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I.        Introduction 

I was first introduced to DNA during my first high school Biology course. After 

learning about the simple, yet intricate structure of the nucleic acid, I held the molecule in 

my hands. In a simple experiment with strawberries, I lysed DNA from strawberry cells 

using detergent. It fascinated me to see the isolated product, the substance that is known 

to carry the instructions for all living organisms. Today, DNA is commonplace in 

research laboratories and school classrooms and amazingly only 40 years ago we began 

deciphering its hidden messages.  

 In every high school and university Biology classroom, DNA’s influence is 

evident. Isolating, cutting, and observing DNA are commonplace laboratory techniques. 

Starting my undergraduate education as a biology major, I quickly became acquainted 

with the molecule and was fascinated by the vast array of knowledge already known 

about its purpose in living organisms. After completing my introductory Biology classes, 

I devoted myself to studying biology and particularly focusing on DNA and its role in 

organisms. This fascination led me to inquire about genetics based research opportunities 

at Regis University during my sophomore year. I asked my genetics professor, Dr. Marie-

dominique Franco, if I could join her genetics based research project. Dr. Franco 

welcomed me as part of her team to research the behavioral changes and genetic diversity 

of Costa Rican Howler monkeys (Alouatta palliata) living with habitat fragmentation. To 

understand whether a smaller habitat changes the inbreeding levels of howlers, Dr. 
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Franco introduced me to utilizing sequenced DNA to assess the population’s genetic 

diversity. The project aims and methods captivated me and I worked to understand 

exactly how the white stringy substance I had once isolated would now offer insight into 

the behavior of another species.  

DNA is the code and blueprint for the construction of living beings. Knowing its 

importance for all organisms, I now marvel at how easy it is to gain information quickly 

from any genome. Genetics class and my research with Dr. Franco introduced me to the 

vast information contained in the sequence of a genome and its applicability to solving 

questions on behavior, physical attributes, and disease. Humans have 23 human 

chromosomes containing DNA, tightly packaged around histone proteins. As diploid 

organisms, a complete set of DNA requires both a maternal and paternal copy of genes. 

Therefore each somatic, bodily cell contains 46 linear DNA molecules that can be 50 

million to 250 million nucleotide base pairs long (National Research Council, 1988) 

which is roughly two meters in length when stretched out. That is certainly a large 

amount of information and genetic material contained in each cell.  

 The nucleotide base pairs that form DNA are in a specified sequence, like letters 

in words. When using the term “sequence”, I refer to the exact order of nucleotide base 

pairs on a DNA strand. The nucleic acids that make up the structure of DNA are indeed 

complicated molecules in themselves, but there are regularities that allow for the copying 

and reading of the DNA “code”. First, there are only four nucleotides, or DNA 

components. Those components fall into two categories: Purines and Pyrimidines. The 

purine bases, adenine and guanine, pair up with the pyrimidines, thymine and cytosine, 
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respectively. Differences in physical characteristics that comprise diversity are attributed 

to small variations in the genetic code or DNA sequence of each individual. 

Astonishingly, all humans share 99.9% of their genome while the remaining 0.1% is 

responsible for the variation that makes us each unique (Genome Research Institute, 

2015; Culliton, 2003; Collins and McKusick, 2001). Mutations or alterations in the 

sequence of nucleotide base pairs that comprise DNA are the source for diversity as well 

the culprits for disease. Baffling to scientists in early DNA research was the importance 

of the nucleotide sequence and how its messages could be read. The order of nucleotides 

created the unique nucleic acid (DNA) and therefore a unique individual (Watson and 

crick, 1953). Almost like building blocks or the letters of a language, science soon 

discovered that nucleotides code for messages or the instructions required for organism 

function.    

 Due to the work of the Human Genome Project, the sequenced human genome is 

available for researchers and medicine to understand the function of each protein coding 

DNA segment, or gene. As genes and their associated proteins are mapped on the 

genome, their functions as well as associated diseases are being cataloged in vast online 

databases. All of this information is at our fingertips allowing vast progress in research 

and the application of the genetic sequence in medicine. As sequencing technologies 

improve, more and more individual genomes will be sequenced. The information 

obtained however is both exciting and worrisome.  

The latest sequencing technology now allows sequencing on the bench top of a 

classroom. Such advancements are also accompanied by an extended influence of 
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sequencing in medical practice. Specifically at my own University, my Molecular 

Biology laboratory recently used the latest in rapid sequencing technology, the MinION 

by Oxford Nanopore. This machine allows collection of rapid sequences of any DNA 

molecule. I was excited for the opportunity to use this new technology to sequence 

hundreds of individual howler monkey DNA samples that I would prepare for my own 

research in Dr. Franco’s laboratory. Almost futuristic in nature, rapid sequencing 

technology could be the tool I need to enhance my research.  

Making new strides in my personal research project, the novel ability to sequence 

small segments of DNA in a laboratory and also for a large scale research endeavor 

inspired me to see other fields where sequencing technology exerts its influence. Due to 

the connection of DNA to disease, my inquiry led me to medicine. A hot topic of debate 

among doctors and ethicists is the application of whole genome sequencing for the 

treatment of disease. Whereas my research sequenced only a small segment of DNA, 

medical professionals are analyzing the full disease risk of individuals present in their 

entire genetic sequence. Although the promises of knowing one’s disease risk are 

certainty tempting, I find myself questioning whether such information should be known. 

Here, I present the importance of DNA and its use in my personal genetics research on a 

Costa Rican Howler population; then, I investigate the promises behind whole genome 

sequencing in medicine. Considering both the positives and negatives behind knowing 

one’s genetic disease risk, I struggle with the life altering effects of unearthing the secrets 

kept within one’s DNA. Perhaps health providers should worry about whole genome 

sequencing for diagnosis and treatment as well. 
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II.      The Code of Life 

The Discovery of DNA 

Human beings continually show an innate interest in the mechanisms that 

constitute life and configure organisms. Widely accepted in the scientific community is 

the paramount importance of DNA, the molecule that carries information about each 

individual’s genetic makeup, their characteristics, and their overall state of health. DNA 

allows genetic traits to be passed down through generations and in doing so, that 

information is both retained and altered. When first discovered, society initially 

disregarded DNA as a structural component of cells. However, the discovery of DNA’s 

function as a heritable information carrying molecule was a pivotal moment in Biology. 

Subsequently determining its structure was a momentous occasion in the scientific 

community that triggered an explosion of interest and research. With scientific interest, 

DNA took its place as cornerstone of life, the hereditary molecule. The scientific 

community would forever be altered as molecular biology and genetics would take hold. 

Looking into the history behind DNA and genetics, the scientific community’s 

fascination with DNA after its discovery quickly shifts from a desire to determine its 

structure to a desire to decode its vast information. These decoding endeavors are the 

stepping stones towards transforming society’s views on standard medical practice and 

using the information to serve the human condition.   
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 Before scientists knew about DNA, they discovered that traits could be passed 

down from parents to offspring. The proposed mechanism of heredity began with the 

concept of genes and much later to large packages called chromosomes. Thomas Hunt 

Morgan, a geneticist who won the Nobel Prize for Physiology and Medicine in 1933, 

discovered that chromosomes held the genes responsible for phenotypic expression. He 

observed “crossing over” of chromosomes and deduced from fruit fly models that some 

genes were “x-linked” meaning they only appeared on the X chromosome. Morgan 

stated, “Medical science will here take the lead - but I hope that genetics can at times 

offer a helping hand.” In the early 1930s, Morgan presumed some importance of genetics 

in disease but denied that genetics would have a significant impact on medical treatment. 

During his acceptance speech for the Nobel Prize, Morgan demonstrated his reluctance to 

claim genes and genetic material as the driving force for disease. For treatment, Morgan 

stated that Doctors will take “the lead” in treatment of genetic diseases rather than 

knowledge of genes and gene function. In the early 1900s, when families sought to know 

the likelihood of their offspring acquiring a particular disease, Doctors turned to family 

history. This game of odds is still predominant in today’s medical practice even after the 

genetic code was deciphered. While Morgan’s experiments demonstrated that 

chromosomes have a role in heredity, he was completely unaware of the decipherability 

of the code that lies within those chromosomes. He fell back on the use of pedigrees and 

observable phenotypic expression as the best means to address disease (Morgan, 1934). 

His observations of chromosome separation and x- linked genes solidified the pedigree 

approach to medicine at least for a time.   
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The role of genetics in medicine beyond the pedigree approach could not have 

been possible without the discovery of DNA. Almost exactly 150 years ago, the allusive 

DNA or deoxyribonucleic acid was discovered. Unbeknownst to the discoverer, Friedrich 

Miescher, DNA would serve as the building block for molecular biology, genetics, and 

medical practice for years to come. Almost by accident, Miescher discovered DNA as a 

peculiar precipitate while working with the nuclei of leukocytes (white blood cells). I 

myself had isolated this stringy white substance in a simple high school experiment; 

however, Miescher was unaware of its particular importance. In his laboratory at the 

University of Tubingen, Miescher deduced that the unknown substance was not a protein 

because it could not be degraded by protease enzymes and lacked a sulfur component. 

Instead, the substance contained large amounts of phosphorus further indicating that it 

was not a protein. In these moments, Miescher was the first to give a preliminary 

characterization of the novel molecule. Due to its isolation from cell nuclei; he named it 

“nuclein”. Since these experiments in 1868, the “nuclein” name is preserved with the 

widely accepted term, deoxyribonucleic acid. Miescher’s discovery lives on as the first 

description of DNA. Miescher made attempts to describe the functional purposes of his 

“nuclein” and came to the conclusion that one molecule could not possibly be responsible 

for genetic diversity. However his later experiments demonstrated that sperm had large 

amounts of “nuclein”. Miescher surmised that perhaps his “nuclein” played a large role in 

fertilization. Little did he know that DNA would soon be discovered as the primary 

molecule responsible for the transfer of genetic information and thus become the source 

of disease.    
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The Molecule Responsible for Heredity 

Seventy six years would pass until scientists viewed DNA as the information 

molecule of life. In 1944, Oswald Avery published a landmark paper describing the role 

of DNA in bacterial transformation experiments. Transformation is the event when DNA 

is taken from the environment into a bacterium. Avery’s experiments with mice and heat 

killed virulent bacteria demonstrated that DNA could be taken up by other non-virulent 

bacteria strains. In doing so, those bacteria acquired new virulent characteristics. These 

experiments supported the claim that DNA, not proteins, was the molecule that carried 

genetic information for phenotypes (Avery et al., 1944). Genes are transferred from 

parents to offspring via chromosomes that Morgan described 10 years earlier. These 

genes are now defined as stretches of DNA that contain genetic information. Genes 

contain instructions for functional protein molecules and are interspersed throughout the 

genome. Avery’s results showed the ability of DNA to facilitate expression of acquired 

phenotypes in another organism. The transformation of genetic material alone was 

astonishing, however the ability of DNA to hold the information required for expressed 

phenotypes was a momentous discovery in DNA research. Avery et al. discuss in their 

paper the possible implications of their results stating, “If, ...(DNA) actually proves to be 

the transforming principle..., then nucleic acids of this type must be regarded not merely 

as structurally important but as functionally active in determining the biochemical 

activities and specific characteristics of pneumococcal cells” (Avery et al., 1944). Avery 

realized the importance of his results yet would not say with full confidence that DNA 
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was indeed the sole responsible molecule carrying genes. A cautious Avery knew he 

unlocked a whole new understanding of heredity and the function of DNA.   

The conclusion that DNA was functionally active in heredity required the 

additional viral work of Alfred Hershey and Martha Chase in 1952. To this day, the virus 

is a helpful model organism due to its simplicity; being solely composed of genetic 

information (DNA) encapsulated in a protein coat. Hershey and Chase’s radioactive 

labeling of these virus components fortified DNA as the necessary molecule for transfer 

of genetic information as well as the molecule coding for genes. Well established in their 

experiments, the protein coat of a virus was left on the exterior of a host bacterium, while 

the viral DNA was released inside to hijack the inner replicative machinery (Hershey and 

Chase, 1952). Left on the outside, the protein coat no longer could be responsible for 

holding genetic information. Once again, DNA demonstrated an important role in gene 

expression and function. The mid-1900s saw the beginning of DNA as the genetic 

molecule and with it, a growing interest from the scientific community (Dahm, 2008).   

