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CHAPTER 1. LITERATURE REVIEW: SUSTAINING SALMON-DEPENDENT 

ECOSYSTEMS 

The collapse of fish stocks was forecasted decades ago (Gordon, 1954) but has only 

recently started to enter the awareness of the general public. Pacific salmonids are among the 

numerous stocks showing dramatic declines in the past century (Nehlsen, Williams & 

Lichatowich, 1991). Salmonid stock declines are thought to be due to habitat destruction that 

occurred with the construction of multiple dams in the 1800-1900s that blocked the migration of 

adult salmon inland from oceans to their freshwater spawning grounds (Groot & Margolis, 1991), 

as well as poor harvest management during spawning season (Carney & Adkison, 2014). Decline 

in Pacific salmonid stocks is one of the best known and researched declines because the 

consequences of salmonid demise are wide ranging: impacting economies, cultures, and 

ecosystems (Gende, Edwards, Willlson & Wipfli, 2002).  

Salmonids are keystone species in the terrestrial ecosystems drained by their spawning 

streams since they bring many marine nutrients into landlocked habitats, causing changes to 

riparian community structure and serving as a vital nutrient source to many organisms (Gende et 

al., 2002). Salmon are also a vital economic resource for the many communities in the Pacific 

Northwest who have harvested and depended on wild salmon for centuries, and who hold salmon 

as a symbol of their culture and community (Gresh, Lichatowich & Schoonmaker, 2000; Carney 

& Adkison, 2014).  Between 2000 and 2004, an average 88,000 metric tons of wild-caught Pacific 

salmon were consumed each year by people in the United States alone (Knapp, America, Roheim 

& Anderson, 2007), a number dwarfed by the 350,000 tons harvested each year in Alaska alone, 

much of which is exported (Knapp, 2007) . The economic importance of salmon cannot be ignored, 
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but it also should not be the only consideration when developing policies and strategies for ideal 

management. There are several management strategies that have proven effective at re-introducing 

salmon to their historic ranges without reducing harvest rates. These methods should be 

implemented widely in combination with current strategies to yield the highest economic and 

ecological returns to both communities and ecosystems. 

Most populations of fish recognized as salmon are anadromous, spending different phases 

of their life in fresh and salt water habitats (Gende et al., 2002). They are born in fresh water 

streams but migrate to the ocean for most of their adult life (roughly 2-4 years) (Gende et al., 

2002). The adult salmon then return to freshwater streams to mate, an event widely known as a 

salmon run (Gende et al., 2002). Salmon runs, which occur annually, comprise tens of millions of 

individual fish of various salmonid species; different stocks of each species will return to the same 

river they were born in, ranging from Alaska down to Northern California (Gende et al., 2002). 

When adult salmon enter freshwater streams to begin migration to spawning sites, they are full of 

lipids to give them the energy to swim upstream, sometimes thousands of miles inland (Hendry & 

Berg, 1999; Gende et al., 2002). Adults that do not die on the journey inland stay in spawning sites 

for weeks, relying on their stores of lipids and proteins to supplement feeding (Gende et al., 2002). 

As salmon use these stored nutrients and expel their waste into the stream, they change the 

surrounding water chemistry - increasing concentrations of nitrogen and phosphate (Donaldson, 

1967). This results in augmented algal biomass and riparian plant growth (Gende et al., 2002).  

Additionally, several terrestrial animals such as predatory mammals and birds gather at spawning 

grounds to feast on the abundant influx of protein, fat, calcium, and other nutrients brought inland 

by the salmon (Reimchen et al., 2000; Gende et al., 2002). These terrestrial animals are dependent 

on this important food source for energy and nutrients to help their over-winter survival, growth, 
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and general health (Reimchen et al., 2000; Gende et al., 2002). As these mammals and birds 

migrate away from the stream after spawning is complete, they continue the flow of marine 

nutrients inland (Hilderbrand, Hanley, Robbins & Schwartz, 1999; Gende et al., 2002).  Many of 

these animals are important seed distributers, and without this ecological service the composition 

of the surrounding plant habitats may be dramatically altered (Hilderbrand et al., 1999; Gende et 

al., 2002).   

The ecological benefits of salmon runs are thwarted if management strategies aim only to 

increase salmon availability to consumers. Fish farming, often thought to be a solution to declining 

wild fish stocks (Meffe, 1992; Goldburg & Naylor, 2005), concentrates on this metric exclusively. 

While farming salmon may reduce the demand for wild-caught stocks, it still requires great oceanic 

input since salmon are predatory and feeding them requires the harvest of smaller oceanic fish in 

amounts equal or greater to the weight of the resulting farmed fish itself (Goldburg & Naylor, 

2005). Locally, farming salmon can be used to supplement some demand for the fish, but such 

practices will not allow for the same level of economic benefit to local communities since farming 

facilities are generally more centralized and owned by companies rather than families (Knapp, 

2007). This concentration of the fish farming industry makes it an unviable solution to global stock 

declines as it would not be as accessible to most of the 3 billion people globally who rely on aquatic 

sources for 15% of their diet, many of whom are within the poorest regions of the world (Godfray 

et al., 2010). Salmon fishing communities throughout the Pacific Northwest are among these 

groups reliant on the natural abundance and accessibility of wild salmon stocks (Carney & 

Adkison, 2014). Lastly, farmed salmon also do not travel inland or transfer marine nutrients 

upstream, so while this practice may be beneficial on a small scale, management should aim more 

towards sustainable wild harvest and increased natural salmon habitats. 
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Currently there are several different management strategies that are implemented for the 

harvest of wild salmon, most of which surround escapement goals. Escapement is the number of 

fish that make it to spawning grounds without being caught by fishers and is usually estimated by 

comparing the number of fish caught (reported by fishers) to the estimated run size (Carney & 

Adkison, 2014). There is significant uncertainty surrounding escapement goals, and just as much 

uncertainty in knowing how many escaped salmon are sufficient to generate a strong generation 

that will return in numbers large enough for future harvest. 

Since salmonids are such an important economic resource, there has been abundant 

research investigating how many spawning salmon are needed to generate the minimum number 

of smolt that can be supported in a given area of river habitat (Bradford et al., 2000). A smolt is a 

juvenile salmon that has undergone the transformations necessary to migrate into the sea, and is 

usually attained after about a year of living in the freshwater stream in which hatched (Bradford et 

al., 2000).  Typically, these estimates are based on index streams (streams with enough historic 

run data) and are assumed to be the same for all salmon stocks regardless of species or habitat 

(Bradford, Myers & Irvine, 2000). The use of index streams makes multiple assumptions, but the 

simplicity of this method has made it widespread (Bradford et al., 2000). In attempts to better 

understand the productivity of coho salmon (Oncorhynchus kisutch) researchers observed adult 

female abundance and resultant smolt production (Bradford et al., 2000). By looking at these 

relationships across multiple coho stocks, they were able to fit a simple model of how many 

females are needed to seed a 1 km2 area of river with sufficient eggs to produce the minimum 

smolts needed for healthy run returns in the future. They found the minimum number of females 

needed per 1 km2 of suitable habitat was around 19 (Bradford et al., 2000). Their methods were 

simple enough that similar models could be developed for each species of salmon, and this would 
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make fewer assumptions about minimum escapement, which may be lower or higher than currently 

thought depending on the fecundity of each species (Bradford et al., 2000). Locally refined models 

like this are important, as assumptions can easily lead to over-harvest. However, this only answers 

half of the escapement question, as the amount of suitable habitat must also be known to determine 

escapement goals.  

Often in estimating escapement, a small segment of river is analyzed to obtain the 

proportion of habitat suitable for building redds (Groves et al, 2013). Redds are nests built by 

female salmon during spawning and require certain water depths and sandy bottoms (Groves et 

al., 2013). This small segment of river is then assumed to represent the entire upstream habitat and 

these estimates of suitable habitat are then used to estimate how many salmon can be supported 

(Groves et al., 2013). However, this estimate makes too many assumptions. Another proposed 

method would be to take aerial photographs that can be used to physically count redds (Groves et 

al., 2013). When this was done in the Snake river, an important river for chinook salmon 

(Oncorhynchus tshawytscha), they found that the amount of suitable habitat is lower than what 

was estimated initially, indicating that those assumptions may not be the best estimate of suitable 

habitat (Groves et al., 2013). They also found that not all suitable habitats are used every year, 

indicating that more habitat would be needed to sustain the amount of escaped salmon (Groves et 

al, 2013). Counting redds is initially labor intensive, but yields better insight into salmon 

capacities, which will allow for more accurate escapement goals that provide the largest economic 

gains without compromising the stock size.  

Bristol Bay in Southern Alaska is home to some of the largest salmon runs, and the regional 

economy is built largely off of this resource (Knapp, 2007; Carney & Adkison, 2014). Here they 

use two methods for limiting catches to meet escapement goals: emergency orders and fixed 
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fishing seasons. When evaluating both of these methods it is clear that both have benefits 

depending on the size of the fishery. An emergency order will permit or prohibit any fishing based 

on run-size estimates, giving the fishery managers the power to call off any fishing for a single 

day, or the entire season if the salmon run is too small (Carney & Adkison, 2014). This method is 

most beneficial for areas with large economic dependence and where overfishing is likely (Carney 

& Adkison, 2014). Thus it should be implemented for large fisheries since it won’t give unfair 

consideration to economic over ecological gains. For smaller fisheries, however, the best method 

is a fixed season. A fixed season allows fishing within set dates regardless of run size (Carney & 

Adkison, 2014), which is beneficial because there is less urgency to fish on any one date as it is 

known that fishing will be available the next day. Male and female salmon usually migrate 

separately, as do different species of salmonids, so spacing out the intensity of fishing can be used 

to keep natural sex ratios as well as maintain sufficient escapement (Carney & Adkison, 2014).  

