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CHAPTER 1. LITERATURE REVIEW: VEGETATION CHANGES IN 

RESPONSE TO GONDOLA CONSTRUCTION IN BRECKENRIDGE, 

COLORADO 

 

 
Breckenridge is a small ski town in the heart of the Colorado Rocky Mountains where the 

ski industry and tourism drive the economy and provide financial wellbeing for locals. With 

nature-based tourism at an all-time high, and total number of visits to protected areas on the rise 

worldwide (Balmford et al., 2009), towns like Breckenridge are growing in number and size. 

Recent studies observed an increase in the length and spread of recreation trail systems across 

the world’s natural areas (Ballantyne & Pickering, 2015; Wipf et al., 2005). In Breckenridge, this 

increase in trail systems includes infrastructures like the gondola built in 2006-2007 connecting 

the town of Breckenridge to Peak 7 and Peak 8 (Hoffa & Carello, 2009; USDA, 2012). 

Understanding how infrastructure like this gondola impact the land is important. What are the 

long-term effects of gondola construction? What type of vegetation is now found in the area 

under the gondola and the surrounding forest? The change in mammalian presence, both human 

and non-human, the soil disturbances from the construction and the current maintenance regimes 

harm the natural landscape immediately and also further down the road. These changes cause 

irreparable damage to the natural vegetation and facilitate the intrusion by non-native invasive 

plant species. 

Before the gondola construction the vegetation beneath it was mainly old growth and 

secondary growth subalpine forest (Hoffa & Carello, 2009; USDA, 2012), dominated by tree 
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species including engelmann spruce (Picea engelmanni), subalpine fir (Abies bifolia), lodge pole 

pine (Pinus contorta), willow (Salix ssp.) shrubs, and bluejoint grass (Calamagrostis canadensis) 

(USDA, 2012). The subalpine zone is the area that bridges the lower edge of the alpine zone and 

the upper edge of the montane forest (Kershaw, 1998). At high elevation from 10,000 to 11,500 

feet, temperatures are low and growing seasons are short (Windell et al., 1986). Short growing 

seasons and dense snowfall make this subalpine forest home to many delicate plants (Kershaw, 

1998). Because of the harsh conditions, Breckenridge forests are particularly sensitive to 

disturbances and invasion by non-native species (Törn et al., 2009). The non-native species 

typically found in Breckenridge include plants like Canada thistle (Cirsium arvense) (Pritekel et 

al., 2004). Canada thistle and other invasive species tend to be more competitive, have greater 

nutrient uptake efficiency and overall higher biomass than the native species (Müllerová et al., 

2011). Non-native species and the management practices used to control them may have long-

term effects on the land and need to be greatly considered when infrastructures like the 

Breckenridge gondola are constructed. 

To understand the effects of the gondola construction, we first need to look at the 

disturbances taking place. The disturbances are described as, but not limited to, full vegetation 

clearing, grading excavation, and other ground disturbances for the full length of the corridor 

(USDA, 2012). A popular study on the effects of ski resorts on alpine vegetation in the Swiss 

Alps concluded that machine grading, snow grooming, and artificial snow production destroy 

natural habitats, decreasing vegetation cover and decreasing overall diversity (Wipf et al., 2015). 

To understand how this relates to the vegetation in Breckenridge, a recent study compared the 

vegetation along the Breckenridge gondola before and after the construction in an attempt to 

explain the short-term effects of the construction. Findings from this study show that the gondola 
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construction caused changes in plant species diversity, not only in the immediate area of 

deforestation, but also to at least 3 meters further from the forest edge (Hoffa & Carello, 2009). 

This suggests that the gondola construction site could have similar responses to disturbances as 

the alpine vegetation in the Swiss Alps did. 

Further research of Wipf et al. (2015) in the Swiss Alps study looked into revegetation 

efforts. Wipf and colleagues found that there was no amelioration to the damage after 

revegetation measures were taken, or even after the plots were given time to restore themselves 

(Wipf et al., 2015). This finding is supported in a paper by May et al. (1982) who looked at the 

success of transplanting native alpine species in Niwot Ridge, Colorado after physical 

disturbance damages occurred. May and colleagues concluded that the only effective way to 

reintroduce native species in areas of recent disturbance is via transplantation of native species 

with different life histories (May et al., 1982). This is an important consideration as revegetation 

attempts are made to restore plots to their original vegetation. In conclusion, once construction 

has taken place, there are immediate negative effects on the vegetation, and past these effects, 

revegetation efforts are typically ineffective or highly complicated. 

When the gondola was constructed, the machine grading, and the excavation processes 

disrupted the natural soil composition. A study completed by Müllerová et al. (2011) in the 

Czech Republic found evidence that the changes in the chemical environment during times of 

construction have a negative impact on plant growth and native species diversity. They found a 

pH increase from 3.9 to 7.6 and base saturation increase from 9-30% up to 100% transformed the 

surrounding vegetation from native tundra species to competitive, nitrophilous, and species that 

traditionally preferred manmade habitats. Their findings are supported by Hobbs & Huenneke 

(1992) who reviewed the literature and concluded that the change in chemical environment leads 
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to disruptions in soil composition, which then increases colonization of non-native species. In 

conjunction with the observed decrease in plant species, Müllerová et al. (2011) provide 

evidence that water plays a huge role in carrying construction chemicals down slopes. The study 

found a difference in soil and plant composition in areas along water routes compared to those 

not along the routes. This explains the vast spatial range that the gondola construction can affect, 

not only potentially increasing the presence of invasive species under the gondola itself, but also 

spreading along waterways into the surrounding forest especially considering its position on a 

snow-dredged slope.  

Past the initial effects of the gondola construction in Breckenridge, certain measures of 

management like trimming and cutting of plants are required to keep the area cleared for 

maintenance workers. In a recent study completed in Cucumber Gulch, a wetland preserve 

located between the town of Breckenridge and the ski resort, right along the Breckenridge 

gondola, Carello et al. (2016) noticed that winter recreation trail maintenance negatively impacts 

the growth of willows that dominate the area, as well as the vegetation surrounding these 

willows. The study compared plots that had willows that were clipped versus plots with 

unclipped willows to replicate areas that are maintained versus plots left unmaintained. Not only 

did they find that there were fewer catkins produced in the clipped plots, but these maintained 

areas were higher in diversity. While an increase in diversity may sound like a positive result, the 

increased diversity was due to invasive weeds, compounding the evidence that areas under the 

gondola are dangerously susceptible to invasive species intrusion, not only immediately after 

construction, but in the long run as well (Carello et al., 2016). 

The greatest changes associated with gondola construction are those associated with the 

overall change in land use and the massive increase in human presence. The International Union 
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for the Conservation of Nature (IUCN) (2000) warns that the increase in human travel is an 

important mechanism for the long-distance dispersal of plants, especially invasive species. It is 

well known that there are negative impacts on vegetation due to human presence through ground 

trampling. For example, Törn et al. (2009) found that the only species able to survive after 

trampling disturbance are tolerant species, and that sensitive species no longer exist in areas 

disturbed by trampling (Törn et al., 2009).  

Since the gondola is a raised infrastructure, it is important to consider other ways that 

human intrusion and presence affect vegetation. As people visit Breckenridge from all corners of 

the world, the possibility of them acting as vectors carrying invasive species with them becomes 

increasingly probable. Clothing such as hiking/ski boots, socks, laces and trousers act as an 

unintended human-mediated seed dispersal method (Mount & Pickering, 2009). Through their 

research in Kosciuszko National Park, Australia, Mount & Pickerington (2009) found that seeds 

from over 179 species, 134 of these weeds, collected on all the clothing studied. This mode of 

non-native seed dispersal is especially applicable along a gondola line where a large area of 

susceptible subalpine vegetation is covered in a short period of time. Further, Hobbs & Atkins 

(1988) concluded that disturbed areas (such as the area under the Breckenridge gondola) tend to 

comprise rougher surfaces which provide ideal conditions for seed establishment and 

germination, even further increasing the probability that non-native seeds will have high growth 

rates in the under-gondola ecosystem (Hobbs & Atkins, 1988). 

