
Regis University Regis University

ePublications at Regis University ePublications at Regis University

Regis University Student Publications
(comprehensive collection) Regis University Student Publications

Winter 2006

PackoutApp PackoutApp

Scott Burau
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

Recommended Citation Recommended Citation
Burau, Scott, "PackoutApp" (2006). Regis University Student Publications (comprehensive collection).
885.
https://epublications.regis.edu/theses/885

This Thesis - Open Access is brought to you for free and open access by the Regis University Student Publications
at ePublications at Regis University. It has been accepted for inclusion in Regis University Student Publications
(comprehensive collection) by an authorized administrator of ePublications at Regis University. For more
information, please contact epublications@regis.edu.

https://epublications.regis.edu/
https://epublications.regis.edu/theses
https://epublications.regis.edu/theses
https://epublications.regis.edu/regiscollege_etds
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F885&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/885?utm_source=epublications.regis.edu%2Ftheses%2F885&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
School for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

PackoutApp 1

PackoutApp

Scott Burau

Regis University

Master of Science in Computer Information Technology

PackoutApp 7

Project Paper Revision/Change History Tracking

Date Comments

February 20, 2006 Met with Dr. Donald Archer to discuss Professional Project.

Changed subject topic to PackoutApp java GUI.

February 25, 2006 Chapters 4-7

March 4, 2006 List Of Figures

March 4-17, 2006 Chapter 8, and overall updates.

March 18, 2006 Complete draft with proof read.

March 20, 2006 Integrated feedback from Week 1 draft.

April 2, 2006 Integrated feedback.

April 2- April 18

2006

Integrated feedback and multiple proof readings

April 18, 2006 Final Draft

PackoutApp 8

Abstract

Currently there is a production line called "Packout" that is used to package products

into boxes. The current application used for scanning the products serial numbers is

not very user-friendly. The focus of this project concerns the development of a user-

friendly Packout monitoring application in Java. The monitoring application provides

the users with a way to troubleshoot the Packout application and increase the

production of the lines by decreasing the downtime of the Packout lines. The basis for

this paper will be to describe the concept of adding messaging to a legacy application,

and the creation of a GUI that can interpret and display those messages as a means to

"open a window" into another application.

PackoutApp 9

Table of Contents

Project Paper Revision/Change History Tracking ... 7
Abstract ... 8
Table of Contents ... 9
List of Figures / Exhibits / Addenda.. 11
Chapter One – Introduction ... 12

Statement of the problem ... 12
Thesis statement .. 14
How the project began.. 15
Organization of thesis ... 16
Barriers and/or limitations... 16
Scope of the project... 16

Chapter Two - Review of Literature/Research ... 17
Definition of terms .. 17
Literature and research that is specific/relevant to the project 17
Summary of what is known and unknown about the project topic 19
The contribution this project will make to the field .. 20

Chapter Three – Methodology ... 21
Research methods to be used in investigating the problem 21
Life-cycle models ... 21
Resource requirements ... 22
Outcomes ... 22
Summary.. 22

Chapter Four – Project History.. 24
How the project began.. 24
How the project was managed ... 25
Significant events/milestones in the project.. 25
Changes to the project plan ... 27

Chapter Five - Packout Application (packsrvr) .. 28
Chapter Six - PackoutAppDaemon ... 30
Chapter Seven - PackoutApp .. 32

Header Panel ... 33
Log Tab .. 35
Device Tab ... 37
Configuration Tab .. 38
Status Overview Tab... 39

Chapter Eight - Findings and Analysis... 40
Summary of the project.. 40
Analysis of results ... 41
What might have been done differently.. 41
Discussion of whether or not the project met initial project expectations....... 42
Further developments... 42
Conclusions .. 43

Appendix A.. 44

PackoutApp 10

Bibliography.. 45

PackoutApp 11

List of Figures / Exhibits / Addenda

Figure 1: PackoutApp Header Panel 33

Figure 2: PackoutApp Log Tab 35

Figure 3: PackoutApp Device Tab 37

Figure 4: PackoutApp Configuration Tab 38

Figure 5: PackoutApp Status Overview Tab 39

Appendix A: Architecture Overview 44

PackoutApp 12

Chapter One – Introduction

Statement of the problem

 Currently there is a production line called "Packout" that is used to package

products into boxes. The Packout application is a program written in the C

programming language that runs on a UNIX server. The only feedback that the users

get from this application is a log file that was originally used by the developers for

debugging purposes. The log file messages scroll across a telnet window and are lost

to the users after they scroll off the screen. Often the log messages scroll by faster

than the users can read them. With the limited feedback, the users have a difficult

time resolving issues that arise with the Packout application. The users put in a

request to the IT department to enhance the Packout application to provide them

better feedback. The feedback will allow the users to troubleshoot issues that occur

with the Packout application. This project will address the tool that was created to

monitor the Packout lines and display essential information, which can help the users

resolve issues with the Packout application. Furthermore, it will discuss the concept

of adding a messaging feature to an existing application to allow the sending of

messages that will be interpreted by another GUI application. The information will

allow the users to quickly resolve issues with the Packout application, which will in

turn increase productivity by minimizing the downtime.