While both of these management strategies offer benefits to salmon runs by limiting catch, 

these systems are easily cheated. Top-down control of systems is often less effective because it 

causes people to feel that they have no responsibility in the success of salmon runs. Another 

suggested method that could be implemented in areas where control is difficult, would be to 

implement rights-based catch shares (Costello, Gaines & Lynham, 2008). This method gives 

individuals incentive to protect salmon since they now are the ones in control over harvest 

(Costello et al., 2008). Researchers compiled a global database of fishery catch statistics from 

1950-2003 from over ten thousand fisheries, and what they found was that implementation of catch 

shares had the capability to either stop the stock decline entirely, or even reverse it (Costello et al., 

2008). This method, however, is unlikely to reverse salmon stock decline, since many salmonid 

species are habitat limited by dams built across much of their historic range.  
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In order to regain the ecological benefits brought to terrestrial habitats by salmon runs, we 

must make it possible for salmon to migrate upstream to their former habitats. Dams were built in 

many former salmon habitats as a way to hold water in dry areas and generate power via 

hydroelectric systems. In multiple areas, such as California, 80% of former salmon habitat has 

been made inaccessible by these barriers (Quinones et al., 2015).  Recent public interest in river 

reconstruction and fisheries has helped push for the removal of dams that are no longer providing 

substantial electricity or the water storage capacity they once had due to sediment build up 

(Robbins & Lewis, 2008). However, in the many studies done surrounding dam removal, there are 

contradicting results in the ability to better support wild salmon runs in undammed rivers. In 

California a model was built to investigate the effects of removing 8 proposed dams on multiple 

salmonid species (Quinones et al., 2015). In their model, researchers found that the benefits to 

multiple salmonid species would greatly outweigh the short-term harm of sediment disturbance, 

so long as enough time was given to test for salmon recovery (Quinones et al, 2015). Another 

study regarding dam removal effects on Atlantic salmon found that not only did salmon return, but 

the economic benefits of recreational fisheries increased with dam removal and outweighed any 

economic benefit of keeping the dam present (Robbins & Lewis, 2008).  

However, not all studies have shown dams to be a hindrance to wild salmon stocks, in one 

study, researchers found that once dams were modified with fish ladders (small segments of 

flowing water that allow anadromous to swim up them) survival of smolts migrating back to sea 

was actually greater in rivers with dams present compared to rivers without dams (Welch et al., 

2008). While the results of this study are surprising, it is important to remember that they only 

looked at half the equation: smolts returning to the sea. There is a paucity of research regarding 

the success of adult salmon migrating upstream to spawn in modified-dammed habitat, but it has 
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been shown to be lower in studies where dam removal has been modeled or observed (Quinones 

et al., 2015; Robbins & Lewis, 2008). However, without research specifically studying migration 

success in streams with modified dams, it is hard to make conclusions on their efficacy. Research 

in this area is critical, as it is unlikely that every dam will be removed, but modification may allow 

for some habitat reconstruction.  

With dams that are removed, there will need to be additional effort to reintroduce species 

to habitats that have been excluded from salmonid spawning for centuries. Because salmon return 

to the same spawning site that they hatched in, their rates of reintroduction to newly available 

habitat may be slow, and will vary depending on species. New habitat is only colonized when 

individual species stray from spawning in their birthplace, an event that occurs in 2-10% of salmon 

depending on the species (Pess, Quinn, Gephard & Sanders, 2014). Species with high straying 

rates such as steelhead salmon (Oncorhynchus mykiss) will be most benefitted by dam removal 

since they will likely use new habitat long before any other salmon species encounter it (Pess et 

al., 2014). But in species with low straying rates, such as sockeye salmon (Oncorhynchus nerka), 

the benefits of dam removal will only be seen in the long term if they are unaided in finding the 

new habitat (Pess et al., 2014). For salmon with low rates of straying, spawning adults may need 

to be manually transported upstream to new habitats to see any short-term benefit to barrier 

removal (Pess et al., 2014). 

Dam removal could also cause new problems, since the historic habitats they block may 

no longer be suitable for salmonid species. A lot can change in a habitat when a keystone species 

such as salmonids are removed for an extended period of time. Without salmon runs the water 

chemistry and surrounding riparian habitats may be substantially changed (Gende et al, 2002), 

possibly enough to make the habitats unsuitable for salmon. Additionally, new species such as 
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brook trout (Salvelinus fontinalis) have been introduced and it is unknown if they will out-compete 

young salmon (Warren, Harvey, McClure & Sanderson 2014). In one study researchers modeled 

three different management practices and their effects on juvenile chinook salmon survival: (1) 

placing salmon carcasses in the rivers/along shores to simulate nutrient output of historically large 

salmon runs, (2) eliminating non-native competitors such as brook trout, and (3) stocking rivers 

with hatchery chinook to supplement historic production (Warren et al., 2014). They found that 

placing salmon carcasses yielded the most positive response in juveniles, which also correlated 

with increased production of periphyton (Warren et al., 2014). Eliminating brook trout had no 

effect on juveniles, and stocking rivers with hatchery juveniles had a negative correlation with 

survival of wild juveniles (Warren et al., 2014).  

The results of the salmon carcass method may seem impractical and almost wasteful, but 

it is important to remember that this method would only need to be used until runs naturally 

become larger. This method has been widely tested, and in multiple cases has been shown to have 

at least moderate effects on the surrounding ecosystem and periphyton growth (Claeson, Compton 

& Bisson, 2006; Kohler, Rugenski & Taki, 2008). There has also been significant research to 

indicate that the use of hatchery juveniles is detrimental to wild salmon stocks (Meffe, 1992), 

likely because of increased competition.  

There is a wealth of methods available to manage salmon stocks, but few are implemented 

on a large scale. Strategies that have proven effective at increasing stock abundance such as fishing 

rights, dam removal, and habitat restoration are often underutilized and unfunded; but with so 

many global fish stocks on the brink of collapse, innovative methods must be used. Methods that 

increase salmon habitat will be both ecologically and economically beneficial, as they will allow 

for the greatest harvest without depriving ecosystems of a keystone species. 
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CHAPTER 2. GRANT PROPOSAL: IMPACTS OF SALMON 

REINTRODUCTION ON HERBACEIOUS VEGETATION COMPOSITION 

AND BIOMASS 

Abstract 

 Historically, salmon have provided essential marine nutrients to land-locked habitats 

during their spawning migration. Many plant and animal species are dependent on this source of 

nutrients for survival and growth, and their absence has been shown to dramatically alter these 

terrestrial communities. Dams have been built throughout much of the historic range of salmon, 

cutting terrestrial ecosystems off from the flow of marine nutrients they depend on, leading to 

degradation of wetland habitats and reduced predator abundance. With time, however, concern for 

the decreased salmon abundance has resulted in organized efforts to remove dams in historically 

important salmon spawning areas, but the effects of removal on stream-associated ecosystems 

remain unknown.  

The Rogue River in southern Oregon offers a unique opportunity to investigate the impact 

of salmon reintroduction on surrounding herbaceous vegetation since it has had eight dams 

removed since 2003, but also has remaining dammed portions that can serve as controls. I predict 

that herbaceous plant species richness and above-ground biomass will increase in areas where 

salmon are reintroduced compared to areas where the rivers remain dammed. By comparing 

herbaceous vegetation richness and biomass along two tributary streams where salmon have been 

reintroduced to two tributary streams where dams remain, I will be able to investigate differences 

in community structure and determine if salmon reintroduction has had positive impacts on 

formally degraded habitats. Wetlands, such as those surrounding tributary streams, provide 
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essential habitat for numerous plant, bird, and insect species, and their health is imperative to 

maintaining surrounding ecosystems that are functional and productive. 

Background/Rationale/Significance 

Salmon are keystone species in the terrestrial ecosystems drained by their spawning 

streams since they bring marine nutrients into landlocked habitats, causing changes to riparian 

community structure and serving as a vital nutrient source to various organisms (Gende, Edwards, 

Willlson & Wipfli, 2002). Riparian communities are habitats that border wetlands, such as river 

banks or lake shores. Most populations of fish recognized as salmon are anadromous, meaning 

they spend distinct phases of their life in fresh and salt water habitats (Gende et al., 2002). They 

hatch in freshwater streams but migrate to the ocean for most of their adult life (roughly 2-4 years) 

(Gende et al., 2002). The adult salmon return to freshwater streams to mate, an event known as a 

salmon run (Gende et al., 2002). Salmon runs, which occur annually, comprise tens of millions of 

individual fish of various salmonid species; different stocks of each species will return to the same 

river they hatched in, ranging from Northern California to Alaska (Gende et al., 2002).  

When adult salmon enter freshwater streams to begin migration to spawning sites, they are 

full of lipids (fats) to give them the energy to swim upstream, sometimes thousands of miles inland 

(Hendry & Berg, 1999; Gende et al., 2002). Adults that survive the journey inland stay in spawning 

sites for weeks, relying on their stores of lipids and proteins to supplement feeding (Gende et al., 

2002). As salmon use these stored nutrients and expel their waste into the stream, they change the 

surrounding water chemistry, increasing concentrations of nitrogen and phosphate (Donaldson, 

1967). This results in augmented algal biomass and riparian plant growth (Gende et al., 2002).  