Beyond the introduction of outside species by human vectors, the simple fact that the 

gondola brings human presence to areas where it has not been in the past will have a dramatic 

effect on the surrounding mammalian presence, and therefore vegetation. In the subalpine 

ecosystem of the Swiss Alps, Patthey et al. (2009) found that outdoor winter sports have a 
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significantly negative impact on key indicator species on a large scale. The study concluded that 

the presence ski lifts and related winter recreational activities caused a mean 36% decrease in 

key indicator species. Along the slopes, and specifically along the gondola path in Breckenridge, 

we can expect a decrease in animals (Patthey et al., 2009), while near the lodge the density of 

generalist predators will increase. Storch & Leidenberger (2003) found that areas of the 

subalpine forest of the Bavarian Alps with high tourism frequencies coincide with increased 

presence of generalist predators. They hypothesize that the easily available food remains and 

other garbage left behind by the tourists is the cause of this increase (Storch & Leidenberger, 

2003). As these findings may seem contradictory, the conclusion that can be made is that human 

presence in the subalpine regions of Breckenridge likely has an effect on the typical occurrences 

of surrounding species, which in turn affects the vegetation that is utilized by these species.  

Since construction, the gondola has been critical in providing reliable mountain access 

for bikers, hikers, skiers, and snowshoers alike. The addition of the gondola provides a new and 

unique way to experience the mountains, allowing recreational opportunities to reach those who 

would otherwise not be comfortable or capable of hiking or climbing in these same areas. This 

ideally allows a greater demographic to appreciate the landscape and get involved in the 

conservation and preservation efforts of these lands in the future (Kubota & Shimano, 2009).  

While there are many perceivable benefits to the addition of the Breckenridge gondola, as 

stated in the previous paragraph, any new addition to the landscape will affect its surroundings. 

In regards to the Breckenridge gondola, the initial deforestation of the site negatively affected 

vegetation, wiping out native plants. The changes to soil composition made the land more 

susceptible to invasion by non-native species, and the increase in human presence in the area 

under the Breckenridge gondola is currently allowing for non-native species to make their way 
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into the area. Finally, in a subalpine ecosystem along ski slopes, revegetation efforts are not 

expected to be successful. In conclusion, the changes from the gondola construction and human 

presence will change the natural vegetation, and cause irreparable damage to the surrounding 

ecosystem. To fully understand the effects the gondola construction has on the surrounding area, 

more research is needed on the current vegetation of these sites. Specifically aim to better 

understand what species of plants begin to grow in the area, native or non-native invasive, and to 

what degree native plant communities re-establish themselves in the same pre-disturbance areas. 

Answers to these questions will be imperative in future decision-making on nature-based tourism 

infrastructures, specifically gondolas. Further, it will give towns like Breckenridge more 

information on the vegetation that is now present under these infrastructures to help them better 

maintain the area to facilitate the growth of native plants.  
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CHAPTER 2. GRANT PROPOSAL: VEGETATION CHANGES IN RESPONSE 

TO GONDOLA CONSTRUCTION IN BRECKENRIDGE, COLORADO 

 

Abstract 

With nature-based tourism on the rise in the U.S., ski towns like Breckenridge, Colorado 

are under pressure to create new and improved infrastructure to support increasing demand for 

updated ski resorts. To aid in tourist transportation, in 2006 the city of Breckenridge built a 28-

tower gondola system connecting visitors from the town of Breckenridge to peaks 7 and 8.  

While infrastructures like this gondola provide an improved tourist experience, the vegetation 

impacts from construction and maintenance need to be thoroughly studied and considered in 

management decisions going forward. During gondola construction, a process of clear cutting 

took place; trees were cut down and removed to make room for construction. Most importantly, 

this clear cutting removed the tall canopy trees and caused a canopy gap allowing sunlight to 

reach ground level in areas that had historically been shaded. This change in light exposure can 

affect the number and type of vegetation that grows in an area. Due to the new levels of sunlight, 

I hypothesize that post-construction the area under the gondola will have an observable increase 

in plant species diversity, species richness, and an overall rise in shrub vegetation. To study the 

forest vegetation changes, I plan to collect plant species data in two areas: the land directly 

below the existing gondola, and then an area in the same region that was not affected by the 

gondola construction. I will compare the data from the two areas to answer questions about the 

plant species diversity, richness, and overall vegetation differences in a forest affected by 

gondola construction compared to an area that was not affected by gondola construction. This 
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study will aid in further decision-making on tourism-based infrastructure, and help us to better 

understand the subalpine forests of Breckenridge and their ability to recover from anthropogenic 

disturbances like the 2006 gondola.  

Background/Rationale/Significance 

Breckenridge is a small ski town in the heart of the Colorado Rocky Mountains where the 

ski industry and tourism drive the economy and provide financial wellbeing for locals. With 

nature-based tourism at an all time high, and total number of visits to protected areas on the rise 

worldwide (Balmford et al., 2009), towns like Breckenridge are growing in number and size. 

Recent studies observed an increase in the length and spread of recreational trail systems across 

the world’s natural areas (Ballantyne & Pickering, 2015; Wipf et al., 2005). In Breckenridge, this 

increase in trail systems includes infrastructures like the gondola built in 2006 connecting the 

town of Breckenridge to Peak 7 and Peak 8 (Hoffa & Carello, 2009; USDA, 2012). 

Understanding how infrastructures like this gondola impact the native vegetation is important for 

future planning purposes. Specifically, understanding the current vegetation will give insight into 

Breckenridge’s subalpine forest’s ability to recover from construction disturbances and provide 

guidance for decision-making on future construction in Breckenridge and other ski towns alike.  

Before construction, the vegetation below the gondola was mainly old growth and 

secondary growth subalpine forest (Hoffa & Carello, 2009; USDA, 2012). It was dominated by 

tree species including Engelmann spruce (Picea engelmanni), subalpine fir (Abies bifolia), 

lodgepole pine (Pinus contorta), willow (Salix ssp.) shrubs, and bluejoint grass (Calamagrostis 

canadensis) (USDA, 2012). This forest falls into the subalpine zone, described as the area that 

bridges the lower edge of the alpine zone and the upper edge of the montane forest (Kershaw, 

1998). While existing research has investigated the recovery of subalpine forests after natural 
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disasters like fires and blowdown events, there is a gap of research on the effect that 

construction, specifically gondola, has on subalpine forests.  

Gondola construction causes disturbances including full vegetation clearing, grading 

excavation, and ground disturbances for the full length of the corridor (USDA, 2012). A study on 

the effects of ski resorts on alpine vegetation in the Swiss Alps concluded that machine grading, 

snow grooming, and artificial snow production destroy natural habitats, which decreases 

vegetation cover and overall diversity (Wipf et al., 2015). Carello & Hoffa (2009) challenge the 

expectation that grading excavation will alter native ecosystems, decrease vegetation cover, and 

overall diversity. When studying the vegetation along the Breckenridge gondola immediately 

before and after the deforestation, Carello & Hoffa (2009) found a statistically significant 

increase in species diversity in the area under the gondola and up to 3 meters into the non-cleared 

forest.  

The overall increase in light exposure when trees are clear-cut explains the initial rise in 

species diversity. In the subalpine forests of Colorado, Reid (1989) investigated the changes in 

understory vegetation after major canopy disturbances of blowdown and spruce beetle attack. He 

measured the increase in light availability to the understory after canopy disturbances and found 

that shrub richness was positively correlated with the amount of light it receives. This 

phenomenon could give insight to the increase in species diversity that Carello & Hoffa (2009) 

found in Breckenridge following gondola construction. While both of these studies could help to 

describe the changes in the vegetation under the gondola, only the short-term changes in 

diversity can be explained. Reid (1989) only describes changes that occur before the canopy 

regenerates and closes, and Carello and Hoffa (2009) only analyze and report data for the two 
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years after the gondola construction. To fully understand the forest’s course of recovery after 

gondola construction disturbances, a long-term vegetation analysis is needed.  

Molino (2001) describes the “intermediate disturbance hypothesis,” which states that in 

nature, we expect that species diversity will increase with time if intermediate disturbances 

regimes are present (Molino, 2001). During the time of regeneration in the area under the 

Breckenridge gondola, the vegetation has and continues to experience intermediate disturbances. 

