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Abstract 

Diagnosis of an unknown skin lesion is crucial to enable proper treatments. While curable with 

early diagnosis, only highly trained dermatologists are capable of accurately recognize 

melanoma skin lesions. Expert dermatologist classification for melanoma dermoscopic images is 

65-66%. As expertise is in limited supply, systems that can automatically classify skin lesions as 

either benign or malignant melanoma are very useful as initial screening tools. Towards this 

goal, this study presents a convolutional neural network model, trained on features extracted 

from a highway convolutional neural network pretrained on dermoscopic images of skin lesions. 

This requires no lesion segmentation nor complex preprocessing.  Further, it doesn’t cost much 

computational power to train the model. This proposed approach achieves a favorable training 

accuracy of 98%, validation accuracy of 64.57% and validation loss 0.07 in the model with 46% 

sensitivity and 64% classification accuracy in testing data.  

Keywords:  convolutional neural network, classification, melanoma  
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Convolutional Neural Networks for Predicting Skin Lesions of Melanoma 

Chapter 1- Introduction 

Direct digital imaging for medical diagnosis has become a popular method with modern 

computation power and machine learning methods. Today, various deep learning models have 

been created and applied in the field of medical diagnosis due to their ability to recognize 

patterns in digital images (Cıcero, Oliveira, Botelho, & da Computaçao, 2016). Convolutional 

neural networks (CNNs) are currently the best-performing technique for image classification. As 

such, CNNs have led to breakthroughs in many medical image analysis tasks such as 

classification and detection of illnesses. For example, CNN models have been used to classify 

malignant and benign lesions from dermoscopy images of human skin (Nasr-Esfahani et al., 

2016). 

Skin cancer is by far the most common form of cancer in the United States. Melanoma is 

the deadliest form of skin cancer caused by abnormal multiplication of pigment producing cells 

that give color to the skin (Nasr-Esfahani et al., 2016). According to the American Cancer 

Society’s estimations for 2017, there are about 87,110 new melanoma cases that will be 

diagnosed, and about 9,730 people are expected to die of melanoma (American Cancer Society, 

“Key Statistics for Melanoma Skin Cancer, 2017”). As the incidence of melanoma has doubled 

and increased at a faster rate than any other types of cancer, it has become a major public health 

threat not only in the United States, but also globally. Early diagnosis is a critical issue when 

combatting this disease, and it allows for more treatment options. Nowadays more sophisticated 

equipment and highly trained professionals are needed for accurate and early detection of 

melanoma. Dermoscopy is a specialized technique for obtaining high-resolution magnified 

images of the skin, by controlling light and removing surface skin reflectance (Codella et al., 
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2016, p.1). However if the clinicians are not well trained in recognizing melanoma from 

dermoscopy images, many patients will be misdiagnosed. Also, the expert dermatologist 

classification for melanoma classification is 65-66% (Esteva et al., 2017).Therefore, there is a 

high demand for automated image analysis systems to identify melanoma from dermoscopy 

images.  But still it is challenging because of the huge variation of melanoma in terms of color, 

texture, shape, size, location of the dermoscopy images, and the visual similarity of melanoma 

lesions and non-melanoma lesions (Yu, Chen, Dou, Qin, & Heng, 2017). In order to overcome 

this challenge, some researchers propose to perform segmentation first.  This attempts to 

automatically extract the area of the image that contains the melanoma.  Then based on the 

segmentation results, the melanomas are identified (Celebi et al., 2007; Ganster et al., 2001). 

Celebi et al presented a methodological approach to the classification of melanoma, in which 

automatic border detection was performed first to separate the lesion from background skin. 

Then shape, color, texture features were extracted, fed into an optimization framework and 

determined the optical feature subset to perform the classification (Celebi et al., 2007). However, 

some methods do not perform well due to the limited discrimination capability. 

Due to the limited supply of dermatology experts, novel research efforts have been taken 

to develop automated dermoscopy image analysis to identify skin diseases. Such technology 

could be used as a diagnostic tool to interpret dermoscopy images (Codella et al., 2016). Among 

the variety of automated image analysis techniques used, many applications are restricted to low-

level visual feature representations, segmentation algorithms and classical machine learning 

techniques such as k-nearest neighbor (kNN), support vector machines (SVM) and convolutional 

neural networks (CNNs) (Codella et al., 2016). CNNs are comprised of a stack of convolutional 

modules, and each module typically consists of three components; convolutional layers, pooling 
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layers and dense (fully connected) layers. CNNs apply a series of convolutional filters to the raw 

data to extract low- and high-level features (such as lines at different angles and patterns 

matching human faces), which can be used for classification in many applications.  