Several terrestrial animals such as predatory mammals and birds gather at spawning 

grounds to feast on the abundant influx of protein, fat, calcium, and other nutrients brought inland 
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by the salmon (Reimchen et al., 2000; Gende et al., 2002). These animals are dependent on this 

food source for energy and nutrients to help their over-winter survival, growth, and general health 

(Reimchen et al., 2000; Gende et al., 2002). As these mammals and birds migrate away from the 

stream after spawning is complete, they continue the flow of marine nutrients inland (Hilderbrand, 

Hanley, Robbins & Schwartz, 1999; Gende et al., 2002).  Many of these animals are seed 

dispersers, meaning they eat seeds of plants and later expel them in waste in another location. 

Without this ecological service the composition of the surrounding plant habitats may be 

dramatically altered (Hilderbrand et al., 1999; Gende et al., 2002).   

The importance of salmonids in terrestrial ecosystems was not fully realized until after the 

construction of dams in the 1800-1900s, which blocked seasonal migration of salmonids (Groot & 

Margolis, 1991). In multiple areas along the Pacific coast, up to 80% of former salmon habitat has 

been made inaccessible by these barriers (Quinones et al., 2015). In the absence of these annual 

migrations, the chemistry of spawning streams stopped receiving an influx of nitrogen and 

phosphorus, resulting in decreased algal and plant biomass (Gende et al., 2002; Bilby et al., 2003). 

Predatory mammal and bird populations may have also declined in these areas, as they depend on 

this important food source (Gende et al., 2002). With fewer predators it is likely that changes 

occurred to plant community structure beyond riparian habitat since many plants rely on these 

animals to act as seed dispersers (Hilderbrand et al., 1999; Gende et al., 2002).  

Findings on the role of salmonids on the greater terrestrial habitats of the Pacific Northwest 

and the rapid decline of these economically important fish stocks has sparked public interest in 

river reconstruction and has helped push for the removal of dams that are no longer generating 

substantial electricity, or those that lack the water storage capacity they once had due to sediment 

accumulation (Robbins & Lewis, 2008). However, it remains unknown whether the reintroduction 
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of salmonids has the potential to reverse habitat degradation caused by dam construction that 

blocks these keystone species from their annual migration. Research on the changes to surrounding 

habitat and implications of reintroducing salmonids will provide insight into the ability of 

salmonids to bring the same ecosystem services they are known to provide in river systems that 

have remained undammed. This allows for more careful consideration and understanding of any 

benefits of dam removal for upstream habitats and whether such action is worth the effort.  

I aim to investigate this topic by comparing upstream riparian habitats in rivers that have 

been recently undammed to those remaining dammed to determine if there is a significant change 

in the plant density and plant species richness in the habitat gradient surrounding each river after 

reintroduction of salmonid species. Since salmonids are known to boost concentrations of nitrogen 

and phosphorus, two nutrients that often limit the growth and abundance of plants (Gende et al., 

2002), it is likely that above-ground density of riparian plants will increase after reintroduction. 

Additionally, reintroducing salmonids will result in a surge of food for seed-dispersing predators 

which is expected to escalate their abundance in terrestrial habitats surrounding spawning streams. 

With increased seed-disperser presence it is possible that new species of plants will spread across 

and outside of riparian habitats, ultimately raising plant species richness throughout these areas. 

By measuring above-ground plant mass and species richness at incremental distances from the 

water’s edge, I can determine how far-reaching the impacts of salmon reintroduction are on plant 

communities. 

With the decline of natural habitats around the world, understanding ways we can reverse 

human-induced change is vital. As salmonids are keystone species, they offer critical benefits to 

terrestrial habitats that surround their spawning streams (Gende et al., 2002) and their 

reintroduction may be key to revitalizing important riparian habitats that have degraded in their 



17 

 

absence. Riparian habitats provide important ecosystem services ranging from filtering pollutants 

out of the water and stabilizing banks, to sheltering various insect and bird species (Gregory, 

Swanson, McKee & Cummins, 1991). Increasing vegetation density and diversity allows these 

ecosystems to better perform these services (Gregory et al., 1991) which should be a top priority 

as habitats face greater change from human-influenced degradation. 

Regis University challenges students to “learn proficiently, think logically and critically, 

identify and choose personal standards of value, and be socially responsible” (Regis Mission 

Statement). Ecosystems across the globe are in peril, and research on how to better restore these 

habitats is essential so that we can take on the responsibility to reverse the damage we have caused. 

Reintroducing salmon to their historic range has the potential to revitalize upstream riparian 

habitats, but better research is needed to understand whether these changes are likely, or if other 

methods will be needed. My proposed research aims to investigate this topic further to provide 

insight into how we can best enhance upstream riparian habitats.  

Purpose and Specific Aims 

 Dams built throughout the Pacific Northwest have made many areas of historic salmonid 

habitat unavailable. Some of these upstream areas have not been visited by salmon for over 100 

years, which has led to changes in riparian plant composition (Quinones et al., 2015). The objective 

of this study is to determine how reintroduction of salmon to previously-dammed habitat will 

change surrounding plant community structure. Salmonids change the water chemistry in 

spawning streams, which is linked to increased algal biomass and riparian plant growth (Gende et 

al., 2002), but the effects of salmonid reintroduction to up-stream habitats are not fully understood. 

I have chosen to focus on herbaceous vegetation because it is unlikely that changes have occurred 

in slower-growing woody plants during the brief period since the dams were removed. I predict 
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that herbaceous plant species richness will increase in areas where salmon are reintroduced 

compared to areas where the rivers remain dammed, since salmon provide food for many important 

seed-dispersing animals that will bring with them new plant species (Gende et al., 2002). I also 

hypothesize that the reintroduction of salmon to their up-river habitats will result in increased 

above-ground herbaceous riparian plant mass compared to rivers that remain inaccessible, as the 

salmon will increase the nitrogen and phosphorous input in the stream (Gende et al., 2002). 

Methods 

Study Site 

Figure 1: Map of Rogue River Basin with relevant dams & study sites marked (adapted from Water Watch, 2015).  



19 

 

The Rogue River in southern Oregon is home to fall chinook salmon (Oncorhynchus 

tshawytscha) and coho salmon (Oncorhynchus kisutch) and historically had one of the largest 

salmon runs in the state, second only to the Columbia River (Water Watch, 2015; American Rivers, 

2016). Throughout the 1800s-1900s multiple dams were built within this river system to save water 

for agricultural use, but public dismay over the reduced salmon runs resulted in the removal of 

eight of these dams between the Lower and Upper Rogue Basins since 2003 (McDermott, 2016). 

Demolition of these dams has opened over 330 miles of free-flowing river habitat between the 

Rogue River and its tributary streams (American Rivers, 2016). The lowest dam to remain intact 

within this river system is the William L. Jess Dam, situated at the base of Lost Creek Lake 

(McDermott, 2016). This 345ft tall dam, constructed between 1970-1974, is unsurpassable to 

anadromous fish because no fish ladders were built to allow for their passage (McDermott, 2016). 

This river system provides the perfect opportunity to investigate the effects of salmon 

reintroduction on surrounding riparian habitat since it provides dammed and undammed sites 

within the same ecosystem which can be easily compared.   

To keep sites as similar as possible, I will sample from four tributary streams with 

comparable discharge: Evans Creek, Elk Creek, South Fork Rogue River, and Abbott Creek 

(Figure 1). Both Evans Creek and Elk Creek are free of dams all the way through to the Pacific 

Ocean, and have been since 2015 and 2008 respectively. Both creeks have had returns of salmon 

runs following dam removal (McDermott, 2016). South Fork Rogue River and Abbott Creek are 

upstream of the William L. Jess Dam, and have not had salmonid spawning migrations in over 30 

years. These creeks range in elevation from 991ft (Evans Creek) to 3100ft (Abbott Creek), and are 

all located within the Cascade Mountains (Rogue River Keeper, n.d.). 
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To determine how far from the river bank changes in vegetation can be observed, I will 

implement a method similar to that outlined in the Hegazy, El-Demerdash & Hosni (1998) paper, 

wherein ten 200m transects will be set up around each of the four tributaries. The first transect will 

be placed 100m from the mouth of each creek, then every 500m upstream from the previous 

transect. The start of each transect will be placed at the current water’s edge, and extend 100m in 

a random direction away from the shore. The second half of the transect will start on the opposite 

river edge, and extend 100m in the other direction. One-square-meter quadrats will be placed every 

10m along each transect, starting at 0m. I will collect all data in the month of July when snow has 

melted and most plants will be established for the season (Rogue River Keeper, n.d.). 

Plant Species Richness & Diversity 

Within each quadrat, all plant species will be identified to the lowest taxonomic ranking 

possible without risking uncertainty (Hegazy et al., 1998). Species richness will be determined, 

and diversity will be statistically evaluated using the Shannon-Wiener Diversity Index since it is 

more sensitive to species compositional changes compared to other diversity indices such as 

Simpson diversity (Ke et al., 2017). To compare species diversity and richness between dammed 

and undammed tributaries, a Student’s T-test will be run between the overall Shannon-Wiener 

Diversity indices (among all quadrats of either river category) as well as species richness counts 

to determine if there is a significant difference between river categories. To determine how far 

from the water’s edge differences in community composition extend, quadrats of the same distance 

from the water’s edge (for example, all quadrats 10m from the edge) will be compared between 

both river categories using a Student’s t-tests. Generalized linear models will also be used to 

determine the relationship of richness or diversity as a function of distance; the slopes will be 
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compared to detect significant differences in change of plant composition along this gradient 

between site categories. 