Essentially, when gondola maintenance workers provide small disturbances at intermediate 

frequencies by trampling and trimming vegetation, no one species is allowed to dominate and in 

turn species diversity increases. With these intermediate disturbances, we can expect to see a 

long-term increase in species diversity in the area under the gondola. 

While the current disturbances are considered ‘intermediate,’ the initial clear-cutting and 

construction at the Breckenridge gondola site can be considered a major disturbance to the 

landscape. Two recent studies look at the long term effects on vegetation after a major 

disturbance in Colorado subalpine forests, one looking at a fire disturbance, and the second 

analyzing a blowdown occurrence. Coop et al. (2010) examined subalpine vegetation patterns 

three decades after a fire in four burn areas east of the Continental Divide in Colorado. The 

results show improved tree regeneration and an increase in forb and graminoid richness in fire-

disturbed sites compared to undisturbed sites. Second, Kulakowski & Veblen (2003) studied 

subalpine forest development after a blowdown in the Mount Zirkel Wilderness, Colorado. Their 

study showed that the long-term subalpine forest regeneration is different when the disturbance 

is a blowdown incident rather than a fire, as they found that 65 years post blowdown, the forest 

regeneration shifted from a Picea dominated stand to an Abies stand. The two types of 

disturbance explain differences in forest revegetation. This is because blowdowns tend to remove 
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all of the larger trees and forest fires target the forest floor vegetation. The gondola deforestation 

targets both the tall canopy trees and the ground level shrubs and graminoids (Carello & Hoffa 

2009); therefore, while we can make assumptions that the forest itself will have long-term 

regeneration success, it is difficult to hypothesize what the dominant species and overall 

composition will be.  

While types of disturbances are important, disturbance extent can also lead to changes in 

forest regeneration. Rumbaitis del Rio (2006) explored understory diversity in Routt National 

Forest, a subalpine forest in northwestern Colorado, after a primary and a secondary disturbance. 

This forest first withstood a blowdown disturbance and then was partially salvage logged in the 

late 1990’s. This research suggests that in areas of Routt National Forest that are solely affected 

by a blowdown event, there was an overall increase in diversity with species richness and 

vegetation cover remaining unchanged. In contrast, the areas that were later salvage logged 

experienced a reduction in species richness, diversity, and vegetation cover. This research 

indicates that in an area like that along the Breckenridge gondola, richness, diversity, and 

vegetation cover responses are highly dependent on two factors: whether or not vegetation 

remains of the cut area are left to aid in the subalpine forest’s revegetation effort and whether or 

not they endure a secondary disturbance like salvage logging.  

While research exists on the ability of a subalpine forest to recover after a disturbance, no 

studies to date have examined the specific effects of gondola construction on a subalpine forests 

and their ability to recover from this specific type of disturbance. The gondola is important for 

recreation and nature-based tourism; since construction, the gondola has been critical in 

providing reliable mountain access for bikers, hikers, skiers, and snowshoers alike. Furthermore, 

the addition of the gondola provides a new and unique way to experience the mountains, 
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allowing recreational opportunities to reach those who would otherwise not be comfortable or 

capable of hiking or climbing in these same areas. This ideally allows a greater demographic to 

appreciate the landscape and be involved in the conservation and preservation efforts of these 

lands in the future (Kubota & Shimano, 2009). Understanding the anthropogenic benefits of the 

gondola alongside my research on the ecological effects of its construction is critical for two 

reasons: to provide future decision makers with the information needed to weigh the benefits of 

an infrastructure like this gondola, and to urge legislatures and citizens alike to consider better 

ways to go about construction of tourism-based infrastructures.  

In unison with the mission of Regis University, my research calls for decision makers to 

be socially and ecologically responsible for the decisions and actions already made in building 

this gondola. Further research on the revegetation outcome under the Breckenridge gondola 

could change the prevailing views society thinks about nature-based tourism and tourism-based 

infrastructures.  

Purpose and Specific Aims 

The “intermediate disturbance hypothesis” implies that there is a positive relationship 

between time after disturbance and species diversity, so species diversity will increase with time 

(Molino, 2001). I plan to test this hypothesis and investigate how construction of a new gondola 

in Breckenridge, Colorado in 2006 altered the natural vegetation under and around the 

construction site. The findings will add to the current research on subalpine forests’ ability to 

regenerate after a disturbance while exploring the specific disturbance of gondola construction, 

which previous research has not yet addressed. I hypothesize that species diversity and richness 

will increase in the area under the gondola post-construction due to implications of the 

intermediate disturbance hypothesis. Further, I hypothesize that there will be an increase in shrub 
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vegetation due to the increase in light exposure caused by the removal of canopy cover during 

gondola construction. Reid (1989) observed an increase in shrub vegetation in the subalpine 

forest of Colorado after blowdown and spruce beetle disturbances took down the canopy. To test 

these hypotheses, I will compare the area under the gondola that underwent the construction 

disturbances to plots in the same region of subalpine forest that were not affected by the gondola 

construction. This comparison will give insight as to how the gondola construction affected the 

area. 

Methods 

Study Site: 

I will collect data along and around the new gondola built in 2006 that connects the town 

of Breckenridge to Peak 7 and Peak 8 (Hoffa & Carello, 2009; USDA, 2012). I will carry out this 

data collection during the summer of 2018 along the gondola cut in Breckenridge, approximately 

39.48 ° north and 106.06 ° west at an elevation around 3000 m (Carello et al. 2017). The gondola 

cut is approximately 2,314 meters long and 30 meters wide, historically consisting of old growth 

and secondary growth subalpine forest dominated by lodgepole pine (Pinus contorta).  

Data Collection: 

I will collect data on all species that make up the understory vegetation and the canopy. 

Following Hoffa & Carello (2009), I will randomly choose six transects 50 m apart 

perpendicular to the gondola cut with four 1 m2 sampling quadrats on each side and collect data 

on percent cover of herbaceous vegetation, species diversity and species richness. This same 

method will be used 15 meters north of the gondola cut to have a set of control data at a location 

in the same forest where there have been no gondola disturbances.
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In the field, I will estimate and record percent cover in each of the 1 m2 sampling 

quadrats using a quadrat frame with 10cm intervals marked. Next, I will take aerial pictures to 

later analyze in the lab to ensure that my estimates recorded in the field are not biased. To 

calculate species diversity and richness, I will identify and record each species in the quadrats 

and then tally the number of that species according to Plants of the Rocky Mountains Field guide 

(Kershaw, 1998).  

Data analysis: 

To test if the shrub vegetation increased due to the gondola construction, I will compare 

the percent cover of the two areas (affected by the gondola cut and not affected by the gondola 

cut) by using a t-test. This same analysis will be used to determine if there are significant 

differences in the species diversity and richness in the two areas, and to test if there is an increase 

in species diversity.  

Work plan: 

 Throughout the 2017 and 2018 school year, I am completing all of the preliminary work 

for the data collection. This work includes background research, grant writing, and perfecting the 

techniques of estimating percent cover and species identification. Data collection will be carried 

out during June through August 2018 in which time I will take day trips to Breckenridge to 

collect data. Upon completion of data collection, I will use the 2018-2019 school year to focus 

on analysis of the data and assemble a final report. Finally, I will present my findings at the 

URSC Symposium in April of 2019. 

  



19 
 

Literature Cited 

Ballantyne, M., & Pickering, C. (2015). The impacts of trail infrastructure on vegetation and soils: 

Current literature and future directions. Journal of Environmental Management, 164, 53-64. 

doi:10.1016/j.jenvman.2015.08.032 

Balmford, A., Beresford, J., Green, J., Naidoo, R., Walpole, M., & Manica, A. (2009). A global 

perspective on trends in nature-based tourism. PLoS Biology, 7(6), 1-6. 

doi:10.1371/journal.pbio.1000144 

Carello, C. Woehler, A. Grevstad, N. Kleier, C. (2017). Impacts of recreation management practices in 

subalpine wetland system dominated by the willow plant, Salix planifolia. Wetlands Ecology 

Management, 1-6. doi: 10.1007/s11273-017-9552-0 

Coop, J. D., Massatti, R. T., & Schoettle, A. W. (2010). Subalpine vegetation pattern three decades 

after stand-replacing fire: Effects of landscape context and topography on plant community 

composition, tree regeneration, and diversity. Journal of Vegetation Science, 21(3), 472-487. 

doi:10.1111/j.1654-1103.2009.01154.x 

Hoffa, A., & Carello, C. (2009). Short-term impact of gondola construction on upland vegetation of a 

fen wetland. 94th ESA Annual Meeting. Albuquerque, NM. 