 The Packout lines are similar to assembly lines. Products are packaged together

with supporting materials such as owner's manuals, instructions, remote controls, etc.

A large pallet of products is brought to the beginning of the line to be packaged into

PackoutApp 13

their individual boxes with the supporting materials. The product has a serial number

that is scanned at the beginning of the line to make sure the products serial number

exists in a database and that the product should be "packed out" under the specified

part number. A label is generated that contains the serial number of the product, and

that label is placed on the box the product is being packaged in. The product is then

passed down the conveyor line where the support materials are placed into the

packing box, and the box is taped shut. The packaged product is scanned again as it is

placed onto another pallet of "packed out" products that are ready to be distributed to

customers. This second scan is going to associate the product with a pallet. Once the

pallet is full, a number of labels are printed containing a list of all of the products

serial numbers on the pallet, and a pallet-id.

 The Packout application is used in different geographical locations. Each of the

geographical locations typically runs three to six Packout lines. For the purpose of

this project Chicago, Los Angeles, and New York will all be different geographical

locations. Another geographical location will be added in the next year. For each

physical Packout assembly line there is an instance of the Packout application running

on the UNIX server. If a new line is created in an existing location or a new

geographical location the monitoring application should be able to monitor the new

lines without any code changes.

 The original Packout enhancement request contained the following requests

relevant to this project:

• Add a user friendly log that the line workers will be able to use to

troubleshoot the application.

PackoutApp 14

• Create a monitoring application that will be able to display information about

all of the lines defined whether they are running or not.

The original monitoring application that was proposed via a telnet window was

deemed too limiting to be able to effectively provide information that would help the

users troubleshoot the problems that arise with the Packout application. A new idea

was proposed to write a monitoring application in Java. This proposed application

would be a thick client GUI that would be much more user-friendly than a telnet

menu system. The Java programming language was chosen due to its extensive

libraries that provide a means to create a GUI, enable socket communication, interpret

XML, and run on multiple platforms of UNIX and Windows needed for this project.

 This paper will describe how by adding messaging to a legacy application and

creating a Java GUI to interpret those messages an existing application can become

more user-firendly. The paper will embellish how this messaging approach will fulfill

the two criteria: to add a user-friendly log, and create a monitoring application that

can display the "health and status" of each Packout line at each location. The focus of

the paper will address why this approach was taken and how this approach can be

applied to other legacy applications.

Thesis statement

 This paper will describe the program solution that was developed and

implemented to effectively enhance the trouble shooting aspects of a legacy system in

order to fulfill specified user requirements that were provided to the programming

staff. This was accomplished by add messaging to an existing legacy application and

creating a GUI to monitor the legacy application in real time in such a way as to

PackoutApp 15

provide enough information in the GUI to allow for the users to effectively

troubleshoot problems while the application is being monitored.

How the project began

 The project began as an enhancement request to allow the Packout application

users the ability to be able to troubleshoot issues that arise with the Packout

application. The suggested monitoring tool via a telnet window described in the

original requirements proved not to be a viable solution. A telnet window could only

display a limited number of characters. A GUI on the other hand can display much

more information on a screen, and is not limited to characters. By creating a Java

GUI, the application would have the capacity to display the required information on a

screen. The Java language offers an extensive library that would allow more user-

friendly features in the monitoring application than a telnet window could offer.

 The original request stated the desire to monitor when and if a specific subnet was

available. This request wanted an indication if a connection to one of the scanners or

printers was not available due to a network issue, it would be advantageous if the

users knew for certain if the devices were able to connect to the Packout application,

instead of just trying to indicate that a subnet was available. This would be possible if

the Packout application could indicate or send a message whether or not a device

connection was established or not. Thus, this was the one requirement that sparked

the idea of adding messaging to the Packout application. The problem then was how

does the message get to the Java GUI to display the information to the user?

PackoutApp 16

Organization of thesis

 The organization of the following chapters will include the research into the

typical issues the line workers experience with the Packout application. The

methodology will progress through the documentation of problems, and resources

assigned to the project. The project history will be described. The development effort

will be discussed in three separate chapters with each chapter discussing a specific

programming unit and the architecture that ties them together. Please refer to

Appendix A for an architecture overview. Finally a conclusive chapter will report

findings and analysis of the project.

Barriers and/or limitations

 This application is currently used in an existing company. Some of the names and

information will be changed to protect specific information relative to the company

and any security issues that may arise. The code has not been included because the

concept of what the code does and why is more relevant than how the code was

actually written. The discussions of the architecture, does not only explain how the

code works, but also why the architecture was designed in its final form.