Plant Biomass 

Once all species richness measurements are recorded at each quadrat, all above-ground 

herbaceous vegetation will be cut down to the soil, collected, and dried before being weighed to 

determine the above-ground plant biomass. Drying the plant material will provide a better estimate 

of the true biomass, because water levels in plant tissues can drastically change throughout the day 

(Franks & Goings, 2016).  These measurements will be compared between site types in the same 

way outlined for the species richness and diversity above. 

Work Plan 

June 15-20: Purchase all needed supplies 

 

June 28-30: Driving from Denver to Joseph H. Stewart State Recreation Area 

 

July 1-28: Data collection will happen each day (completing 20 quadrats/day). I will work 5 days, 

then   have 2 days off (in total I will work on data collection 20 days, and have 8 days off). 

 

July 28-31: Drive back to Denver 

 

August-September: Data analysis 

 

October-November: Write up Project 
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Budget 

 

Items 

(please itemize amounts below) 

Funds 

Requested from 

URSC 

Funds 

Requested from 

Other Sources 

Source of Other 

Funds 

Equipment (Non-consumables)    

1m
2
 Quadrat $0   

100m Measuring Tape (Keson 

OTR Fiberglass Tape (100m) from 

Tiger Supplies) 

$0   

Tarps (20x Brown Poly Tarp 10' x 

10' from Tarps Plus) 

$160 ($8/each 

x20) 
  

Scale (Crane Scale Hanging Scale 

Digital Professional 660 Lb 300 Kg 

With Accurate Sensor For Farm 

Fishing Hunting from 

Amazon.com) 

$39.99   

Garden shears (Felco 300 Bypass 

Picking and Trimming Snip F300 

from Felco) 

$15.99   

Plant Identification Book (Plants of 

the Pacific Northwest Coast from 

Amazon.com) 

$20.80   

Tent (REI Co-op Half Dome 2 Tent 

from REI) 
$199.00   

Other    

Gas to Drive to/around Rogue 

River from Denver (assuming 

$2.057/gallon, and 30mpg. 

1,269 miles between Denver and 

Rogue River (x2) + 600 miles of 

driving up and down river)  

 $215.16 NIH 

Mileage on Car (assuming 3,138 

miles total, at $0.51/mile) 
 $1,600.38 NIH 

Camping Site (Joseph H. Stewart 

State Recreation Area for 30 nights) 
 $510 NIH 
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Budget Justification 

Quadrats and tape measures can be borrowed from Regis University, and thus do not need 

to be purchased. I will need garden shears to cut down the vegetation for measuring plant biomass. 

I need 20 tarps because the cut plants from each quadrat will have to be dried separately, and I will 

be doing 20 quadrats per day. I need a scale to weigh biomass on-site. The Biology Department at 

Regis does not have shears, tarps, or scales that I would be able to take with me, thus they need to 

be purchased. To identify plants correctly, it is important to have a plant id book for the specific 

region where I will be. I will not have access to WIFI or cellular service in many field areas, thus 

I need a physical book to bring. Since I will be camping, I need a tent, but I own all the other 

camping gear needed.  

Relevance to Current Coursework 

 I am currently working towards my MS in Environmental Biology with a strong interest in 

fishery management. This project would help me gain insight into the benefits of fish on terrestrial 

ecosystems, which is important to consider when deciding on management strategies. Undertaking 

this project would give me valuable field and data analysis experience, as well as practice writing 

experimental papers, which are all essential skills for scientific careers. 
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CHAPTER 3. JOURNAL MANUSCRIPT: DESIGNING URBAN PARKS AS 

HABITAT ISLANDS FOR NATIVE BIRDS OF DENVER, CO 

Abstract 

 Habitat loss is the main cause of bird declines across the globe, and much of this habitat 

loss is a result of urbanization. Urban parks can serve as habitat islands within city sprawl, 

effectively reducing the distance between less disturbed areas. However, most parks are designed 

with the intent of human recreation and few studies have evaluated which environmental features 

are preferred by birds of different types. Using publicly available data, I modeled bird communities 

as a function of greenspace, water, connectivity and park area. I found that each group was 

influenced by different habitat variables, and that any one single variable did not have the same 

influence across all bird groups. Passerine species were positively affected by percent greenspace 

and drainage density, while these same predictors had negative impacts on waterfowl species. In 

line with prior literature, connectivity variables were found to positively influence total bird 

species richness as well as proportion of passerine birds. These findings highlight the importance 

of having diverse habitat types within urban park systems and emphasizes the need of connectivity 

between parks. 

Introduction 

 Global populations are rapidly increasing, resulting in accelerated development and 

urbanization within cities (Keßler & Marcotullio, 2017). Widespread urbanization fragments and 

disturbs wildlife habitat (Grimm et al., 2008) and amplifies the disturbances wildlife experience 

(Rebele, 1994; Alberti, 2015). Urbanization has negatively impacted birds and, in many cities, 

reduced species richness and abundance (Batáry, Kurucz, Suarez‐Rubio & Chamberlain, 2017). 
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Urban parks are often thought of as habitat patches within developed landscapes, but studies of 

their effects on urban bird abundance and diversity have shown a range of effects, some of which 

are negative (Batáry et al., 2017).  Urban parks are primarily designed for recreational use by 

people, and thus are often underutilized by wildlife (Batáry et al., 2017), but as humanity expands 

across once-wild habitats, it is vital to find ways to design urban spaces to accommodate displaced 

species and effectively connect undeveloped land.  

Birds  play crucial roles in pest control, seed dispersal, and nutrient cycling (Şekerciuğlu, Daily 

& Ehrlich, 2004), but their populations are declining faster than most other assemblages. While 

birds are among the most studied taxa in the world, few studies have explored how urban park 

design can affect native bird populations. Humanity depends on ecological services provided by 

birds, and keeping their populations healthy will, in turn, benefit us. Birds aid our agricultural 

production by controlling insect and rodent pests, and pollinating important crops (Şekercioğlu et 

al., 2004; Whelan, Wenny & Marquis, 2008). Birds also shape plant community composition by 

dispersing seeds into appropriate habitats. Consequently, declines in populations of several bird 

species have resulted in the demise of several co-evolved plant species (Şekercioğlu et al., 2004; 

Whelan et al., 2008). Birds also transport nutrients, sometimes long distances, to nutrient-poor 

habitats (Whelan et al., 2008). For example, raptors along the Northwestern United States consume 

marine fishes and later deposit nutrients into land-locked habitats where these resources are 

otherwise not abundantly available (Gende, Edwards, Willson & Wipfli, 2002). These long-

distance nutrient-delivery pathways are disrupted by urban expansion that degrades and fragments 

habitat for resident and migrant birds.  

 Careful urban planning and park design can ameliorate some of the negative consequences 

of habitat loss on bird species. Planning for parks and open spaces within the urban matrix creates 
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links which bird species can use to connect their territories in undeveloped habitats (Savard, 

Clergeau & Mennechez, 1999; Fernández-Juricic & Jokimäki, 2000; Cabeza & Moilanen, 2001; 

Clergeau, Jokimäki & Savard, 2001). Links between habitat are not only important for genetic 

exchange between bird populations that might otherwise be blocked by development or sprawl, 

but also yield greater alpha diversity both within parks and gamma diversity across the city (Savard 

et al., 1999; Clergeau et al., 2001). Habitat islands also increase the accessibility of certain bird 

species and provide essential nesting and resting grounds for migratory birds (Savard et al., 1999; 

Cabeza & Moilanen, 2001).  

 Some park attributes, such as size, are inherently likely to increase bird abundance and 

richness (Fernández-Juricic & Jokimäki, 2000), but building large parks is not always feasible, 

especially in already-developed areas. For this reason, other park attributes that result in greater 

bird abundance and diversity need to be determined. In lieu of larger parks, the surrounding land 

use and percentage of open space may effectively expand park boundaries (Carbó-Ramírez & 

Zuria, 2010). Trees in adjacent property may expand habitat by providing space for birds to nest 

and decreasing the effective distance between neighboring parks (Carbó-Ramírez & Zuria, 2010; 

de Castro Pena et al., 2017).  

Trees within parks also provide space and protection for nesting birds, and it has been found that 

tree abundance and canopy complexity within parks positively correlate with bird abundance and 

diversity (de Castro Pena et al., 2017). However, parks often contain tree monocultures planted 

around the same time, thereby limiting the canopy complexity since it results in trees of virtually 

identical size (Batáry et al., 2017). Canopy complexity facilitates bird diversity in some 

ecosystems such as Kibale National Park in Uganda (Şekercioğlu, 2002), but this may not be of 

equal importance in temperate ecosystems with different native vegetation. Some birds also prefer 
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open space as it allows for them to either spot prey or predators from a distance (McCaffrey & 

Mannan, 2012), so parks that contain a mixture of both covered and open ground may have higher 

bird diversity. Evaluating the preferred habitat spaces of birds residing within urban areas can 

guide management and design of parks to minimize disturbance on bird populations. 

Not all parks provide suitable habitat for birds, and many features of city parks deter bird 

establishment. Many urban parks lack sufficient tree canopy cover, native vegetation, water, and 

space, or are surrounded by dense buildings or busy roads (Carbó-Ramírez & Zuria, 2010). 

Additionally, different birds may use park space differently, so features that increase abundance 

or diversity of one species group may have a negative or neutral effect on another (Sandström, 

Angelstam & Mikusiński, 2006). Most birds are adapted to specific nesting behaviors that require 

suitable habitat types; for example, many waterfowl nest on the ground within dense riparian 

vegetation, while most passerine species nest in branches or holes of trees (Sibley, 2001). 