The scientific community wondered exactly how did DNA retain and allow for 

the expression of genetic information. Surely, there must be some mechanistic 

explanation for DNA’s functions? What structure and mechanisms would allow such a 

relatively simple molecule to code for all of life? With the help of X- Ray crystallography 

photographs taken by female scientist, Rosalind Franklin, James Watson and Francis 

Crick unraveled the conundrum behind the structure of DNA in 1953. Watson and Crick 

demonstrated in their models that DNA is a polymer made up of nucleic acid subunits, 

containing a phosphate backbone, 5-carbon sugar, and four bases. Intricately and with 
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some definable order, the bases of Adenine and Tyrosine always pair up along with the 

bases Guanine and Cytosine doing the same. Trial and error by Watson and Crick proved 

beneficial as they finally devised a structure for DNA that could explain key elements of 

its function (Figure 1). Watson and Crick’s model depicted DNA as a double helix with 

phosphates on the outside, allowing the specific bases to pair in the interior portion. Like 

a zipper, the DNA strand could be taken apart to allow for DNA replication to take place 

(Watson and Crick, 1953). Watson and Crick note within their paper, “It has not escaped 

our notice that the specific pairing we have postulated immediately suggests a possible 

copying mechanism for the genetic material”. Watson and Crick were not under any 

illusion that their structure would shake the very core of biology, fueling future molecular 

biology. Further research identifies that the consistent base pairing in DNA allows both 

strands to become “templates” for synthesis of new strands. Due to this reason, DNA 

proves to be a relatively simple molecule with a significant role for all organisms. 

 

 

 

The double stranded molecule holds the integral information that makes up each  

 

 

 

 

 

Figure 1. The helical structure of DNA. Contained in the DNA double helix is 
nitrogenous bases that pair in the center of the molecule. The backbone (depicted as 
blue ribbon) is comprised of the phosphate groups and the 5- carbon sugar of each 
nucleotide. Hydrogen bonding between pairs hold the bases together but are weak 
enough to allow the structure to unzip. Figure retrieved from Yan, 2009.  
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 DNA is at times described as the “Code of Life”, the molecule whose unique 

sequences allow organisms to exist (Reichard, 1968). In the mid-1900s, the question 

remained as to how DNA was translated into protein, the functional component of the 

cell. The 1950’s established that DNA served as a template for RNA, another nucleic acid 

(Mukherjee, 2016). The exact mechanism behind the RNA to protein phenomena was not 

known. Researchers knew that somehow RNA coded for protein synthesis outside of the 

nucleus. However, not until 1968 did scientists decipher how the genetic code leads to the 

production of proteins. Three scientists are credited with the Nobel Prize in Medicine or 

Physiology for their work connecting protein synthesis to initial DNA sequences. 

Marshall W. Nirenberg, Robert Holley, and Gobind Khorana established the link between 

DNA and proteins by deciphering the genetic code. Nirenberg contributed by 

successfully synthesizing a strand of RNA and subsequently making a protein from that 

code. His work demonstrated that the inner machinery of cells uses translated genetic 

information (RNA) to form functional gene products (Nirenberg, 1968). Also looking at a 

sequence of ribonucleotides, Robert Holley derived the structure of tRNA. In essence, 

from Holley’s work, the chemical structure of DNA served as a precursor for the 

chemical structure of downstream proteins (Holley, 1968). Alongside Holly’s 

accomplishments, Gobind Khorana greatly elucidated the genetic code by synthesizing 

his own predetermined DNA sequence. Using a similar method to Nirenberg, Khorana 

analyzed resulting protein amino acid sequences to discover the triplet codon of 

messenger RNA and thus the code behind protein synthesis (Khorana, 1968). All three 

scientists demonstrated that proteins were derived from an original nucleotide sequence. 
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Therefore any deviation from the correct bases could result in malformed proteins and 

thus disease.   

  In 1968, at the Nobel Prize Award Ceremony at the Karolinska Institutet in 

Sweden, Professor P. Reichard stated in his award address that, “So far the work can be 

described as basic research. However, through this work we can now begin to understand 

the causes of many diseases in which heredity plays an important role”. Reichard was not 

wrong in his statement of the importance of inheritance research. Roughly thirty years 

prior, Thomas Hunt Morgan mentioned in his Nobel Prize speech that genetics would 

only supplement understanding of disease. However with the progression of science, the 

importance of DNA and understanding its messages became essential to understanding 

disease. Researchers now had the connection between DNA and phenotype; RNA 

messages transcribed from DNA were translated into proteins. The scientific community 

knew the implications of decoding the mechanism behind the human genome and they 

foresaw its medical implications. The knowledge gained in the mid-1900s laid the 

foundation for molecular biology and its continued focus on gene regulation and function 

to create advancements in medical practice (Reichard, 1968).  

Sequencing the Code of Life 

While the connection between DNA and protein products was a large stepping 

stone in DNA analyses, researchers still needed a way to read the nucleotide sequence 

and decipher the messages hidden in the genome. Only a few years later, a novel method 

to sequence DNA segments was devised. In the early 1970s, Frederick Sanger introduced 

the first “rapid” sequencing technology. Sanger’s first sequencing technique is described 
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as “rapid” because researchers could go to the actual DNA itself to determine the 

nucleotide sequence rather than taking a protein and going backwards to deduce its 

sequence. Rapid for Sanger was a mere 50 bp in a few days. At this rate, sequencing an 

entire genome would require centuries. Sanger coined his first method as the “plus and 

minus” technique and used DNA with radiolabeled nucleotides (Sanger et al., 1973). 

Utilizing this approach, Sanger sequenced the first full genome of a bacteriophage which 

was a momentous achievement for its time. After this success, Sanger continued to 

improve his technique giving rise to new approaches to understanding molecular biology 

and genetics (Heather and Chain, 2016). In 1977, Sanger published an additional paper 

on DNA sequencing and called his new method “chain termination”. This became the 

standard method for DNA sequencing for the next 30 years (Sanger et al., 1977). The first 

sequencing generation was born. Despite seemingly low rates of nucleotide sequencing, 

the process was fast enough to inspire a multi-billion dollar race to sequence the entire 

human genome.   

In 1976, it took months to sequence 50 base pairs; a mere 14 years later scientists 

declared they wanted to sequence all 3 billion. This endeavor, a multi-billion dollar effort 

to sequence the entirety of the human genome, was labeled The Human Genome Project 

(HGP). The project formally began in 1990 and its primary mission was to determine the 

nucleotide sequence contained in all 23 human chromosomes, an estimated 3 billion base 

pairs. The National Institute of Health and the U.S. Department of Energy organized the 

project’s development and researchers across the globe showed interest. The sequencing 

techniques devised by Frederick Sanger inspired the project and with continued 
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improvements to sequencing rate, the project was launched with an estimated completion 

period of 15 years and cost of roughly 3 billion dollars (Hutchison, 2007). Contained in 

the human genome are thousands of genes that code for a particular protein product. The 

project sought to use the vast letter information of DNA sequencing and translate that 

into defined protein products. The project also aimed to map the genes on human 

chromosomes. To do this, the Human Genome Project required the DNA of twenty-one 

people found in Buffalo, New York to create a comprehensive view of the total human 

genome. Researchers wanted readable information that could be used to diagnose genetic 

diseases. They wanted to know what bits of insight the human genome could provide 

about a person’s life and overall health (Kelavkar, 2006). For accurate analyses and 

mapping of gene locations, 3 billion base pairs would be enough to gain a complete 

representative human genome (National Research Council, 1988).  

Upon completion of the Human Genome Project in 2003, scientists were excited 

for the downstream applications of a complete set of human genetic instructions. Not 

only would a blueprint of our genetic code be mapped out, but knowing the accurate 

sequence placed science on a new playing field. Innovations previously not thought of 

were now possible by looking at what some still call the “Book of Life” (Collins, 1988). 

In a 1988 lecture before the start of the project, the director of the HGP, Francis S. 

Collins, M.D. Ph. D., discussed that a “map of human genetic terrain…would lead 

[scientists] to previously unimaginable insights, and from there to the common good”. 

The common good to which Collins refers to is partly the benefits that would come to 

medicine and the future treatment of human disease. By knowing the genetic code, 
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deviation from its sequence could be stepping stones to disease treatment. Knowing the 

correct nucleotide sequence could prove helpful in identifying the source of disease.  

 The HGP sequencing results ushered in a new form of research that allowed 

genes to be found and studied for their interactions and products. Researchers could 

develop logical strategies to address human disease and find its source in the genome. In 

order for scientific progress to be made, the sequencing results needed to be made free 

and public. Society’s need for free genomic information was especially evident in 

research surrounding BRCA1, the gene that causes breast cancer. Myriad, a genetic 

testing company patented BRCA1 and BRCA2, the two genes largely connected to breast 

and ovarian cancer in 1988, thus limiting any further research surround those genes. The 

two genes were untouchable by researchers unless they wanted to pay money to Myriad 

(Goldacre, 2010; Rettner, 2013). Thankfully in 2013, the Supreme Court ruled that genes 

could no longer be patented, therefore freeing researchers to investigate genes further 

(Stordahl, 2013). The HGP made free and public access a paramount goal. Collin 

described in his 1988 lecture that “The DNA sequence arms scientists seeking to 

understand disease with new information and techniques to unravel the mysteries of 

human biology”. In 1988, Collin recognized that DNA was the key to tackling diseases 

and knowing its sequence would dramatically help in diagnosis, prevention, and 

treatment options (Collins, 1988). To this day, the vast mysteries of DNA are still being 

unraveled with the help of the immense contribution from the Human Genome Project 

(Hamdoun et al., 2017). 
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The Genome Era 

 The Human Genome Project officially ended in 2003, ahead of schedule and 

under budget, costing 2.7 billion dollars (Davies, 2010). Currently, the entire sequence of 

DNA contained in human chromosomes is made freely available to the public for 

research use. The National Research Council, assigned to process the feasibility of the 

sequencing project, reported a preliminary estimate for the total number of human genes 

to be around 100,000 (National Research Council, 1988; A Brief History of the Human 

Genome, 2012). Today, the accepted gene number is around 19,000 and more genes and 

their possible variants are being mapped and cataloged (Ezkurdia, 2014).  

From the results of the HGP, more than 1,800 diseases and their associated genes 

are currently known. As a result, 200 quick DNA analyses tests are used to screen for 

various genetic risk factors (van El et al., 2013).  A “risk factor” is defined as a genetic 

sequence or fault in a gene that disables its intended function. Without the correct 

function of genes, various diseases arise and place individuals at risk. The Genome Era 

began upon the completion of the human genome. Mapping the location of genes, since 

the turn of the century has thus far allowed quick diagnosis of various diseases and has 

spurred the use of sequencing in diagnosis methods. After the completion of the project, 

many scientists predicted that sequencing and genomics would dramatically change 

health care (Guttmacher et al., 2005). Treatment options would look to molecular 

solutions and fully understanding the source of an individual’s condition. A. Alan 

Guttmacher, Ph.D. noted that collecting an individual’s unique sequence would likely be 

standard medical practice in the next ten years (2005). Although this is not yet the case, 
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the medical field has implemented this technology in oncology practice. Researchers and 

physicians are realizing the extreme benefit that sequencing can play in diagnosis and 

treatment for patients (Nagarajan, et al., 2017) 

While the Human Genome Project required the DNA of twenty-one people, some 

sequencing efforts today focus on retrieving the full genetic code individually for 

thousands of people. Held in an individual genome are small nucleotide variations that 

give rise to diverse phenotypic expression. These variations can take the form of 

mutations, or polymorphisms. Mutations are changes to the nucleotide sequence at the 

DNA level and can lead to deleterious problems in protein expression. One such disease 

is Retinoblastoma (RB), a recessive disease of the eye in which malignant tumors form in 

the retina tissue due to random and/ or heredity mutations in a gene on chromosome 13 

(Matea et al. 1997). Retinoblastoma forms from two mutated copies of the RB1 gene. 

The RB1 gene codes for the RB protein that regulates the cell cycle by arresting cells in 

the G1 phase or growth phase. Inheritance of the disorder requires two mutated copies of 

the gene to display malignant eye tumors. Patients who inherit a paternal mutated gene 

largely exhibit bilateral eye tumors while patients with sporadic copies commonly only 

show unilateral incidence (Mateu et al. 1997). 

Due to the hereditary nature of retinoblastoma, families with incidence of the 

disease are advised to have their children come in for regular examinations from their 

ophthalmologist in the first few years of life. However, prescreening genome analysis can 

be done to determine whether a child indeed has two mutated RB1 gene copies. Common 

techniques utilize Polymerase Chain Reaction (PCR) to amplify the q14.2 locus and 
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sequence the DNA specifically looking for mutations (Richter et al. 2003). A linkage 

analysis of a child’s DNA could also look for polymorphisms associated with mutated 

copies which serve as precursors to the malignant tumor formation (Mateu et al. 1997). 