Scope of the project

 This project will focus on the design, requirements, implementation, and testing of

the Packout applications monitoring tool. The discussion of the changes that are made

to the existing Packout application will be limited to a high level overview and will

not cover the specifics of the changes to the existing Packout application.

PackoutApp 17

Chapter Two - Review of Literature/Research

Definition of terms

 There are a number of terms that will be introduced which will be used throughout

the rest of this document.

• GUI - Graphical User Interface

• packsrvr - This is the existing Packout application written in the C

programming language.

• PackoutAppDaemon - This is the Java program that essentially runs as a

daemon on the UNIX server to allow communication between the packsrvr

program and the PackoutApp.

• PackoutApp - This is the Java monitoring GUI that will display information to

the user about the packsrvr programs that are running for each Packout line.

• Thick Client - An application that is installed locally on the users PC that

typically includes application specific logic.

• Thin Client - A local application that allows access to a remote application

that is typically installed on a server. The local application typically does not

include business logic. A typical thin client is an Internet browser.

Literature and research that is specific/relevant to the project

 The research that was done on this project was specific to two distinct areas. The

first area of research was devoted to information which would be helpful to the

intended users of the PackoutApp to allow them to troubleshoot the existing Packout

PackoutApp 18

application. The second area of research was devoted to the technical aspects of how

to implement the new PackoutApp monitoring application.

 The original enhancement request came in the form of a Business Requirements

Document. Included in the requirements document were samples of the user-friendly

log messages that the users requested. The document also included some of the issues

with the Packout application that the users need to troubleshoot, and the information

that would be useful for them to perform the troubleshooting themselves. The

requirements document also contained a mock up of a monitoring system developed

by UNIX shell scripting menus in a telnet window.

 The most common issues that arise on the Packout application are the availability

of the information about the device connections. Each line has two scanners and two

printers. When the Packout program is started, it tries to establish connections to

these four devices. The users have only an unfriendly log file to try to help them

determine if the connections were successful. This log file is displayed in a telnet

window and often scrolls past the viewable area of the screen too fast for the users to

read. The most significant features that the users requested was to be able to

determine device connections, and have better log messages that are more meaningful

to the users. For example a Chicago line 1 log message was previously "Adding the

device chicago.l1s2.sburau.homelinux.org to the device list" was changed to

"Successfully connected scanner2".

 A meeting was scheduled with the developers and the managers representing the

users. The discussion was focused on the typical problems that the users face, and the

developers were able to propose these possible solutions. A mock up of the

PackoutApp 19

PackoutApp was developed as a sample of how the PackoutApp would look and feel

to the user and the type of information it would display. The users provided excellent

feedback and suggestions that allowed the PackoutApp to be designed to provide

them with the information they could effectively use to troubleshoot problems.

 The design of the PackoutApp monitoring application was the next most

significant area of research for this project. How the PackoutApp was going to get the

information from the Packout application, and how the PackoutApp was going to

display the information in a user-friendly manner. The idea was to have the Packout

application send XML messages across a socket connection to a Java daemon on the

UNIX server, and have that daemon send the XML messages to the PackoutApp

clients that were connected. The XML language would allow the Packout application

that was written in the C programming language to communicate with the

PackoutApp written in the Java programming language. A few test programs were

written to research how to establish socket connections between C programs and Java

programs, and send an XML message across the connection.

Summary of what is known and unknown about the project topic

 The developers working on this project have all supported the Packout application

in the production environment. This familiarity with the Packout application allowed

the developers to be able to provide relevant ideas to be incorporated into the project.

The most significant unknown was exactly how to implement each of the different

requirements.

PackoutApp 20

The contribution this project will make to the field

 The most significant part of this project were the ideas developed to have an

application send information about its status to a central application, and allow that

information to be distributed to connected clients and instantly displayed and utilized.

The PackoutApp is a very specific application. It was entirely designed to monitor the

Packout application; however the basic concepts of this architecture could be

expanded to allow a more generic monitoring tool. Standards for the XML messages,

and message transmissions could allow a generic monitoring tool to be used to

monitor any number of applications.

 The existing Packout application has been around for about eight years. It is

written in the C programming language and also uses Pro*C to connect to an Oracle

database. The idea to rewrite the Packout application in Java is something that has

been considered for a number of years. The motivation for rewriting it is because it is

difficult to find people that know both C and Pro*C and are able and willing to

maintain the existing code. Since the application is a mission critical production

application rewriting the whole thing is not a small task. That is where the concept of

adding a socket connection that sends XML messages to a user-friendly application

brings the user much closer to being able to understand the application on a more

visual level. With a GUI to look at, the users are able to physically "see" the Packout

application through the information being displayed. It brings the application to a

more personal level instead of some process running somewhere on a server.

PackoutApp 21

Chapter Three – Methodology

Research methods to be used in investigating the problem

 The developers that worked on this project all supported the Packout application

from development of new enhancements, to the production issues that arose. This

allowed an existing knowledge of issues that typically happen in the production

environment with the Packout application to be addressed concurrently. In addition to

the work experience of the developers, the requirements outlined a number of specific

details the users wanted to address. The developers also met with a number of the

users to discuss issues that were frequently mentioned in production and what type of

information would help them to resolve issues on their own.