Kershaw, J. (1998). Plants of the Rocky Mountains. Vancouver, BC: Lone Pine Publishing. 

Kubota, H., & Shimano, K. (2009). Effects of ski resort management on vegetation. Landscape and 

Ecological Engineering, 6(1), 61-74. doi:10.1007/s11355-009-0085-4 

Kulakowski, D., & Veblen, T. T. (2003). Subalpine forest development following a blowdown in the 

Mount Zirkel Wilderness, Colorado. Journal of Vegetation Science, 14(5), 653. 

doi:10.1658/1100-9233(2003)014[0653:sfdfab]2.0.co;2 



20 
 

Molino, J. (2001). Tree diversity in tropical rain forests: A validation of the intermediate disturbance 

hypothesis. Science,294(5547), 1702-1704. doi:10.1126/science.1060284 

Reid, M. (1976). The response of understory vegetation to major canopy disturbance in the subalpine 

forests of Colorado. The Bark Beetles, Fuels, and Fire Bibliography. Paper 192. 

Rumbaitis del Rio, M. (2006). Changes in understory composition following catastrophic windthrow 

and salvage logging in a subalpine forest ecosystem. Canadian Journal of Forest 

Research, 36(11), 2943-2954. doi:10.1139/x06-169 

U.S. Department of Agriculture, Forest Service. (2012). Final environmental impact statement: 

Breckenridge Ski Resort Peak 6 Project. White River National Forest Summit County, 

Colorado.  

Wipf, S., Rixen, C., Fischer, M., Schmid, B., & Stoeckli, V. (2005). Effects of ski piste preparation on 

alpine vegetation. Journal of Applied Ecology, 42(2), 306-316. doi:10.1111/j.1365-

2664.2005.01011.x 

 

 

  



21 
 

Application to Current Coursework: 

 My proposed study will fulfill my externship/research component of my Environmental 

Biology Master’s Degree. Further, my background research and grant writing aligns with 

coursework for my Grant Writing course. Analysis of the data and the overall project design 

apply the skills I have learned in my Biostats Research Design course this semester. My work 

will add to years of research and data collection by Dr. Kleier and her colleagues, and my 

findings will add to a stronger overall understanding of the vegetation along the gondola in 

Breckenridge.  

Table 1. URSC Budget Justification 
Items 

 
Description Funds 

requested from 
URSC 

Funds 
requested from 
other sources 

Source 
of other 
funds 

Supplies     

Field Notebook 
RITE IN THE RAIN 
FIELD NOTEBOOK $4.70   

 Transect/Quadrat 
frame 

$70.05 + $9.95 S/H $80.00   

Plants of the Rocky 
Mountains Field guide 

$19.99  $19.99   

Camera 
CANNON POWER 
SHOT $109.00   

Other     
 Gas (5 trips at 160 
miles/trip) 

5 TRIPS AT 190 
MILES/TRIP $94.80   

Parking $8.75/DAY*5 $43.75   

Food 
$21 PER DAY * 5 
DAYS 

$105   

Total URSC Request  $457.24   
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Supplies: 

Transect/Quadrat frame: Calculated from online costs from Carolina Biological Supply 

Company. This quadrat frame is necessary for percent cover calculations. 

Plants of the Rocky Mountain Field Guide: Calculated from costs on Amazon.com. This field 

guide will be used in plant identification to record data on species richness and diversity. 

Camera: Cost estimate calculated from Amazon.com. The camera will be used to take aerial 

pictures of the percent coverage transects. Having pictures of the quadrats will increase the 

objectivity of the observer. 

Field Notebook: Calculated from costs on Amazon.com, the rite in the rain field notebook will 

be used for data collection and field notes while out in the field.  

Other: 

Gas: Round trip between Regis University and the town of Breckenridge is 160 miles. The cost 

was calculated using gas mileage for a 2004 Ford Escape (20 mpg), and gas estimates from the 

corner store price on 11/28/17 ($2.37/gallon). 

Parking: Parking estimates are from townofbreckenridge.com, and costs are based on a full day 

of parking in F lot. 

Food: Cost estimates are calculated at $7 a meals with three meals a day for five days.   
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CHAPTER 3. JOURNAL MANUSCRIPT: USING GEODIVERSITY TO 

PREDICT BIODIVERSITY AT ROCKY MOUNTAIN NATIONAL PARK, 

COLORADO  

 

Abstract 

 
Geodiversity is the geological richness of an area and comprises abiotic factors, including 

slope, elevation, aspect, soil type, and underlying geology type. Geodiversity accurately indicates 

biodiversity at a large, state wide scale. My study assesses the use of geodiversity as an indicator 

of biodiversity on a smaller scale at Rocky Mountain National Park (RMNP) in Colorado. I 

hypothesized that geodiversity would accurately indicate areas of high biodiversity. To calculate 

geodiversity, I compiled GIS layers of slope, elevation, aspect, soil type, and geology, and 

calculated the variety of each of these layers and then summed these layers to produce a map of 

geodiversity scores. To determine the validity of this model, I mapped sites of known high 

biodiversity on the geodiversity map. These sites scored in the high geodiversity class, providing 

evidence that on the small scale, park-level areas of high geodiversity are correlated with high 

biodiversity. To understand how what areas of the park have high geodiversity, I overlaid a 

vegetation type map on the geodiversity map. This provided mean geodiversity calculations for 

different vegetation types. Alpine and Riparian/Wetland areas scored the highest mean 

geodiversity. With these models, I showed that geodiversity can be used to indicate areas of high 

biodiversity at a small-scale park level, a metric that can be used in park level management 

decisions.   
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Introduction 

 
Anthropogenic climate change, deforestation, and habitat degradation all pose immediate 

threats to conservation of global biodiversity, necessitating new strategies and models for 

conserving biodiversity. A recent World Wildlife Foundation (WWF) report stated that we have 

lost 59% of global biodiversity between 1970 and 2010 (WWF, 2014). In response, the 

Convention on Biological Diversity has demanded a decrease in the rate of biodiversity loss by 

2020 (Pena, 2016). With an unpredictable and rapidly changing climate, it is difficult to forecast 

future species distributions and extinctions, driving conservationists to seek new ways to protect 

biodiversity. One proposal is to identify areas capable of maintaing strong biodiversity in the 

coming decades and to conserve those lands.  

Current methods for biodiversity retention are on a species-to-species basis (Anderson & 

Ferree, 2010), for example, the endangered species act works by identifying species in danger of 

extinction and focusing solely on the protection of those specific species. Once the species is no 

longer endangered, the species is taken off the list and no longer protected. This is a resource-

intensive solution, and while this style of conservation has successfully saved some species from 

extinction, it does not address the larger problem: large scale biodiversity loss and lack of 

ecosystem protection. Scientists are seeking larger-scale, more efficient, and resource-savvy 

approaches to biodiversity protection to augment conservation efforts. One possible method 

would be to protect the drivers of biodiversity, such as habitat heterogeneity (Anderson & Ferree, 

2010). Habitat heterogeneity plays a large role in promoting species richness by providing 

diverse habitats to house a large number of diverse species (Rosenzweig, 1995; Nichols, 1998). 

One way to identify habitat heterogeneity is with geological data, which is typically far easier 
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and less expensive to attain than biodiversity data (Hjort et al., 2012), making this approach less 

resource exhaustive. 

