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CHAPTER 1. LITERATURE REVIEW: INVESTIGATING THE INFLUENCE OF 

ABIOTIC VARIABILITY ON ESCHERICHIA COLI POPULATION DYNAMICS 

IN THREE DENVER, CO STREAMS 

 
Waterborne illnesses continue to be a public health concern nationwide (Griffin et al. 

 
2001). In the United States, the Environmental Protection Agency (EPA) along with local 

jurisdictions monitor and treat water used for drinking and recreational activity to prevent 

disease. Despite this vigilance, approximately 250,000 illnesses still occur every year from 

pathogenic contamination (Soller et al. 2010). An array of waterborne pathogens including 

Cryptosporidium, Giardia, Norovirus, Salmonella, Escherichia coli, Legionella, and Hepatovirus 

cause multiple adverse health effects including gastrointestinal illness, reproductive problems, 

and neurological disorders (Hlavsa et al. 2015). Populations especially susceptible to these 

illnesses include infants and young children, pregnant women, the elderly and 

immunocompromised patients (Hlavsa et al. 2015). 

Testing for each waterborne pathogen is a time-consuming and costly endeavor. Thus, 

agencies use E. coli as a bacteriological indicator to test for fecal contamination, the likely 

source of most waterborne pathogenic diseases (EPA 2012). E. coli concentrations are strictly 

monitored to protect human health and to determine if water bodies are meeting federal and state 

regulatory compliance. However, E. coli populations are highly dynamic and are controlled by 

numerous abiotic factors at a variety of spatiotemporal scales such as UV exposure, turbidity, 

temperature and sediment entrainment. Consequently, relying on one static measurement for E. 

coli may not capture an accurate representation of E. coli concentrations, potentially resulting in 
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false positives which can result in federal and state non-compliance or false negatives which can 

risk public health exposure to disease. Given the complex interacting nature of abiotic factors on 

E. coli concentrations in ambient waters, a comprehensive field study that examines their joint 

influence is needed. This is of particular importance in the City and County of Denver where E. 

coli concentrations exceeded EPA standards in ten streams with only one meeting standards for 

recreational use in 2015. This study will significantly benefit Denver and its residents as the city 

continues to improve its water quality program and reach its goal of making all rivers and 

streams fishable and swimmable by 2020. 

E. coli is a gram-negative, lactose-fermenting, coliform bacteria found in the intestinal 

tracts of warm-blooded mammals (Edberg et al. 2000). Most E. coli strains found in lakes, rivers 

and streams are not harmful but frequently co-occur with other pathogenic microbes that are 

passed into the environment by fecal matter (Blaustein et al. 2013). The strong correlation 

between fecal contamination and E. coli concentrations have made the bacteria a viable 

candidate for assessing water quality and public health risk (Griffin et al 2001). Although the 

bacteria have been used as a water quality indicator since the 1890’s, quantitative measures of its 

concentration were unavailable at that time (Edberg et al. 2000). In the 1970’s numerous studies 

found E. coli to be the only coliform inhabitant in warm-blooded gastrointestinal tracts, 

recognizing it as the best indicator for fecal contamination available (Edberg et al. 2000). 

The birth of the Environmental Protection Agency (EPA) and the Clean Water Act 

(CWA) of 1972 paved the way for pathogen monitoring with the creation of the Beaches 

Environmental Assessment and Coastal Health (BEACH) Act of 2000. The BEACH Act directed 

the EPA to conduct studies that evaluated the relationship between pathogens and human health 

impacts (Recreational Water Quality Criteria 2012). Numerous comprehensive studies found a 

significant link between gastrointestinal illness and fecal contamination in water and the EPA 

revised the Recreation Water Quality Criteria in 2012 to better protect the public from high- 
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contact recreation water use (EPA 2012). The current standard set by the EPA for E. coli 
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concentrations in recreational waters is 126 colony-forming units (CFU: one viable cell capable 

of reproduction) per 100 milliliters of water (Sieuwerts et al. 2008). However, this standard is 

only a recommended level of protection, not a regulation, and it is the responsibility of states and 

local jurisdictions to adopt their own water quality criteria. Denver uses the EPA standard; even 

though many states use higher standards. 

Even though strict standards now exist, E. coli populations vary both spatially and 

temporally as a result of several 

abiotic factors interacting, challenging 

compliance and increasing the risk to 

public health (Figure 1). One such 

challenge is that E. coli exhibits 

significant temporal variation as a function of time of day and season (Desai et al. 2013). E. coli 

daily variation was measured over a 24-hour time scale in the San Jacinto River Basin to 

understand how often during the day a sample collection would lead to significantly different E. 

coli concentrations (Desai et al. 2013). E. coli was significantly lower during the afternoon 

compared to the morning, decaying at a rate of 3.67 to 24.7 CFU/day and bringing concentration 

levels below the EPA standard (Desai et al. 2013). However, the bacteria rapidly regenerated at 

night on the order of 9.41 to 64.1 CFU/day, returning concentrations back to pre-decay levels 

(Desai et al. 2013). After collecting samples at two different sites every three hours in the upper 

Hoosic River, Traister & Anisfeld (2006) also found higher E. coli concentrations in the early 

morning than in the afternoon as well as an accelerated decay rate throughout the day. 

Solar radiation plays a pivotal role in E. coli concentrations and decay rates are largely 

dependent on light intensity (Rincón et al. 2004). This is because ultraviolet light inactivates 
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many forms of bacteria, including E. coli and is commonly used in laboratories for germicidal 

disinfection and the same effect is present in many streams, lakes and rivers (Figure 1, A) 

(Katara et al. 2008). Rincón et al. (2004) found that E. coli concentrations are predominately 

controlled by light intensity and that as sunlight intensity increased, the rate of decay increased 

as well. Furthermore, Fujioka et al. (2002) also found that the stability of E. coli and other 

viruses in the absence of sunlight were several orders of magnitude higher than the stability after 

exposure to one hour of summer and winter sunlight conditions (Fujioka et al. 2002). 

Water temperature, a variable largely controlled by sunlight exposure, further influences 
 
E. coli population dynamics in complex ways (Figure 1, D). As temperature rises, UV 

inactivation rates gradually increase but so does the growth rate of E. coli up to a threshold 

temperature (Blaustein et al. 2004). Researchers determined the relationship of water 

temperature on E. coli concentrations using the Q10 equation, which can estimate the dependence 

of biological rates on temperature (Blaustein et al. 2004). Although results vary depending on the 

depth and size of the waterbody, E. coli did not decay at low temperatures (Blaustein et al. 

2004). Consequently, the net direction and magnitude of the effect of temperature on E. coli 

concentrations varies both across and within watersheds. Many monitoring plans across the 

country emphasize E. coli concentrations in warmer seasons because the bacteria are thought to 

be less productive in the colder months. However, during the fall and spring bacterial 

concentrations may be more robust to a large range of temperatures. 

These findings provide insight into an important component of water quality monitoring. 
 