Life-cycle models

 The software development life cycle for this project was based on processes that

the company has established as their SDLC. The basic underlying SDLC has a

foundation of requirements gathering, design, implementation, and testing. The actual

process follows a linear flow with occasional iterations when required. The overview

of the SDLC is as follows:

• Request for change initiated by the users
• Requirements gathering
• Review of requirements
• Requirements approved and signoff by users
• Writing of technical requirements and design documents
• Development/Implementation
• Unit testing
• Code review
• Formulation of software change request to move code to test environment
• Software acceptance testing

PackoutApp 22

• User acceptance testing
• Change control board for approval to move to production environment
• Production verification of correct code migration and functionality

At any point in the process the project can go back to any previous step when

appropriate.

Resource requirements

 The development of a new Java GUI and the modifications to the existing Packout

application was a significant effort that required three hundred and sixty hours. The

levels of effort were discussed among a few developers, and the development

manager. It was determined to split the effort into three separate areas and assign each

of the three developers a specific area. The initial time estimate was for three

developers to each spend one hundred twenty hours on their assigned areas.

Outcomes

 The developers, development management, and users were all impressed with how

the project has evolved and turned out. The project is currently in the test

environment. The success of the application in a production environment has yet to be

determined. After the application has passed the test environment it will be moved

into the production environment. The date of the move to production is dependant

upon the applications approval by the test group and the users acceptance testing.

Summary

 The overall process of how this project has taken shape has been very positive.

With the experience of the developers, the input and feedback from the users, and the

overall design of the project, the current progress of this project has been very

PackoutApp 23

successful to this point. With thorough research, design, and team work the project

seems to have sparked a new innovative thought process relating to new development

efforts. The idea to add messaging to a legacy application and display the messages in

a GUI has introduced a new paradigm to the developers previously unseen. The

concept of messaging between applications is not a new concept in itself. It is the

underlying basis for such technologies as Middleware, Service Oriented

Architectures, and even EDI, which has been around for a while. However adding

messaging to an existing application to provide feedback to users is not something the

developers have commonly encountered or previously provided to the end user.

PackoutApp 24

Chapter Four – Project History

How the project began

 The project began as an enhancement request to develop a tool to monitor and

provide user-friendly feedback from the Packout application. The enhancement

request included some of the information that the users were requesting to be on the

current monitoring tool. The initial requirements document had a mock up of the

suggested design of a monitoring tool via a telnet window. Some of the features that

the users wanted to monitor could not be accomplished using the suggested telnet

window approach. It was hypothesized that it would be much easier to monitor from a

different approach using Java to create a thick client GUI.

 A mock up of the PackoutApp GUI was made to present to management for their

approval to move forward with the new development approach. The prototype was

then expanded slightly upon before presenting the idea to the users to get their

approval and feedback. This gave the users a chance to suggest anything they would

like to add or change.

 The original requirements, the users suggestions, and the new development

approach were then documented in a Technical Requirements Document (TRD).

The Level Of Effort (LOE) was estimated with the plan to use three developers to

work on the project. The developers were assigned, and worked together to discuss

issues that came up as the development progressed.

PackoutApp 25

How the project was managed

 The project was originally designed to use three different developers into three

different development efforts that addressed:

1) The changes to the existing Packout application code called packsrvr.

2) The development of the daemon called PackoutAppDaemon.

3) The development of the PackoutApp.

 The implementation and architectural design was left to the developers to design.

The design of a thick client Java GUI was new to the development group, and the

implementation of the project was initially planned at a high level. Some of the

implementation details would have to be further expanded on once the development

was underway.

 An initial timeline was determined, and the development was given the ok to start.

Not all of the developers were available to start at the same time. This caused some of

the initial development efforts assigned to each developer to fall outside of the

originally assigned development areas. This worked out well; it seemed to help

initiate a team effort. Once all of the developers were ready to start development on

the project, the team worked very well together discussing the design of the project

that would interact with the other people's development efforts.

Significant events/milestones in the project

 The PackoutApp was developed to create some of the basic screens of the GUI.

Once progress of the PackoutApp was started, a skeleton PackoutAppDaemon was

created to establish the connections between the three programming units. The

PackoutAppDaemon used many of the same java classes that the PackoutApp was

PackoutApp 26

able to use. It was a significant step to get the initial architecture (see Appendix A for

architecture diagram) working with the packsrvr connecting to the

PackoutAppDaemon, and the PackoutApp clients connecting to the

PackoutAppDaemon. By this point the PackoutAppDaemon proved to be a much

easier development effort than initially thought. The developers were now ready to

start on expanding the different development efforts and concentrate on the

functionality of the messaging and GUI presentations.