Climatic, geologic, and natural land features control the available environments and 

habitats in an area, suggesting that species richness can be maintained by habitat protection 

(Kruckeberg, 2004). For example, at Rocky Mountain National Park, the elevation gradient, 

provides three drastically different ecosystems: montane, subalpine and alpine tundra (Brooks, 

2013). These three ecosystems are home to drastically different habitats, ranging from year-

round snow cover to flowing riparian areas leading to a wide range of species (Brooks, 2013). As 

climate change influences important ecological variables such as temperature, precipitation, and 

growing days, climatic habitats will likely shift along longitudinal and elevation gradients. The 

climatic movement of habitats force species to migrate along with them in an effort to find new 

areas that have the appropriate temperatures, precipitation, and overall habitat that support them 

(Pearson, 2006). Unfortunately, this migration can be inhibited by natural barriers; barriers like 

highways and housing developments also inhibit the migration of species (Findlay & Houlahan, 

1997). Due to the recent increase in urbanization and development of previously undisturbed 

areas, there are far fewer migration corridors, open spaces, and protected forests for these species 

to colonize compared to previous normals (Findlay & Houlahan, 1997).  

Geodiversity protection ensures that there is an overlap between appropriate climatic 

conditions and appropriate geological and habitat conditions. Geodiversity describes the range of 

geological features in an area, including, but not limited to, rocks, minerals, bedrocks, fossils, 

sediments, landforms, physical processes, hydrology, and soils (NPS, 2004;  Gray, 2014; 

Tukiainen et al., 2016). As theorized by Hunter et al. (2008), the geological environment is a 

“stage” that supports the “actors”: species targeted for conservation. We can maintain current 
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and future species as the climate changes if we support a variety of “stages” to support them 

(Hunter et al., 1998; Anderson & Ferree 2010; Gill et al., 2015; Lawler et al., 2015; Hjort et al., 

2015). This method of conservation goes beyond the protection of individual species; conserving 

the ‘stage’ provides a long-term conservation strategy, giving us ecosystem insurance in an 

unpredictable and rapidly changing climate (Anderson & Ferree 2010; Hylander, 2012). In 

conclusion, maintaining geologically diverse landforms allows species to have suitable 

environments available for relocation as climates change (Brost & Beier, 2012).  

Geodiversity can be used as an accurate coarse-filter surrogate measure for biodiversity. 

Researchers Faith and Walker (1996) found that geodiversity predicted presence of reptiles, 

amphibians, plants and vertebrates 84%, 69%, 67%, and 40% (respectively) more accurately than 

random selection, and these results have been replicated across taxa and habitat (Schintzler et al., 

2011; Nichols et al., 1998; Tukiainen et al., 2016; Anderson & Ferree, 2010; Stein et al., 2014). 

Geodiversity is an accurate predictor of biodiversity in many different habitats and climates, 

providing researchers a valuable tool in conservation plans worldwide (Anderson & Ferree, 

2010). 

While sufficient evidence exists that geodiversity can be used as an accurate predictor of 

biodiversity, the scale is typically regional or national (Benito-Calvo et al., 2009; Anderson & 

Ferree 2010; Pellitero et al., 2016). Little research has focused on the relationship between 

geodiversity and biodiversity at a small scale, park level. This is important as most conservation 

efforts occur on a smaller scale, in national parks and national wildlife refuges. At 415 square 

miles, RMNP, in the northern central region of Colorado, provides an appropriate landscape to 

investigate small scale geodiversity and biodiversity patterns. Previous research at RMNP has 
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used GIS data to map susceptibility to debris flow (Lambert, 2016), but research using GIS data 

to map geodiversity for biodiversity prediction purposes has not yet been done here. 

The goal of this project is to identify areas of high geodiversity at RMNP and to 

determine vegetation types and ecosystems with high geodiversity. Additionally, I aim to 

validate that this method of calculating geodiversity is accurate at a small park level scale. To 

calculate geodiversity at RMNP, I incorporated topographic and landscape variables into the 

geodiversity calculations. I did not include climate variables due to their extremely low 

resolution, which gave very low variability in such a small area.  

The main quesitions of interest are:  

1) Is RMNP home to wide range of geodiversrity? 

2) What percentage of the park falls into each geodiversity category (high, medium, low)? 

3) Do areas of high geodiversity coincide with certain vegetation types? 

4) Is this method of calculating geodiversity an accurate predictor of biodiversity at RMNP? 

 I hypothesize that: 

1) Since riparian areas are typically home to high biodiversity compared to other vegetation 

types, I expect these areas to have the highest geodiversity.  

2) I hypothesize that areas of high geodiversity will correspond with areas of high 

biodiversity.  
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Methods 

Study Site 

Rocky Mountain National Park is a 415 square mile park in the northern central region of 

Colorado. RMNP at its highest point rises 14,258 feet above sea level and hosts a variety of 

climates, environments, and habitats for its bountiful wildlife, including mountains, alpine lakes, 

wooded forests and mountain tundra. It’s small relative size compared to other areas where 

geodiversity has been calculate, and its large elevational range of 7,800 feet to 14,258 feet that 

provides huge opportunity for both geo- and biodiversity make it an ideal site for my research. 

Data Collection 

One of the main benefits of using geodiversity as a proxy for biodiversity is that the vast 

majority of geodiversity data are free and available in public databases like SUUGO and PRISM 

(USDA, 2006; PRISM, 2015). Data collection requires no groundwork and bares no extra cost. 

Data were collected between 2005 and 2019, and I digitally received the data February 8th, 2019.  

Elevation 

Elevation is a known predictor of vegetation type; typically higher elevations are home to 

tougher living conditions, such as lower temperatures and decreased oxygen (Körner, 2007). 

Ecosystems change along elevation gradients include plant diversity, productivity, species traits 

and physiology (Lomolino, 2001; Whittaker & Niering, 1975; Raich et al., 1997; Fernández-

Calvo & Obeso, 2004; Pellissier et al., 2010; Ziska et al., 1992). Additionally, elevation can act 

as a proxy for changes in both temperature and precipitation which can lead to changes in species 

richness along elevational gradients (McCain, 2001). I derived elevation data from a Digital 

Elevation Model (DEM) which is an approximation of the earth’s surface, providing topographic 

and landscape information. The DEM was originally downloaded from the USGS National 
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Elevation dataset (USGS, 2002) and then provided to me in raster format at the highest 

resolution (10m) from the U.S. National Park Service. 

Topography 

Slope. Vegetation also has a strong relationship with slope. In general plant cover and 

specie richness increase with decreasing slope (El-Hassanin et al., 1993). This can be explained 

by the affects of slope on soil moisture and soil stability. For this project, I calculated slope using 

the Slope tool in ArcGIS on the DEM layer. 

Aspect. Topographic variation, including aspect, is critical in predicting vegetation. The 

aspect of the slope influences factors like temperature, soil moisture and solar radiation. In the 

northern hemisphere, north facing slopes are typically more shaded, cooler, and wetter, while the 

southern aspects are hotter, drier, and have increased solar radiation. Likewise, aspect has been 

shown to affect overall vegetation cover and species richness due to the differing water stress 

(Nadal Romero et al., 2014). I calculated aspect using the Aspect tool in ArcGIS on the DEM 

layer, recorded by compas degree on a scale of 1-360. 

Geology 

Geology significantly impacts what types of vegetation are able to grow in an area, for 

example areas of biotite schist will foster different species than volcanic rock. Geological data 

were provided by the “Geological Map of Rocky Mountain National Park and Vicinity, 

Colorado.” These data were produced as part of the Geological Resources Evaluation of RMNP 

created by the National Resources Information Division Inventory and Monitoring Program and 

the Geological Resources Division of the National Park Service. Geologic data were provided in 

a vector format and contain 46 classes. I dissolved the data and then rasterized it using the 

Polygon to Raster tool based on the geology type.  
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Soil 

Different soil types are capable of supporting different vegetation (USDA, 2006). For 

example sandy soils drain water faster than more loamy soils, resulting in species that are more 

tolerant of drier sites. Soil data were developed in conjunction with the U.S. Department of 

Agriculture, Natural Resources Conservation Service, which is part of the National Park Service 

Soil Inventory and Monitoring Program. This dataset is in a vector format and contains 62 

classes of soil types. Similar to the geology layer, I dissolved it and then rasterized it using the 

Feature to Raster tool based on soil types.  