The time of day a sample is collected has a significant impact on results. If municipalities like 

Denver collect samples in the morning, they might risk non-compliance, close recreational areas 



11 
 

11 
 

 

and cause public concern because E. coli levels are overstated even though most recreational 

activity occurs more frequently in the afternoon. Additionally, collecting a sample once a day 

like most municipalities do, including Denver is not entirely representative and can significantly 

impact human health, possibly causing illnesses and public mistrust. Public health officials also 

need to be aware of cloud cover, shade, and depth when collecting samples because of the 

critical role that UV exposure plays in influencing E. coli concentrations. On cloudy days when 

there is less light and subsequently cooler water temperatures, E. coli concentrations will decay 

more slowly than on sunny days, resulting in higher concentrations. Samples taken in the shade 

will have a similar effect as well and Traister & Anisfeld (2006) attributed higher concentrations 

of E. coli at a site to the increase in shade compared to other sites in similar stream systems. This 

effect is present because the shade shields the water from solar radiation protecting E. coli from 

decaying as quickly as it would if solar radiation was greater. Additionally, rivers and streams 

are sampled 6 inches from the surface, per EPA protocol. However, solar radiation is highest at 

or near the water surface and the depth at which a sample is taken can also have a significant 

impact on results (Figure 1, B). Whiteman et al. (2004) found that E. coli concentrations at 

shallower depths in the morning exhibited more rapid decay over the course of a day compared 

to samples collected at greater depths. The complex dynamic between solar radiation intensity 

and time of day is important to consider when evaluating site locations for water quality 

assessments. 

On the other hand, recreational activities like swimming and wading can increase E. coli 

concentrations and exposure risk when benthic sediments become suspended (Figure 1, E) (Alm 

et al 2003). Researchers evaluated the presence and concentration of E. coli in fresh, wet sand 

along six swimming beaches in Michigan (Alm et al. 2003). They found that at each beach, E. 



12 
 

12 
 

 

coli counts in the sand were 3 -17 times higher than in the water (Alm et al. 2003). Because the 

bacteria adsorb to fine particulate sediments, sand acts as a reservoir for the bacteria 

(Brinkmeyer et al. 2015). Most urban freshwater swimming beaches contain sand and other fine 

sediments, some of which may harbor bacteria at depths greater than 60 cm. E. coli does 

particularly well in beach environments because it can use sand particles and other surfaces, such 

as algae, as a substrate where it can subsist outside of its hosts. Significant quantities of E. coli 

have been found on macroalgae in Lake Michigan (Ishii & Sadowsky 2008). Specifically, 

Cladophora, a common macroalgae found in rivers and lakes worldwide allows E. coli to survive 

for up to 6 months because leachate from algae provides nutrients to the bacteria (Byappanahalli 

et al. 2003). This cryptic supply of E. coli makes regulatory compliance and public health safety 

nearly unattainable (Brinkmeyer et al. 2015). 

Recreational activity also increases turbidity in the water (Figure 1, G). Turbidity is an 

important factor for the survival of E. coli because high turbidity limits solar radiation 

throughout the water column, thus protecting E. coli inactivation (Figure 1, F) (Whitman et al. 

2004). Furthermore, waters that are more turbid generally have cooler temperatures because the 

suspended particles shield the water from absorbing heat providing an adequate environment for 

the bacteria. Even though E. coli levels have a strong mid-day decay, sampling in an area that 

has any recreational activity can significantly increase E. coli concentrations via sediment 

resuspension and turbidity. It is important for water quality monitoring plans to be aware of 

recreation occurring upstream from sampling sites or sites that are in areas known for high 

recreational use because the relationship between sediment disruption and E. coli concentrations 

can pose a significant risk to public health and exceed the 126 CFU standard. 
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Many studies fail to examine the interactive nature of these influences. Research has 

investigated E. coli concentrations in the presence of abiotic factors, however the joint effect of 

multiple abiotic factors is under studied. Understanding how abiotic factors jointly influence E. 

coli populations throughout the course of a day can be challenging. It is imperative to gain a 

greater understanding of how each of these factors individually and in concert impact E. coli 

concentrations and their magnitude of change. This can significantly shape long-term monitoring 

plans and help jurisdictions achieve compliance nationwide. It can also significantly aid in our 

devoted protection to public health as we continue to discover the impact abiotic factors have on 

E. coli concentrations. The goal is to find a balance between reaching compliance and protecting 

public health in the midst of abiotic factors so Denver can reach its anticipated 2020 

sustainability goal
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CHAPTER 2. GRANT PROPOSAL: INVESTIGATING THE INFLUENCE OF 

ABIOTIC VARIABILITY ON ESCHERICHIA COLI POPULATION DYNAMICS 

IN THREE DENVER, CO STREAMS 

Abstract 

 Humans risk exposure to microbial pathogens when they use freshwater for recreation or as a 

drinking water source. In developing nations where monitoring and treatment of microbe-contaminated 

water is weak or unavailable, 1.8 million humans die each year from waterborne illnesses. In developed 

nations where public and private utilities treat drinking water, residents still remain vulnerable to these 

illnesses when they use recreational waters contaminated with sewage or animal feces. To assess whether 

streams and lakes should be closed to recreation, cities and counties closely monitor likely pathogen 

presence by testing for the indicator bacterium Escherichia coli (E. coli).  Using E. coli concentrations to 

accurately portray a water body’s contamination status remains a challenge because E. coli dynamics 

depend on multiple interacting factors including water depth, recreation intensity, light and temperature. To 

tease apart the relative importance of these factors on E. coli dynamics, I plan to measure E. coli 

concentrations as part of an observational field study in Denver, CO streams. Not only will this study 

provide a comprehensive portrait of citywide compliance with E. coli water quality standards, but it will also 

recommend improvements to sampling protocols. By lowering the false positive and false negative rate, 

these improvements will simultaneously help prevent waterborne illnesses and limit unnecessary closures of 

Denver’s recreational waters. 

 

Project Description 

Background/Rationale/Significance 
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Waterborne illnesses continue to be a principal public health concern worldwide (Griffin et al. 

2001). In developing nations pathogens that cause waterborne illness, frequently contaminate 

drinking water sources due to lack of policy and public works infrastructure. Consequently, 1.8 

million people in these countries die from largely preventable illnesses each year (Ishii et al. 2008). 

Despite the widespread treatment of drinking water sources in the United States, contaminated 

water causes approximately 250,000 illnesses each year (Soller et al. 2010). Adverse health effects 

including gastrointestinal illness, reproductive issues and neurological disorders are caused by an 

array of waterborne pathogens including Giardia, Norovirus, Salmonella, E. coli, Legionella, and 

Hepatovirus A(CDC 2014). Populations especially susceptible to these illnesses include infants and 

young children, pregnant women, the elderly and immunocompromised patients.  

 Pathogenic organisms contaminate recreational waters close to areas suffering from weak 

pipe infrastructure, lax local land-use practices and inefficient wastewater treatment. To minimize 

adverse health effects from these pathogen sources, jurisdictions monitor recreational streams and 

lakes for pathogenic organisms. Because testing 

for each unique waterborne pathogen would be 

a time-consuming and costly endeavor, 

agencies monitor concentrations of the 

bacterium E. coli instead. Even though most E. 

coli strains are not pathogenic, it frequently co-

occurs with other pathogenic microbes (Blaustein et al. 2013). The current standard set by the EPA 

for E. coli concentrations in recreational waters is 126 colony-forming units (CFU: one viable cell 

capable of reproduction) per 100 milliliters of 

Water (Sieuwerts et al. 2008).    

 Watershed compliance with the EPA standard varies both spatially and temporally as a 

function of several interacting factors including depth, light exposure, temperature and recreational 
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activity (Figure 1).  Exposure of surface waters to ultraviolet radiation present in sunlight 

inactivates E. coil and other bacteria Thus, in un-shaded areas with higher light exposure E. coli 

concentrations decrease exponentially throughout the day and rebound at night, a phenomenon 

known as diurnal sag (Desai et al. 2013). Consequently, sampling in the morning results in higher 

E. coli concentrations that might overstate the true risk to residents because recreational activities 

typically take place later in the day. On the other hand, recreational activities like swimming and 

wading can increase E. coli concentrations and exposure risk when benthic sediments become 

suspended (Alm et al 2003).  Water temperature, a variable largely controlled by light exposure, 

influences these dynamics in complex ways. As temperature rises, UV inactivation rates gradually 

increase but so does the growth rate of E. coli up to a threshold temperature (Blaustein et al. 2004). 