Prescreening genetic analysis offers patients a definitive way to know whether they will 

develop the malignant eye tumors. When families seek answers, genetics and sequencing 

can offer some answers. PCR methods and sequencing offer families peace of mind and 

save them costly doctor visits (Richter et al. 2003).  

Current research on retinoblastoma is yielding exciting prescreening and 

treatment possibilities for individuals with early signs of the cancer. Recent prescreening 

research uses next generation sequencing (NGS) with an in-house analysis pipeline to 

detect RB in patients. The in-house bioinformatics pipeline is created from careful 

analysis of SNVs, insertion/ deletions, as well as differentiating between somatic and 

germline RB. A more targeted approach using NGS more efficiently determines 

mutations in the RB gene and further the nature of the mutation. Conventional methods 

such as Sanger sequencing require that 27 exons are separately sequenced while NGS 

uses fewer assays of DNA and is sensitive to specific mutations. NGS can be used to 

enhance risk assessment to future generations (Devarajan et al. 2015).  

The polymorphisms that NGS seeks to identify in patient samples are either from 

a single nucleotide (SNP’s), a variation in copy number (CNP’s) of repeated bases, or 

indels which are base deletions or insertions. However, polymorphisms can also be in the 

noncoding regions of DNA and thus do not cause downstream problems. These 

polymorphisms prove useful in determining lineage relationships (Sebat et al., 2004). To 
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be concise, laboratory researchers focus on these variable portions of individual genomes 

to quickly answer genetic based questions in a variety of species. These highly variable 

regions allow assessments of familial relationships and determination of particular allele 

presence. While the Human Genome Project was a momentous undertaking in itself, 

sequencing has since then improved dramatically allowing sequencing machinery and the 

necessary manpower to decrease in size. Faster computing capabilities allow more 

information to be stored and derived from sequencing efforts, thus allowing research with 

next-generation sequencing to take hold in the scientific community (Schuster, 2008). 

The biological questions that can now be asked are practically limitless with the 

invention of rapid, relatively cheap sequencing technologies. The question remains 

however, how will these technologies revolutionize the understanding and treatment of 

disease for researchers and medical professionals alike.   
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III.        Comparison of genetic structure of a mantled howler 

monkey (Alouatta palliata) population at the edge and interior 

of a Costa Rican forest fragment 

In my previous chapter, I emphasized the discovery of DNA as the hereditary 

molecule of life and argued that humanity’s preoccupation with understanding our 

genetic makeup and seeking an understanding of disease are primary driving forces for 

the use of sequencing technologies. Since the discovery of DNA, sequencing 

technologies allowed vast achievements in the understanding of organisms and how they 

function. Geneticists and molecular biologists use direct sequences of DNA to understand 

how specific genes are transcribed and also how genetic mutation and protein 

malfunction can lead to disease. Interestingly, both the non-coding portions of DNA and 

the coding elements allow scientists to study molecular interactions and the presence of 

disease risk factors in human and non-human populations. Still to this day, scientists are 

unlocking the vast social and medical potential that DNA sequences hold.   

DNA molds not only molecular biology and genetics but also extends into other 

scientific disciplines. Considering non-coding segments of DNA, sequencing is 

instrumental for a variety of scientific questions. Specifically, scientists can sequence 

these portions to assess kin relationships and inbreeding levels. Sequencing polymorphic 

DNA regions, or sequences of DNA that have varied numbers of nucleotide repeats, 
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allows a quick determination of heterozygosity versus homozygosity. For diploid 

organisms which contain a paternal and maternal copy of their genes, a gene can have 

multiple alleles or forms. An individual with two copies of the same allele of a gene on 

both chromosomes is considered to be homozygous. Conversely, if there are two different 

alleles present, the individual is heterozygous. The proportion of heterozygous 

individuals in a population is an indicator of genetic diversity and overall population 

health. High genetic diversity is associated with higher chances of populations being able 

to fight off disease and other environmental challenges (Woodruff, 1989). Thus, by 

evaluating the proportion of heterozygous individuals in a population, the level of 

inbreeding in a population can be indirectly assessed with simple DNA sequencing 

analyses.   

Sequencing the DNA of individual organisms gives insight into the health of 

individuals as well as into a population’s overall genetic diversity. Molecular biologists 

commonly use sequencing to determine molecular interactions in organisms. Recently, 

sequencing has also been used to investigate the negative consequences of environmental 

stress on community stability in non-human primate populations (Winkler et al., 1999). 

By peering into the genome of a species, scientists can interpret how a population copes 

with environmental stress. Sequencing proves useful in studying non-human primate 

populations because we can answer behavioral questions by looking at the DNA code and 

employing statistical analyses. Environmental pressures can influence social cohesion, 

migration and other activities of inhabitant species. These changes in activity and 

behavior can ultimately lead to increased inbreeding in populations, thus causing a 
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change in the overall genetic diversity of a species over time. The genetic sequences of 

individuals prove useful for scientists to draw conclusions concerning the effects of 

environmental factors on populations.   

My own interest in DNA began when I started undergraduate research in a 

Genetics laboratory working with non-human primate DNA. As a student researcher at 

Regis University, I personally worked with DNA acquired non-invasively from the non-

human primate species, mantled howler (Alouatta palliata). My research on A. palliata 

utilizes DNA obtained from fecal samples to understand how a changing environment is 

influencing their behavior and ultimately altering their population genetic diversity. Fecal 

samples allow researchers to study the monkeys’ genetics to aid in conservation efforts 

and understand how this particular primate species responds to habitat fragmentation. 

Luckily genetic analyses utilizing next generation sequencing allows a thorough, non-

invasive investigation.   

My project looks specifically at the level of inbreeding in groups of A. palliata in 

the edge versus the interior of a forest fragment. Entering into the project, I knew that I 

would be working with DNA samples obtained from monkey feces, but I was unsure of 

exactly what information would be gained from the DNA sequences. I soon learned that 

sequencing highly variable DNA regions allows a quick determination of heterozygous 

versus homozygous monkey individuals. By comparing the number of nucleotide repeats 

in segments of DNA, the proportion of heterozygous individuals and thus the level of 

inbreeding in a population can be investigated. In this chapter, I present my genetics 
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research using next generation sequencing technologies to assess the level of inbreeding 

in a Costa Rican howler population that faces severe fragmentation of forest habitat. 

Sequencing thus proves to be a useful tool not only for molecular genetics but for 

ecology as well.    

Introduction 

The human impact of deforestation on non-human primate populations is a center 

of concern for a variety of primate communities in the New World (Pope, 1996; Winkler 

et al., 2004; Winkler et al., 1999). Over the last few decades, deforestation contributing to 

habitat loss and fragmentation is a leading threat to biodiversity (Clarke, Zucker, & Scott, 

1986; Arroyo-Rodriguez & Diaz, 2010). Destruction to habitat reduces the resources 

available to native species and can result in animals migrating to other areas (Oklander, 

Kowalewski, & Corach, 2010). The fragmentation of forest into disconnected patches 

increases the ratio of forest edge to interior. The edge effects from fragmentation present 

new ecological challenges for primate species that potentially can alter population 

density, social cohesion, and group sizes (Broadbent et al., 2008; Schwitzer et al., 2011). 

There is less ability for primates to disperse to new groups and a potential decrease in 

gene flow may ensue. As a result, the genetic diversity of a species could be 

detrimentally affected from increased inbreeding. With increased infringement of human 

activities on primate habitats, it is imperative to understand how monkey populations are 

being affected by increased edge effects. 
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Edge effects are the structural changes of ecosystems resulting from newly 

formed boundaries that allow exposure to new biotic and abiotic conditions (Schwitzer, 

2011; Murcia, 1995; Lidicker, 1999). The varied microclimate near the boundary of two 

different habitat types results from altered amounts of light, wind, and moisture that 

potentially produce a varied microclimate (Chen et al., 1999; Murcia, 1995; Laurance et 

al., 1998). This difference in abiotic factors can result in fewer tall trees and less canopy 

cover at the forest edge. Further, Chapman (1998) reports that the average tree diameter 

at breast height (DBH), an indicator of food availability, is lower at the forest edge 

(Wilcove et al., 1986). For these reasons, subpopulations of primate species at the forest 

edge would likely need to travel farther distances to acquire their food. At the forest edge, 

primates are more susceptible to foreign species of plants and animals that can more 

easily invade and further create ecological shifts (Laurance et al., 1998). With a larger 

edge to interior forest ratio, inhabitants of fragments are particularly vulnerable to these 

ecological changes from edge effects and would likely need to adapt to these habitat 

changes (Laurence et al., 1998).  

In particular, forest fragmentation and the associated edge effects pose threats to 

the survival and overall population numbers of mantled howler monkey (Alouatta 

palliata) populations (Estrada and Coates-Estrada, 1996). A. palliata is a large 

neotropical monkey species that is recognized as being resilient to changes in habitat that 

lead to smaller habitat size (Estrada, 1982; Bicca-Marques, 2003; Emmons and Feer, 

1997). Howler monkey groups are commonly large (>10 individuals) with multiple males 

and females (Clarke, Zucker, & Scott, 1986). The howler monkeys’ resilience to smaller 
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habitat is due in part to the species’ dispersal patterns. Both sexes disperse from their 

natal groups which decreases the chances of inbreeding in howler groups (Pope, 2000). 

They also experience limited contest competition (Wang & Milton, 2002) as this species 

is mainly folivorous and seasonally supplements its diet with fruit (Crockett & Eisenberg, 

1987; Milton, 1981).  

Howler monkeys that live in forest fragments with increased edge effects have 

decreased habitat size, resource availability, and ideal plant life (Arroyo-Rodríguez and 

Dias, 2010). Furthermore, howler monkeys that inhabit fragmented or isolated forests 

have decreased opportunities for dispersal to other groups. Sometimes monkeys can find 

corridors to other fragments in order to relocate to other howler groups (Arroyo-

Rodríguez and Dias, 2010). However, in these narrow corridors there is higher threat of 

predation. Therefore, there is still cause for concern for the long-term impact of 

decreased habitat size on the survival of the species (James, 1992). While both male and 

female howler monkeys disperse to other howler groups once they are sexually mature, in 

smaller and disconnected habitats howler individuals from the same initial group often 

migrate together to another group contributing to less gene flow within populations 

(Pope, 2000; Oklander et al., 2010).  

Forest fragmentation and its resulting edge effects have the potential to negatively 

impact group numbers and composition, social cohesion, overall activity budgets, and 

dietary composition (Schwitzer et al., 2011). Although the exact consequences of 

fragmentation are not known, Irwin et al. (2010) observe that different subgroups of a 
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population can experience varied responses in different areas of a forest fragment. Due to 

the decrease in food resource availability and varied microclimate at the forest edge, 

primate subgroups will likely have dissimilar behavior to groups in the forest interior. 

Stoner (1996) specifically reports that the howler monkey selects its habitat based upon 

the density of preferred trees present for food. At the forest edge, lower food availability 

will likely have negative impacts on group size and social cohesion. Chapman (1990) 

reports that A. palliata groups organize based on food availability and recorded that in 

fragments, smaller, more dispersed groups were at the forest edge with larger groups in 

the interior. These changes among subgroups can lead to differences in genetic 

composition over time.  

Amidst severe environmental changes, it is important for species to maintain 

genetic diversity. Genetic diversity increases the likelihood of species surviving against 

stressors which include fighting off disease (Acevedo-Whitehouse et al., 2003; Woodruff, 

1989). This diversity is the result of gene flow, or the transfer of alleles from one 

population to another. As mentioned previously, alleles are the variations of a gene that 

are present in a population (Oklander, 2010). When a large proportion of individuals 

carry two different alleles of a gene, the population has a better chance of surviving 

environmental stressors such as disease. However, habitat fragmentation is a major threat 

to gene flow and thus genetic diversity. A larger forest edge to interior ratio can lead to 

higher levels of inbreeding among howler groups on the edge, thereby decreasing 

population diversity. At the forest edge, A. palliata groups are smaller and more spread 

out, which likely will increase the incidence of inbreeding in edge subpopulations 
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(Chapman, 1990). With more inbreeding, the survivability of the population will 

decrease. Diversity is important to maintain because it increases the likelihood that some 

individuals will have certain allele variations that can help them better survive and pass 

on their genetics (Oklander et al., 2010).  

Increased fragmentation of forest habitat coincides with higher incidences of 

inbreeding among howler monkeys (Oklander, 2010). Specifically, past studies assessed 

the genetic structure of A. palliata to determine the species’ behavioral response to 

human infringement on its habitat due to farming and other practices such as logging 

(Winkler et al., 1999; Bastos et al., 2010; James, 1992; Pope, 1996). Winkler et al. (1999) 

report that two separate howler populations showed high levels of microsatellite diversity 

despite being in areas of heavy land use and deforestation. Often, howler monkeys are 

associated with being resilient to changes in habitat structure (Bicca-Marques, 2003; 

Emmons and Feer, 1997). Regardless, there is conflicting evidence on whether human 

activities and consequent change in habitat structure detrimentally affect howler monkey 

genetic diversity (Estrada and Coates-Estrada, 1996; Milton et al., 2008; Van Belle et al. 