Vegetation 

Vegetation type is one way to understand the biodiversity that depends on differing 

geodiversity scores. For example, riparian and wetland areas will have higher biodiversity 

compared to all other areas in the park. The vegetation layer in this research was provided by 

Rocky Mountain National Park. In this layer, 45 different vegetation types were classified, 10 of 

these were waterbodies or unvegetated areas, and were not included in the study (Natural 

Lakes/Ponds, Outwash, Disturbance/Dead and Down, Streams/Rivers, Unvegetated Surface, 

Exposed Soil/Man made, Reservoirs/Stock tanks). I used the remaining 35 for my coarse-scale 

analysis. I classified the 35 vegetation types into 6 more fine vegetation types (Alpine, Aspen, 

Montane, Riparian/Wetland, Shrub/Herbaceous, and Subalpine) (Table 1.)  

Geodiversity Calculation 

To calculate geodiversity scores in 140m cells at RMNP, I first converted soil and 

geology rasters to a resolution of 140m. I used the Resample tool to convert all rasters to have 

the same cell size (140m). Since the soil raster was the most coarse, I used it to define the output 

cell size using the nearest resampling technique. To ensure all of the layers were at the same 
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extent, I set the snap raster to the elevation layer. The elevation layer was chosen since it, aspect, 

and slope were already the same extent. Next, I set the output coordinates to be the same as the 

elevation raster layer. I also set the cell size in raster analysis to the elevation layer. Next, I used 

the Resample tool on the soil raster and the geology raster to ensure they had the same extent as 

the elevation, slope and aspect rasters. 

I reclassified some of the raster layers (slope, elevation, and aspect) using the Reclassify 

tool and manual breaks. I classified slope into 12 classes at 5 degree intervals (Lambert, 2016) I 

classified aspect into 8 classes (north, northeast, east, southeast, south, southwest, west, and 

northwest). I reclassified elevation into 9 classes according to Jenks natural breaks, which 

clusters the data based on their distribution (2507m, 2692m, 2875m, 3052m, 3213m, 3367m, 

3532m, 3726m, 4343m) (Jenks, 1967; Melelli, 2017).  

To calculate the diversity, or the number of unique values that are in the neighborhood of 

each cell within each layer, I used the Focal Statistics tool with statistics type variety (Melelli, 

2017) (Figure 2.). I defined the analysis mask as a circle with a radius of three cells. The circle 

was used to optimize an omnidirectional resolution as opposed to the blocky output of a 

rectangle mask (Melelli, 2017). The output of the the focal statistics produced 5 layers of 

differing numbers of classes. To ensure all layers were on the same scale, I reclassified them into 

6 classes according to Jenks’ natural breaks algorithm. I coded the highest diversity of each 

parameter with a 6 and the lowest geodiversity with a 1 (Melelli, 2017).  

Finally, to produce a map of the overall geodiversity, I calculated the sum of the layers 

using the Weighted Sum tool where each layer was given the same weight in the final 

geodiversity calculation (Melelli, 2017) (Figure 4.). For practical purposes, I reclassified the 
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geodiversity map into three classes, low (5-14), medium (14-16), and high (16-26), using the 

Reclassify tool, and Jenks natural breaks (Melelli, 2017).  

 To determine which vegetation type has the highest geodiversity, I used the Zonal 

Statistics tool to calculate the mean goediversity within each vegetation type polygon this 

analysis was done both at a coarse scale, and at a fine scale (Figure 6. & Figure 5. respectively). 

To determine if this model was valid, I plotted sites of known high biodiversity onto the 

geodiversity map and recorded the geodiversity score of the cell with which it coincided. 

Table 1. Vegetation types and their classification in the coarse and fine-scale analyses 
Coarse-Scale Fine-Scale 

RIPARIAN/WETLAND Cottonwood 
ASPEN Mixed Conifer with Aspen (Spruce - Fir) 

SHRUB/HERBACEOUS Shrub Upland Lower Montane - Undifferentiated 
SUBALPINE Lodgepole Pine - Low Elevation < 9500 ft 

ASPEN Mixed Conifer with Aspen (Lodgepole Pine) 
MONTANE Ponderosa Pine Shrubland 

ASPEN Mixed Conifer with Aspen (Douglas-fir) 
SHRUB/HERBACEOUS Herbaceous Upland Montane  < 9600 ft 
RIPARIAN/WETLAND Shrub Riparian Cross Zone < 9600 ft 
RIPARIAN/WETLAND Shrub Riparian Cross Zone > 9600 ft 

SUBALPINE Lodgepole Pine - High Elevation > 9500 ft 
SHRUB/HERBACEOUS Shrub Upland Lower Montane - Big Sagebrush 

ASPEN Upper Montane Aspen 
ASPEN Mixed Conifer with Aspen (Ponderosa Pine) 

MONTANE Ponderosa Pine Graminoid 
SUBALPINE SubAlpine Limber Pine 

SHRUB/HERBACEOUS Shrub Upland Lower Montane - Bitterbrush 
MONTANE Montane Douglas Fir 

SUBALPINE Ribbon forests Islands 
MONTANE Ponderosa Pine Rockland 

SUBALPINE SubAlpine Mixed Conifer 
ALPINE Shrub Upland Alpine 

SUBALPINE Lodgepole Pine - Rock 
RIPARIAN/WETLAND Herbaceous Wetland Cross Zone - Wetland 

ALPINE Herbaceous Upland Alpine Fellfield 
RIPARIAN/WETLAND Riparian Upper Montane Mixed Conifer > 8500 ft 
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RIPARIAN/WETLAND Riparian Aspen 
RIPARIAN/WETLAND Herbaceous Wetland SubAlpine / Alpine - Alpine Meadow 

MONTANE Juniper 
SUBALPINE Krummholz 

ALPINE Herbaceous Upland Alpine > 9600 ft 
RIPARIAN/WETLAND Herbaceous Wetland Cross Zone - Marsh 
RIPARIAN/WETLAND Riparian Lower Montane Mixed Conifer < 8500 ft 

ROCK Cliff Face - Bare Soil / Rock 
GLACIER Glacier 

 
 

 
Figure 1.The original geology, soil, elevation, slope, and aspect layers. 
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Results 

 
Cell by cell analysis 

Geodiversity accurately predicted biodiversity at the park level (Table 2.). There was a 

wide range of geodiversity in the park, with geodiversity scores ranging from 5-26 (Figure 4.). 

The geodiversity map (Figure 4.) is the sum of the diversity of each parameter: elevation, slope, 

aspect, soil, and geology (Figure 3.). It is in raster, grid format with cell size of 140m. The 

geodiversity index yielded scores along a scale of 5-26 with 5 being the lowest geodiversity in 

the park and 26 being the highest, with a maximum possible score of 30. The geodiversity map 

has three geodiversity classes, low (5-14), medium (14-16), and high (16-26).  30.1% of the park 

is classified as low geodiversity, 46.6% of the park is medium geodiversity, and 23.3% of the 

park is high geodiversity.  

Coarse-scale vegetation analysis (Figure 5.) 

When vegetation types were more coarsely grouped, alpine vegetation types had the 

highest mean geodiversity (15.51), followed by Riparian/Wetland (14.94), and Subalpine (14.74) 

(Figure 5.).  Riparian/wetland vegetation mean geodiversity had large variance of 2.75. At this 

scale, none of the vegetation types were in the high geodiversity class (Figure 5.), and only the 

alpine vegetation class was in the low geodiversity class. There was less differentiation between 

geodiversity scores at this coarse of a scale compared to the fine-scale (geodiversity score range: 

13.9-15.5). 

Fine-scale vegetation analysis (Figure 6.) 

At the fine scale vegetation analysis, the range of mean geodiversity scores were 9.09 to 

18.88, this was a much larger range compared to the coarse-scale vegetation analysis. The 

highest mean geodiversity score was areas identified as glaciers on the vegetation type map at 
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18.88 mean geodiversity. Areas defined as Riparian Lower Montane Mixed Conifer Forest below 

8500 feet (16.94) and Herbaceous Wetland Cross Zone (Marsh) (16.36), had the next highest 

mean geodiversity. These three vegetation types were the only ones to have mean scores in the 

high geodiversity class (Figure 6.).  

 Of the fine-scale vegetation types, the most variation was among those that were further 

classified as riparian/wetlands in the coarse-scale analysis. Most of them had high geodiversity 

scores (Riparian Lower Montane Mixed Conifer 16.94, Herbaceous Wetland Cross Zone Marsh 

16.36, Herbaceous Wetland SubAlpine 15.57, Herbaceous Wetland Cross Zone Wetland 15.23, 

and Riparian Aspen 15.53) except for Cottonwood, scoring low (11.30).  