Statement of the Problem 

The fatal effects of melanoma trigger the need of early diagnosis system, so that countermeasures 

can be taken. At the moment, dermoscopy is used as a diagnosis tool to accurately detect the skin 

lesions of melanoma, because if melanoma is diagnosed in its early stages, there is a good chance 

of recovery. However, melanoma diagnosis through dermoscopy images is difficult as it requires 

extensively trained specialists. As a result, deep learning models such as CNNs are currently 

deployed for automatic detection of melanoma from dermoscopy images. These existing CNN 

architectures have used different types of convolutional architectures and various techniques for 

classification with varying prediction accuracy. Therefore, the problem being studied in this 

work is to create a convolutional architecture in such a way that can extract useful features from 

biomedical images for high-accuracy melanoma classification. This study proposes a novel 

model based on deep CNNs to classify skin lesions of dermoscopy images into malignant and 

benign melanoma categories.  

Purpose of the study 

 As CNNs currently have been shown an impressive performance on recognizing patterns in 

digital images, it is well-suited to identify melanoma from dermoscopy images (Cıcero et al., 

2016).  Motivated by recent works performed  by research groups, which have used GPUs to 

train a deep convolutional neural network (Krizhevsky, Sutskever, & Hinton, 2012), the study 

aims at optimizing the array of layers in CNN architecture to better learn a classifier to extract 

high level features of melanoma from dermoscopy images. The research will be conducted to 
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determine how high of accuracy and recall that the model can achieve on melanoma 

classification with CNNs. Recall is the number of true positives divided by all positives. A high 

recall means fewer false negatives (cases where someone has melanoma, but it is not detected).  

Classification accuracy is the percent of correctly predicted cases in image dataset.  

In the first part of this study, several CNN architectures are created with varying a) number of 

layers in the convolutional module, b) number of training steps and learning rate, c) activation 

functions and d) different optimizers. Then the performance of melanoma classification is 

compared within those CNN architectures by total loss and accuracy of the trained model. In the 

second part of the study, a novel CNN model is designed with chosen hyperparameters from 

previously tested architectures to classify skin lesions of dermoscopy images with high accuracy 

and recall (sensitivity). In addition to creating a novel CNN model, other publicly available CNN 

models such as AlexNet, VGGNet, Highway CNN and Google Inception v3 will be applied to 

the same dataset to evaluate the performance of the proposed model.  

Theoretical Basis  

Even though CNNs saw use in the 90’s, the best models of today beats the champion model from 

2012 in the ImageNet classification challenge (Krizhevsky et al., 2012). A CNN consists of one 

or more convolutional layers followed by one or more fully-connected layers. As CNNs assume 

that the inputs are images, we can encode certain properties into the architecture. This makes a 

more efficient function with a fewer number of properties in the network. Another advantage of 

convolutional neural networks over full-connected networks is easiness to train the model. There 

are four main operations can be seen in convolutional networks (Harley, 2015) as shown in 

Figure 1; 

1. Convolution 
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2. Non-Linearity  

3. Pooling (Subsampling) 

4. Classification (Fully-connected)  

An image from a standard digital camera has three channels; red, green and blue. These are like 

three  stacked 2D matrices, and have pixel values from 0 to 255. A convolutional neural network 

is comprised of layers and each layer transforms an input layer to an output layer with 

differentiable functions. The three main types of layers that are involved in building 

convolutional neural networks are convolutional layers, pooling layers and fully-connected 

layers (Zeiler & Fergus, 2014).  

Convolutional layer. The convolutional layers constitute the core building block of the 

convolutional network. Most of the computational heavy lifting is performed in this layer (Zeiler 

& Fergus, 2014). Parameters of convolutional layers are made of learnable filters, which are 

sometimes referred to as kernels. Every filter consists of a small area of an image, and this area is 

called a receptive field.  The filter extends to a depth that is similar to the full depth of the input 

volume (Dumoulin & Visin, 2016).  The filter is an array of numbers on a layer of the 

convolutional network has a size, w x h x d (w pixels width, h height, and depth d, the color 

channels). As the filter is sliding or convolving across the width and height of the input image, it 

multiplies the values in the filter with pixel values of the input. In each convolutional layer, there 

is a set of filters and when sliding the filter over the input volume, it produces a 2-dimensional 

activation map (Dumoulin & Visin, 2016). When stacking them along the depth, it builds the 

output volume. The spatial extent of this connectivity is a hyperparameter called the receptive 

field of the neuron (Luo, Li, Urtasun, & Zemel, 2016). 
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The input volume used in this study has size w x h x d and the receptive field size is         

x x y, then each neuron in the convolutional layer will have weights to x x y x d area in the input 

volume that has a total of x*y*d weights. The size of the output volume is controlled by three 

parameters; the depth, stride and zero-padding (Dumoulin & Visin, 2016).  