Consequently, the net direction and magnitude of the effect of temperature on E. coli 

concentrations varies both across and within watersheds. Because water samples for E. coli 

monitoring are typically taken from the water surface where water temperature and light are 

highest, true risk of exposure to E. coli at depth could be underestimated.    

   Given the complex interacting nature of the controls on E. coli concentrations in ambient waters, 

a comprehensive field study that examines their joint influence is needed (Blaustein et al. 2013). In 

the City and County of Denver, this is of particular importance because E. coli concentrations 

exceeded EPA standards in ten streams with only one meeting standards for recreational use in 

2015 (Novick, 2015). 

 Clearly, understanding the interacting controls on E. coli dynamics would be important to 

accurately monitor pathogen loads in the area’s recreational waters. A better understanding of these 

dynamics will likely help decrease false positives (i.e. closing a waterbody to recreation when 

human exposure risk is low) and false negatives (i.e. indicating a safe waterbody when human 

exposure risk is high). Consequently, I ask in this research study: How does joint variation in UV 



19 
 

19 
 

exposure, temperature, depth and recreation intensity over the course of the day influence E. 

coli concentrations in Denver’s recreational use water bodies?  

 I will continue to work with the City and County of Denver’s Department of Environmental 

Health to better understand these dynamics. From this study we can recommend improved 

sampling techniques that portray a more accurate impact on human health, helping the city be 

compliant and achieve its goal of making all rivers and streams fishable and swimmable by 2020. 

This study aligns with a central mission at Regis University, a commitment to community service 

as well as a desire to educate others. E.coli concentrations may have a greater impact on lower 

income communities; this study can help serve such communities as we develop a greater 

understanding of population dynamics and how to protect those who are most at risk.  Furthermore, 

this study will add to the ongoing research about E. coli ecology and its impact on human health.  

 

Purpose and Specific Aims 

The purpose of this study is to understand the relative strength and interactive nature of the 

proximal controls (e.g. recreational activity, depth, UV exposure and temperature) on 

spatiotemporal variation in E. coli population dynamics in Denver, Colorado streams. The results 

of this study will recommend improved sampling protocols to minimize human health risks. I aim 

to answer the following questions with this research study: 

Specific Aims:  

Q1. How does compliance with E. coli water quality standards vary as a function of UV 

exposure, temperature, depth and activity? 

H1. I hypothesize that samples collected at depth in shaded streams with high recreational intensity 

will exceed E. coli water quality standards more frequently than samples collected at the surface in 

unshaded streams with low recreational intensity. 
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Q2. How does the E. coli decay rate vary as a function of UV exposure, temperature, depth 

and recreational activity? 

H2. I hypothesize that the rate of E. coli decay will be significantly higher in surface samples in 

unshaded streams compared to samples at depth in shaded streams. Recreational activity can buffer 

this effect when absent, but exacerbate the effect when present. 

Q3. How do abiotic factors jointly control E. coli concentrations? 

H3. I hypothesize that Figure 1 represents the interactive nature of the controls of depth, 

temperature, light, and recreational activity on E. coli concentrations in Denver, CO streams. 

Methods 

 

Field Collection 

In consultation with Jon Novick at the City and County of Denver, Department of 

Environmental Health, 20 sites stratified by recreational activity (10 high/10 low) and light 

intensity (10 shaded/10 unshaded) will be chosen from a database of 26 sites that are regularly 

sampled for E. coli. All sites have been categorized by DEH as either high use or not, based on 

historical recreation activity. Preliminary site visits will be conducted in early June 2017 to verify 

shade/light intensity by measuring light intensity with a light meter and canopy cover with a 

densiometer. Four sites will be randomly selected for sampling each week so that all 20 sites can be 

sampled in a five-week period (July 5th to August 9th). The random selection will ensure that each 

combination of recreational activity and light intensity will be represented during each sampling 

week. In a subsequent five-week period later in the season (September 6th to October 11th), the 

sampling scheme will be exactly replicated. The order of visits to the four sites will be randomly 

assigned each week, and the sampling will be conducted on a different weekday each week.  

Starting at 7:00 am on the chosen sampling day, water will be sampled for E. coli according to 

standard US EPA methods (EPA 2002). The water sample will be taken by hand at the water’s 
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surface and at the deepest depth available at each site. The exact depth of sampling will be 

recorded because maximum depth will vary based on idiosyncrasies from site to site. Water 

temperature, conductivity, turbidity, dissolved oxygen and pH will also be recorded using a Horiba 

U52 probe. Light intensity will be measured with a light meter at the water surface.  

Water samples will be immediately placed in a thermo-cooler stocked with ice so that the 

temperature remains below 10 °C. A thermometer will be closely monitored to ensure that samples 

remain within the temperature range and do not freeze. After sampling the first site, I will rotate to 

the next site until all sites have been sampled. Water at each site will then be sampled according to 

this rotation approximately every two hours until 5 pm, resulting in a total of 40 samples collected 

each sampling day. Samples will be immediately transported to the lab at Regis University where 

they will be held in a refrigerator at a constant temperature of no more than 10 °C and plated within 

24 hours (EPA 2002) 

 

 

Lab Analysis 

Petri plates will be filled with M-TEC HiCrome™ (Sigma Aldrich) Agar, a chromogenic 

agar specially formulated to inhibit the growth of other bacteria (Giesser et al. 2000). The agar will 

be sterilized by autoclaving at 15 lbs pressure (121 °C) for 15 minutes, then cooled to 45-50°C and 

poured into sterile Petri plates.  

To plate E.coli colonies, membrane filters with a (pore size of = .47 μm) will be used in 

conjunction with a funnel and vacuum system. The membrane will be placed in a filter funnel 

assembly connected to vacuum, which retains the bacteria. 100 ml of tenfold diluted stream water 

will be filtered through the filter assembly to achieve a plate that is countable. After filtration, the 

membrane will be transferred to a plate using sterile forceps. The petri dish containing M-TEC 

HiCrome™ Agar, a chromogenic agar specially formulated to inhibit the growth of other bacteria 

(Giesser et al. 2000).  As per method 1603, Petri plates will be inverted and placed inside Whirl 
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Pak bags and incubated for 22-24 hours at 44.5°C. On M-TEC HiCrome™ Agar E.coli appears as a 

purple-magenta color visible to the human eye. Photos of each plate will be taken and analyzed 

with openCFU, a free software that allows colonies to be counted (opencfu.sourceforge.net).  This 

method greatly increases time efficiency and accuracy (Giesser et al. 2000). CFU counts and all 

field data will be recorded onto data sheets for later statistical analysis. The funnel assembly will be 

decontaminated by removing the base from the funnel unit and using a germicidal ultraviolet (254 

nm) light box to sanitize the equipment between filtrations. At least 2 minutes of exposure time is 

required. Googles will be used to protect the eyes from UV irradiation (Katara et al. 2008). 

 

Statistical Analysis 

Field and lab data from data sheets will be transferred to an Excel spreadsheet that will be used for data 

analysis in the statistical package R (R Core Team 2013). E. coli decay rates at each site will be calculated 

assuming first-order exponential decay kinetics (Brooks et al. 2016). The strength and direction of the 

relationship of the predictor variables temperature, light intensity, recreation intensity and depth (and their 

pairwise interaction terms) to the response variables E. coli concentration and decay rate will be evaluated 

using a multiple regression approach. The best regression model will be chosen using Akaike’s Information 

Criteria (AIC), and significance of important predictors will be assessed using standard statistical hypothesis 

testing. Furthermore the interactive nature of the factors as they affect E. coli concentrations will be assessed 

from a structural approach. Specifically, I will assess my a priori hypothesis (Figure 1) of the interactive 

nature of the predictors and their influence on response variables with structural equation modeling, a 

statistical method used to examine simultaneous influences and responses in a single analysis (Grace 2006). 