 With the initial architecture working, and the three separate applications able to

communicate to each other the XML message structures were initially developed.

This gave everyone a basis for how the information was going to be sent from the

Packout application, to the PackoutAppDaemon, and then propagated down to each

PackoutApp client connected. The format of the XML messages was a topic that

evolved over time. It was not easy to come up with messages that would be generic

enough to be able to encapsulate all of the information that would be sent in XML. It

was decided that to have seven different types of XML messages that all have the

same basic XML structure. These include the following: scanner1, scanner2, printer1,

printer2, logs, uflogs, and "healthandstatus".

 To simplify testing the PackoutApp and PackoutAppDaemon two testing

applications were developed that would be used to send test data in the form of the

XML messages to the PackoutAppDaemon through the port that the Packout

application would use to send information to the PackoutAppDaemon. This enabled

the development of the PackoutApp and PackoutAppDaemon to be done without the

dependency of the Packout application development changes.

PackoutApp 27

 The initial development started at the beginning of November. The initial working

prototype was demonstrated to the user group around the end of January. A few

remaining tasks would need to be ironed out, and a couple new additions to the

applications were added. By the end of January development on the project was

complete.

Changes to the project plan

 The original project plan was to split up the three separate code pieces to each

developer. With the PackoutAppDaemon turning out to be an easier task than

originally thought, it allowed the PackoutApp Java development to be done in a

parallel effort with occasional code merges. This turned out to be a very effective and

creative occurrence as it allowed two developers to work together and get ideas as

well as help from each other as needed.

PackoutApp 28

Chapter Five - Packout Application (packsrvr)

 The original Packout application has been in production for approximately eight

years. The application connects to two scanners, two printers, and a database. The

Packout application does a number of things that are proprietary to the company and

will not be discussed in this document. All functionality of the application will be

discussed at a high level to avoid reference to proprietary information.

 The packsrvr is the program binary that exists on a UNIX server. An instance of

the program is started for each Packout line that is running. The type of connection to

the scanners depends on the type of scanner. The scanners are configured to connect

to the UNIX server on a specified port if the scanner is considered a client. If the

scanner is considered a server then the packsrvr connects to the scanner. The printers

are typically setup as server connections, and the packsrvr program connects to the

two printers.

 For the purpose of this document the changes to the packsrvr program consist of

the following high-level changes:

1) Add a port to each occurrence of the packsrvr program running. This port will be

used to send XML messages to the PackoutAppDaemon.

2) The packsrvr program will establish the connection to the PackoutAppDaemon. If

the PackoutAppDaemon is not available, it continuously tries to connect every

number of seconds as determined in a configuration file setting. If a connection

cannot be established with the PackoutAppDaemon then the packsrvr program must

continue to work as before this enhancement was added.

PackoutApp 29

3) Add user-friendly log messages that the line workers can better understand. This

will help them trouble shoot issues as they arise.

 The reasons that the packsrvr is to establish the connection to the

PackoutAppDaemon instead of the PackoutAppDaemon connecting to the packsrvr

was basically a coin toss. It would allow the PackoutAppDaemon to act as a true

daemon in that it just listens on a port for connections. Since the Packout application

is a mission critical production application having the packsrvr establish the

connections would keep the "control" in the packsrvr program.

 XML was determined to be the most flexible means to send messages across the

socket connection. The packsrvr program builds the messages it wants to send as a

long string of characters. It then sends the XML messages to the

PackoutAppDaemon. By sending messages from the packsrvr it really creates a

"window" into the Packout application. Enough messages need to be sent from the

packsrvr program through the PackoutAppDaemon to the PackoutApp that it can

display effective feedback and provide information to the user.

 Adding the messaging to the packsrvr binary written in the C programming

language provided a means of communication between the "legacy" Packout

application, and a new Java application. The idea of adding a type of messaging from

an older application to a new application has greatly increased the "user-friendliness"

of a legacy application.

PackoutApp 30

Chapter Six - PackoutAppDaemon

 The PackoutAppDaemon is a program written in Java that will act as a daemon

and run on the UNIX server that the packsrvr runs on. The daemon will listen for

connections on a single port from the packsrvr programs running for each line. The

PackoutAppDaemon will also listen for connections from the PackoutApp clients on

two ports. The PackoutAppDaemon will therefore have three ports open for

connections. Each port can support multiple connections.

 The PackoutAppDaemon will take messages from each packsrvr connection on

port 6000 for example. These messages will then be sent to each PackoutApp client

connected on port 6001. The ports are arbitrary and are defined in a configuration file

setting. This is the main pipeline for messages to go from the packsrvr binary to the

PackoutApp clients.