2012). Dispersal of groups are limited in fragmented habitat and different responses of 

subgroups within the same fragment can occur, potentially leading to different levels of 

inbreeding between subgroups (Irwin et al., 2010). Thus, genetic structure can be an 

indicator of the effect of habitat fragmentation and specifically edge effects on the 

stability of monkey populations.  
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Analysis of microsatellite loci is commonly used to assess inbreeding levels 

(Bastos et al., 2010; James, 1992; Pope, 1996; Winkler et al., 2004). Microsatellites are 

short DNA sequences with varied numbers of nucleotide repeats across individuals, 

groups, and populations. These loci can be amplified using Polymerase Chain Reaction 

(PCR) which exponentially replicates the specific segment of DNA containing the 

genetic marker, or microsatellite (Morin & Woodruff, 1996; Pruetz & Leasor, 2002). By 

comparing variation in microsatellite repeats and numbers, the level of genetic variation 

can be quantified (Morin & Woodruff, 1996; Pruetz & Leasor, 2002). For each 

microsatellite, individuals are homozygous if they carry two of the same allele (with 

same number of repeats) on both chromosomal copies. Individuals are heterozygous for a 

particular microsatellite locus if they carry two different alleles (with different number of 

repeats). Different microsatellite polymorphisms are thus used as genetic markers for 

heterozygosity and homozygosity (Oklander, 2010). We can measure the genetic health 

of a population Using Hardy-Weinberg equilibrium. Hardy Weinberg equilibrium utilizes 

the frequencies of alleles in a population to characterize the genetic structure of 

populations without outside evolutionary pressures (Woodruff, 1989). A population is 

considered genetically healthy if it displays high levels of genetic variation at or above 

Hardy Weinberg equilibrium.  

In Costa Rica, tropical rainforests have experienced human-induced deforestation 

for farming and logging purposes since the 1970s (Garber, Molina, & Molina, 2010; 

Arroyo-Rodriguez & Mandujano, 2006). The boundary at forest edge is prominent due to 

nearby cattle ranches and fruit plantations (Garber et al., 2010). As a result, there is 
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reduced forest habitat conducive for providing high-quality food resources and migration 

opportunities for wildlife (Garber, Molina, & Molina, 2010; Arroyo-Rodriguez & 

Mandujano, 2006). The La Suerte Biological Research Station (LSBRS) in Costa Rica 

serves as “home” for native A. palliata groups and has experienced this fragmentation. 

The forest at La Suerte comprises a large and small forest fragment that is connected by a 

corridor. Here I investigate the consequences of edge effects on the genetic diversity of 

mantled howler monkeys in the forest fragments at the La Suerte Biological Research 

Station (LSBRS) in Costa Rica by analyzing subgroups at the edge and interior of forest 

fragments. In 2016, Schreier et al. (2016) reported that the La Suerte forest fragments 

have higher species richness and diameter at breast height (DBH), which signifies higher 

fruit production, in the forest interior as compared to the edges (Chapman et al., 1992). 

The forest edge is defined as within 100m from the forest boundary. I analyzed the 

genetic diversity of the howler monkeys at the forest edge versus interior via next 

generation sequencing of microsatellite loci to see whether there is a difference in the 

level of heterozygosity between the howler monkeys at the edge and in the interior of the 

forest.  

The goal of my research is to directly assess the differences in genetic structure of 

the La Suerte mantled howler monkey (A. palliata) groups between the forest edge and 

interior using microsatellite analysis. Due to the detrimental effects of increased forest 

edge, resulting in less food availability and habitat (Estrada and Coates-Estrada 1996) as 

well as decreased dispersal ability to other howler groups (Oklander et al., 2010; Winkler, 

2004), I predict that A. palliata groups that live in the interior portion of the forest 
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fragments will have higher levels of heterozygosity compared to groups that live near the 

edge. This research will be compiled with previous studies on howler monkey response to 

forest fragmentation to determine what extent howler populations are affected by human 

infringement and fragmentation of their habitat. Further, the data collected from this 

study can aid in analysis of gene flow of fragmented populations in general. 

Methods 

Study Site 

Genetic samples were collected at the La Suerte Biological Research Station 

(LSBRS) in Costa Rica (10° 26’N, 83°46’W). The forest surrounding LSBRS contains a 

small and large forest fragment connected by a corridor which together comprise 300 

hectares (ha) of primary and secondary forests and regenerating pastures (Garber et al., 

2010). La Suerte is home to three primate species: the mantled howler (A. palliata), 

Central American spider monkey (A. geoffroyi), and the white-faced capuchin (C. 

capucinus). Previous studies report that there are 8-1 howler groups with approximately 

15 individuals each (Pruetz & Leasor, 2002; Garber et al. 2010). The boundary at forest 

edge is prominent due to nearby cattle ranches and banana and pineapple plantations 

(Garber et al., 2010). Schreier et al. (2016) report that the La Suerte forest fragments have 

higher species richness and DBH, or diameter at breast height, in the forest interior 

compared to the edges. The forest edge is defined as within 100m from the forest 

boundary.   
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Sample Collection 

           During the summers of 2014, 2015, and 2016, Regis University students and Dr. 

Amy Schreier carefully collected and cataloged fecal samples from A. palliata at LSBRS. 

To collect fecal samples, researchers searched for howler individuals and waited for 

defecation. Researchers used wood spatulas to transfer approximately 5.0 g of fresh feces 

into 5-ml collection vials containing 2.5 ml of RNAlaterTM. GPS locations were used to 

determine whether each sample was from the forest edge or interior. Sample vials were 

labeled with the date, sex, and age-class and stored at room temperature. At the end of the 

sample collection periods in Costa Rica, all fecal samples were shipped to the Biology 

Department at Regis University and stored at -20oC.   

186 fecal samples were collected for DNA analyses. Of these, samples were 

designated as edge or interior based on the location collected and distance in relation to 

the forest edge. Edge was first defined as 50m resulting in 37 edge population samples 

and 149 interior population samples. Defining the edge as 100m, there are 91 edge and 95 

interior samples.  

DNA Extraction 

To analyze the difference in genetic diversity of howler monkey groups living in 

the forest edge compared to the interior of the two forest fragments of LSBRS, I extracted 

and purified the DNA of howler individuals from the fecal samples using a QIAamp 

DNA Stool Mini Kit (Qiagen). The DNA purification procedure has been developed to 

preferentially extract endogenous DNA from the individual’s GI tract as opposed to the 
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microbiome and plant materials found in monkeys’ fecal matter. The procedure allows 

for high amounts of endogenous DNA to be purified that can be subsequently amplified 

using PCR (Nechvatal et al., 2008). 

Polymerase Chain Reaction  

           To assess edge effects from fragmentation on genetic diversity of subpopulations, 

microsatellite primers specific to A. palliata were used with PCR to amplify specific and 

diverse microsatellite sequences of DNA (Ellsworth and Hoelzer, 1998). I specifically 

used primers designed to amplify the Ab06 and Amp1 microsatellite regions (Ellsworth 

& Hoezler, 1998; Milton et al., 2008). The PCR cycling conditions for these primers are: 

Initial denaturation at 94°C for 4 minutes, 30 cycles at 94°C for one minute, 1 minute at a 

primer specific annealing temperature. The primer annealing temperatures are 50°C for 

Ab06 and 64°C for Amp1. This cycle condition is followed by 1 minute at 72°C, ending 

with extension for 10 minutes (Van Belle et al., 2012). Each PCR tube will contain 20µl 

total volume comprising 10mM Tris HCl (pH 8.3), 50 mM KCl, 0.25mM MgCl2, 0.5mM 

of the respective primer (forward and reverse), 0.25 mM of a complete mixture of all 

dNTPs, 300ng of purified DNA, and 5U of Taq polymerase (Fermentas). The PCR 

amplification products were visualized through gel electrophoresis to ensure the proper 

amplification of each polymorphism during PCR. 

 

 



 
 

33 
 

Next Generation Sequencing 

Barcode Primers: To sequence the DNA, PCR reactions were repeated with barcoded 

primers specific to each sample. Each forward and reverse primer contained a four-

nucleotide barcode. By combining forward and reverse primers with different barcode 

sequence combinations, each DNA PCR sample can be specifically marked with a 

preceding and ending nucleotide sequence. In next generation sequencing this aids in 

individual determination.   

Magnetic Bead PCR Purification: In a PCR tube, 65ul of DNA was combined with 2X 

volume of Ampure XP beads, mixed with pipetting and incubated at room temperature (5 

mins). Samples were placed on a magnetic stand (1 min) and supernatant was removed. 

Beads were washed twice with 75% Ethanol (20 ul). DNA was eluted from the beads 

with 50ul of H2O.  

End Repair/ A- tailing: Library preparation was performed according to methods 

outlined by Oxford Nanopore (Potter, n.d.). First, I completed end repair of the PCR 

products. The following components listed in Table 1 were mixed gently and incubated at 

20oC (5mins) and at 65oC (5mins).  

Table 1.  End Repair Components  

 
 

 

Reagents Volumes (ul) 
~ 1 ug DNA 45 
Rxn buffer ~ end prep 7 
Ultra II End Prep enzyme 3 
Nuclease Free H2O 3 
Total Volume 60 total 
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Second Magnetic Bead Purification: The second purification was performed with the 

following differences: 60 ul of Magnetic bead mixture was added and the final elution 

was with 31ul nuclease free water. 

Adapter Ligation: The components in Table 2 were mixed together and incubated at 

room temperature for ten minutes. 

Table 2. Adapter Ligation to DNA 

Reagents Volume (ul) 
End-prepped DNA 30 
Adapter Mix 20 
Blunt/TA Ligation Master Mix 50 
Total  100 total 

 
Final Magnetic Bead Purification: A final magnetic bead step was completed with the 

following differences: 40 µl AMPure XP beads was added to the adapter ligation 

reaction, the beads were washed twice with 140 μl of the Adapter Bead Binding buffer to 

remove excess adapters and final elution in 15 µl of Elution Buffer with a 10 minutes 

incubation period at room temperature. 

Loading the MinIon: MinIon was primed according to the recommended methods 

obtained from Oxford Nanopore (Potter, n.d.). A total of 1000 µl of Flow Cell priming 

mix (Table 3a.) was placed in the priming port in a two-step process. The DNA library 

(Table 3b.) was loaded drop wise onto the flow cell.    
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Table 3.  a. Flow Cell Priming Mix. b. DNA Library Preparation 

a.     b.

 

 

Statistical Analyses 

Using population genetics statistical analysis, I assessed the null hypothesis that 

there is genetic equilibrium in the howler populations through Hardy-Weinberg 

Equilibrium (HWE) and indirectly assessed the level of inbreeding in the population 

using a chi-square goodness of fit test to determine which population genotype ratios 

were significantly different from expected values (Table 4). I subsequently analyzed the 

simulated allele frequencies via F-statistics to assess the heterozygosity to homozygosity 

ratio across the subpopulations at the forest edge versus interior and in the population as a 

whole (Wright, 1951). Using formulas derived by Peakall and Smouse (2009) and 

outlined by Barton (2016) and Truong (2017), I first determined the observed (Ho) and 

expected (He) heterozygosities and then derived the fixation indices, FIS and FST, which 

are direct measures of population genetic variability (Weir & Cockerham, 1984) (Box 1 

and 2). The fixation indices for the subpopulations were then compared to determine the 

level of inbreeding occurring between groups (Oklander et al., 2010) (Table 5). 

 

 

Reagent Volume (ul) 
RBF 480 
Nuclease-free water  520 
Total  1000 total 

Reagent Volume (ul) 
RBF 35 
Nuclease- free water 2.5 
LLB 25.5  
DNA library 12.0 
Total  75.0total 
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Box 1: Subpopulation and mean heterozygosity measurements (Peakall and 
Smouse, 2009, Barton, 2016; Truong, 2017). The subpopulations fall into two 
categories: edge and interior (50m) and edge and interior (100m). 
 
𝐻𝐻𝑜𝑜 is observed heterozygosity of a subpopulation and is given as the 
proportion of N samples that are heterozygous at a given locus. 

HO =  
No. of Heterozygotes

𝑁𝑁
 

𝐻𝐻𝑒𝑒  is expected heterozygosity of a subpopulation and is the sum of the 
squares of allele frequencies subtracted from 1. 