Work Plan 

 

Date Activity Deliverable 

June 2017 Preliminary sites visits to 
measure light intensity and 
canopy cover 

Sites designated based on light 
intensity and canopy cover 
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July – August 2017 First phase of sampling for 20 
sites and E.coli lab work  

Data collected and organized for 
first phase of sampling 

September 2017 – October 2017 Second Phase of sampling for 20 
sites and E.coli lab work 

Data collected and organized for 
second phase of sampling 

October 2017-January 2018 Analyze and summarize all 
collected data 

Data summaries and figures 
completed 

February 2018 Complete Project Draft Submit Draft to Supervisors for 
approval 

April 2018 Complete final Project Draft Present Study at URSC 

symposium  

 

Relation to Course work/Career goals 

 

I am currently an Environmental Biology graduate student with a strong interest in water quality. 

This research project will implement skills that I have acquired thus far in the program and will help further 

my education on water quality and environmental biology. I currently work for the Department of 

Environmental Health in Denver and plan to use my degree as well as my experience to continue working in 

the environmental health field.  
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CHAPTER 3. JOURNAL MANUSCRIPT: INVESTIGATING THE INFLUENCE 

OF ABIOTIC VARIABILITY ON ESCHERICHIA COLI POPULATION 

DYNAMICS IN THREE DENVER, CO STREAMS 

 
 
 

Abstract 

To assess whether pathogen concentrations in streams and lakes pose a significant risk to 

human health, agencies monitor waterbodies by testing for the indicator bacterium Escherichia 

coli (E. coli). However, using E. coli concentrations to assess the presence of pathogens in 

waterbodies is challenging because E. coli dynamics depend on multiple abiotic factors (e.g., 

light exposure, temperature, recreational intensity) that interact across multiple spatiotemporal 

scales. To tease apart the relative importance of these factors on E. coli dynamics we collected 

water samples at 16 stream sites that varied in abiotic conditions in Denver, CO. At each site we 

measured E. coli concentrations every two hours over the course of the day to compare 

concentrations and decay rates at the surface and at depth. We found that 75% of all samples 

taken exceeded the EPA E. coli standard of 126 colony forming unit/100ml. While we found a 

significant difference between surface and bottom E. coli concentrations, only 25% of bottom 

concentrations were greater than surface concentrations. We also found no significant difference 

between surface and bottom decay rates. We used multiple regression models to investigate 

abiotic influence on concentrations and decay rates. Our results showed that E. coli 

concentrations were most negatively correlated with dissolved oxygen and turbidity and 
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positively correlated with specific conductivity. On the other hand, E. coli decay rates were most 

negatively correlated with pH and positively correlated with temperature. Although we expected 

decay rates to be stronger at the surface, our findings indicate that samples taken at surface or at 

depth have no predictable effect on concentrations and no effect on decay rates. Contrary to the 

findings of other studies in urban watersheds that show higher concentrations and weaker decay 

rates at greater depths, our results indicate that current E. coli sampling protocols for the City and 

County of Denver will accurately portray human health risk in streams. 
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Introduction 

 

Waterborne illnesses continue to be a public health concern nationwide (Griffin et al. 
 
2001). To prevent these diseases, the Environmental Protection Agency (EPA) and local 

jurisdictions monitor recreational water bodies by assessing Escherichia coli concentrations. E. 

coli has been used as a bacteriological water quality indicator for decades because its presence 

indicates fecal contamination, the likely source of most waterborne pathogenic diseases 

(Blaustein et al. 2013). However, aquatic E. coli populations are highly dynamic and are 

controlled by abiotic factors that interact at a range of spatiotemporal scales (e.g., ultraviolet 

light, turbidity, temperature, and sediment entrainment, Figure 1). Spatiotemporal variation in 

these drivers complicates accurate prediction of E. coli concentrations from one-time grab 

samples typically used by most municipalities. 

E. coli concentrations exhibit significant diurnal fluctuation (over the course of a day) 

due to changes in sunlight which impact UV intensity and temperature (Ekklesia et al. 2015, 

Figure 1, A & B). Desai et al. (2013) measured E. coli concentrations over 24 hours in the San 

Jacinto River Basin and found that E. coli was significantly lower in the afternoon than the 

morning. The authors observed that typical decay rates brought concentration levels below the 

EPA standard of 126 (cfu) by the afternoon because ultraviolet light killed the bacteria. 

However, warmer water temperatures can instead increase bacterial growth until a threshold 
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temperature is reached (Blaustein et al. 2004). A positive correlation between E. coli 

concentrations and temperature was observed during summer months when stream temperatures 

averaged 20.4°C (Tiefenthaler et al. 2009) but when stream temperatures reach 25°C the lifespan 

of E. coli decreased resulting in high die-off rates (Guber et al. 2015). 
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In addition to those factors influenced by insolation, high sediment concentrations in the 

water column positively correlate with E. coli concentrations as well (Figure 1, C). E. coli 

concentrations measured in an urban watershed found that total suspended solid (TSS) 

concentrations more strongly correlated with E. coli concentrations than pH, temperature, 

specific conductivity, and nutrients (Wu et al. 2011). E. coli concentrations correlate positively 

with TSS because E. coli attaches to fine particles and accumulates in the benthic sediment 

(Muirhead et al. 2006). Swimming beaches in Michigan exhibited E. coli concentrations 3 - 17 

times higher in the sediment than in the water column (Alm et al. 2013). Thus, sediments act as 

reservoirs for E. coli where it can multiply and survive for extended periods of time in the 

environment (Brinkmeyer et al. 2015). 

In reality UV intensity, temperature, and turbidity do not act individually but rather 

interactively to influence E. coli concentrations over the course of a day. For example, water 

temperature is largely controlled by sunlight exposure and as temperatures increase from sunlight 

intensity, UV inactivation rates gradually increase as well (Figure 1, A, B, & C). The net 

direction and magnitude of the joint effect of temperature and sunlight varies spatially within a 

reach, and more broadly across reaches in the same watershed. For example, within a reach 

sunlight penetration and temperature decrease with increasing depth, thereby protecting E. coli 

populations below the surface from UV inactivation (Figure 1, F). Turbidity also limits the 

amount of solar radiation that penetrates throughout the water column protecting E. coli from 

sunlight induced inactivation (Figure1, C). In warm water with high turbidity, concentrations can 

remain high during significant sunlight exposure because the increase in growth rate outpaces 

UV inactivation. On the other hand, high turbidity can signal recreation in the area or other 
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disturbances that release E. coli back into the water column from the sediment (Figure 1, D), 

consequently increasing E. coli concentrations. 

Abiotic factors are also highly variable across reaches in the same watershed, further 

influencing E. coli dynamics. Traister and Anisfeld (2006) observed that slow-flowing and less 

shaded stream reaches have more pronounced diurnal fluctuations in E. coli density than on 

smaller, more shaded ones. Additionally, higher elevation streams within the same watershed 

exhibit smaller E. coli concentrations compared to lower elevation streams because higher 

elevations streams are less impacted by land-use practices and are more difficult for humans to 

access (Meays et al. 2006). 

These interactions cause significant implications for current monitoring procedures. 
 