 The depth corresponds to the number of filters that are used in the learning to look for 

something different in the input. If the raw image input is taken as the input to the first 

convolutional layer, different neurons along the depth dimension will be activated when there 

are various oriented edges, colors etc.  

 When sliding the filter across the input volume, strides are specified. The amount by which 

the filter shifts is the stride. When moving the filter one pixel at a time, the stride is 1. When 

filter jumps two pixels at a time while moving around the input, the stride is 2.  

 The size of the zero padding is a hyperparameter.  When applying filters to an input volume, 

the resulted spatial size of output volume will decrease. As one keeps applying convolutional 

layers, the size of the output volume will decrease. However, it is sometimes preferential to 

preserve as much information from original input volume to extract low level features from 

the edges of images.  Thus, spatial size of the output volume is often kept the same as the size 

of input volume. Zero padding is a feature which controls the spatial size of the output 

volume. It pads the input volume with zeros around the border to accomplish this (Dumoulin 

& Visin, 2016, Luo et al., 2016).  

The spatial size of the output volume can be computed as a function of the input size (W), the 

receptive field size of the convolutional layer neurons (F), the strides applied (S) and the used 

zero padding (P) on the border (Dumoulin & Visin, 2016).  

The spatial size of the output volume is calculated as  
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(W-F +2P) /S +1 

Pooling layer. Generally, a pooling layer is inserted in between successive convolutional 

layers in convolutional network. It reduces the spatial size of the representation in order to 

reduce the parameters used in the network. A pooling layer operates independently on every 

depth slice of the input and resizes it partially using the MAX operation, which is a more popular 

operation than averaging or other operations (Boureau, Ponce, & LeCun, 2010) . Usually it takes 

a filter of size 2x2 and a stride of same length and every MAX operation is taking a maximum 

over 4 numbers. The general features of pooling layers are 

 The pooling layer accepts the volume size of W1 x H1 x D1 

 It requires two hyperparameters; their partial extent F and the stride S 

 No zero padding is applied before pooling layers (Zeiler & Fergus, 2013) 

In practice, there are only two variations of max pooling layer; a pooling layer with F=3, S=2 

and F=2. S=3.This is due to the destructive nature of pooling layers with larger receptive fields. 

However, most of the time pooling operations are not used in convolutional architectures, and it 

only consists of a stack of convolutional layers (Dumoulin & Visin, 2016). A common method is 

using a larger stride in convolutional layer once in a while to reduce the size of the output of the 

convolutional layer. Moreover, by discarding pooling layers, good generative models can be 

trained.  Therefore, modern convolutional architectures seldom use pooling layers. 

Fully connected layer. In a fully-connected layer, neurons are fully connected to all 

activations in the previous layer, whose structure is same as regular neural networks. The only 

difference between fully-connected layers and convolutional layers is, convolutional layers are 

connected to only a local region of the input. Fully-connected layer takes the input volume and 

outputs an N-dimensional vector.  In an output layer, N is the number of classes in which one is 
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trying to classify an image (Egmont-Petersen, de Ridder, & Handels, 2002). A fully-connected 

layer that is also an output layer takes the output of the previous layer (a convolutional, layer of 

activation function or pooling layer), which represents the activation map of high-level features, 

and determines which features are associated to a particular class.  

Discrete convolutions. Affine transformations are applied in neural networks. In Affine 

transformations, a vector is received as input and is multiplied with a matrix to produce an 

output. For any type of input such as an image, a sound clip or any other collection of features, 

their representation should be flattened before go for the transformation. These types of inputs 

are stored as multi-dimensional arrays, and they feature one or more axes for which ordering 

matters (Dumoulin & Visin, 2016, p.6).  However when an affine transformation is applied, all 

axes are considered equally; their topological information is not considered. A discrete 

convolution is a linear transformation in which only few input units affect the given output. The 

product between each kernel element and the input element that overlaps it, is computed at each 

location and summed up to get the output of the current location. The same method will be 

repeated using different kernels to obtain many output features (Dumoulin & Visin, 2016, p.6).  