𝐻𝐻𝑒𝑒 = 1 −�𝑝𝑝 i2
 

𝐻𝐻o is mean observed heterozygosity and is the sum of both subpopulation’s 
observed heterozygosity, divided by total number of subpopulations, k. 

𝐻𝐻𝑜𝑜 = �𝐻𝐻𝑜𝑜/𝑘𝑘
𝑘𝑘

𝑖𝑖=1

 

𝐻𝐻𝑒𝑒 is mean expected heterozygosity and is the sum of both subpopulation’s 
expected heterozygosity, divided by the total number of sub-populations, k. 

𝐻𝐻𝑒𝑒 = �𝐻𝐻𝑒𝑒/𝑘𝑘
𝑘𝑘

𝑖𝑖=1

 

𝐻𝐻𝑇𝑇 is total expected heterozygosity and is the sum of the squares of allele 
frequencies for the entire population subtracted from one. 

𝐻𝐻𝑒𝑒 = �𝑝𝑝𝑇𝑇𝑇𝑇2
𝑘𝑘

𝑖𝑖=1
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Results 

DNA was successfully isolated from all samples and the presence of 

microsatellite alleles (Apm01 and Ab06) were confirmed through PCR and gel 

electrophoresis (Figure 2); The Apm01 locus size ranges between 180-208 bp while 

Ab06 DNA segments are within the range of 270-280 bp (Figure 2A-B). Due to small 

differences in bp size that can occur from additional nucleotide repeated motifs, gel 

electrophoresis did not clearly indicate heterozygotes versus homozygotes in the 

subpopulations samples. PCR of all samples were pooled for genetic analyses via 

sequencing by the Oxford Nanopore. Real time computer input of data shows reads were 

recognized by the pores in the MinION sequencing platform (Figure 3).  

Box 2: Fixation indices. 𝐹𝐹𝐼𝐼𝐼𝐼and 𝐹𝐹𝐼𝐼𝐼𝐼 values are between -1 and +1. Values near zero 
indicate non-random mating, positive values indicate inbreeding and an excess of 
homozygosity, and negative values indicate excess heterozygosity. 
To compare the genetic differentiation between subpopulations, values for FST range 
from 0 to +1 and higher positive values designate differentiation among 
subpopulations (Peakall & Smouse, 2009; Barton, 2016, Truong, 2017). 
 
𝐹𝐹𝐼𝐼𝐼𝐼  is the inbreeding coefficient within individuals relative to the subpopulation, 
measuring the reduction in heterozygosity of an individual due to non-random 
mating within its subpopulation. 

𝐹𝐹𝐼𝐼𝐼𝐼 =
 𝐻𝐻𝑒𝑒 −   𝐻𝐻𝑜𝑜

 𝐻𝐻𝑒𝑒
 

𝐹𝐹𝐼𝐼𝐼𝐼 is the inbreeding coefficient within individuals relative to the total population. 

𝐹𝐹𝐼𝐼𝐼𝐼 =
 𝐻𝐻𝑇𝑇 −   𝐻𝐻𝑜𝑜

 𝐻𝐻𝑇𝑇
 

𝐹𝐹𝑆𝑆𝑆𝑆 is the inbreeding coefficient within subpopulations relative to the 
Total population. This statistic measures the genetic differentiation between 
subpopulations. 𝐹𝐹!" values less than 0.05 were interpreted to indicate no evidence 
of genetic differentiation between subpopulations 

𝐹𝐹𝑆𝑆𝑆𝑆 =
 𝐻𝐻𝑇𝑇 −   𝐻𝐻𝑒𝑒

 𝐻𝐻𝑇𝑇
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Due to the unclear nature of the sequencing results provided by the MinION, 

simulations of varied genotype ratios in the howler subpopulations were completed to 

offer insight into what future results might provide. Simulation of randomized 

heterozygous and homozygous ratios yielded theoretic F-statistic values that could be 

obtained upon clear sequencing results (Table 5). To understand what population 

numbers and genotype ratios would result in genetic differentiation between 

subpopulations, simulations with randomly assigned genotype ratios were statistically 

analyzed. As expected, the populations with the most genetic differentiation signified 

through Chi-Square and Fst values were those with divergent high/ low heterozygosity 

ratios. For example, Chi-squared values of 228.9463 and 154.4526 were calculated for 

low heterozygosity (10/90) in both 50m and 100m interior subgroups. These numbers, are 

higher than the 0.05 significance threshold (Chi-Square = 5.99) thus indicating 

divergence from Hardy Weinberg Equilibrium and expected genotype ratios. Particularly, 

edge populations with 10/90 heterozygosity for both 50m and 100m edge groups were 

largely differentiated from interior subpopulations with 50/50 heterozygosity with 

0.16944 and 0.16423 Fst values respectively. With future sequencing results, the actual 

genotype ratios can be calculated and treated in the same manner.    

 

 

 

 

 



 
 

39 
 

  

A 

 

B 

 
Figure 2. A-B. Gel electrophoresis of Alouatta palliata DNA samples. The DNA 
ladder is in the leftmost lane of both gels. Gel A. shows the presence of the 
polymorphism amplified using Ab06 primers. The size of the PCR product is around 
270 bp. Gel B. shows the presence of the smaller microsatellite region amplified from 
Apm1 primers. The Apm1 PCR product is around 220 bp. The lower bands indicated 
on both gels are primer dimers (PD). 
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Figure 3. MinION sequencing. Each colored cell represents real time sequencing 
reads recognized by the nanopores of the MinION. A computer screen displays the 
incoming data from thousands of DNA strands recognized by the nanopore proteins. 
Green cells represent single, good reads while the remaining colors signify a 
sequencing issue or misread.  

 



 
 

41 
 

Table 4. Chi-Square Results for simulations. Groupings based on edge versus interior 

classification are designated (edge (E) or interior forest (I)). The ratios represent the 

proportion of heterozygotes/ homozygotes in the subpopulation. The Chi-square values 

are reported for the comparison of simulated “observed” values compared to the expected 

values. Values with an asterisk (*) are higher than 5.99 which signifies a significance p-

value of 0.05.  

 

Table 5: Fixation Indices. The ratios represent the proportion of heterozygotes/ 

homozygotes in the subpopulation. Values above 0.05 indicate genetic differentiation 

between the two subpopulations: interior and exterior. Values in light gray represent FST 

values > 0.05 and < 0.1 and values in dark gray are FST values above 0.1.  

50m    Edge   
  50/50 70/30  30/70 90/10  10/90 

 50/50 0.00046 0.0119 0.01404 0.05343 0.16423 

 70/30  0.0392 0.0035 0.08843 0.00594 0.31575 
Interior 30/70 0.03752 0.10507 0.00853 0.19423 0.08197 

 90/10  0.17237 0.07033 0.26707 0.01085 0.5872 

 10/90. 0.15008 0.27052 0.07827 0.4026 0.09161 

       
100m    Edge   
  50/50 70/30 30/70 90/10 10/90 

 50/50 0.03898 0.02888 0.08763 0.1588 0.16944 

 70/30 0.08579 0.00634 0.22484 0.02793 0.39436 
Interior 30/70 0.11049 0.16232 0.0669 0.3709 0.03425 

 90/10  0.17664 0.05918 0.35906 1E-06 0.56646 

 10/90. 0.279 0.3761 0.16671 0.63298 0.00444 

 
Edge/Interior 50/50 70/30 30/70 90/10 10/90 

50m E 0.72973 13.7027* 4.783784 37.21622* 68.35135* 
I 1.939597 76.03356* 49.13423* 264.9866* 228.9463* 

100m E 4.164835 32.73626* 19.26374* 144.033* 131.4396* 
I 0.789474 57.27368* 34.53684* 154.4526* 166.6* 
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Discussion  

To test the hypothesis that the howler subpopulation at the forest edge (50m and 

100m) would show signs of inbreeding, I sought to gather discernible sequencing 

information from the Oxford Nanopore MinION. However, Nanopore individual 

sequence results could not be confidently identified as homozygous or heterozygous. The 

sequencing read lengths are not clear enough to decide whether both copies of alleles are 

the same size or have different numbers of nucleotide repeats. While the results could not 

be used to discern genotype, this first run with the MinION is a starting point for the use 

of novel sequencing technologies on these Costa Rican howlers. Perhaps future 

sequencing work could be done with another rapid sequencing technology, such as the 

Illumina, to cross reference the reads from the Nanopore. Future improvements on the 

sequencing technology and/ or the preparation of endogenous DNA will result in clearer 

sequenced reads.  

Without verified genotype from the individual howler samples, investigation on 

possible allele frequencies of the howler subgroups at the forest edge and interior was 

completed randomly following established genotype ratios. For the interior and edge 

howler samples, each sample was randomly assigned as homozygous for two different 

alleles or heterozygous. For the purposes of statistical inquiry, random genotype 

assignment to all individuals allowed simulations with the data to randomly generate 

allele frequency numbers to be used with a Chi-square test and F-statistics. F-statistics of 

theoretical situations or genotype ratios following the genetics of the inhabitant howler 
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population at La Suerte allows insight into possible scenarios that could result from 

accurate sequencing reads in the future. The random assignment ratios were used 

following Table 4 and 5 and show which genotype ratio comparisons allow for genetic 

differentiation between subgroups. Therefore, these simulations give a picture of what 

real sequencing results might yield.  

From the simulated genotype ratios and comparisons between edge and interior 

samples, significant F-Statistic and Chi-square values, indicating genetic difference 

between the groups and significant divergence of individual groups from Hardy 

Weinberg Equilibrium respectively were noted.  Specifically considering the hypothesis 

that the edge subgroups at 50m and 100m would have higher homozygosity, the genotype 

ratios of 30/70 and 10/90 simulate increased inbreeding scenarios. As expected, the Chi-

squared values of 68.35135 and 131.4396 were calculated for low heterozygosity (10/90) 

in both 50m and 100m edge subgroups. However, there was not enough deviation from 

Hardy Weinberg for the 50m edge subgroup (30/70) with a lower Chi- Square value of 

4.783784 (< 5.99) meaning it is not significantly different from a population with no 

evolution occurring. Therefore if the edge (100m) subpopulation had a majority of 

homozygous individuals, they would not follow Hardy Weinberg Equilibrium and would 

also be genetically different than another population experiencing no evolutionary 

pressures.  

In order to simulate possible edge effect scenarios and compare the genetic 

structures of edge to interior populations, F-statistics offer a direct comparison of the 
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edge and interior subgroup genotype frequencies. Edge effects, or the increase of the 

forest edge to interior ratio is shown to result in less food availability and habitat (Estrada 

and Coates-Estrada 1996) as well as decreased dispersal ability to other howler groups 

(Oklander et al., 2010; Winkler, 2004). Therefore, to see which genotype ratio 

comparisons yield significant genetic differentiation, both the 30/70 and 10/90 edge 

groups were compared to the 50/50 interior groups. When comparing the 10/90, low 

heterozygosity edge group to the 50/50 for both 50m and 100m subgroups, the edge 

10/90 heterozygous groups were significantly different with Fst values of 0.05343 and 

0.1588 respectively (Significance >0.05). Both F-stat values are above 0.05 meaning that 

the simulation genotype composition of both edge/ interior classifications (50m and 

100m) to interior subgroups are significantly genetically different from each other. 

Interestingly, the 30/70 heterozygous edge group was only significant from the 50/50 

interior subgroup when the edge was increased from 50m to 100m resulting in an F-stat 

value of 0.08763. These simulations allow determination of what possible genotype ratios 

in the subpopulations would result in significant genetic differences between subgroups. 

In the future, improved sequencing reads could lend a helping hand to determine the 

actually allele frequencies of the inhabitant howler monkeys at La Suerte Forest.  

Accurate sequencing results are important for this study to understand the 

behavioral and genetic consequences of increased edge effects on howler monkeys from 

habitat fragmentation. The edge effects from fragmentation present new ecological 

challenges that potentially can alter population density, social cohesion, and group sizes 

(Broadbent et al., 2008; Schwitzer et al., 2011). Such challenges can result in limited 
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dispersal of howlers to new groups, thus resulting in a potential decrease in gene flow for 

the howler population. Amidst severe environmental changes, it is important for species 

to maintain genetic diversity. Genetic diversity increases the likelihood of species 

surviving against stressors which include fighting off disease (Acevedo-Whitehouse et 

al., 2003; Woodruff, 1989). As such, there is still cause for concern for the long-term 

impact of decreased habitat size on the survival of the species (James, 1992). With 

increased infringement of human activities on primate habitats, it is imperative to 

understand how monkey populations are being affected by increased edge effects. 