Furthermore, birds source food in very different ways, most passerine species feed on insects, 

fruits, while raptors feed on rodents and small birds, and waterfowl feed on aquatic vegetation or 

invertebrates (Sibley, 2001). These feeding and nesting habits are specific to habitat types, which 

in turn can mean that different bird species have different environmental preferences when 

choosing parks to reside within. Determining which park features increase bird occupancy, both 

overall and within different species categories, will allow cities to minimize their impacts on bird 

ranges and the negative effects of urban development on bird species.  

To investigate which urban park attributes contribute to bird community structure, I chose the City 

and County of Denver, located on the eastern range of the Rocky Mountains of Colorado. This 

area is rapidly developing, but has invested great interest in the wellbeing of birds within urban 

spaces. Denver has recently joined the Urban Bird Treaty, which aims to reduce negative impacts 
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on native bird species (US Fish and Wildlife Services, 2014). With this commitment, the city needs 

to improve park conditions for bird habitat. The lack of studies on which park attributes are 

preferred by various bird types, especially along the Front Range of Colorado, makes the design 

of suitable parks in the area difficult. 

To evaluate what features of urban parks in Denver correspond to different bird communities, I 

modeled the total richness and abundance of birds as well as the proportion of types of birds (e.g. 

migratory, native, passerine, waterfowl or raptor), as a function of park vegetation, connectivity, 

water bodies and size. Passerine species depend mainly on trees and ground vegetation for nesting 

and feeding grounds, while lakes and riparian vegetation serve these purposes for waterfowl 

(Sibley, 2001), thus I hypothesize that proportion of greenspace, vegetation complexity, and 

percent canopy cover will have the most significant influence on passerine species, while the 

proportion of lake will have the highest influence on waterfowl. Since previous studies have found 

trees to be positively linked to increased bird species richness in urban parks (Carbó-Ramírez & 

Zuria, 2010; de Castro Pena et al., 2017) I expect to find the same in this study. In addition to this, 

I predict that tree species richness within the park and park area will have a significant positive 

effect on total species richness, since both predictors are likely to increase the habitat heterogeneity 

within the park, allowing for more species to find something suitable. Lastly, I predict that park 

area and proportion lake will have the strongest positive influence on total bird abundance because 

larger habitat areas are likely to support larger numbers of birds. 
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Methods 

Site Selection 

The City of Denver served as a case study to examine park features that influence native 

bird abundance and species richness. Since the city itself was interested in this topic, only parks 

within the city boundaries were selected. I used eBird data (eBird, 2017) within the county of 

Denver and selected the 33 urban parks with birding data recorded from 2015 through 2017 (Figure 

1). Park size ranged from 0.011km2 to 1.27km2. 

Figure 1: Shows all 33 study sites located across the City and County of Denver, CO. 

Urban Park Data 

 I downloaded GIS shape files for city and park features from the City and County of Denver 

open source website (Geo-spatial Denver, 2018). These files included the county boundary, urban 

parks, parkways, tree canopy cover & assessment, pavement edge, building outlines, unpaved 

trails, court surfaces, lakes, rivers, sidewalks, parking lots, and driveways. 
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In ArcGIS 10.6 (ESRI, 2017) I generated 500m buffers around each park, then merged all 

impervious surfaces (buildings, driveways, pavement edges, court surfaces, sidewalks, and 

driveways) into a single layer.  

To determine the proportion of greenspace within each park, I subtracted impervious 

surfaces and lakes from the park area and divided this number by the total park area. I repeated 

this procedure within the 500m and 1km buffers. Greenspace within buffers was considered a 

connectivity variable during analysis.  

To calculate the proportion of lake area within each park I calculated the surface area of 

lakes within each park and divided this number by the total park area. Since river surface area 

varies seasonally, I instead calculated drainage density, which is the length of stream divided by 

the park area.  

To obtain proportion of complex vegetation cover, I manually traced any non-lawn 

vegetation patches using satellite imaging, which I also obtained through the City and County of 

Denver website. I then divided the area of these created shape files by the greenspace area within 

each park. 

To calculate the canopy cover within each park, I trimmed the tree canopy cover layer by 

the park boundary and calculated the area, then divided this by the total park area. I repeated this 

within the 500m and 1km buffers to use as habitat connectivity variables.  

To estimate canopy complexity I used the number of diameter at breast-height (DBH) 

categories and the tree species richness within each park. DBH is the best indicator of both tree 

height and canopy size, and thus differences in DBH can serve as indicators of canopy complexity 

(Popescu, Wynne & Nelson, 2003). The only tree data available for DBH was categorical, so as a 

proxy, I counted the number of size categories within each park. Species richness is also an 



33 

 

important proxy to canopy complexity, as different tree species provide different structures for 

nesting and feeding (Popescu, Wynne & Nelson, 2003). I counted the number of tree species within 

each park and this served as the second variable in canopy complexity.  

To ascertain how urban park connectivity affects bird abundance, I calculated the area of 

parks within a 1km and 500m buffer surrounding each park. I also measured the smallest distance 

between each park and the nearest surrounding park.  

A summary of all environmental predictors & their variability can be see in Table 1. 

Table 1: Shows the mean, standard deviation, and range of environmental data. 

 

 

eBird Data 

 I used eBird data collected within Denver County parks. eBird data is generated through 

public volunteers who record bird sightings and their locations through a phone app (eBird, 2017). 

eBird data contains individual sightings for each species within a park on any given day (eBird, 

2017). I used data over the three most recent years (2015-2017) and used counts over the entire 

year rather than per season, since many birds using urban parks are migratory and choosing a 

Variable Mean SD Lowest Value Highest Value

% Greenspace 84.194 18.01 15.34 100

% Complex Vegetation 29.296 39.745 0 100

% Tree Canopy 12.373 10.72 0.34 42.72

Canopy Complexity (Size) 7.2857 2.0341 3 10

Canopy Complexity (Richness) 51.643 37.848 12 199

Distance to Nearest Park (km) 0.1127 0.177 0 0.638

Area of Parks within 500m (sq. m) 181278 179402 0 573160

% Greenspace within 500m 57.221 9.6381 31.08412 84.19388

% Canopy within 500m 14.877 16.822 1.106321 90.670707

Area of Parks within 1km (sq. m) 418518 340155 33471.2 1136811.6

% Greenspace within 1km 57.125 7.9315 39.01548 73.79897

% Canopy within 1km 13.158 7.4242 1.681809 26.532064

% Lake 9.8929 17.315 0 84

Drainage Density (m/ sq.m) 0.0053 0.0088 0 0.0307

Area (sq. km) 0.2584 0.3068 0.0114762 1.2714575
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specific season may not capture their presence. The data were reorganized to show the total 

abundance of each species spotted within each park.  

 Lastly, to determine whether different park features may influence different birds, I 

grouped the bird sightings into categories of native or introduced, migratory or resident, and 

passerine (songbird), waterfowl, or raptor based on Sibley 2001. Within each park I calculated 

proportion of each bird type, i.e. proportion migratory, etc. 

 

Data Analysis: Generalized Linear Models 

To determine which park features have the greatest influence on total bird abundance and richness, 

I used generalized linear models (GLMs) with Poisson distributions in the base R stats package (R 

Core Team, 2017). These models assume that the log mean value is a function of the predictors. 

Since parks are not surveyed equally and the range in birding effort was between 4.58 hours 

(Congress Park) to 1,153.43 hours (City Park), I used these birding effort hours to normalize the 

abundance and richness within each park using an offset argument. I separated models into three 

categories based on independent variables that could influence bird community structure: 

vegetation, connectivity, water, and area. Within each category, models included all combinations 

of park features related to that category. Vegetation models included any combination of 

greenspace, proportion mixed vegetation, proportion canopy cover, and canopy complexity. 

Connectivity models included distance to nearest park, number of parks within 500m or 1km, 

percent greenspace within 500m and 1km, percent canopy cover within 500m and 1km, and area 

of parks within 500m or 1km. Water models included percent lake surface and drainage density. I 

used all-subset selection in the leaps R package (Thomas Lumley, 2017) to determine BIC scores 

of all possible model combinations, and chose the one with the lowest score as the best model for 
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that category.  To determine the overall best models, I created a model that combined the most 

significant variables within each best model category (as determined by the previous model 

selection) and used all-subset selection to determine the model with the lowest BIC score.  

 Since parks often want to manage for specific bird types, I repeated the above step for 

native birds, migratory birds, and birds within each category (songbird, waterfowl or raptor) using 

GLMs with binomial distributions where the log odds of finding a bird of a particular type varied 

as a function of the predictors included within each model. 

 

Data Analysis: Ordination 

 Lastly, to visualize differences in community structure along environmental gradients, I 

performed a non-metric multidimensional scaling ordination (NMDS) in which each bird category 

was symbolized differently (native vs. non-native, migratory vs. resident, and passerine vs. 

waterfowl vs. raptor). For this, I removed any species that did not make up at least 1% of the 

population at one or more sites, as well as any species that only occurred two or fewer sites, this 

reduced the number of species from 353 to 79, indicating that the majority of species observed 

were rare. Remaining bird abundances were log transformed due to large differences in abundance 

between parks. I used the vegan R package (Oksanen et al., 2017) to calculate the Bray-Curtis 

distances between site species compositions. Using the ecodist package in R (Goslee & Urban, 

2007) I looked at the stress of ordinations run using between one and 5 dimensions and determined 

that a two-dimensional NMDS resulted in a stress below <0.2.  