 The PackoutAppDaemon also generates "healthandstatus" messages that are used

by the PackoutApp to determine if a packsrvr occurrence is running for a given

Packout line. The PackoutAppDaemon will use the ps command in UNIX to

determine if a packsrvr occurrence is running for a given line. The packsrvr is passed

a configuration file as its parameter. This configuration file for a packsrvr instance

running shows up when doing a ps command. The configuration file is read for the

PACKOUTAPP_LOCATION and PACKOUTAPP_LINE values. These values are

used to create the "healthandstatus" XML message, which is then sent to each

connected PackoutApp client though port 6001. Configuration files that do not have

an associated packsrvr process running identify Packout lines that are not running.

PackoutApp 31

 Each configuration file for all lines is loaded into a PackoutUtilPropertyHolder.

Each PackoutUtilPropertyHolder is then added to a single

PackoutUtilPropertyManager object, which is sent to the connected PackoutApp

clients through port 6002. This data is used by the PackoutApp to determine which

lines and location are available to monitor. The configuration files for the packsrvr

binary are loaded into a table and displayed on the PackoutApp in the Configuration

tab (Figure 4).

 The need for the PackoutAppDaemon originates from the need to be able to get

configuration file information from the UNIX file system to the clients. The

PackoutAppDaemon reads and send the configuration files for the packsrvr binary

program to the PackoutApp clients connected. The PackoutAppDaemon is also

responsible for sending information to the PackoutApp clients for packsrvr process

that may or may not be running on the UNIX server. Another reason for the

PackoutAppDaemon is that it allows a central connection point for all packsrvr

instances running.

 The PackoutAppDaemon is a very simple design. It simply relays XML messages

from each of the packsrvr binaries running on the UNIX server to the PackoutApp

clients connected. It also performs a few file system and operating system functions.

It is an essential means to allow the PackoutApp client get information from the

UNIX server.

PackoutApp 32

Chapter Seven - PackoutApp

 The PackoutApp (Figure 1) application designed to be installed on a PC at the

beginning of each Packout line, as well as on anyone's computer interested in

monitoring a Packout line. The line workers will then be able to use the PackoutApp

client to monitor the line they are working on. All of the other lines are also available

for viewing. This will allow the line workers to see if other lines are having similar

issues. The PackoutApp application is a monitoring tool, which is "view only", it will

not allow the changing of any configurations.

 The PackoutApp is a thick client GUI. The Java SDK provides a robust library that

allows the development of the features originally requested by the users and more.

The PackoutApp application is made up of five distinct sections: header panel (Figure

1), log tab (Figure 2), device tab (Figure 3), configuration tab (Figure 4), and status

overview tab (Figure 5).

PackoutApp 33

Header Panel

Figure 1. PackoutApp Header Panel

 The header panel displays information about a Packout line for a given line and

location. A combo box is used to select a line at a listed location. The values in this

combo box are values that are included in the packsrvr configuration files. The

PackoutAppDaemon sends the information in the packsrvr configuration files down

to the PackoutApp in a PackoutUtilPropertyManager object through the object port

6002. Since these values are received from the PackoutAppDaemon, and the

PackoutAppDaemon only sends them every number of seconds defined in a property

file, the PackoutApp does not open until it receives a PackoutUtilPropertyManager

PackoutApp 34

object from the PackoutAppDaemon. If the PackoutAppDaemon is not running the

PackoutApp will not open, and the PackoutApp will display an error message to

check to see if the PackoutAppDaemon is running.

 The next line of the header panel is information about the product the Packout line

is running. This includes the part number of the product getting packaged, the part

description, and the model. This is information helpful to the line workers, as well as

a manager who may be wondering what a specific line is currently running.

 The "Pallet Size" is the number of items for a given part number that should be

placed on a single pallet. Once the products are packaged into the boxes they are

placed onto a pallet for storage and shipping. This quantity is the number of products

specified to go onto each pallet. The "Quantity On Pallet" is the number of products

that have been scanned through scanner2 and placed on a pallet.

 The last line on the header panel is called the status panel. This is a row of

indicator lights that turn red or green to represent processes running or connections.

The "Packout Server" indicates if the packsrvr process is running for the location and

line. "Scanner1" indicates that the scanner1 at the beginning of the Packout line is

connected. "Scanner2" indicates that the second scanner at the end of the line is

connected. "Printer1" and "Printer2" are the connections to the printers at the start and

end of the line. The "Database" indicates that the packsrvr process has a connection to

the database. The "Override" indicator indicates that the packsrvr program is

currently running in the "override" mode.

PackoutApp 35

Log Tab

Figure 2. PackoutApp Log Tab

 The log tab has two areas. The top section is the "Logs" area; the bottom section is

the "User Friendly Logs" area. Both of these areas display messages that originate

from the packsrvr program. One of the original requests by the user was to add a user-

friendly log that the line workers could better understand. The "Logs" area is the

display area for original logs messages the packsrvr program writes to the UNIX

server.

 Previously the only way the line workers could attempt to debug a problem with

the application was to read a log message that was originally used by the developer

for development and debugging. These messages were not easy to understand for the

PackoutApp 36

line workers. The original logs were also files on the UNIX server, which the line

workers do not have easy access to. For example when the lines are running the log

messages are displayed in a telnet session on the PC at the beginning of each line.