Currently, rivers and streams are sampled once a day and the time a sample is collected can have 

a significant impact on results. Typically, samples are taken six inches from the surface (EPA 

2012) where solar radiation is the strongest, but concentrations at the surface may underestimate 

the E. coli concentration at depth. Other factors such as shade and cloud cover need to be 

evaluated because they block light and UV inactivation. Seasonality also influences 

concentrations because of seasonal variation in temperature, precipitation, and recreational 

activity in the water. A better understanding of these dynamics will likely help decrease false 

positives (i.e. closing a waterbody to recreation when human exposure risk is low) and false 

negatives (i.e. indicating a safe waterbody when human exposure risk is high). By understanding 

the abiotic drivers of E. coli dynamics, municipalities can better protect public health and limit 

the amount of beach closures that occur throughout the area. 

To understand how joint spatiotemporal variation in abiotic controls drives changes in E. 

coli concentrations and its decay rates, we conducted a comprehensive field study in Denver, 
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CO. We assessed the relative strength, direction, and interactive nature of the proximal and 

ultimate controls on E. coli population dynamics using Figure 1 as our working hypothesis. If 

this hypothesis is correct, we predict that samples collected at depth in shaded streams with high 

recreational activity will have higher concentrations than samples collected at the surface in 

unshaded streams. Furthermore, we predict that the rate of decay will be significantly higher in 

surface samples collected in unshaded streams compared to samples collected at depth in shaded 

streams. The results of this study will provide a better understanding of the abiotic factors that 

control E. coli populations during the day in Denver. The City and County of Denver can 

implement improved sampling protocols that consider these relationships. In doing so, the city 

will continue to improve its water quality program and reach its goal of making all rivers and 

streams fishable and swimmable by 2020. 

 

Methods 

 

Study Area 

 

Denver, Colorado (39.7392° N, 104.9903° W) is situated at the base of the Rocky 
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Mountains at an elevation of 1609 m. The area averages 245 sunny days per year and 43 cm of 

rainfall with most occurring between April – June. Many of Denver’s watersheds, including the 

South Platte River, Cherry Creek, Bear Creek, and their tributaries are heavily urbanized. 

Denver’s waterbodies are commonly used for recreation, and as such are routinely monitored by 

the Denver Department of Public Health and Environment (DDPHE) for the urban stressors of 

bacteria, nutrients, and heavy metals. In 2015, 15 out of 16 streams exceeded E. coli standards 

set by the US EPA for recreation. 

High use recreation season in Denver generally runs from July- September and three 

waterbodies are commonly used for recreation are the South Platte River (SP), Cherry Creek 

(CC), and Bear Creek (BC). Residents use these waterbodies for swimming, kayaking, fishing, 

and pet recreation. We chose sites in each waterbody to assess citywide water quality compliance 

from a database of 40 sites that are routinely sampled throughout the year by DDPHE. We 

grouped sites according to waterbody and historic recreational use which was previously 

determined by DDPHE. 

During preliminary site visits in June 2017, we assessed canopy cover and accessibility at 

each site. Sites that were difficult to access were eliminated and the remaining sites were 

categorized as shaded or unshaded. We narrowed our analysis to 16 sites, 4 in each watershed 

that represented a shaded site with high recreational use, a shaded site with low recreational use, 

an unshaded site with high recreational use, and an unshaded site with low recreational use 

(Figure 2). 

 
 

Field Collection 

 

We sampled water in each waterbody on separate collection days from July – September 
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(Figure 2). Starting at 8:00am, the most downstream site in each watershed was sampled 
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continuing upstream for the remainder of the sites. The rotation was repeated every two hours 

until approximately 4pm and we collected a total of 5 samples at each site. At every collection 

event, pH, temperature, conductivity, dissolved oxygen, and turbidity were measured using a 

Horiba U52 water quality probe. Light intensity was measured at the water surface using an 

Extech EA39 wide range light meter. Depth was measured using a meter stick to the nearest 

millimeter. Water samples were taken using 4 oz Whirl-Pak bags six inches from the surface of 

the water and again at the bottom. All samples were stored in a cooler with ice at 4°C and 

transported to the microbiology lab at Metropolitan State University every four hours to ensure 

the recommended holding time of 6 hours was not exceeded (EPA, 2012). 

 
Figure 2: City and County of Denver watershed map with E. coli sampling locations at Bear Creek, South Platte 

River, and Cherry Creek are depicted 
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Laboratory Analysis 

 

We estimated the most probable number (MPN) of E. coli in water samples using the 

IDEXX Quanti-Tray 2000/Colilert test method, which detects both coliform and E. coli in 24 

hours (IDEXX, ME, USA). The contents of each Whirl-Pak bag were mixed 

with the Colilert reagent powder until dissolved and then poured into an 

individual Quanti-Tray. The tray was sealed using the Quanti-Tray Sealer Plus 

from IDEXX laboratories and immediately stored in an incubator at 37°C. After 

24 hours of incubation, the tray was placed in an ultraviolet light black box and 

wells that fluoresced (positive for E. coli) were counted (Figure 3). A statistical 

method based on Poisson’s law relates the abundance or MPN to the number of 

positive wells (Xue et al. 2018). 

 
 

Statistical Analysis 

 

To test the hypothesis that E. coli decay rates will be significantly higher in surface 

samples in unshaded sites compared to samples collected at greater depths in shaded streams, E. 

coli decay rates were calculated at each site at both surface and depth by assuming using first- 

order exponential decay kinetics (Brooks et al. 2016) in R (R Core Team 2013) with the 

following equation: 

𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥[𝐀𝐀𝐀𝐀] =  −𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌 + 𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥[𝐀𝐀𝐀𝐀]𝟎𝟎𝟎𝟎 

We developed a linear regression model for each site to predict log E. coli concentration 

as a function of time, depth, and their interaction. The slope of this regression model at each 

depth served as an estimate of the decay rate, k, while the intercept served as an estimate of the 

E. coli concentration at 8:00 am. We then developed contrasts using the glht function in the R 
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package multcomp (Hothorn et al. 2008) to compare both the rate of decay and morning E. coli 
 
concentrations at surface and at depth. 

 
We then calculated the average value of each predictor variable over the course of the 

day (pH, temperature, specific conductivity, turbidity, sunlight intensity, dissolved oxygen). 

Using these averages, we assessed the individual strength and direction of relationship between 

our estimated decay rates and morning E. coli concentrations with each of those predictor 

variables as well as historical recreation use and shading status using a weighted linear 

regression. In these models, we weighted each point in the regression by the reciprocal of the 

squared standard error of the estimate. We then used the dredge function from the R package 

MuMIn (Barton 2018) to fit models of decay rate and E. coli concentrations as a function of all 

possible combinations of predictor variables and ranked them based on Akaike’s Information 

Criteria (AIC) (Burnham & Anderson, 2004). A set of candidate models was defined using a 

threshold of ΔAIC ≤ 7. We then estimated the average coefficient for each variable if present in 

at least one of the candidate models (Fenberg et al. 2016). 

 
 

Results 

 

Study Site and Water Quality Characteristics 

 

In total, we sampled 16 sites for E. coli and water chemistry over the course of a day. 
 
Samples were collected during dry weather flows and average daily precipitation throughout 

the study was .02 cm (NOAA, 2017). Abiotic variables across all sites and sampling events 

varied widely (Table 1). Unsurprisingly lux and canopy cover were negatively correlated such 

that for every 1% increase in canopy cover, light intensity decreased by 1.4 lux (p= 9.8 x 10-5, 
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R2=.6498). In addition, we found that sunlight intensity in shaded (Mean ± SE:18.18 ± 2.56) 

sites were significantly higher than unshaded (Mean ± SE:52.97 ± 3.31) sites (p= 1.96 x 10-14). 