Three cells of known high biodiversity a montane subalpine ecotone (445640, 

4472071m), an alpine tundra area of ute pass (441202, 4471373m) and an aspen riparian area  

(450127, 4468467m) had geodiversity scores of 17, 16, and 17 respectively (Table 2.).  

 
Table 2. Areas of known high biodiversity mapped on geodiversity map. 

                                              Areas of Known High Biodiversity      

Site Coordinates  
(UTM 13, 
Meters) 

Geodiversity Score 

Montane Subalpine Ecotone 445640, 4472071  17 (High) 

Aspen Riparian Zone 
  

441202, 4471373 
  

17 (High) 

Ute Pass Alpine Tundra 450127, 4468467 
  

16 (High) 
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Figure 3. The raster layers after the variety focal statistics (geology, soil, elevation, slope, and aspect, respectively). 
Red cells are areas that have high diversity of of that speciific class (geology, soil, elevation, slope, and aspect). 
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Figure 4. Final geodiversity Map. Geodiversity is classified into low, medium and high geodiversity (5-14, 14-16, 
16-26).  
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Figure 5. Mean geodiversity scores in each coarse-scale vegetation type. The dotted lines indicate the range of low, 
medium, and high geodiversity classes. The error bars indicate the standard error of the averages.  

 

Figure 6. Mean geodiversity scores of each fine-scale vegetation type. The dotted lines indicate the range of low, 
medium, and high geodiversity classes. 
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Discussion 
 

 The methods detailed in this project successfully predict biodiversity. The model used in 

this research was based on the work of Melelli et al. (2017), where geodiversity was calculated 

as the sum of the diversity of five different components: slope, aspect, elevation, soil and 

geology. Other research has used components of roughness, drainage density, climate, and 

hydrology (Melelli et al., 2017; Parks & Mulligan, 2010). Inclusion of some of these components 

could have made the model more comprehensive, and made the geodiversity index more robust; 

however, these components were not available for our study area. Sufficient research has found 

high success rates in using geodiversity as a predictor of biodiversity at larger scales (Tukiainen 

et al., 2016; Anderson & Ferree, 2010). Little research has found substantive success at the 

smaller park scale, and the results of this research were congruent with that. 

When sites of known high biodiversity were mapped on the geodiversity index, they 

scored in the high geodiversity range, suggesting that the model was relatively accurate. The 

model successfully identified a wide range of geodiversity scores. While there were no sites that 

scored the maximum of 30, the large range indicates that there are areas in the park are far more 

diverse in terms of our five components compared to others.  

The model showed strong discriminatory ability on a cell to cell basis. When average 

geodiversity scores were calculated across vegetation types the model became less distinct with 

all of the vegetation types having similar mean geodiversity scores. The small range of mean 

geodiversity scores indicates that the 6 different vegetation types had no clear distinction in their 

average geodiversity scores. In addition, when averaged out, none of the coarse vegetation types 

scored in the high geodiversity range. This is due to the variation of the geodiversity scores 

which caused the high geodiversity cells to be evened out my the low scoring geodiversity cells. 
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Riparian/wetland vegetation types had high variation in mean geodiversity driven by the low 

geodiversity score of cottonwood vegetation areas (Figure 4.). While other riparian/wetland areas 

scored high geodiversity, cottonwood scored lowest score of all vegetation types park wide. The 

low score could be attributed to the fact that they represent a relatively small spatial area in 

context of the whole park (0.02%), and typically only grow in relatively recently disturbed areas 

(Colorado State Forest Service, 2015).  

On the flip side, glaciers had the highest mean geodiversity score. Similar to the 

cottonwood, some of this could be due to their small relative area (0.10%) of the whole park. 

One reason glaciers may have had such high geodiversity scores could be because all of the 

glaciers at RMNP are cirque glaciers (Hoffman et al, 2005). This means that they are relatively 

small glaciers that are in bowl-shaped basins (Hoffman et al, 2005). Because of their unique 

bowl shape, the glaciers have rapidly changing aspects over short distances, possibly giving them 

much higher diversity scores in the aspect layer and impacting their overall high geodiversity 

scores. 

High geodiversity scores of Alpine and Riparian/Wetland vegetation types (Figure 5.) are 

visible in the map of geodiversity with noticable geodiversity hotspots occurring near the 

continental divide and along Fall River and Big Thompson (Figure 4.). High riparian and 

wetland geodiversity scores suggest that the presence of water could be an important factor 

contributing to high geodiversity. Future research could analyze and quantify how proximity to 

water (lakes, ponds, streams, and rivers) is correlated with geodiversity scores. Another 

interesting question that arises from this research is how close the high geodiverse areas are to 

recreation areas like campgrounds, trails, or roads. Understanding these relationships could aid in 

management decisions and areas of suggested protection, especially in areas where tourists have 
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high impact. Additional research could investigate how geodiversity is correlated with specific 

biodiversity, for example are there specific species that utilize these areas of high biodiversity. 

Answering this question could futher validate the use of geodiversity as an indicator of 

biodiversity on a park level.  

There were some limitations to the breadth of this study. For example, I was unable to 

use climate data due to its coarseness. In future research, incorporating climate variables like 

precipitation or temperature into the geodiversity calculation could provide more meaningful 

results. A second limitation of this study is the use of a GIS-based approach. The geological and 

biological processes cannot be fully explained at a 140m cell sized scale. True understanding of 

the relationship between geology and biology must be done observing their interaction on the 

ground. Finally, the non-randomization of the areas identified as high biodiversity, and the fact 

these areas were based off of empirical data lead to limitations in the conclusions that can be 

made about the model’s success. To more accurately quantify the ability of geodiversity to 

predict biodiversity, future researchers would need to quantify biodiversity on the same scale as 

the geodiversity is quantified, and then calculate the correlation between the geodiversity and 

biodiversity. My approach is adventageous as a first step in understanding the geo- and 

biodiversity of an area, but the results of this type of study should be used to lead future research 

in the correct direction.   

Some of the decisions made in the geodiversity calculation process could have impacted 

the results in significant ways. Using Jenks natural breaks to classify the diversity of the 6 

components (Figure 3.) meant that components like slope that had low mean diversity scores 

were given very few cells with a score of 6, in comparison slope and aspect had high diversity 

scores and there were far more cells given a score of 6. This meant that when all six layers were 
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summed together, slope and aspect had more weight in the final model. Changes in the 

classification of the 6 geodiversity components (slope, aspect, elevation, geology, and soil) could 

change the weight each component contributes to the final geodiversity scores. Further, when 

calculating geodiversity scores, all six of the components were given equal weight. If we thought 

that soil or geology had a greater impact on the geodiversity of an area we could have made the 

decision to weight that layer higher, which would have change the final geodiversity scores. 

Another classification that could have been changed is the low, medium, and high geodiversity 

classification. We chose to use Jenks natural breaks, but we could have classified these 

differently, for example classifying high geodiversity as any cell within the 90th percentile, etc.  

Overall, the methods of this paper can be applied for geodiversity calculations 

worldwide. Small modifications to the methods are suggested on an individual basis, making the 

model appropriate for specific geodiversity questions. The results of this give substantive 

evidence that the model accurately predicted areas of high biodiversity, and that geodiversity 

could be used at a park level small-scale. Geodiversity maps, like the one produced in this study 

are good coarse identifiers of biodiversity. Knowing this, areas of high geodiversity should be 

protected to provide habitat for future species and could therefore be used by park management 

to determine areas of conservation need, and make decisions about where to build new trails and 

infrastructures. By creating new ways to indentify areas of high geodiversity, we can effectively 

conserve areas of high geodiversity, and in essence protect the stage that is protecting the actors.    
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CHAPTER 4. ENVIRONMENTAL STAKEHOLDER ANALYSIS: DRAINAGE 

BASINS INCORPORATED INTO CITY PARK GOLF COURSE REDESIGN 

TO DECREASE CITYWIDE FLOODING ISSUES 

 

Introduction  

From the days where Denver was a mining town to today, the city has struggled with 

flooding issues. Shortly after the city’s founding in 1858, a large flash flood swept through 

Cherry Creek (a tributary to the South Platte River), killing 20 people and causing $1 million 

dollars in damage (VISIT DENVER, 2017). Despite this clear lesson about the location of the 

city, the residents remained and rebuilt with some water management facilities established to 

protect the city. Almost exactly 100 years after the first flood decimated the city, another large 

flood swept through downtown Denver in 1965, killing 8 people and costing approximately 

$508.2 million dollars in damages in the Denver metropolitan area (Colorado Parks and Wildlife, 

2017). This event lead to the creation of the Chatfield Reservoir and dam with construction 

beginning in 1967. The Chatfield Reservoir dramatically decreased the prevalence of destructive 

flooding throughout the Denver area, but some amount of flooding persists even today. A major 

reason for the continued flooding is that as the city developed, all of the natural waterways to the 

North and East of downtown Denver were eliminated and built over as the city expanded.  