However, once the messages scrolled off the screen the line workers could no longer

see the messages due to the telnet session not having a scroll bar.

 This tab alleviates the user problem and permits the user to not only see the

original logs, but also the new user-friendly log messages. The addition of the user-

friendly log messages should allow the user to better understand what the packsrvr

application is doing. These new display areas can also scroll back allowing the user to

see a number of lines specified in a property file. The display areas also display the

time that the log message was generated on the packsrvr program.

 Another unique feature of the "Log" and "User Friendly Logs" is the way it

displays the messages. If the message starts with "ERROR" the background of the

row is red and the text is white. If the message starts with "WARN" the background

of the row is yellow and the text is black. Regular messages will be displayed with a

white background and black text. This allows the warning and error messages to

immediately stand out.

PackoutApp 37

Device Tab

Figure 3. PackoutApp Device Tab

 The device tab contains two sections. The top section is for information about the

scanner and printer at the beginning of the line. The bottom section is for information

about the scanner and printer at the end of the line.

 The top section of the device tab has four columns. The "Scanner1" column will

display any value that is scanned through the scanner at the beginning of the Packout

line. Once the label is printed for that product, the serial number of the product is

displayed directly across from the "Scanner1" row where the serial number was

scanned. This indicates to the user that the value was scanned and the packsrvr

printed a label for the product.

PackoutApp 38

 The bottom section of the device tab has four columns. The "Scanner2" column

displays the value that is scanned at the end of the line. Once the "Quantity On Pallet"

reaches the "Pallet Size" the packsrvr program generates a number of labels for the

pallet that now has the full number of products for that pallet. Once the pallet labels

are generated the packsrvr sends messages to indicate the pallet-id for each serial

number scanned.

Configuration Tab

Figure 4. PackoutApp Configuration Tab

 The configuration tab allows the user to see all of the values from the packsrvr

configuration files on the UNIX server. The users previously had no access to these

files. The PackoutAppDaemon reads the configuration files and sends this

PackoutApp 39

information to the PackoutApp every number of seconds defined in a property file.

The users can change a few of the setting in the configuration files through some

menus in a telnet session. Now the users can see if the values are set correctly which

can also help them troubleshoot problems that are encountered on the Packout lines.

Status Overview Tab

Figure 5. PackoutApp Status Overview Tab

 The "Status Overview" tab displays all of the same information that the header

panel displays, except it displays all of the information for all of the available

locations and lines. This allows the user to see if other lines are having similar issues.

This was a feature that the user requested when seeing the initial mock up of the

PackoutApp.

PackoutApp 40

Chapter Eight - Findings and Analysis

Summary of the project

 The project went very well. The implementation of the design turned out to be a

very straightforward process. The users were given a demonstration of the

PackoutApp in the warehouse on a Packout line with the application pointing to a

development environment. The users were very pleased with how the application

turned out, and were given the opportunity to provide feedback and make requests for

some minor additions and modifications

 The project started as a vague idea about a thick client Java GUI monitoring tool.

Many of the coding techniques that were used in this project were new to the

developers at the beginning of the project, including Swing, multithreaded Swing,

XML SAX parser, sockets, and connection management. The design was well

implemented and the object-orientated nature of Java was utilized very skillfully.

Many of the objects tried to follow a design pattern as described in Design Patterns:

Elements of Reusable Object-Orientated Software.

 The developers were allowed to implement the project in whatever way they

determined to be the best solution. Working as a group the developers were able to

bounce ideas off each other, which allowed for a few different approaches to be

analyzed and discussed. This was an excellent learning experience for each of the

three developers on this project. Each of the developers learned more about XML,

socket connections, and user interfaces than before, and it also was a pleasant change

from the typical database development that the group usually does.

PackoutApp 41

Analysis of results

 The users received the PackoutApp very well. The demonstrations that the

developers performed for the users went well and the user feedback was very

positive. The users had few requests for minor additions and changes. The

PackoutApp is a read-only monitoring tool; its use is very straightforward. By adding

messaging and a GUI to the original Packout application the users now have a visual

picture of what the Packout application is doing.

What might have been done differently

 The PackoutApp is a thick client. This was done for a number of reasons including

the socket connections, multi-threading, lack of an application server, and skill sets of

the developers. The PackoutApp was shown to another developer in another group

who made a number of suggestions about implementing the PackoutApp as a thin-

client in a browser. The suggestions were well received, however the suggested

technologies were not in the skill sets of the developers working on the project. If

some of these suggestions were brought up at the beginning of the project the

PackoutApp may have turned out completely different.

 The thick client was chosen because the PackoutApp would need multiple threads

to be able to read data from multiple socket connections, and manage its own

information. The developers were not aware of how to get a thin client to be able to

accept incoming data without the browser sending requests to an application server by

a user manually requesting an update. An application server was also not available to

the developers to attempt a thin client application.