 For the actual ordination, I once again used the ecodist R package (Goslee & Urban, 2007), 

this time only running in two dimensions. I determined the minimum stress within the ordination 

using the ecodist R package (Goslee & Urban, 2007) before calculating Euclidean distances (using 
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ecodist) and plotting these against the species composition distances to check for a linear 

relationship. I rotated the axis so that the first (x) axis explains the greatest variation, using the 

base stats package (R Core Team, 2017). Then I calculated the species ordination scores using the 

‘wascores’ function in the vegan R package (Oksanen et al., 2017). Environmental gradient arrows 

were calculated based off of site scores using the envfit function within the vegan R package 

(Oksanen et al., 2017).   Lastly, I plotted these species scores and overlaid environmental gradient 

arrows with a p-value <0.05 using ggplot (Wickham, 2009). I colored each species score based on 

category to visualize difference in bird types across environmental gradients. 

Results 

Generalized Linear Models- Park Connectivity 

Only bird species richness was significantly influenced by any variables within the 

connectivity categories from GLMs. The best predictors for total avian richness were distance to 

the nearest park, area of parks within 500m, percent canopy cover within 1km, and area (Pseudo 

R2=0.542, BIC=-14). After controlling all variables included within the model, a 1km increase in 

distance to nearest park corresponds to a 29.46% decrease in total bird species richness (Table 3; 

p-value=0.014, 95% CI: 6.94% to 46.67%). A 250m2 increase in area of parks within 500m 

corresponds to a 25.06% decrease in bird species richness (Table 3; p-value<2x10-16, 95% CI: 

30.05% to 19.74%). A 1% increase in canopy cover within 1km corresponds to a 0.7% increase in 

bird species richness (Table 3, p-value=0.0041, 95% CI: 0.23% to 1.2%).  

To assess whether the relationship of park area within 500m and species richness differed 

as a function of park area, I added an interaction between these variables in the species richness 

model. Doing so caused the relationship of area of park area within 500m and species richness to 

flip, so that a 250m2 increase in 500m buffer park area results in a 90.69% increase in bird species 
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richness (p-value<2x10-16, 95% CI: 23.48% to 194.22%). The interaction between area of the park 

and area of parks within 500m was significantly negative (p-value= 2.13 x10-5).   

 

Generalized Linear Models- Within Park Predictors 

 Due to the number of models fit for this analysis, this section will only address models with 

the lowest BIC scores from each category of explanatory variables (Tables 1-7) as these models are 

considered the best models for predicting bird community structure within urban Denver parks. Note, 

that these model outputs are multivariate, and values reported are after controlling for other variables 

included in the best model for that bird group (see Tables 1-7).  

Greenspace had significant influences across the most models, and was positive for passerine 

species; a 1% increase in greenspace within a park corresponds to a 1.46% increase in the odds of a 

bird being a passerine species (Table 6; p-value<2x10-16, 95% CI: 1.44% to 1.47%). But the opposite 

was true for both waterfowl and migratory birds, which had negative relationships to percent 

greenspace. A 1% increase in the percent greenspace within a park corresponds to a 1.97% decrease in 

the odds of a bird being migratory (Table 5; p-value<2 x10-16, 95% CI: 1.95% to 1.98%) and a 1.46% 

decrease in odds of a bird being a waterfowl species (Table 7; p-value<2x10-16, 95% CI: 1.46% to 

1.48%). Percent lake, which is inversely related to greenspace (p-value= 7.64x10-16), only had a 

significant negative influence on raptor species; a 1% increase in percent lake corresponds to a 0.56% 

decrease in the odds of a bird being a raptor species (Table 8, p-value<2 x10-16, 95% CI: 0.47% to 

0.64%). 

Drainage density had the same effects on passerine and waterfowl species as did greenspace, 

wherein it was positively related to passerine species, but negatively correlated to waterfowl. A 

1m/0.5km2 increase in drainage density corresponds to a 0.0161% increase in the odds of a bird being 
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passerine (Table 6, p-value<2 x10-16, 95% CI: 0.0158 to 0.0163) and a 0.0172% decrease in odds of a 

bird being a waterfowl species (Table 7, p-value < 2x10-16, 95% CI: to 0.0174% to 0.0176%).  

Similar to greenspace and drainage density, the percent of complex vegetation had varied 

effects on bird categories. Total abundance of birds was negatively correlated to complex vegetation 

and a 1% increase in complex vegetation coverage corresponded to a 0.407% decrease in total bird 

abundance (Table 2; p-value<2x10-16, 95% CI: 0.401% to 0.413%). Conversely, raptor species were 

positively related; a 1% increase in complex vegetation corresponds to a 1.81% increase in odds of a 

bird being a raptor species (Table 8, p-value<2 x10-16, 95% CI: 1.76% to 1.86%).  

Canopy cover within the park had no significant influence on any bird species, though both 

canopy complexity variables did. The number of DBH categories (which ranges from 1 to 9) was the 

only variable that had a significant influence on the proportion of native birds; a 1-unit increase in the 

number of tree size categories corresponds to a 10.12% increase in the odds of a bird being native 

(Table 4; p-value < 2x10-16, 95% CI: 9.87% to 10.52%). Tree species richness had a positive effect on 

total abundance; a 1 species increase in tree species richness corresponds to a 0.218% increase in total 

bird abundance (Table 2; p-value<2 x10-16, 95% CI: 0.214% to 0.222%).  
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Ordination Results 

 The final two-dimensional NMDS ordination had a stress value of 0.0981 and explained 

93.81% of the variability in species composition across sites (axis 1: 84.83%, axis 2: 8.97%). The 

variables that were most strongly correlated to species composition were percent greenspace (r2= 

0.2460, p-value=0.013), percent lake (r2= 0.2500, p-value= 0.014), percent natural vegetation (r2= 
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0.2267, p-value=0.020) and percent greenspace within 500 meters (r2= 0.3170, p-value=0.001, 

Table 9). Percent lake and percent greenspace are opposite in their gradients, while percent 

greenspace within 500m and percent natural vegetation were close to each-other and perpendicular 

to the percent lake/greenspace (Figures 2-4).  

There was a significant difference between centroids of native and introduced birds (r2= 0.0966, 

p-value= 0.003, Figure 2). Migratory and resident birds also differed significantly despite a large 

amount of overlap (r2=0.2278, p-value=0.001, Figure 3).  Lastly, there was also significant 

difference between passerine, waterfowl and raptor species were clearly distinguishable (r2= 

0.2220, p-value= 0.001, Figure 4). Furthermore, raptors were completely within the range of 

passerine species (Figure 4). 

 
Figure 2: NMDS of 79 included bird species separated by native status. Arrows indicate significant environmental 

gradients across parks and are based on site scores. Points are weighted average species scores. 
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Figure 3: NMDS of 79 included bird species separated by bird migratory status. Arrows indicate significant 

environmental gradients across parks and are based on site scores. Points are weighted average species score. 

 

 
Figure 4: NMDS of 79 included bird species separated by bird type. Arrows indicate significant environmental 

gradients across parks and are based on site scores. 
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Table 9: Environmental gradients based on site scores, relative to NMDS axes 1 & 2. significant values are bolded. 

Environmental Parameter NMDS Axis 1 NMDS Axis 
2 

r2 p-value 

% Greenspace 0.73548 0.67754 0.2460 0.013 

% Lake -0.62147 -0.78344 0.2500 0.014 

Drainage Density 0.63367 -0.77361 0.0868 0.241 

% Natural Vegetation -0.36726 0.93012 0.2267 0.020 

% Canopy  0.78906 0.61432 0.0242 0.681 

% 500m Greenspace -0.47407 0.88049 0.3170 0.001 

% Canopy 500m  0.36959 0.92919 0.0828 0.272 

Area Parks 500m -0.61961 0.79046 0.1326 0.332 

% 1km Greenspace -0.61252 0.79046 0.1326 0.125 

% 1km Canopy 0.10192 0.99479 0.1082 0.181 

Area Parks 1 km -0.52107 0.85351 0.0190 0.739 

Distance to Nearest Park -0.91644 -0.40018 0.1333 0.120 

Discussion 

 This study shows the varied responses of different bird groups to environmental gradients 

within Denver parks; there were no environmental predictors that had positive effects across all 

birds, thus there is no single best way to design a park to benefit all birds within Denver. This 

indicates the need for diverse habitat types that can be utilized by different birds. This is the first 

study to examine how park design and location within cities influence different bird groups, 

although it is not the first study to look at environmental gradients on urban birds as a whole 

(Savard et al., 2000; Fernandez-Juricic & Jokimäki, 2001; White, Antos, Fitzsimons & Palmer, 

2005; Sandström et al., 2006; Carbó-Ramírez & Zuria , 2011; McCaffrey & Mannan, 2012; de 
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Castro et al., 2017). By grouping birds into different categories, this study accentuates the need for 

diversity in park design to support different types of birds. 

My study also aimed to determine which gradients have an influence over total bird 

abundance and richness. When looking at overall bird abundance, my findings suggest that 

greenspace and complex vegetation are the most important variables. Contrary to my hypothesis, 

complex vegetation negatively influenced bird abundance, but this could be explained by other 

park attributes I did not measure, such as accessibility. Parks with higher proportions of complex 

vegetation were mostly large parks designated as “natural-areas”. This designation means that the 

park is less focused on recreation and tends to have fewer pathways. This could discourage or 

prevent birders from accessing and observing species further off paths (Winnasis, Hakim& Imron, 

2018). This issue could be corrected in future studies by either controlling for path density within 

parks, or having regulated observations at points scattered through a park, independent of path 

proximity. Studies on urban birds and vegetation have shown that having complex vegetation is 

positively correlated with bird abundance (Gavareski, 1976; White, Antos, Fitzsimons & Palmer, 

2005) which is what I had expected to observe in this study. In line with the findings of multiple 

papers, I did observe a positive correlation between bird abundance and proportion of greenspace 

(Gavareski, 1976; Blair, 1996).  

