgroup. The
middle columns represent the percentage of proteomes that contain a domain in a
group or subgroup. The rightmost column describes the function of the domain’s
family as described by Pfam. The top section is the set of domains that are exclusive
to the slow subgroups. The bottom section is the set of domains that are missing
from among the slow subgroups.
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Domain RG% SG% SS1% SS2% SS3% function
Big 9 38.6 0 0 0 0 diverse
BPD transp 1 36.4 0 0 0 0 transporter
ABC tran 31.8 0 0 0 0 transporter
PE 0 42.9 31.4 100 0 immunostimulation/virulence
Pentapeptide 2 0 19.6 0 84.6 0 unknown
PPE 0 10.7 0 46.1 0 immunostimulation/virulence
Pkinase 0 8.9 2.9 30.8 0 protein kinase
Ketoacyl-synt 0 10.7 0 46.1 0 enzyme
Acyl transf 1 0 10.7 0 46.1 0 acyl transferase
Ketoacyl-synt C 0 7.1 0 30.8 0 enzyme
KR 0 10.7 0 46.1 0 bacterial polyketide synthases
KAsynt C assoc 0 7.1 0 30.8 0 ketoacyl-synthetase
PS-DH 0 7.1 0 30.8 0 dehydratase
PIN 0 16.1 8.6 38.5 12.5 nuclease
PE-PPE 0 3.6 0 0 25 immunostimulation/virulence

Table 3.3: This table shows enriched domains for each group and subgroup. The
middle columns represent the percentage of proteomes in each group or subgroup
that are enriched by the corresponding domain. The rightmost column describes the
function of the domain’s family as described by Pfam.

3.5.1 Observations in Individual Proteomes

We looked for enrichment and unique domains among three clinically relevant pro-

teomes of mycobacteria: M. abscessus, M. avium, and M. tuberculosis strain ATCC

25618. We consider a domain to be unique if it is only found in a single species of

mycobacteria. Enrichment occurred in all three proteomes with M. abscessus being

enriched with 6 domains, M. avium being enriched with 1 domain, and M. tuberculosis

being enriched with 3 domains.

The average number of unique domains across proteomes is 5.2203 domains. Sur-

prisingly, M. abscessus has the extreme value of 276 unique domains, while M. avium

doesn’t have any unique domains and M. tuberculosis has 6. Interestingly, 5 of the

6 of the unique domains in M. tuberculosis, i.e. Csm1 B, CRISPR Cas6, Csm4 C,

Cas Csm6, and Csm2 III-A, are related to CRISPR systems.
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Domain M. abscessus M. avium M. tuberculosis function
ABC tran 126 51 46 transport
MMPL 65 38 25 integral membrane
BPD transp 1 54 25 21 transport
Acetyltransf 1 30 10 9 transferase
Mycobact memb 26 14 7 membrane
G5 18 1 1 extracellular
AMP-binding 69 116 43 binding
Pentapeptide 2 0 0 237 unknown
PIN 0 1 45 cleave single stranded RNA
PE 3 10 89 immunostimulation/virulence

Table 3.4: Subsection of the Occurrence Domain Matrix showing examples of en-
richment across three proteomes of mycobacteria. M. abscessus is enriched with the
domains ABC tran, MMPL, BPD transp 1, Acetyltransf 1, Mycobact memb, and
G5. M. avium is enriched with the domain AMP-binding. M. tuberculosis strain
ATCC 25618 is enriched with the domains Pentapeptide 2, PIN, and PE.

3.6 Discussion

3.6.1 Rapid Growing Group

Our results suggest that a diverse set of transport proteins may be needed to facilitate

rapid growth. Many of the rapid group’s exclusive and enriched domains are related

to molecular transportation. Additionally, rapid growing species had a relatively large

amount of exclusive domains but few enriched domains

3.6.2 Slow Growing Group

The slow grouping group had few exclusive or enriched domains. However, the only

domain to be shared by the entire group is PE PPE C, which may have a function

related to virulence and immunostimulation. Having commonly shared immunostim-

ulation protein domains may explain the opportunisticly pathogenic behavior of slow

growing mycobacteria.
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3.6.3 Slow Subgroup 1

Slow subgroup 1 has very little interesting domain behavior. This potentially could

be the result of the subgroup including a relatively large amount of proteomes. Ad-

ditionally, exclusive and missing behaviors may be difficult to detect because this

subgroup is closely related to slow subgroup 2.