The city of Denver sits within a large natural geologic basin, aptly named The Denver 

Basin. The primary waterway through the Denver Basin is the South Platte River, which flows 

from South to North through the area. Within the city of Denver, there are smaller drainage 
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basins that dictate the flow of water towards the South Platte River. Two of these basins are the 

Montclair Basin and the Park Hill Basin, which lie to the North and East of downtown Denver, 

respectively. The Montclair Basin covers 10.9 square miles and is the city’s largest basin without 

a defined waterway. Directly adjacent to the Montclair Basin, the Park Hill Basin covers 

approximately 5.75 square miles. Stormwater naturally flows through these two basins, towards 

the South Platte River, but is not confined to specific channels so the waters flow along the roads 

instead (Colorado Parks and Wildlife, 2017).  The City of Denver designates both of these 

drainage basins as high priority basins due to their relatively flat topography, complete urban 

development, and lack of an adequate stormwater drainage system. The Platte to Park Hill 

Stormwater Program encompasses these two basins and works to address flooding throughout 

the neighborhoods that sit within each basin (City and County of Denver, 2016). 

The City of Denver started the Platte to Park Hill Stormwater Systems Program in the 

summer of 2015 to address ongoing flooding throughout the city. Extending east from the South 

Platte River, the program addresses issues in multiple neighborhoods: Elyria, Swansea, Cole, 

Clayton, Skyland, Whittier, Five Points, and Northeast Park Hill (Figure 1. Due to the lack of 

available waterways in the Montclair basin, low-lying areas throughout these neighborhoods 

frequently flood during storms. The flooding is only projected to get worse as weather patterns 

shift and more extreme weather events increase in frequency (Nicholls, 1999). The program 

serves as a comprehensive approach to stormwater management throughout the Denver 

metropolitan area and includes numerous proposals for drainage basins and other flood 

protection projects (City and County of Denver, 2016). 

There are three main proposed solutions to this problem, first to construct a stormwater 

detention basin within the City Park Golf Course to hold excess stormwater (Figure 2). The next 
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option would be regular maintenance of the existing drainage system that would serve to prevent 

structural instability throughout the affected area. This option would take extensive money and 

resources, and would only mitigate the flooding events, not prevent them in the first place like 

the other two proposed options would. A third proposal is to create stormwater detention basins 

within the Cole neighborhood, this is similar to the City Park Golf Course redesign, but would 

impact 50 homes in the proposed basin site. 

Of the flood protection projects, one stands out as the clear choice, the addition of a 

stormwater detention system at City Park Golf Course to prevent flooding in the Cole, Clayton, 

Skyland, Park Hill, and City Park neighborhoods (Figure 1; Figure 3). The floodwaters that put 

these neighborhoods at risk, will be collected into the stormwater detention basins where the 

water will be held temporarily and slowly released. The benefits of this are two-fold, as it will 

both prevent flooding and also improve water quality through the natural filtration processes that 

the detention basins provide. City Park Golf Course provides the perfect area for drainage basin 

incorporation, as it is already a manufactured natural area, and through a redesign process could 

be home to multiple drainage basins that protect surrounding neighborhoods from flooding 

issues.  

Stakeholders, Their Interests and Values  

 In the event of the golf course redesign, some long-standing, old trees will be taken down 

to make space for the drainage basins. The loss of trees and intermittent construction will have a 

negative impact on wildlife in the area as the golf course is in a sense a wildlife refuge in a big 

city for many of these animals. Additionally, there will be job shortages at the golf course 

through the duration of the construction and these seasonal workers will need to find other 

sources of work. The greatest impact will be the effect on the local businesses that benefit from 
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the City Park Golf Course, as noise pollution from the construction will drive away customers 

from local businesses.  This impact could include local golf shops, or local restaurants that 

benefit from the recreational and leisure opportunities supplied by the City Park Golf Course. 

Many local homeowners are passionate about these proposed actions. Residents in the 

City Park neighborhood are upset because they are not the ones that are affected by the flooding, 

but they will be the ones impacted by the construction occurring in their neighborhood. The 

noise pollution from the construction would be a nuisance and could impact residents’ daily 

lives. In contrast, homeowners in Elyria, Swansea, Cole, Clayton, Skyland, Whittier, Five Points, 

and Northeast Park Hill neighborhoods are elated that the city is finally doing something to 

protect them from the flooding events that could potentially destroy their houses (Kennedy, 

2016). The City Park Golf Course option is by far the most ethically sound. The neighborhoods 

affected by the flooding are lower income neighborhoods than the Golf course neighborhood. 

The tradoff in this proposal is protection of lower income housing, for noise disturbance in 

higher income neighborhoods.  

Members of the City Park Golf Course are in opposition to the changes coming to their 

golf course. Many of them feel as though this golf course is a historic landmark in Denver that 

has been unchanged for years, and are upset to see the nostalgic course changed. On top if this, 

the members will not be able to visit their golf course throughout the construction process. Not 

only are the course employees affected by the short-term closing of the golf course, but the golf 

course workers will also be out of a job for a season. The decreased traffic through the area, and 

overall decrease in tourism, along with the increase in noise pollution will decrease potential 

business for local restaurants and shops, giving them reason to oppose the golf course 

reconstruction project. 
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Beyond the anthropogenic effects that the golf course redesign will have, the plants and 

animals that call City Park Golf Course home will be impacted. Activist groups have not let this 

go unnoticed; art activists in town placed flowers and photographs under the 260 trees that were 

scheduled to be taken down if the construction were to happen. Groups like the Denver Audubon 

protested the construction, as City Park Golf Course is not only home to many birds, but also 

provides a stopover point for many migrating birds who will no longer be able to make their stop 

if all of these trees are taken down.  

Recommendation 

All things considered, the City Park Golf Course redesign is the best option to solve the 

flooding issues in Denver Neighborhoods. While local businesses, neighborhoods, and those 

invested in the City Park Golf Course may be negatively impacted, these impacts will be short 

term. The benefits of the added drainage basins will be long term, and protect far more people in 

more significant ways than those being negatively impacted. Much of the habitat being taken out 

of the golf course during the reconstruction will be re-planted, and the historic trees will be 

rehomed in areas around Denver. While 260 trees are planned to be taken out of the golf course, 

many more are being protected, and 1,013 trees are planned to be planted in the ten years 

following the golf course redesign (United States, City and County of Denver, City Planner, 

2016). The golf course was never a native natural area; the nature there is engineered by golf 

course architects, and is the product of unnatural amount of water resources, and lawn care. If the 

golf course were an area home to more native species, the protection of it would be more vital. 

Further the water retention basins will add to the overall biodiversity at the course, as they will 

provide a unique habitat that will be intermittently flooded and be home to wetland species that 
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were not previously present. The Golf Course will not only be returned to its previous habitat, 

but it will also serve as flood protection to many Denver Citizens with no long term detriments. 

 

 

Figure 1. Map indication the areas that would experience reduced flooding with the Cole Neighborhood or City 
Park Golf Course alternatives (City and County of Denver, 2017). 
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Figure 2. Shows where the stormwater detention pond will be located on the City Park Golf Course (City and 
County of Denver, 2017). 

 

 
Figure 3. Map of current maximum flood depths predicted for a 100-year flood across the Platte to Park Hill 
drainage system (City and County of Denver, 2017). 
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