We also assessed the relationship between sunlight intensity and temperature and found that 

water temperature and lux were not significantly correlated (p= 0.4281, R2= -0.001). We then 

assessed the relationship between turbidity and temperature and found that for everyone 1°C 

increase in temperature, there was a .02 NTU increase in turbidity (p= .02863, R2=.2481, 95% 

CI: 0.002647622 to 0.04121208). 

During our study South Platte River flows ranged from a minimum of 50 cfs to 1000 cfs 

and Cherry Creek flows ranged from 12 to 715 cfs (USGS, 2017). We could not obtain data for 

Bear Creek flows during our study. Our July 18th sampling date took place in both the South 

Platte River and Cherry Creek, and median daily discharge was 240 & 18 cfs (cubic feet per 

second) respectively (USGS, 2017). Median flow for September 3rd & 10th was 18 & 80 cfs, 

respectively for these streams (USGS, 2017). 

 
 

Spatiotemporal drivers of variation in E. coli concentrations 

 

75% of samples exceeded EPA standards of 126 cfu, regardless of depth, sunlight 

intensity, or recreational activity. Our estimated morning E. coli concentrations ranged from 1 - 

2098 cfu at the surface and from 3.4 – 1553 cfu at depth across our 16 sites. 25.4% of our sites 

had higher concentrations at depth than at the surface, 37.2% had higher surface concentrations 

than at depth, and 37.6% were not significantly different (p > .05). 

We also found that in univariate regression models, estimated morning E. coli 

concentrations did not significantly correlate with any measured abiotic variables (Table 2). 

However, when considering all possible models derived from our six abiotic variables, we found 
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that dissolved oxygen and turbidity negatively correlated with concentrations and specific 

 conductivity positively correlated with concentrations (R2=.6294). It was clear in all the best 

models that dissolved oxygen, turbidity, and specific conductivity are the most important factors 

influencing concentrations (Table 3). For every one mg/L increase in dissolved oxygen there was 

a 53 % decrease in median E. coli concentrations (p =.000174, 95% CI: 25 – 71%), for every e- 

fold increase in specific conductivity there was a three-fold increase in median E. coli 

concentrations (p = 0.000242, 95% CI: 2.1 to 6.2), and for every one NTU increase in turbidity 

there was a 1.5% decrease in median concentrations (p = 0.024205, 95% CI: -0.002 to 2.7%) 

(Table 3). 
 
 

E. coli Decay Rate Spatiotemporal Relationships 

 

At all 16 sites we found no significant difference (p > 0.05) between decay rates at the 

surface and at depth (Figure 4). Bottom decay rates ranged from -0.05 to 0.24 hr-1 and surface 

decay rates and ranged from -0.3 to 0.31 hr-1. After confirming no significant difference between 

surface and bottom decay rates, we chose to use only surface decay rates to quantify their 

relationship with abiotic variables since municipalities sample from the surface. 

In our univariate regression models, we found that surface decay rates were negatively 

influenced by pH (p = .0255, R2 = .259) and positively influenced by specific conductivity (p = 

.0304, R2 =.2424) (Figure 6, Figure 7, & Table 1, respectively). However, when considering all 

possible models, we found pH and temperature to be the most important factors influencing 

decay rates (R2= .4391). For every 0.1-unit increase in pH, median decay rates decreased by 6 

(i.e. slower decay in more alkaline environments) (p = .0069, 95% CI: -1.9 to -9.9) and for every 

1 °C increase in temperature, median decay rates increased by .08 (i.e. faster decay in warmer 

environments) (p = .0356, 95% CI: 0.0065 to 0.1599) (Table 3). The influence of pH on decay 
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rates in our study is strongly supported by our modeling results. Not only was the predictor 

included in all the best models, but it was also significant in each (p <0 .05). 

Table 1: Abiotic variable data summary. Abiotic variables varied widely over the course of our study. 
 

Variable Mean SD Min Median Max 

Depth (cm) 37.27 26.5 15.24 27.62 86.36 

Temperature (° C) 20.98 2.33 15.51 21.25 25.96 

pH 8.07 .1689 7.72 8.12 8.56 

Specific Conductivity (µS/cm) 849.4 358.17 441 850.5 1660 

Turbidity (NTU) 24.32 13.9 5 25.4 64.8 

Dissolved Oxygen (mg/L) 8.73 .8284 7.27 8.69 11.67 

Sunlight Intensity (Lux) 35.57 34.2 .4 21 137.7 

 
Table 2: Results from simple univariate regression models predicting E. coli concentration and decay rate as a 

function of abiotic variables. “+” indicates a positive relationship and “-” indicates a negative relationship. Bolded 

p-values indicate p < 0.05. Morning concentrations had no significant relationship with any variable when modeled 

individually. Decay rate has a negative relationship with pH and a positive relationship and specific conductivity. 

Predictor Variable Relationship with 
E. coli Concentration 

P-value 
(Concentration) 

Relationship 
with E. coli 
Decay Rate 

P-value 
(Decay) 

Temperature + 0.3287 + 0.1704 

pH - 0.3801 - .02553 

Specific Conductivity + 0.0701 + .0303 

Turbidity - 0.2121 + .9827 

Light Intensity + 0.5169 + .5959 

Dissolved Oxygen - 0.4605 + .0560 

Recreation + 0.867 + .2795 
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Table 3: Comparisons of candidate models estimating E. coli decay rate and E. coli concentrations as a 

function of abiotic variables across all sites. E. coli concentrations are most influenced by dissolved 

oxygen, turbidity, and specific conductivity and E. coli decay rates are most influenced by pH and 

temperature. 

 

 

Notes: Bold face numbers are statistically significant regression coefficients (P < 0.05) 
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Figure 4: Surface and bottom concentrations significantly (p < 0.05) differed from each other in 62% of sampled sites. However, we did 
not observe a consistently higher concentration in bottom or surface as we had expected. Horizontal lines represent 2x the standard 
error and overlap indicates similarity in concentrations. 

 

Figure 5: E. coli decay rates do not differ between surface and bottom grab samples. All p-values for all sites were >0.05. Horizontal 
lines represent 2x the standard error. The large overlap of horizontal lines at each site show how similar surface and bottom decay rates 
are to each other. Daily decay rates were calculated for each site using first order exponential decay equation 15 



16 

16 
 

 

 

Figure 6: Decay rate constants decrease with increasing pH (p = .02553, R2=.259). Error bars represent 2x the standard 
error. 

 
 

Figure 7: Decay rate constants increase with increasing conductivity (p = 0.03039, R2=0.2424). Error bars represent 2x the 

   (µS/cm)  
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Discussion 

 
 

Contrary to our predictions, our field study found no significant differences between 

surface and depth decay rates, regardless of shade intensity. We also found that decay rates were 

negatively correlated with pH and positively correlated with specific conductivity when modeled 

individually but are negatively correlated with pH and positively correlated by temperature when 

modeled together. Furthermore, we found that surface and bottom concentrations differed, but in 

no predictable direction. Although our sites varied in sunlight intensity, turbidity, and 

recreational use, none of these variables correlated with estimated concentrations or decay rates. 

Rather concentrations were strongly influenced by dissolved oxygen, turbidity, and specific 

conductivity when modeled jointly. Together, these results indicate that current E. coli sampling 

efforts by the City and County of Denver would not likely underestimate the E. coli 

concentrations in these waterbodies. 