The kernels in the discrete convolution has a shape with some permutation (n, m, k1 …….., kN), 

where 

n = number of output feature maps 

m =number of input feature maps 

kj = kernel size along axis j 

Choosing Hyperparameters. The structure of the convolutional architecture is based on 

the type of data such as data size, complexity of image, and the type of image processing task. 

When looking at the selected database, programmers can choose hyperparameters to find the 
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right combination that creates abstractions of the image at a proper scale. In addition to the three 

main types of layers in convolutional architectures, some other layers such as ReLU and dropout 

layers are applied in practice.  

Dropout Layer. The function of dropout layers is to reduce the problem of overfitting. 

Sometimes training examples are classified well by the model, but the model does not perform 

well on unseen data. The idea behind the addition of dropout layer is to drop (ignore)a random 

set of activations in that layer by setting that to zero (Nair & Hinton, 2010). After dropping out 

some of the activations, the network learns to correctly classify images with only part of its 

neurons. A dropout layer is only utilized in training, and it avoids the network overfitting the 

training data.  

Activation functions. Every activation function (or non-linearity) takes a single number 

and performs a certain fixed mathematical operation on it. There are a number of common 

activation functions in use with neural networks.  

Sigmoid activation function. Figure 2a shows the image of sigmoid activation function. It 

generally takes a real-valued number and squashes it into the range between 0 and 1. Here, large 

negative numbers become 0 and large positive numbers become 1. Historically, it has been used 

frequent, as it shows nice interpretation on firing rate of a neuron; from not firing at all (0) to 

fully-saturated firing at an assumed maximum frequency (1). 

Tanh activation function. Figure 2b illustrates the image of tanh activation function. By the use 

of tanh activation function, it squashes a real-valued number to the range [-1, 1]. The output of 

that is zero-centered. Thus, in practice the tanh non-linearity is preferred to the sigmoid 

nonlinearity. 
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 ReLU (Rectified Linear Units) activation function. Sometimes, a layer is applied immediately 

after each convolution layer in order to introduce nonlinearity to the system (Nair & Hinton, 

2010). After the convolutional layers, ReLU layers introduce nonlinearity to the system.  

Researchers have recently found that ReLU performs well as other nonlinear functions (such as 

the sigmoid function) due to its faster learning ability  without making a significant difference in 

accuracy (Le, Jaitly, & Hinton, 2015).  Further, it helps to alleviate the vanishing gradient issue, 

where the higher layers of the network train slowly due to a decrease of gradient exponentially 

through the layers.  Figure 3 shows the image of ReLU activation function. The ReLu layer 

applies the function f(x) = max (0,x) to all the values in the input volume in order to add 

nonlinearity to the model (Nair & Hinton, 2010). 

Softmax activation function. As in sigmoid function, the softmax function squashes the output 

of each unit to be between 0 and 1. Not only that, it divides each output such that the total sum of 

the outputs is equal to 1.  

Significance of study 

Convolutional neural networks have outperformed for feature extraction from images and 

recently achieved great successes in image processing applications. The major power of CNN 

relies on its deep architecture that allows the extraction of specific features from images at 

multiple levels of abstraction. As CNN uses relatively little preprocessing in comparison to other 

image classification algorithms (KNN, SVM etc.), they are inspired by many biomedical 

applications. Increasingly, CNN are applied for the diagnosis of diseases. In this study, 

dermoscopy images are classified as malignant and benign by creating different CNN 

architectures with varying parameters. Since this work studies the influence of the structure of 

CNN architecture (composition and sequence of layers) for a better CNN model, this study will 
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be helpful for other researchers in designing effective CNN models. This is hoped to lead to 

earlier detection times, which would improve chances of successful treatment of harmful 

melanoma instances. 
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Chapter 2- Literature Review 

With the growing number of new cases in the world each year, melanoma has attracted 

considerable research efforts, specifically in developing software solutions to identify and 

analyze dermoscopy photographs of patients’ skin lesions.  The diversity of approaches is broad 

and each research covering varying combination of techniques such as low-level feature 

extractions and different machine learning approaches (Codella et al., 2015, p.120). Various 

methods are used in dermatology to characterize skin melanoma images. One method is the 

ABCD rule, which is used by dermatologists to classify melanomas.  ABCD stands for 

asymmetry, border irregularity, color patterns and diameter. Gola Isasi et al. has presented an 

automated dermatological tool for the parameterization of melanomas, in which a system based 

on the ABCD rule and dermatological pattern recognition protocols were used. In their study 

they have used three automatic algorithms for skin image processing to recognize appropriate 

patterns for melanoma. The pattern recognition system developed by Gola Isasi et al. achieved 