PackoutApp 42

 The one suggestion the other developer made that was the most interesting was to

incorporate a Tomcat application server API into the packsrvr binary. This would

allow the use of a thin client to take the place of the PackoutApp, and eliminate the

need for the PackoutAppDaemon. The packsrvr binary would then be able to use the

Tomcat API and become somewhat of an application server in itself. The client could

also be sent pages that would request themselves to be updated every so many

seconds. With partial page rendering the client could update part of a page instead of

rebuilding the entire page. These were all excellent suggestions, however the

developers were not that familiar with the suggested ideas to fully agree that it would

work.

Discussion of whether or not the project met initial project

expectations

 The project was able to meet the requirements of the users with a few issues

related to determining connections to devices. Depending if the device is setup as a

server, or a client, the initial connection is not known until data is received or sent.

The reason being is that server devices will listen for data and not establish a stateful

connection. Overall the project has been considered a good tool for the users. The

deployment into a production environment will be the true test.

Further developments

 The PackoutApp has a lot of potential for future development. A number of ideas

are already being considered. The users have a number of UNIX shell script menus

that provide different functionality these could be included into the PackoutApp.

PackoutApp 43

Currently the PackoutApp is read-only, future releases are expected to have the

ability to make configuration changes, and even fully replace the packsrvr C program.

Conclusions

 The users are excited about the application and the possible future enhancements

to the application. Future enhancements to the PackoutApp are being formulated,

including incorporating the packsrvr C application into the PackoutApp and

eliminating the C code. These future enhancements depend on the success of the

PackoutApp over extended use in the production environment, and return on

investment that the enhancements may offer.

 This was an interesting project for all three developers. The technologies used

were challenging and kept the interest of the developers. The concept of adding

messaging to an existing application was a new idea to the developers, and a good

experience to learn from with respect to concepts and technologies. Adding

messaging to a legacy application and putting a GUI in front of the users is an

innovative idea that none of the developers have previously encountered.

PackoutApp 44

Appendix A

PackoutApp
Ch

icago 1

icago 2

w York 2

 PackoutAppDaemon

port 6000

001 002 port 6port 6

packsrvr
Chicago 2

packsrvr
New York 2

packsrvr
Chicago 1

PackoutApp
Ne

PackoutApp
Ch

port

UNIX Server

PackoutApp 45

Bibliography

Chang, Ben, Mark Scardina, Stefan Kirtzov. Oracle9i XML Handbook. New York:

Osbone/McGraw-Hill. 2001.

Deitel, H.M., P.J. Deitel. Java: How To Program. New Jersey: Prentice Hall. 2002.

Deitel, H.M., P.J. Deitel, and S.E. Santry. Advanced Java: How To Program. New

Jersey: Prentice Hall. 2002.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Orientated Software. Boston: Addison-Wesley,

1995.

JavaTM 2 Platform, Standard Edition, v 1.4.2 API Specification. Sun Microsystems,

March 2006. <http://java.sun.com/j2se/1.4.2/docs/api/>

 Lewallen, Raymond. Software Development Life Cycle Models. CodeBetter.Com.

March 2006.

>http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.as

px>

Matzke, Bervd. Ant: The Java Build Tool in Practice. Hingham, Massachusetts:

Charles River Media, Inc., 2004.

Shavor, Sherry, JimD'Anjou, Scott Fairbrohter, Dan Kehn, John Kellerman, Pat

McCarthy. The Java Developer's Guide to Eclipse. Boston: Addison-Wesley,

2003.

The Java Tutorial. Sun Microsystems. March 2006.

<http://java.sun.com/docs/books/tutorial/index.html>

http://codebetter.com/blogs/raymond.lewallen/default.aspx

	PackoutApp
	Recommended Citation

	Project Paper Revision/Change History Tracking
	Abstract
	Table of Contents
	List of Figures / Exhibits / Addenda
	Chapter One – Introduction
	Statement of the problem
	Thesis statement
	How the project began
	Organization of thesis
	Barriers and/or limitations
	Scope of the project

	Chapter Two - Review of Literature/Research
	Definition of terms
	Literature and research that is specific/relevant to the pro
	Summary of what is known and unknown about the project topic
	The contribution this project will make to the field

	Chapter Three – Methodology
	Research methods to be used in investigating the problem
	Life-cycle models
	Resource requirements
	Outcomes
	Summary

	Chapter Four – Project History
	How the project began
	How the project was managed
	Significant events/milestones in the project
	Changes to the project plan

	Chapter Five - Packout Application (packsrvr)
	Chapter Six - PackoutAppDaemon
	Chapter Seven - PackoutApp
	Header Panel
	Log Tab
	Device Tab
	Configuration Tab
	Status Overview Tab

	Chapter Eight - Findings and Analysis
	Summary of the project
	Analysis of results
	What might have been done differently
	Discussion of whether or not the project met initial project
	Further developments
	Conclusions

	Appendix A
	Bibliography