For total bird richness, my findings also show significant importance of multiple 

connectivity variables. Increased distance to the nearest park had a negative impact on total 

richness, indicating that the closer placement of parks allows for more increased exchange of bird 

species, which is well supported in other studies of bird richness and habitat connectivity (Minor 

& Urban, 2008). In support of my hypothesis, percent canopy cover within a 1km-buffer had a 

positive correlation with bird species richness. This observation has been repeated in multiple 
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studies looking at street-tree-canopy as a connective pathway for urban birds (Fernandez-Juricic 

& Jokimaki, 2001; Carbó-Ramírez & Zuria, 2010; de Castro Pena et al., 2017). Contrary to what 

others have found, my results show a negative relationship between species richness and area of 

the park. Area and richness are often associated because larger areas usually encompass a greater 

variety of habitat types (Coleman, Mares, Willig & Hsieh, 1982), and thus support more species 

types, but this may not have been the case in urban settings as many parks are manicured and have 

similar habitat across the entire area, or this may have been a result of already controlling for 

multiple habitat variables within my models. This could also be a result of lower accessibility in 

larger parks, limiting the ability of observers to see birds in areas far from pathways (Ewing & 

Cervero, 2001).  

While it can be important to know how to manage the entire bird assemblage within parks, 

it may be more effective to manage for specific bird groups. Different categories of birds can have 

opposite habitat requirements, and thus managing for the benefit of one may cost another 

(MacArthur, MacArthur & Preer, 1962). For this study I categorized birds into major management 

groups that will allow for urban park planners to prioritize specific bird categories (which are not 

all mutually exclusive) and analyzed them separately to determine different habitat effects.  

One such bird category is native birds, which are a common focus for restoration projects, 

because they are typically more specialized and sensitive to development (Batáry et al., 2017). My 

results show that the number of DBH tree-size categories is the most important predictor of 

proportion of native birds. This is to say, that parks with greater variation in tree size are more 

likely to support a higher proportion of native birds. While this has not been specifically 

investigated in other studies, it could be because the greater canopy complexity allows for more 

specialized native birds to nest and feed within these settings as they have a lager variety of tree 
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types to choose from. My ordination shows that introduced species occupy a small subset within 

the range of native birds across the environmental gradients. This suggests that the specialization 

of native birds may allow them to live in areas less favored by the introduced species. These results 

suggest that higher values of percent greenspace, percent lake, percent complex vegetation and 

percent greenspace within 500m, will favor a higher proportion of native birds.  

In management, a second important category of birds is migratory status because migratory 

birds are federally protected, and the Urban Bird Treaty also aims to increase habitat for these 

species. My results show that migratory birds are negatively impacted by greenspace, which is the 

opposite of the total bird abundance findings above. This has not been specifically investigated in 

other studies, but is most likely because 91.8% of all migratory birds recorded in this study were 

waterfowl, and proportion of greenspace is inversely related to percent lake cover. This idea was 

supported through ordination analysis which showed an inverse relationship between percent 

greenspace and percent lake, and that migratory birds tended to prefer habitat with higher percent 

lake (Figure 3).  

Lastly, cities may want to manage for different bird types within their parks for a variety 

of reasons. I found that passerine species were positively correlated to percent greenspace and 

drainage density, which makes sense as passerine species depend on trees for nesting and ground 

vegetation for foraging (Sibley, 2001). Previous studies have found that passerine species are 

influenced by canopy cover (Carbó-Ramírez & Zuria, 2010), and while my results did not directly 

indicate that, greenspace and tree cover are closely linked since trees only grow in greenspace. 

Increased drainage density allows for water without compromising the amount of available nesting 

habitat. The ordination analysis supported these claims for greenspace, but did not show drainage 

density to be a significant driver of community composition. Conversely, waterfowl were 



48 

 

negatively correlated to both greenspace and drainage density. This is likely because increased 

proportion of greenspace comes at the cost of proportion water. In my data, no parks with lakes 

had high drainage density, thus drainage density within parks may only be negatively correlated 

to proportion of waterfowl as a result of parks having lakes lacking above-ground drainage streams 

(and thus drainage density being positively correlated with proportion greenspace itself).  

While passerine and waterfowl species are virtually opposite in their habitat requirements, 

raptors were positively correlated with complex vegetation and negatively correlated with percent 

lake. Raptors are dependent on small animals such as rodents or small birds for prey, and previous 

studies have found rodent abundance to be positively related to vegetation complexity (Panzacchi 

et al., 2010), so increased amount of complex vegetation could be correlated to increased prey 

abundance for these predatory birds. It is also worth noting that the environmental range of raptors 

is completely encapsulated by the range of passerine species, which is likely because songbirds 

are prey for raptors (Sibley, 2001). 

Although I found several strong relationships between park level variables and the bird 

community, there were a few areas that could be improved, such as the use of publicly sourced 

birding data. While I corrected for effort effects on richness and total abundance, not all public 

birders are equally skilled and they may have differed in their observation accuracy (McCaffrey, 

2005). Additionally, parks are not all equally accessible. The two parks with the highest species 

richness (City Park & Marston Lake) also had the highest number of observation hours, and are 

both very popular and highly accessible parks. As a result, parks with higher observation time and 

higher numbers of bird observation are likely to have higher species richness, which is not 

something that observation hours can correct for. This could be corrected for in future studies by 

rarifying species richness based on the total number of birds observed. Additionally, it would be 
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best to have qualified birders to collect the data within a set time frame who have permission to 

venture off trail in large parks with fewer paths. 

Despite these limitations of a purely observational study that utilized data collected for 

other purposes, this study is the first to provide a framework for future studies. In future studies, 

trained birders should collect the data from random points that are not tied to designated paths. 

This small change in data collection would ameliorate most of the error that may have been present 

in this study. Due to the nature of this subject, it would be difficult to do studies like this 

experimentally, but cities within different regions should conduct similar studies, as different 

species communities may respond differently to habitat gradients.  

This study has many implications for the management of urban parks and specific bird 

groups, however the most important implication is the role of habitat diversity within urban park 

networks to support different bird groups. Having some parks with lakes and complex vegetation 

or others without lakes or complex vegetation allows for a wider range of bird species to establish 

within the city. No one habitat type is likely to support the entire community of birds, so planning 

urban parks to be unique in their habitats is essential. This study builds off multiple former studies 

showing the importance of connectivity of parks on bird species richness, so beyond building new 

parks, cities should also plan for tree plantings and greenways that allow species to exchange 

across parks within the city. 
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CHAPTER 4. ENVIRONMENTAL STAKEHOLDER ANALYSIS: KLAMATH 

DAM REMOVAL- THE CHANCE TO REVIVE SALMON RUNS, BUT AT 

WHAT COST? 

Shortly after the United States won independence, the new country was faced with an 

abundance of public land in the largely unsettled and underexplored (by Europeans) Western 

United States (Bradsher, 2012). To encourage the settlement of these “open” lands, The 

Homestead Act was passed in 1862, promising free land to anyone willing to settle it (Bradsher, 

2012). Farmers and ranchers, alongside their families, headed westward to promised sites they had 

not seen, other than on a map (Bradsher, 2012). And, while many people arrived on fertile land, 

many others, unknowingly, had been assigned to regions too dry or unreliable to support crops or 

livestock (Bradsher, 2012). As more and more people struggled to make ends meet on their barren 

land, public efforts called for the construction of dams to store water in these regions (Billington, 

Jackson & Melosi, 2005). Some dams were smaller in scale, built by landowners themselves, while 

others were huge infrastructural undertakings of the federal government and hydroelectric 

companies (Billington et al., 2005). These dams were hugely successful in increasing accessibility 

and reliability of water, but this didn’t come without consequences.  

Many of these dams halted the free flow of water draining into the Pacific Ocean, 

consequently blocking of thousands of miles of important spawning grounds for anadromous fish, 

most famously salmon. The construction of these dams is thought to be almost entirely responsible 

for the dramatic declines of salmonid species that have occurred within the last 100 years (Nehlsen, 

Williams & Lichatowich, 1991). Salmon provide essential functions to terrestrial ecosystems 

surrounding their migration streams, as well as important economic and food sources to the 
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surrounding fisherman and Native American tribes (Gende, Edwards, Willson & Wipfli, 2002). 

As dams age and deteriorate, and as public awareness of the environmental consequences of dams 

grows, there are numerous public efforts to remove dams rather than repair them, but this can have 

dire consequences for the farmers and ranchers who have benefitted from their presence.  