Although we found that surface and bottom concentrations differed, the direction of these 

differences followed no trend. Kleinheinz et al. (2006) also found that surface and depth 

concentrations significantly differed, however the authors observed that as depth increased, 

concentrations strongly decreased. We propose that the difference in our study and that of 

Kleinheinz et al. (2006) is due to their ability to sample across a wider range of depth (30 – 

120cm) than we did. Our limited range could explain why we did not observe a more consistent 

pattern of bottom concentrations having greater E. coli densities than surface concentrations as 

we had predicted. 

Dissolved oxygen, specific conductivity, and turbidity were the three most important 

factors influencing E. coli concentrations. The relationship between dissolved oxygen and 
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decreased concentrations found in our study is similar to other studies that have investigated the 

relationship between E. coli concentrations and dissolved oxygen (Rao et al. 2015, Kadir et al. 

2004, Nevers & Whitman (2005), David & Haggard (2011)). Dissolved oxygen concentrations in 

aquatic environments is largely dictated by respiration from aquatic organisms, decomposition, 

and other chemical reactions. The presence of high dissolved oxygen in our study could simply 

indicate a low abundance of microorganisms and decomposition rates (O'Connor 1967). 

However, the relationship can also be a result of competition from indigenous bacteria in oxygen 

rich environments that inhibit E. coli growth, leading to a decline in E. coli concentrations 

(Wanjugi et al 2016). 

Higher E. coli concentrations are often associated with higher turbidity levels and 

turbidity has been used as a surrogate to determine concentrations in past studies (David & 

Haggard 2011). However, our results show the contrary and we observed a decrease in 

concentrations with increasing turbidity. We propose our observed relationship is a result of a 

positive correlation between turbidity and temperature in this study. Higher turbid conditions 

have positively correlated with water temperatures in Kenya and turbid waterbodies were 2.8°C 

warmer than less turbid waterbodies (Paaijmans et al. 2009). Turbid conditions in our study 

could have likely insulated water temperatures leading to a die-off because of higher 

temperatures (Guber et al. 2015). 

Higher specific conductivity is a signal for increased pollution in many streams (Fatoki et 

al. 2003) and could potentially be the driving factor behind the observed positive correlation 

between conductance and concentration. Little research has investigated this specific 

relationship. Due to the strength of the relationship we observed, further investigation should be 

completed in Denver to better understand the drivers in this relationship. 
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Each site in our study exhibited a daily decay for bottom and surface samples, however 

there was no observed difference in the rate of decay between surface and depth concentrations. 

Whitman et al. 2004 observed a pattern of stronger surface decay rates in their study largely due 

to sunlight inactivation at the surface. The authors concluded that the observed difference was 

largely attributed to a difference in turbidity between the depths of 45 and 90 cm. Turbidity in 

our study did vary, however turbidity was measured by placing the probe on the bottom of the 

stream. Gathering turbidity measurements at the surface and bottom in the future will allow us to 

make a more definitive determination as to the cause of our observed relationship. 

According to our models, daily decay rate is negatively correlated with pH and positively 

correlated with temperature. E. coli’s ability to better survive in more alkaline environments has 

been observed in past studies and could explain this relationship (Jamieson et al. 2002). This 

relationship has implications for managing E. coli populations in urban waterbodies, especially 

Denver. A large amount of flow during dry weather events is the result of wastewater discharge 

upstream, which also have higher temperatures. The standard pH in Colorado wastewater 

discharges can be as high as 9 (Colorado Department of Public Health and Environment, 2017) 

which can aid in prolonging E. coli survival downstream. This can complicate current 

monitoring efforts and pose a risk to public health. Stronger decay rates observed in the presence 

of higher temperatures is likely due to the increased reaction rates at higher temperatures (Guber 

et al. 2015). 

Our results, as well as other studies observed variability in E. coli concentrations 

throughout the day, challenging current sampling protocols established by US EPA. Current 

protocols recommend taking a one-time grab sample15 cm from the water’s surface to assess 

public health risk. However, studies conducted by Whitman et al. (2004) and Traister & Ansfeld 
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(2006) have shown that concentrations vary with depth and surface samples, and thus not 

entirely representative of concentrations throughout the waterbody. In 2010, the EPA released 

recommendations for site monitoring to be able to address these concerns (EPA, 2010). Along 

with considering site locations that have known fecal contamination and little variability, the 

EPA also recommends sampling in the morning to remain conservative, however many cities 

risk closing their water bodies upon the recommendation when recreational generally happen 

later in the day. 

Even though our results support current sampling protocols established by the City and 

County of Denver, 75% of our samples collected exceeded the EPA standard of 126 cfu. This 

was to be expected because all three streams are listed on the 303d list for E. coli contamination 

(Colorado Department of Public Health and Environment, 2017). However, our findings further 

indicate that Denver, like other urban areas, has a chronic E. coli issue that can impact public 

health. Our sampling location at the confluence of Cherry Creek and South Platte contained the 

highest concentration of E. coli at any part of the day throughout all sampling events. After the 

summer of 2017, Denver began exploring this area as a potential source for an illicit discharge 

and is continuing to investigate the issue (Colorado Department of Public Health and 

Environment, 2017). 

Our study encountered a few limitations that may have suppressed the strength of our 

predicted results. Overall, we expected sunlight to be one of the greatest driving factors in decay 

rate strength due to its ability to induce rapid mortality found in other studies like Desai et al. 

2013 & Whitman et al. 2004 who determined that E. coli inactivation was largely affected by 

insolation. Surprisingly, E. coli decay rates were not stronger in unshaded sites and light 

intensity did not correlate with decay rates. Additionally, surface and depth samples should be 
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wider ranging in the future and exceed differences great than 25 cm. Flow also significantly 

varied between streams and we could have experienced a greater dilution effect of the bacteria 

on higher flow days or potentially a greater input of E. coli concentrations. Teasing apart the 

impact of flow on E. coli transport in Denver will help us better understand the dynamics we 

observed. 

Although we did not find a strong relationship between decay rates and sunlight, we did find that 

pH and temperature have a strong control on E. coli population dynamics. Our findings can greatly 

benefit Denver’s current monitoring program due to the improved understanding of the effect of 

abiotic factors on decay rates and concentrations. When waterbodies in Denver are experiencing 

higher pH values during instances such as wastewater discharges or seasonality, The City and 

County of Denver should increase monitoring to protect public health because of the influence of 

pH on decreasing decay rates. Denver should also consider monitoring during cooler water 

temperatures because cooler water temperatures may result in slower decay rates since we found 

that warmer water temperatures increase decay rates. Much debate has occurred in the water 

quality community around E. coli being a dependable indicator for public health risk due to the 

issue of variability. Unfortunately, aside from coliform bacteria, no other reliable sources of 

indicator bacteria have been used as a standard. In order to protect public health, we need to 

continue investigating the abiotic factors that control E. coli concentrations to improve sampling 

protocols for the protection of public health and improving water quality conditions. 
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CHAPTER 4. ENVIRONMENTAL STAKEHOLDER ANALYSIS: A CALL TO 

BAN RIVERFRONT DEVELOPMENT IN DENVER, CO TO IMPORVE WATER 

QUALITY 

            

            Land use practices such as agricultural, residential, and commercial development have 

severely degraded water bodies worldwide. Such practices increase water pollution from both 

discrete point sources (i.e., pipes, wastewater effluent, factories) and diffuse non-point sources (i.e., 

roads, urban run-off), depositing heavy metals, chemicals, and bacteria into water bodies and 

decreasing water quality conditions (Tong & Chen, 2002). In the United States, water quality is 

governed by the Clean Water Act (CWA) to help protect the integrity of our water bodies as well as 

safeguard public health (Environmental Protection Agency, 2018). However, the number of 

impaired water bodies in urban areas is continuing to rise and many of them are threatened by E. 

coli contamination. Jurisdictions monitor for E. coli because its presence indicates fecal 

contamination, the likely source of most waterborne pathogenic diseases (Blaustein et al. 2013). In 

the City and County of Denver, 15 out of 16 streams exceeded E. coli EPA standards (City and 

County of Denver, 2017). With a rapidly growing population size and increased development in the 

Denver metro area, the issue is not going to improve without a significant change. To improve the 

integrity of Denver’s water’s and protect public health, I propose to institute a ban on riverfront 

development in the City and County of Denver starting in the year 2019 while we seek long terms 

goals for policy change and improved E. coli detection methods, while keeping stakeholder interest 

balanced.   