With continued emphasis on accurate and effective sequencing technology, 

perhaps the MinION technology could one day be regularly used for genetic applications. 

Accurate sequencing should allow quick determination of inbreeding levels in the howler 

population. As for now, the lack of clear sequencing results for two small microsatellite 

DNA regions by the new MinION sequencing technology poses a concern for applied 

research. These very technologies are being used to sequence human genomes (Jain et al., 

2018) and will likely become more commonplace in medical practice due to the 

established link of genetics to disease. However we must ask ourselves if the sequencing 

technology is reliable enough to be used with human lives. While there is concern due to 

the lack of accurate sequencing results as seen in my personal research, the technology 

will undoubtedly continue to improve. When sequencing error no longer becomes an 

issue, society must ask themselves how such technology and information can impact 

human lives especially in regard to personal health and lives. 
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In the following chapter, I will turn my attention from sequencing technologies of 

small non-human DNA sequences to the application of advanced sequencing platforms to 

sequence the entirety of human genomes. With the established genetic link to disease, 

whole genetic sequences are now easily attained and analyzed for specific mutations 

known to commonly occur with a particular disease. However instead of focusing on the 

sequence itself, I turn my attention to the potentially life altering health information 

inferred from that sequence and its imminent use in the medical field.  Knowing that 

genetic risk assessment for particular diseases can be given to patients, there are more 

challenges and questions that medical ethicists and society must address in the coming 

era of personalized medicine.  

 

 

 

 

 

 

 

 

 



 
 

47 
 

 
 
 
IV.  The New Face of Medicine  

 
I previously discussed the use of genetic sequencing technologies, namely the 

Oxford Nanopore, on evaluating inbreeding levels in a Costa Rican howler monkey 

population. The information gained from analyzing millions of DNA sequence reads has 

the potential to give insight into the howler monkey population’s behavior. Although the 

sequencing information is difficult to decipher, the results are a starting point for using 

rapid sequencing technologies for the genetic assessment of the Costa Rican howler 

monkeys at La Suerte. I explicitly used the Nanopore for all sequencing reported here. 

Initially however, I used Sanger Sequencing, first developed in 1977, to sequence the 

howler DNA samples and assess inbreeding levels (Sanger et al., 1977). The Nanopore 

and Sanger methods successfully sequenced amplified DNA samples. However, accurate 

analyses of the results proved difficult from both methods. Considering my experience 

with two different sequencing mediums, I was inspired to investigate how sequencing 

advancements are refining not only scientific research but also the understanding and 

treatment of genetic-based diseases.  

As sequencing technologies improve, the cost and analyses of DNA reads must 

improve as well. The Sanger method, which is part of the first generation of sequencing, 

is relatively cheap per sample at 7 dollars but relatively expensive per base when 

compared to next generation or Nanopore sequencing. For added perspective, it costs 

around $7,000 today to sequence 1 million bp using Sanger sequencing as compared with 
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Oxford Nanopore that costs less than a cent. For my sequencing needs, Functional 

Biosciences (WI), a DNA sequencing company, sequenced the howler DNA samples and 

displayed the results as electropherograms. Electropherograms are DNA sequencing 

reads with prominent peaks and colors designating the recorded base pair. I analyzed 

electropherograms of the specified polymorphisms present in the howler DNA and 

manually counted the number of nucleotide repeats to assess heterozygosity versus 

homozygosity. While many of the samples resulted in clear reads, some could not be 

confidently designated as heterozygous or homozygous. Rather than a strong nucleotide 

peak at the end of the polymorphism repeats, I had considerable doubt on the identity of 

the last few nucleotides with homozygous individuals being the trickiest to assess. As 

such, my research advisers and I sought out a new sequencing technique that could 

sequence all samples in one run. The search lead to the Oxford Nanopore. The Oxford 

MinION claims reasonably accurate sequencing results (95.74%) and also sequencing 

results in real time (Jain et al., 2016; Cherf et al., 2012; Manrao et al., 2012). The 

MinION technology fascinated me and I was more than excited to try the novel 

sequencing technology.  

Instead of sequencing by synthesis, the Oxford Nanopore technology directly 

sequences DNA molecules as they pass through 512 membrane-embedded Nanopore 

proteins. As the DNA goes through the protein pore, characteristic disturbances in an 

electric signal across the membrane are picked up by a computer system, marking them 

as an A, G, T, or C (Jain et al., 2016; Cherf et al., 2012; Manrao et al., 2012). Once 

loaded with samples, the MinION directly sequences the DNA in a span of 48 hours (Lu 
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et al., 2016). During the sequencing process, a computer screen displays the incoming 

data and thousands of DNA strands are recognized by the Nanopore proteins (Figure 3). I 

could not help but recall that such advancements were not possible only 3 years ago, 

when the Nanopore was first introduced. As a relatively new sequencing method, the 

Nanopore shows vast potential for applications beyond sequencing small DNA segments 

(Lu et al., 2016). The application of accurate and rapid sequencing technology is already 

extending its influence beyond scientific research into health assessment and medical 

practice. As advancements in read length and accuracy continue, the Nanopore and other 

technologies are increasingly being used to understand genetic-based disease by rapidly 

sequencing whole genomes (Ku et al., 2013; Jain et al., 2018).  

The discovery of DNA and the invention of sequencing technologies vastly 

altered not only scientific research but our understanding of humanity and our health. 

Upon the completion of the Human Genome Project (HGP) in 2001, the HGP Director, 

Francis S. Collins, and Victor A. McKusick, MD predicted that the entirety of the human 

genome would vastly change the face of medical practice. They stated, “…this is a time 

of dramatic change in medicine...We must commit ourselves to exploring the application 

of these powerful tools to the alleviation of human suffering” (Collins and McKusick, 

2011). Collins and McKusick know that science and medicine would be crossing a 

“threshold” into a new way to tackle human disease. In order to fully explore the life-

altering benefits of sequencing the human genome, Collins and McKusick recognize that 

as doctors and fellow researchers, they have a duty to utilize all of these new “powerful 

tools” (Collins and McKusick, 2011). Amongst these tools are rapid sequencing 
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technologies which allow assessment of disease-causing genes and in some cases targeted 

treatment options.  

The HGP’s wanted to obtaining a complete human genome sequence to aid 

medical understanding of disease. This legacy continues to take shape and mold patient 

diagnosis and treatment with the explosion of sequencing based research (Collins, 1999). 

Just as the HGP houses the first human genome on a computer system, the continually 

growing research behind the genetic basis for disease is recorded on various databases. 

One such database is the Online Mendelian Inheritance in Man (OMIM®) which is a 

compilation of recorded human genes and genetic disorders. The OMIM compliments the 

aims of the Human Genome Project to understand the function of each human gene to aid 

medical practice (National Center for Biotechnology Information). Sequencing 

technologies combined with online databases of mapped disease causing genes are a 

powerful arsenal in the hands of medical professionals. 

To examine the transforming role of Next Generation Sequencing technologies on 

medicine, this chapter specifically explores the use of Whole Genome Sequencing 

(WGS), sequencing all 6 billion bases, for signs of disease and ultimately how genetic 

results can positively and negatively impact patients and life outcomes. Largely, medical 

professionals will need to become true experts as patients now can seek out and live with 

this new genetic information. Health risk not previously available to patients is now 

commercially available. The question remains, what will patients do with this new 

information? We must consider how patients will react and how can medical 
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professionals help. Sequencing of whole genomes allows the discovery of disease genes 

early and accurate diagnosis of current symptoms allowing for individualized patient 

treatment and prognosis. As such, WGS and diagnosis tests fall under the umbrella of the 

recently coined, “personalized or precision medicine.” Defined broadly, personalized 

medicine is the utilization of genome test results in order to tailor disease treatments to 

the specific needs of the patient (Lesko and Schmidt, 2014). This can include tailored 

drug therapies to the exact mutation present or even drug dosage amounts. Despite its 

proliferation as a diagnostic tool, there are a number of serious ethical pitfalls that remain 

to be addressed by scientists and doctors, and importantly by individuals.   

Whole Genome Sequencing: Our Complete Book 

While there is inherent beauty in the gene sequences that make up each 

individual’s characteristics, that diversity is accompanied with life’s maladies. The 

maladies that I refer to are the inescapable fact of genetic disease. Sequencing allows 

researchers to understand the genes that make up a diverse array of physical attributes 

and the myriad of intricate molecular functions of the human body. However, one of the 

main purposes of the HGP being overseen by the National Institutes of Health (NIH) was 

to improve medical treatment of disease (Stankiewicz and Lupski, 2010). Reading the 

DNA sequence brings humanity closer to understanding a large source of life’s suffering. 

Variation or deviation from a normal gene sequence can occur during conception with the 

mixing of maternal and paternal DNA copies or it can happen due to abiotic factors such 

as UV radiation that can create breaks in DNA strands (Guttmacher et al., 2005). While 

not all mutations lead to abnormal gene products, the very mechanisms which create 
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humanity’s immense diversity also allow disease. The genetic nature of disease is 

therefore a tool for medicine to potentially improve patient outcome and treatment. 

Rapid sequencing technologies are continually transforming the diagnosis of 

disease. Disease diagnosis mainly uses patterns of familial inheritance to identify current 

disease and predict future risk. With the progression of sequencing technology in the 

early 2000s, genetic tests mostly used targeted DNA approaches to identify genes 

connected to specific disorders including conditions such as Tay Sach’s and 

phenylketonuria (PKU) (NIH, 2010). Practitioners can order targeted sequencing of 

amplified regions containing disease gene variants to combine with phylogenetic analyses 

for a comprehensive profile of their patients (Van El et al., 2013). With this method, 

genetic counselors focus on high risk disease probabilities for that specific patient and 

limit their genetic inquiry to the “driver” mutations or risk alleles most common in the 

population (Rajendran and Deng, 2017). In doing so, genetic counselors and patients 

disregard the information contained in the rest of the genome.  

Targeted sequencing methods are useful to determine the cause of particular 

diseases, yet these targets are often chosen based on familial history and medical 

diagnosis. This targeted approach poses a concern for individuals without any prior 

family incidence of disease. For example, in a 2012 study on the applicability of targeted 

approaches, Calvo et al. sequenced the coding exons regions of ~1,000 nuclear 

mitochondrial genes in 42 patients with a condition called human oxidative 

phosphorylation. While 10 cases could be accurately diagnosed, 19 patients did not carry 

known variants in the targeted regions. Therefore, Calvo et al. (2012) concluded that the 
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variants must be in other genomic sites. While targeted approaches can offer insight into 

some cases, WGS offers a complete view of the genome, allowing thorough assessment 

of faulty genes and other mutated DNA regions. Due to the complex nature of disease, 

deleterious mutations can also occur in non-coding DNA and potentially alter the 

expression of important nearby genes. Therefore, in complicated cases, sequencing the 

entire 6 billion base pairs of DNA could prove useful. WGS can serve as an overall 

health profile beyond the scope of targeted sequencing or multigene panels. As such, 

WGS is increasingly used for health applications (Wheeler et al., 2008; Welch et al., 

2011). With WGS and subsequent analyses alongside known disease variants, the genetic 

basis for current conditions as well as a complete profile of future disease risk becomes 

available to the patient.   

WGS is a common practice in the realm of scientific inquiry and its price tag is 

increasingly becoming cheaper. Do a Google search of companies that offer whole 

genome sequencing and the first company, Genome One based in Sweden, offers to 

completely sequence a human genome for $1,000. This is certainly a drop from the 

HGP’s 3 billion dollar budget. Genome One will provide a complete sequence but the 

analyses or Whole Genome Analyses (WGA) of what that sequence means is omitted. 

However, if a person does not want to pay $1,000, they can volunteer their genome 

sequence to science. 2005 marked the beginning of a volunteer, non-anonymous project 

to sequence 100,000 human genomes. This grandiose effort is the ongoing Personal 

Genome Project (PGP). At over 5,000 participants thus far, PGP seeks to expand an 

online database where researchers can seek out common genetic variants associated with 
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disease similarly to the OMIM online database (Harvard PGP, 2018). These exciting 

insights into disease and phenotype are possible due to the advancements in sequencing 

technologies. The PGP amongst other large sequencing plans will help usher in future 

changes to medical practice, leading to an emphasis in prevention and therapeutic 

strategies (Ku et al., 2013). 