3.6.4 Slow Subgroup 2

Slow subgroup 2 includes many clinical species so it’s domain behavior is particularly

relevant. The group exclusively shared stealth proteins which help to evade immune

systems. Additionally, slow group 2 is widely enriched with PPE and PE, both of

which may have a function related to virulence. It is worth noting that this subgroup

experienced the most widely enriched domains.

3.6.5 Slow Subgroup 3

Slow subgroup 3 had a lot of exclusive and missing domain while featuring limited

widespread enrichment. The subgroup is comprised of proteomes from both envi-

ronmental and opportunistically pathogenic species. Since the majority of the slow

growing proteomes come from opportunistically pathogenic species, it is unlikely that

any of the subgroup 3 exclusive or missing domains have clinical relevance.
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3.8 Overview

This work can be considered an exploration into bioinformatics. My general approach

was to collect all available data from a database and look for patterns. More specif-

ically, I looked for domains that were only found in slow growing and fast growing

species. One main finding was that slow growing and fast growing mycobacteria gen-

erally have different domain compositions. Additionally, I was able to produce a list

of domains that were exclusive to either slow and fast growing species. This research

showed me the value of understandings the biological data I was working with. At

the time of this work, I did not understand mycobacteria protein domains enough

to interpret my own result. For example, I was not sure which of the domains on

my exclusive and enriched list were interesting to talk about. Luckily, my research

mentor was able to look at my list and suggest a few talking points for me. However,

it was strange that I was not able to understand the result on my own project.
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Chapter 4

Modern Biomathematics

Mathematical modeling essentially describes a biological phenomenon by using a set

of assumptions to replicate an observed behavior. This approach has led to success

in several research areas where direct experimentation is not possible due to logistical

restraints. Models are usually created as a collaboration between mathematicians

and biologists. However, collaboration can cause miscommunications between experts

which results in low quality models.

Evolution is a mechanism that shapes the development of all life. However, it

is a multigenerational process that usually takes too long to study directly. As a

result, mathematical models based on game theory have been particularly usual in

studying the evolutionary mechanisms that maintain the existence of specific traits.

Game theory is the mathematics of decision making and it assumes individuals are

rational and self-interested. In a biological context, it has been used to explain why

certain behaviors are evolutionary beneficial [Smith and Price, 1973]. This is done by

considering how a set of theoretical animals interact with the general goal of finding

a set of assumptions that encourage the virtual animals to behave the same way they

do in nature. Assumptions are incorporated in the form of various strategies animals

use to compete with each other. This approach has offered insight into a variety of
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biological phenomena, including the evolution of cooperation [Nowak, 2012].

However, a mathematical model is only as good as the assumptions used to build

it, and a lack of biological understanding can easily lead a model astray. One of the

early models for HIV transmission was overly complicated and built on inaccurate

assumptions about the disease [May, 2004]. Collaborations between mathematicians

and biologists are not enough to prevent such incidents because the assumptions may

be too mathematical for biologist to notice. In the case of the HIV model, researchers

were repurposing an existing mathematical model for measles. However, they did not

understand that the two viruses spread in fundamentally different ways. Therefore,

they assumed that an individual who was having sex with a new partner 10 times

was just as likely to catch HIV as an individual who was having sex with 10 new

partners one time. Additionally, it would have been difficult for a biologist to catch

such a mistake because the model was build using advanced mathematical tools,

such as partial differential equations, that biologists are not trained to understand.

Having researchers adequately trained in both math and biology would prevent such

incidents.

An increasingly prominent approach in mathematical biology is using data to drive

investigations. This version of mathematical biology tries to limit assumptions about

a system and let data drive discovery. This is the data focused approach I used in

Chapter 2 and has been utilized in many areas of biology including bioinformatics,

systems biology, and quantitative ecology. The general goal of a data driven approach

is to make sense of a data set by looking for correlations or interesting patterns. It

is common for researchers in this area to utilize data that experimentalists have

previously collected.

This method is particularly effective at interpreting large data sets. In Chapter

2, I identified interesting protein domains by filtering for domains that were in some
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species but not others. My data was composed of 118 species and included over 4000

domains. It would be difficult for a biologist to investigate how all of these domains

are used in each species. However, my work was able to filter these domains into a

list that is small enough that a biologist would be able interpret noteworthy results.