                Banning riverfront development would lessen any future adverse impacts to water quality 

in Denver while progress is made on policy and detection methods, however the ban would not be 



26 

26 
 

 

without conflict. Developers in Denver have a large financial stake in construction throughout the 

city. Within the past 2 years, development has increased by 23% and $7.8 billion in construction is 

underway or in the planning process (metrodenver.org, 2018). Since 2017, 11,056 new apartments 

have been added to the Denver market with an average renting price of $1,350 (metrodenver.org, 

2018). A substantial proportion of new construction is taking place along the waterfront because 

they are attractive, more expensive to rent, and in high demand. Additionally, the construction 

industry in Denver supports over 103,000 employees who depend on construction and development 

to support their own livelihood as well as their families (Denver Bureau of Labor Statistics, 2018). 

            Aside from developers, Denver residents are important stakeholders who have a strong 

affinity for Denver’s waters. Residents use Denver water bodies for a multitude of activities 

including recreation and community gatherings. However, many residents risk contracting disease 

from pathogenic contamination and waterbodies can be closed to the public if the City does not 

meet EPA compliance. Common waterborne illnesses that occur from an array of pathogens 

include Cryptosporidium, Giardia, Norovirus, Salmonella, Escherichia coli, Legionella, and 

Hepatovirus. These pathogens can cause multiple adverse health effects including gastrointestinal 

illness, reproductive problems, and neurological disorders (Soller et al. 2010). Populations 

especially susceptible to these illnesses include infants and young children, pregnant women, the 

elderly and immunocompromised patients (Soller et al. 2010). Closing waterbodies due to public 

health risk is important for public safety but it is also frustrating for residents. Denver residents pay 

$130 a year for capital projects that help maintain and improve Denver’s recreational waterbodies 

(City and County of Denver, 2017).  Residents are paying for accessibility and cleanliness and 

closing waterbodies because of contamination is financially unsettling. Not only do residents have a 

financial interest in the condition of Denver’s rivers, streams, and lakes but many residents use 

Denver waterbodies for activities such as kayaking, fishing, and waterskiing. Denver has a large 
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population of Anglers who fish frequently on the South Platte River (Colorado Trout Unlimited, 

2018). Accessibility is important for their sport and closing waterbodies due to public health risk 

would cause a large amount of frustration. 

The public also depends on Denver’s recreational waterbodies to provide spaces for 

community gatherings and entertainment. During the summer, Confluence Park, the point at which 

the South Platte River and Cherry Creek meet is filled with residents enjoying the view and 

swimming in the water. The City and County of Denver spent $9 million dollars restoring the river 

bank and creating an open space for the public to enjoy (Kenny Andrew, 2017). However, this area 

is undergoing rapid residential development and has one of the highest E. coli concentrations in the 

city. Cherry Creek has also been listed on the Colorado Department of Public Health (CDPHE) 

impaired water’s list for E. coli contamination (Colorado Department of Public Health and 

Environment, 2018). Confluence park is just one example among many of an area that brings 

people from multiple neighborhoods together to enjoy the amenities with their families, but also 

poses a significant public health risk.  

Aside from the resident stakeholders, the city and county of Denver is concerned and 

invested in the water quality conditions and aesthetics of Denver’s waterbodies. Denver 

Department of Public Health and Environment (DDPHE) routinely monitors Denver’s rivers, lakes, 

and streams throughout the year to ensure that compliance is met (Denver Public Health and 

Environment, 2018). It is the responsibility of the City and County of Denver to safeguard public 

health and continue to work on improving water quality conditions. If they are unsuccessful, a large 

amount of public distrust can occur if residents are contracting waterborne diseases or access to 

swim beaches are closed. The City and County of Denver has a responsibility to their residents and 

visitors to ensure that public health is protected. The Denver Department of Public Health and 

Environment (DDPHE) samples waters in the city to assess conditions such as nutrient loads, heavy 
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metals and bacteria (Denver Public Health and Environment, 201). Even though no estimates have 

been found for illnesses caused by pathogens in Denver’s recreational waterbodies, transmission 

likely occurs in Denver’s waterbodies. The Center for Disease Control and Prevent (Center for 

Disease Control and Prevention, 2017) estimates that in 2017, nearly 7,000 deaths and 500,000 

emergency room visits occurred due to 13 pathogens transmitted through urban waterbodies, 

including all pathogens that were previously listed. Public health risks will continue to rise in 

Denver as urbanization and population growth rise. By 2050, Denver is expected to double its 

population (denvergov.org). The rise in population will bring more residents and visitors to use 

Denver’s waterbodies but the influx will ultimately increase water pollution. Growth in 

infrastructure, impervious surfaces, and sewage demand as well as more people in the water will 

pollute Denver waterbodies. 

DDPHE works together with other non-profits in the area in engaging community members 

and reducing water pollution in Denver. One non-profit that is a significant stakeholder in the City 

is Groundwork Denver. The organization has done a large amount of work in helping improve 

Denver waterbodies and being a voice for the public (groundworkdenver.org). The non-profit 

acquired a grant from the Environmental Protection Agency and the Colorado Department of 

Public Health to conduct a study in Bear Creek, a popular stream for recreation that connects 

numerous low-income communities (GroundworkDenver.org). Bear Creek has exceeded E. coli 

levels for years and the source of the pollution is largely unknown (Denver Department of Public 

Health and Environment, 2018). With the work of Groundwork Denver and their partnership with 

DDPHE, they have been collecting samples along the creek. The goal is to be able to help 

determine the source of the pollution, protect community health, provide environmental education 

for inner-city students, and improve water quality conditions. Without the work of non-profits like 
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Groundwork Denver, protecting public health and improving the condition of Denver’s waterbodies 

would be an even greater challenging task. 

 Even though strong partnerships exist between city agencies, residents and non-

profits, water quality in Denver is severely impaired and development exacerbates the issue. 

Banning development on the waterfront can significantly limit the amount of pollutants that are 

directly flushed into the river system while the city works on long-term goals such as policy change 

and improved E. coli detection. The issue is complex and the proposal may not entirely satisfy 

developers because of the risk of losing valuable real estate, however if development continues and 

water sources are not protected developers risk losing sustainable clientele as residents leave the 

city to live elsewhere. Ultimately, the long-term goal is to protect public health and the integrity of 

Denver’s waterbodies. While construction on the waterfront is halted, work can be done to institute 

stricter pollution regulations such as a reduction in permits issued for wastewater discharges and 

more stringent pollution concentration regulations. Additionally, there is no method for rapid E. 

coli detection and it takes 24 hours for results to be processed (EPA, 2004). During that lag time, 

residents are put at risk for pathogenic exposure. The EPA is working to achieve a method that 

would allow for near real-time determination of contamination, such that public notifications could 

be made sooner and cities could better protect public health. While these long-term goals are 

achievable, Denver need to limit any further impacts to water resources now. Banning waterfront 

construction is a solution that balances stakeholder interests from now and into the future. 
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