WGS and WGA of patient DNA create a comprehensive disease profile that 

includes all SNP’s, recognized risk alleles, and whether individuals are homozygous or 

heterozygous for particular variants. This information is then used to create a risk 

assessment profile. The variants increase an individual’s basal level risk of disease for the 

general population by an order of magnitude. The risk assessment comes from the work 

completed in genome wide association studies (GWAS) that seek to catalog common 

disease variants or SNP’s co-existing with disease phenotype (Hindorff et al., 2009). For 

example, in Iceland a comprehensive study sequenced the whole genomes of 2,636 

people and discovered rare allele variants only present in an isolated Icelandic 

population. By “rare allele variants,” Gudbjartsson et al. (2015) describe various single 

nucleotide polymorphisms discovered in the study population coexisting with particular 

diseases. Some allele variants were linked to diseases including liver disease and early-

onset atrial fibrillation. Studies such as this allow comprehensive association of these 

variants with expressed phenotypes including both physical traits and health 

(Gudbjartsson et al., 2015). The knowledge gained from WGS studies further improves 

the scope of next generation sequencing diagnosis. With continued discovery of disease-
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causing genes, WGS could prove to be more useful in medicine and not just for gene 

research.   

While not yet a primary method for diagnosis in the medical field, WGS is 

becoming a reality for some disease tests. However, the clinical utility of WGS is in 

question due to the ambiguous nature of most risk allele results. There are few diseases 

whose genes increase disease risk for a patient in a meaningful way. For instance, the 

presence of a mutation in BRCA1 can increase a woman’s risk of breast cancer to 80%. 

These odds surely cannot be ignored; however, for a majority of diseases, a 2010 study 

on the clinical utility of GWAS reports that risk assessment only provides “scant 

evidence” for a possible disease (Manolio, 2010). In essence, individual risk results are 

hard to assign due to difference in lifestyle and environment. Optimal risk assessment 

metrics have yet to be found and there is a lack of accurate interpretation of results.  

Based on the percentage of the population with a particular disease phenotype, 

mutations marginally increase the risk for a particular disorder. While WGS with 

analyses can scan for multiple conditions at one time, there are few factors that can 

separate individuals enough to be taken from low to high risk (Manolio, 2010). By 

separate, I refer to low, medium, or high disease risk as defined by the area under a curve 

(AUC) for disease risk assessment (Figure 4). The curve is created based on the 

proportion of risk alleles an individual has as well as assessment of family history. A shift 

in position for an individual under the curve is due to particular risk allele presence.  

 

 



 
 

56 
 

The ability to peer inside one’s genome and know your personal disease risk is an 

attractive idea in our present society. Starting in 2004, sequencing efforts became 

commercially available or direct to consumer (Niemiec et al., 2016). A popular company 

is 23andMe which allows the consumer to choose the health information shared with 

them after targeted sequencing. Shortly, the commercial genetic testing company will 

launch WGS as well (Hughes, 2013). With their services, an individual can specifically 

test for over a 1,000 allele variants associated with disease. For instance, a person could 

want the results for the late onset Alzheimer’s gene variant or risk alleles for Parkinson’s 

disease. Once known genes are sequenced with 23andMe, consumers often take the 

 

 
 
Figure 4. Risk Threshold classification for disease in the population. The basal risk of 
disease for most individuals lies in the median (yellow) area of the curve. The arrows 
between individual points signify a shift in risk due to new information specific to that 
person. Such shifts can be enough to change a risk category. Figure retrieved from 
Manolio, 2010. 
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health data to medical professionals to verify any current phenotype or higher risk. These 

companies allow untrained laymen to peer inside their genome and simply tell them if a 

gene variant is present or not. There is no risk assessment or one-on-one conversation. 

Individuals simply are left with a surface level assessment of their possible future health. 

What Your Genome Can Do For You 

Scientists and medical practitioners are both excited and worried about the 

imminent influence of WGS in common medical practice. While some doctors anxiously 

await the imminent changes to healthcare, others recognize that the benefits also come 

with negative consequences that should not be ignored (Kawamoto et al., 2009; Johnson, 

2016; Parens, 2015; Lesko and Schmidt, 2014). Ideally, genomic DNA is a necessary 

change to medicine that will reduce treatment time, overall number of deaths, and total 

health costs (Kawmoto et al., 2009). However, ethicists are still grappling with the 

possible psychological trauma from knowing the chance of illness (Cacioppo et al., 

2016). Doctors and researchers alike recognize that sequencing of individual patient 

genomes gives a direct blueprint to the genetic abnormalities responsible for deleterious 

phenotypes and thus allows doctors to better serve their patient’s unique health needs. 

Personalized genomic data changes the approach to medicine. Whether this change is 

positive is left up to the practitioners and patients to decide.  

The ability to read the entirety of one’s genome allows the discovery of possible 

risk alleles associated with disease (Wheeler et al., 2008; Lindor et al., 2016). As WGS 

moves outside of large scale research efforts, researchers are discovering its profound 

applicability to solving medical conundrums including cases with rare allele variants as 
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well as variants previously unknown to cause a particular disease. In 2011, Welch et al. 

(2011) investigated a medical mystery surrounding a patient with acute promyelocytic 

leukemia via WGS. Through traditional methods of analysis including metaphase 

cytogenetic and interphase fluorescence in situ hybridization (FISH), no evident cause for 

the condition could be identified. The patient agreed to WGS and within 7 weeks, DNA 

was analyzed against common mutations and the information concerning a cryptic fusion 

oncogene was verified with PCR (Welch et al., 2011). With only 10ng of patient DNA, 

WGS identified a disease’s genetic cause and also improved the speed at which doctors 

could administer a treatment regimen (Welch et al. 2011). Today the sequencing speed is 

drastically improved with times ranging from as low as 26 hours to roughly two weeks; 

time after the sequencing is reserved for WGA or analyses to determine variant alleles 

(Miller et al. 2015). Sequencing results received in a timely manner enable a physician to 

present the outcomes immediately and start a new course of treatment.  

As the cost and error rate of WGS are reduced, healthy people desire the results to 

preemptively detect potential signs of disease. Tests on healthy adults help prepare 

individuals for future health challenges. Despite not having current phenotypic 

expression, individuals recognize that WGS can detect all common variants including 

rare single-nucleotide variants, copy number variants, and insertions and deletions that 

can later be mapped against known risk alleles (Lindor et al., 2017). Regarded as the 

“ultimate genetic test,” WGS offers a glimpse into the instructions that make up one’s 

physical characteristics as well as the possible fate of their health (Drmanac et al., 2014). 

Knowing the contained information is certainly an enticing offer considering the genome 
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remains constant starting from conception to the end of life. Perhaps genes can offer a 

helping hand when their messages are read correctly.  

While the risk results of WGA are never 100% certain, people can still prepare 

themselves for the worst outcome and in some cases take considerable effort to alter their 

fate. WGS offers an error rate of roughly 1 in 100 kb or one in 200–500 SNVs 

discovered, for some technologies (Wall et al., 2014; Drmanac et al., 2015). The 

analyses’ results are accompanied by this high error rate, which although rare, can result 

in false or missed diagnoses. Despite the imperfection of the technology, people still 

strongly believe that by knowing the possible outcomes from inherited genes, they negate 

the possibility of being blindsided later in life. They can seek the optimal treatment and 

begin making better life choices now rather than later. Put simply, an increased risk of 

heart disease from a particular risk allele could be decreased by eating non-processed 

foods and going for a walk every day. Changes such as these could be made from the 

information contained in a genome. Perhaps in the case of genetics, knowledge is indeed 

power.  
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V.      Taking Control Over Your Genes 

 
In my previous chapter, I outlined some of the major arguments for Whole 

Genome Sequencing (WGS) to aid medical practice. Specifically looking at the 

information gained from non-targeted sequencing, patients do not have to waste time 

completing grueling diagnostic tests but can simply give a small sample of blood and 

have an answer in days to weeks (Welch et al. 2011). The results remove the guessing 

game for current disease pathology and can give patients peace of mind. In a timely 

manner, patients can know the genetic basis of their condition and begin a tailored 

treatment regimen that in some cases can drastically improve treatment outcome (Miller 

et al. 2015; Welch et al., 2011). However, with the commercialization of WGS for 

diagnosis of current and possible disease, the possibility for inadvertent risk allele 

discoveries also poses a concern for the wellbeing of the patient. While looking for the 

specific genetic cause of a particular disease, the genetic risk factors for another ailment 

can also be discovered. Sharing this information without full explanation and 

understanding likely places added anxiety on the patient and their family (Cacioppo et al., 

2016). Therefore, if WGS is implemented into standard medical practice, practitioners are 

faced with a new challenge to their oath, “First, do no harm” (Shmerling, 2015).  

To “First, do no harm,” every new medical practice must go through a 

comprehensive evaluation before it can be accepted in healthcare. While I cannot share 

personal experience of being given WGS sequencing results, I can imagine my response 
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to knowing my future health risk. I envision being afraid of the information, knowing that 

I have no control over the messages my genes carry. Results received as a healthy 

individual would undoubtedly be received differently than someone who already has a 

disease with an unknown cause. Knowing my personal risk for one, two, or maybe three 

diseases has the potential to vastly alter my outlook on life. The discovery of a significant 

increase in risk would become all-consuming with days spent anticipating its arrival. 

Thankfully not all risk alleles give a high probability.  

Reading Your Book of Life 

Not only is the sharing of incidental disease variants a problem for doctors but 

also whether discoveries have enough concrete evidence to be deemed legitimate 

findings. By legitimate, I allude to the uncertainty caused by one’s unique environment, 

family history, and the even more rare chance of sequencing error. What individuals must 

realize is that health risk assessment is not diagnosis. There is considerable chance that a 

disease will not be present later in life. Not all individuals with a common disease variant 

acquire the disease and not all with the disease have one or more copies of a driver 

variant. This phenomenon can lead some individuals to disregard the information from 

WGS and others to continue their lives constantly worrying about the timing of a 

condition. Doctors are unable to know the severity of the condition as well as when it will 

appear (Mukherjee, 2016). Therefore, the uncertainty of acquiring the disease is still 

present both before and after WGS. Looking at the example of breast cancer, not all 

individuals with a mutation in BRCA1 will develop the cancer and some mutations in 
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BRCA1 only marginally increase a patient’s risk. Therefore, we can recognize that not 

every gene is fully predictive of risk. Environment and chance play a part. Disease 

manifestation is not always that simple either with various diseases involving hundreds of 

genes. Reading our book of life is proving difficult as we seek to interpret its hidden 

messages. While one is inclined to say that more knowledge is power, we have to keep in 

mind the anxiety that a new form of uncertainty can bring. We must ask the question 

whether this difficulty is worth the professed reward or if we should leave our genetic 

secrets unearthed.  

Commercially available, 23andMe, a genetic sequencing company, seeks to give 

sequencing results and chosen health risk information with little hassle to its consumers. 

Proudly displayed on their website is the slogan, “To be your best self. Look inside 

yourself.” The language implies that individuals should look inside their genome to know 

their destiny and ultimately to understand themselves. The essence of their advertising is 

such that people feel that reading their genes will unlock the key to a life of happiness or 

their “best self.” A simple sample of spit is enough for the company to extract viable 

DNA, and when the spit vial arrives at your doorstep, the words, “Welcome to you” are 

written on the cover. While 23andMe intends for its users to know their health 

assessment and make positive life changes, they instill this idea that one’s genes are the 

key to knowing ourselves both in the present and future.  

The publicity surrounding WGS sounds too good to be true. Sequencing 

companies advertise an opportunity to prepare oneself for possible diseases by making 
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beneficial life changes. I wonder, though, if I would be one of the thousands of people 

who would purchase their genetic code and disease risk. Considering a current disorder, 

of course I would want to know its genetic cause. The anxiety of a current disease would 

already be present and knowing the exact cause might offer some comfort (Sapp et al., 

2014). But when it comes to whether I would get sequenced by a company such as 

23andMe and be checked for more than 1,000 disease mutations, I told myself, “No.” I 

anticipate having unnecessary anxiety and unexpected, potentially life altering results 

with particular risk allele presence. I cannot imagine bringing myself to opening the 

results with the words, “Welcome to you” boldly displayed.  

 Not surprisingly, my fear of stress caused by WGS results is a current hot debate 

among geneticists and medical professionals. High on the list of ethical concerns around 

WGS is the release of sensitive information to the patient which includes incidental 

discoveries of other strong genetic risk factors beyond the desired result (Cacioppo et al., 

2016). While the handling of this sensitive health information is an entirely separate issue 

than the use of whole genomes for health assessment, I am reluctant to say I want that 

information provided to me. Given the scope of this concern among ethicists, the 

American Society of Human Genetics Board of Directors and The American College of 

Medical Genetics Board of Disorders (ASHG/ASMG) gave a detailed report in 1995, 8 

years before the completion of the first human genome, in which they predicted that 

people would have intense psychological stress and anxiety from future disease 

prognosis. In the report, they advise that such distress should be prevented while still 

understanding that genetic testing has a valuable place in the medical field. In a 
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formalized statement, the ASHG/ASMG seek to avoid undue early stress by 

recommending that future professionals only report possible diseases that can have 

effective treatment, prevention, or delayed onset, whereas other disease risks should not 

be reported. My response to this statement was rather positive and I saw myself accepting 

these limits on testing results. Analyses simply would neglect those definite disease-

causing genes. Perhaps with strict protocols on handling information, WGS could 

become a benefit rather than potentially harmful reality.  