As a consequence of using existing data sets, researchers may not detect or un-

derstand potential limitations of their work. In my domain work, I trusted that the

PFAM database had quality data. However, the phenotypic information of several

species was limited. This means that I had data about which domains that occur

in each species of mycobacteria but I do not know any of the traits, such as where

a strain found and the species growing rate, and I was only able to make limited

conclusions about domains. Additionally, I am not sure how PFAM selects species

to include in its database, consequently I could have accidentally used a biased data

set.

Perhaps, the biggest difference between a mathematical model and a data driven

approach is the way biologists engage with the results. Statistics report results with

common metrics such as p-values, confidence intervals, and R values. This is conve-

nient because scientists with limited training in statistics are still able to understand

the result of a wide variety of statistical analysis. For example, I was able to ex-

plain the work done in Chapter 2 to an expert on mycobacteria and he was able to

interpret my results for me. However, mathematical models can be based on a wide

variety of mathematics and thus a standard metric is not possible. For example,

ecological models based on the advanced mathematical techniques of partial differen-

tial equations have been effectively used to model the spread of an invasive species

[Holmes et al., 1994]. The classical model was used to describe the spread of muskrats

populations through Europe [Skellam, 1951]. The model used in [Skellam, 1951], is

of the form
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p =
∫∞
R

exp[−r2/na2]2rdr/na2 = exp{−R2/na2}.

This expression is clearly complicated and any useful interpretation requires a back-

ground in partial differential equations. This demonstrates that biological systems

are often complicated and quality models incorporate advanced mathematics. The

results of such models can be particularly difficult to interpret because the model’s

results demands a mathematical background while the contexts needs a biological

understanding. Therefore, the researchers interpreting such models need a strong

background in both mathematics and biology.
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Chapter 5

Benefits of integration

Modern biomath is as a collaboration between biologists and mathematicians. This

works well for specific problems. However, the stark divorce of expertise in mathemat-

ical tools and biological is limiting the potential of biomath. Therefore, it is necessary

to train biomathematicians in advanced mathematics and biology. It would be un-

reasonable to train all biologists in advanced mathematics. Consequently, biomath

will always be a type of specialization. Treating biomath as a subfield within biology

would increase the accessibility and overall impact of the field.

In light of this, it may be worthwhile to reconsider Rashevsky’s vision for a new

type of biologists. In fact, many contemporary scholars argue that mathematical

biology should be analogous to theoretical physics [van Hemmen, 2007]. The main

drivers of mathematical biology needs to be people who understands both the biology

involved in a system and the mathematical tools available.

Having researchers with an adequate understanding of both biology and mathe-

matics would allow modelers to interpret their own results. A lot of mathematical

models are difficult to interpret without the proper training. It is not always possible

to find a biologist with the training to read a purposed model and interpret the results

biologically. Therefore, it is the responsibility of the modeler to interpret their own
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results and understand what they reveal about a biological system.

Rashevsky’s career highlights the need for a modeler to effetely communicate with

the biological community. A mathematical biologists who trained in both math and

biology would be able to facilitate communication between the two fields. This is

valuable because advocating for a mathematical model should include showing why

the work is sound mathematically and informative biologically. Therefore, modelers

need to converse with and justify themselves to experts in both areas.

Many areas of biology, such as molecular biology, are developing very quickly and

modelers need the ability to read new publications to ensure they are building mod-

els with current information. This may seem trivial however, most biological journal

publications are written with the assumption that the reader have a basic under-

standing of the biology. Therefore, mathematicians without any biological training

would have a difficult time fully understanding the information being presented.

Mathematical models are useful because they can be repurposed to describe a

variety of biological systems. For example, many of the current mathematical models

that are used to describe invasive species are variations of a single original model

[Skellam, 1951]. Such expansions would have been possible if biologists were not able

to recognize how the model could be adapted to their own work. Therefore, model

results should be accessible to general biologists, which is only possible if modelers

are able to effectively communicate their methods and results.

This work may seem only relevant to biologists and some mathematicians. How-

ever, we are living beings and therefore biology affects us all. If we can use mathemat-

ical models to better study biology then we gain a better understanding of ourselves

and the world around us. After all, models can potentially be used to study topics

relating to human health, global warming, and many more of the things that affect

us all.
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