Here, I focus on a set of five dams in the Klamath River which straddles the Oregon-

California border (Gilman, 2016; Leslie, 2017). Four of these dams have been slated for removal 

after inspection revealed they cost more to run and repair than can be justified by the operating 

company, PacifiCorp (Leslie, 2017). The removal of these dams has been long fought for by the 

numerous Native American tribes surrounding this river basin, whose cultures and economic 

wellbeing greatly depend on the once-abundant salmon runs in the Klamath River (Magagnini, 

2017). Tribespeople, local fishers, and tourism-centered employees alike have all been overlooked 

with the maintenance of these dams, and all celebrate their slotted removal (Gilman, 2016; Leslie, 

2017). However, this is a grim decision for the thousands of farmers and ranchers further upstream, 

who will no longer be guaranteed stable water availability, and will return to a much less secure 

and less predictable yield (Gilman, 2016; Leslie, 2017). To minimize harm to any one set of 

stakeholders, people from both sides of the dam-removal debate will need to come together and 

reach an agreement that allows for river reclamation while also supplying a minimum guaranteed 

amount of water through irrigation water shares allocated to farmers and ranchers, as had 

previously been proposed in the Klamath Basin Plan of 2015 (Leslie, 2017). To understand the 

various sides and stakeholders of this issue I will walk through each perspective, starting with the 

ecosystem benefits of salmon themselves, then discussing the cultural and economic benefits of 

salmon runs, then finally discussing the farmers and ranchers upstream of these dams.  
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Most populations of fish called salmon are anadromous, meaning they are born in fresh 

water streams but migrate to the ocean, where they live most of their adult life (Gende et al., 2002). 

The adult salmon then return to freshwater streams to mate, an event widely known as a salmon 

run (Gende et al., 2002). Salmon runs, which occur annually, comprise tens of millions of 

individual fish of multiple salmonid species; different stocks of each species will return to the same 

river they were born in, ranging from Alaska to Northern California (Gende, 2002). When adult 

salmon enter freshwater streams to begin migration to spawning sites, they are full of lipids to give 

them the energy to swim upstream, sometimes thousands of miles inland (Hendry & Berg, 1999; 

Gende et al., 2002).  

As salmon use these stored nutrients and expel their waste into the stream, they change the 

surrounding water chemistry (Donaldson, 1967). This results in augmented algal biomass and 

riparian plant growth (Gende et al., 2002).  Additionally, several predatory mammals and birds 

gather at spawning grounds to feast on the abundant influx of protein, fat, calcium, and other 

nutrients brought inland by the salmon (Reimchen et al., 2000; Gende et al., 2002). These terrestrial 

animals are dependent on this important food source for energy and nutrients to help their over-

winter survival, growth, and general health (Reimchen et al., 2000; Gende et al., 2002). As these 

mammals and birds migrate away from the stream after spawning is complete, they continue the 

flow of marine nutrients inland (Hilderbrand, Hanley, Robbins & Schwartz, 1999; Gende et al., 

2002).  Many of these animals are important seed distributers, and without this ecological service 

the composition of the surrounding plant habitats may be dramatically altered (Hilderbrand et al., 

1999; Gende et al., 2002).  

To regain the ecological benefits brought to terrestrial habitats by salmon runs, we must 

make it possible for salmon to migrate upstream to their former habitats, doing so will also increase 
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their abundance for harvest and economic gain. One of the primary methods of restoring salmon 

populations is to remove dams that form barriers to former salmon spawning habitats. These dams 

were initially built to hold water in dry areas and generate hydroelectric power.  In multiple areas, 

such as California, 80% of former salmon habitat has been made inaccessible by these barriers 

(Quinones et al., 2015).  The Klamath River, is among this blocked habitat, containing five total 

dams, four of which are approved for removal starting in 2020 (Gilman, 2016; Leslie, 2017).  

Klamath dam removal has been long advocated for by the Klamath Tribes in Oregon, who 

feel they have been short-changed because the dams, which only benefit upstream agriculture and 

ranching, deplete one of their most important cultural and economic resources (Magagnini, 2017). 

Many other tribes along this river, including the Karuk, Yurok, and Hoopa Valley tribes, have also 

been strong advocates of dam removal, working together to gain public and private support 

(Magagnini, 2017; Klamath River Renewal Corporation, n.d.). These tribes are tied to the Klamath 

River culturally, spiritually and economically and each have their own unique ceremonies to 

celebrate the return of salmon to the rivers during the summer salmon runs (Magagnini, 2017). 

These stakeholders are motivated by the value of salmon as cultural heritage, but beyond this, they 

depend on salmon economically. Their families have been sustained by salmon for centuries, but 

for the first year ever, no fall chinook salmon were harvested during the 2017 run, due to critically 

low populations (Magagnini, 2017). The dwindling numbers of available salmon have caused 

economic and health declines in tribe members who no longer eat salmon regularly and have 

instead turned to buying processed foods (Magagnini, 2017).  

Almost all commercial fisheries in the Klamath are operated by local tribes. But salmon 

stocks in this area, once abundant and profitable, are facing a possible complete closure following 

record-low runs in 2017 (Smith, 2017).  Each year, The Pacific Fishery Management Council 
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releases a salmon management strategy that allocates allowed harvest for various fisheries, tribes, 

and recreational fishermen (Smith, 2017). This plan is based on known harvest rates from previous 

year runs, and in the current plans, the complete closure of Klamath fisheries is being proposed 

(Smith, 2017). This closure would eliminate hundreds of jobs and leave many people without 

access to this food source, as well as limiting fishing tourism (Smith, 2017). Tribe members and 

fishermen alike feel this situation could have been prevented if they been listened to in former 

proposals for river management and water disputes (Leslie, 2017). 

In 2002, the tribes and fisheries lost a water access dispute with farmers who used Klamath 

water for irrigation. However, this point of dispute was readdressed when four PacifiCorp-operated 

dams were recently assessed for relicensing in 2016 (Leslie, 2017). These four dams were 

proposed for removal in 2015 as part of the Klamath Basin Plan, before relicensing was mandated, 

but this plan was dismissed by congressional Republicans fearing the long-term implications of 

dam removal for other economically important dams (Leslie, 2017). However, during the 

relicensing process, it was determined that, since the dams produce very little electricity, dam 

removal was cheaper than repair and construction of fish ladders resulting in a definitive decision 

to remove the dams without the compromises in water shares for farmers, that was written into the 

Klamath Basin Plan (Leslie, 2017; Klamath River Renewal Corporation, n.d.). This decision is a 

victory for the tribes, fishermen, and environmentalists alike, but it has obvious drawbacks for 

farmers and ranchers upstream of the dams, who have been using reservoir water to irrigate crops 

and water livestock (Leslie, 2017).  

In the original Klamath Basin Plan, a clause was included that gave a minimum amount of 

basin water for agriculture during a dry year, which was intended to minimize negative impacts to 

farmers and their communities (Leslie, 2017). However, the senior water rights of the Klamath 
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tribes were recently affirmed, giving farmers less sway in bargaining for water shares as tribes 

know that more water from the basin means better health for the river system (Leslie, 2017; 

Magagnini, 2017). Before the dams were slotted for removal due to age and inefficiency, farmers 

and ranchers had been open to negotiation for guaranteed minimum water shares in exchange for 

agreeing to the dam removal, which was the basis of the Klamath Basin Plan (Leslie, 2017). But, 

guaranteed dam removal, independent of farmers consent, has eliminated this as a possible 

compromise between the opposing groups (Leslie, 2017). As it stands now, the removal of the 

Klamath dams will have only detrimental effects for farmers and ranchers who currently depend 

on these reservoirs for irrigation and watering, and who will be left with no water security 

following their removal because the one remaining dam will not provide sufficient water (Leslie, 

2017).  

Issues like this are going to become more prevalent as dams age and lose efficiency and as 

water becomes less available with increasing demand and changing climate. It is important to find 

a middle ground that can benefit all parties, or at minimum reduce harm to any of them. Many 

groups including surrounding tribes, environmental non-profits, tourism companies, and fisheries 

are likely to benefit from the removal of these four Klamath river dams. The Klamath River 

ecosystem is also likely to benefit, since in previous dam removals, salmonid have been shown to 

utilize these newly accessible areas (Stanley & Doyle, 2003). 

However, in the shadow of this victory lies farmers and ranchers who lose the security and 

reliability of water needed to operate their businesses. It is easy to forget that almost every 

American depends on farmers for food, and if they are overlooked repeatedly in similar situations 

surrounding water, American agriculture will be significantly impacted. Food prices would likely 

increase, and poverty rates of farming or ranching families would skyrocket. Additionally, dam 
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removal alone will not revive salmon populations, and at best will just slow their declines (Kareiva, 

Marvier & McClure, 2000). Additional measures would be needed to reverse the damage done to 

salmon populations by the construction of dams, which may or may not be feasible for the tribes, 

non-profits, and companies that would benefit from increased salmon runs.  

To best serve all stakeholders, I think that the Klamath Basin Plan that was proposed in 

2015 should be reimplemented to guarantee farmers and ranchers at least a baseline amount of 

water for use during dry years, even if it is not enough to as large of yields as may have been 

possible with dams present. My reason for this decision is largely based in sustainability as dams 

are loosing their functionality with sediment build up, and will not likely be able to provide 

sufficient water in the long term anyways. Additionally, technology with desalination or indoor 

farming may eventually reduce the high water demands by farms, while advances in technology 

are unlikely to resolve declines in salmon populations.  The exact amount of water should be 

determined by a committee of agricultural and ecological specialists who understand the needs of 

both the environment and crops. If farmers and ranchers want more than their baseline amount of 

allocated water, they should be required to donate a portion of their profits towards other salmon-

enhancing efforts. Tribes and non-profits should be freely allowed to monitor the use of water by 

farmers and ranchers to minimize violation of baseline limits. Lastly, the federal government 

should allocate money to assist farmers and ranchers in affording technologies that minimize their 

reliance on water for crops, such as hydroponics, or switching to more drought-tolerant crop 

species. In issues such as these, it is critical to consider all impacted parties to try and find the 

solution that minimizes harm to any one group of stakeholders, but it is also crucial to consider the 

sustainability of any choices made. While farming technologies are likely to improve with time, 
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potentially reducing their water demands, salmon populations are unlikely to recover without 

action.  
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