 Although strict handling policy could help circumvent anxiety, there are various 

investigations on patient response to genomic results that suggest patient anxiety and life 

practice are not as significantly altered as commonly believed. According to a study 

published in The New England Journal of Medicine, 90.3% of study applicants did not 

react with significantly higher levels of anxiety after receiving WGA results (Bloss et al., 

2011; Heshka et al., 2008). In a review study compiling the results of more than 30 

scientific papers on post retrieval of disease risk, Heska et al. (2008) discovered that there 

are no psychological problems associated with receiving risk assessments. They report 

that anxiety is at first present but does not last in high levels in the following months. 

Participants were largely happy knowing the results rather than not knowing. While 

sequencing can reveal higher disease risk, it can also ease the mystery behind the 

inheritance of disease causing genes.  

Another analyses of anxiety from sequencing results shows that despite the 

presence of strong risk factors, individuals feel less anxiety than worry regarding their 
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results. This study, also from the New England Journal of Medicine follows the reactions 

of 160 adult children of an Alzheimer’s parent. The disclosure of sequencing results 

specifically focusing on the driver mutation in APOE, showed no significant 

psychological trauma. Rather, participants largely felt relieved due to removed 

uncertainty and also recognizing the chance of not acquiring the disease is higher than 

their risk. As an added perspective, individuals with a negative assessment of 

Alzheimer’s risk had pre-result stress relieved. Here, the information gained was power 

in their hands. While there is still uncertainty due to the combination of environment with 

familial inheritance, participants gained peace of mind (Green et al., 2009). Participants 

in WGS seek an answer to or even avoidance of life’s uncertainty. If sequencing analyses 

results offer no deleterious anxiety or after effects, then perhaps by gaining their code, 

there is an aspect of their humanity that could be detrimentally affected.  

Continued Uncertainty 

 While I predicted that sequencing results would be received with fear and long-

term concern, I was surprised to discover that this is not a significant consequence of 

WGS results. Perhaps there is something else that is lost by knowing personal health risk. 

Therefore, I turned my investigation to possible life changes as a result of sequencing 

information.   

 Given the exciting promises of WGS accompanied by the worries of the ethical 

community, an American physician and oncologist wrote the book, The Gene: An 

Intimate History to share his opinions on the coming societal changes from genomic 
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technology. The author, Siddhartha Mukherjee, details the discovery of DNA and shares 

his worry about DNA’s future trajectory. Mukherjee describes that screening for all 

possible diseases will create a world inhabited by “previvors who have been screened for 

genetic vulnerabilities” and thus use their genetic knowledge to avoid disease where 

possible (2016). Tied to this need to be prepared and know one’s intimate health future 

appears to be a desire to change one’s destiny, to avoid life’s uncertainties, to ultimately 

be 23andMe’s “best self.” However, Mukherjee continues his argument describing that 

while, “grief might be diminished…” so “might tenderness… Infirmities might disappear, 

but so might vulnerability” (2016). Just as individuals seek to be prepared and alleviate 

their health vulnerabilities they also miss out on the lessons learned from confronting that 

vulnerability. While Mukherjee’s argument is mainly directed to purposeful editing of 

personal genomes to fix mutated genes, his assessment is still applicable for the sharing 

of a total disease risk assessment. WGS exemplifies humanity’s constant need to alleviate 

all forms of life suffering and we appear unafraid to read our own instruction manuals 

and unearth its secrets.  

Life’s suffering and unknown challenges undoubtedly leave individuals 

vulnerable and at times helpless, especially in regard to their bodily health. I wrestle with 

understanding the purpose behind all of life’s suffering but perhaps there is a value in 

accepting life’s unpredictable nature. Recently I came across a book that offered some 

help, entitled Man’s Search for Meaning. Within its pages the author, Victor Frankl, 

describes his experience in a concentration camp during World War II. The miraculous 

part of the autobiography is Frankl’s determination to respond well to his life’s 
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misfortune. Frankl proposes a psychological analysis of human suffering where he asserts 

that human beings possess a spiritual freedom or ability to choose their response to pain 

and uncertainty. If humans have the ability to choose their response to pain, perhaps 

times of struggle can be converted to moments of triumph. Frankl argues that, “The way 

in which a man accepts his fate… the way in which he takes up his cross, gives him 

ample opportunity… to add a deeper meaning to his life” (2006). The “opportunity” is a 

chance to unearth personal moral values amidst suffering. While reading Frankl’s 

argument, I envisioned that a deleterious allele discovered through WGS could be 

considered a moment of suffering. Therefore, posed with this circumstance, all 

individuals have an opportunity to accept their fate and continue living life as well as 

they can.  

Of course, life choices after receiving WGS analyses are left up to each individual 

to decide. Many would argue that individuals could not easily find a sense of joy or 

purpose amidst psychological stress but Frankl says that all humans do have a choice to 

respond well. To respond well suggests that personal integrity is upheld. Frankl asserts 

that “Man can preserve a vestige of spiritual freedom, of independence of mind, even in 

such times of psychic and physical stress” (2006). This spiritual freedom is the choice to 

go one’s own way rather than allowing suffering to change overall life perception. In the 

case of genes, we all can choose to define our own lives rather than letting our genes lead 

our decisions. Life is full of uncertainty; it is our sole responsibility to respond well to 

that ambiguity. We can either attempt to know what our genes have in store for our 

overall life or we can live with their secrets hidden. In either case, we still have 
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uncertainty and we are vulnerable to the fate our genes grant us. If we choose to have our 

disease assessment, perhaps we can be prepared with purposeful life choices to hopefully 

reduce our risk. One could argue that both choices are valid and we still have the 

opportunity to respond well to life’s circumstances.  

Knowing that disease risk results can offer peace of mind, and enable individuals 

to take control of their health, there is still much ambiguity in regard to future health. 

WGS results give at least some form of autonomy to its users, asking them to decide how 

they will handle the information. Oftentimes, when armed with this genetic “book”, the 

insights may not make sense to its readers. That is why it is crucial for doctors to 

understand genetics and be able to explain options and future directions to their patients. 

Medicine did not previously know our gene risk and doctors have always had a moral 

obligation to tell their patients of a current disease. However, the role of physician 

changes when the information is a risk assessment and carries uncertainty. With the 

commercialization of genetic sequencing, more and more individuals will be seeking 

their doctor’s expertise. Doctors must be prepared with the knowledge to serve their 

patients’ best interests. Knowing that WGS is a coming change to medical practice, 

practitioners must still continue to live by their creed to “First, do no harm”. Although 

this is a negative duty for doctors, there is also the implied positive duty to alleviate 

suffering. The future will determine to what extent WGS will influence the full range of a 

doctor’s responsibility to their patients.  

While there is much to be learned from the unknown challenges of life, WGS 

does not eliminate the opportunity to respond well to life’s circumstances. Instead, it can 
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remind people of their autonomy and agency to decide for themselves how their life will 

develop. Most importantly, WGS results might serve as a reminder to take care of our 

bodies but also to live life well. The sequencing future of medicine must allow patient 

choice and ensure their informed consent regarding receiving their sequencing results. It 

will be up to the patient to decide whether they want to have a translation of their life 

code. While there is uncertainty in not knowing, I acknowledge the value of being 

prepared. After all, a person could become more vulnerable if disease is entirely 

unexpected. Health professionals must ask themselves, “By denying WGS, are we 

robbing individuals of their agency?” Although I previously thought that vulnerability 

and life’s lessons could be altered or lessoned from gaining sequencing results, I now 

realize that vulnerability is still present from the uncertainty of risk as well. Perhaps 

Frankl is right when he says that we can respond well to suffering in all of its forms.  

WGS is more complex than some people may know and cannot offer complete 

answers. Although sequencing is not always perfect, as seen in my previous genetics 

experiment, our society and medical professionals are faced with this new medium of 

information. Personal genomes, previously untapped, provide our doctors with new tools 

to serve their patients and they are charged with educating those who choose to read their 

book of life. Although enticing, the translation is not yet easy to understand. It is up to 

each individual to choose how they act on this knowledge. The knowledge can encourage 

people to decide how they live the rest of their life or it can become a looming fear of 

what may not come. Individuals must be careful though to understand that risk 

assessment from sequencing is not set in stone and cannot predict the future. If WGS is 
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imminent, health professionals can protect the interests of their patients by emphasizing 

just how complex one’s genetic code really is and give them options for their next steps.  

Perhaps individuals armed with the information, no matter how uncertain it may 

be, might be reminded to appreciate life for all of its uncertainties. The genetic 

information might give people an extra nudge to live life well. When getting sequenced, 

individuals should not have the mindset that they can predict their health future and 

therein avoid life’s challenges. Instead, if we choose to purchase our sequence, we all 

should take the power that sequencing may provide and appreciate its knowledge, while 

fully knowing that there is still much uncertainty and much still to be deciphered. Rather 

than have your genes inadvertently tell you how your life might develop, what you 

should eat or whether you should have children, we should dictate our own life course 

and its numbered moments. When asked whether we want the analyses of our sequence 

results, the choice we make should come from knowing ourselves and how we respond to 

risk. Risk places our life in numbered form so that we can attempt to act upon its 

meaning. Therefore, knowing oneself is important as we now enter into a medical 

profession that seeks to “personalize” its approach. Our genes are not the key to knowing 

ourselves, it is our response and acceptance of our vulnerability. Only when we value the 

bodies and life that we are given, will we being to appreciate our moments of 

vulnerability for revealing who we truly are as individuals.  
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VI.     Conclusion 

 As I look back on my time in a genetics laboratory and as an honors student at 

Regis University, I am continually reminded of a phrase that my writing Professor, Dr. 

Bruhn, used to tell the class, “At Regis, we like to cultivate ignorance.” At the time, Dr. 

Bruhn sought to push back on the first year student perception of college. Considering the 

endeavor to write this thesis, it showed me that the more knowledge we gain, the more 

we realize how much we do not know. There is a lot to be said about the uncertainties of 

life, being ignorant of when life will throw you a curveball or not knowing how to 

accurately discern sequencing results. Yet as we dive deeper into the mysteries of our 

own genetic code, we ultimately find more uncertainty. However this time, that 

uncertainty can be accompanied by grief and fear for what may never occur. Not all risk 

assessments end in disease, but they do have a lasting impact on one’s definition of their 

own life. One thing that Honors has taught me is that we are all on a pursuit for life’s 

meaning. Intrinsically tied to the definition of life is suffering and ultimately death, yet 

we inadvertently spend many moments of our life trying to evade death and eliminate our 

suffering. As a future physician, that will undoubtedly be my life pursuit, to alleviate the 

suffering of my fellow human beings.  

 When we peek inside our genome, we seek to redefine our fate, hoping to change 

the course alluded to in our genes. However, genes are not the ultimate road map to our 

life’s happiness or sorrow. We are. We decide how to respond to the uncertainties of life 

and all of life’s suffering. We can either choose to let ourselves be consumed by our 
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worries and fears or we can choose to learn from our moments of suffering. We can still 

triumph over the genes that we were dealt by chance. Because after all, is not life left up 

to chance? At conception with the random combination of maternal and paternal genes to 

the random people that we encounter every day, our life is left up to us to discern our 

response.   

 Although knowing the possible health problems that we may have in the future 

can offer hope and maybe even relief at not having any diseased alleles, we still seek to 

be prepared. Of course lives can be saved by knowing disease risk, yet as the use of WGS 

increases in medicine, it is up to each individual whether they want to know all of their 

DNA secrets, however uncertain they may be. Outlook on life can be altered for good or 

worse, but one’s response reveals who we are as individuals. There is value in cherishing 

life with all of its uncertainties. Regardless of receiving WGS results, we are still faced 

with life’s lessons. We can make conscious decisions to improve our lifestyles whether 

that is with more exercise or with moments of joy. I strongly believe that individuals can 

live without having a glimpse into their future and WGS cannot offer that guarantee. 

With the imminent use of WGS both commercially and in medicine, health providers 

must make a conscious effort to treat sensitive genetic information with care. Individuals 

who choose to have WGS need to understand their risk assessment beyond just the 

presence or absence of certain alleles. Before receiving sequencing results, we must 

recognize that our genes are not the key to knowing ourselves.  
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