85% of accuracy, and was shown to be a reliable system for melanoma diagnosis (Gola Isasi, 

García Zapirain, & Méndez Zorrilla, 2011). A study done by Chang et al. developed an effective 

CADx (Computer-aided diagnosis) software to classify melanocytic and non-melanocytic skin 

lesions using conventional digital micrographs. Their method included conventional and new 

color feature extraction using SVM (support vector machine) and the system achieved sensitivity 

and specificity of 85.63% and 87.65%, respectively, and accuracy of 90.64 (Chang et al., 2013). 

To evaluate the dermoscopy lesions, Martin et al. report an approach based on ABCDE 

classification (E stands for Evolution), image processing and artificial neural networks, reaching 

a sensibility of 76.56% and a specificity of 87.58% (Marín, Alférez, Córdova, & González, 

2015).  
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Input images contain both healthy and melanoma lesion parts. As this may mislead the 

training of convolutional neural networks, melanoma lesions should be separated from healthy 

areas (normal) of the skin.  However, cropping healthy skin may cause the loss of important 

information such as color difference between healthy skin and lesion that is used to discriminate 

melanoma from benign condition (Nasr-Esfahani et al., 2016). Segmentation of the skin lesion 

from dermoscopy images is an important aspect in melanoma identification, because 

dermatologists use the shape of skin lesion in recognition (Yang et al., 2017). Therefore, current 

skin lesion classification follow three steps; i) lesion segmentation ii) feature extraction from 

segmented region and iii) lesion classification. More often, preprocessing step is performed 

before segmentation to reduce the noise of the image (Fornaciali, Carvalho, Bittencourt, Avila, & 

Valle, 2016). Hence most of researchers impose segmentation to their image classification 

systems. Research work by Cavalcanti et al have presented an automatic classification system 

comprised of preprocessing, segmentation and feature extraction steps. They have used a two 

stage classifier aiming to reduce the error rate of melanoma cases (specifically, false negative 

cases) (Cavalcanti, Scharcanski, & Baranoski, 2013). Their proposed framework which 

combines ABCD rule and melanin-variation feature extraction technique has shown 100% 

accuracy in melanoma classification. In the literature, there are several research works done for 

melanoma classification based on segmentation followed by classification using SVM and kNN. 

One such melanoma recognition system proposed by Abbas et al. consists of six consecutive 

stages; color space transformation, preprocessing, , black-frame and hair artifacts removal, 

lesion-area segmentation, feature quantification and normalization, and feature selection and 

classification (Abbas, Emre Celebi, Garcia, & Ahmad, 2013). SVM learning algorithm was used 

for classification in this study and they achieved a sensitivity of 88.2% and specificity of 91.3%. 
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Barata et al. also described two strategies to obtain a lesion classification based on extracting 

local and global features of skin lesions. This method involves automatic segmentation, feature 

extraction and training a classifier to perform binary classification as melanoma or benign and 

they achieved sensitivity of 98% and specificity of 79% (Barata, Ruela, Francisco, Mendonça, & 

Marques, 2014). Recently, local methods have been proposed to classify melanoma skin lesions. 

Situ et al. described an algorithm for lesion classification using bag-of-features approach (BoF). 

In their method, they represent each image in 16x16 grid on the lesion and using Gabor-like 

filters they extract 23 features of the lesion with the best performance of 82% on a dataset of 100 

dermoscopy images (Situ, Yuan, Chen, & Zouridakis, 2008). 

When Krizhevsky et al. won the classification challenge of the ImageNet large scale 

visual recognition challenge 2012, Deep Neural Networks (DNN) reached to the top in computer 

vision (Krizhevsky et al., 2012). As Deep Learning methods have shown promising solutions for 

many applications such as natural language processing, speech and facial recognition, object 

detection and image classification at this time, there is a trend to use Deep Learning methods for 

high accuracy medical image classifications. Some researchers started to use Convolutional 

Neural Networks (CNNs) for melanoma classification due to its higher discriminating capability 

in recognition. CNN is a type of Deep Learning method, where trainable filters are applied on 

raw data to extract selectable features automatically from complex systems (Nasr-Esfahani et al., 

2016). In one of the research studies, a CNN classifier was trained by large number of trained 

clinical skin images to distinguish melanoma from benign cases reaching 81% of sensitivity and 

80% of specificity (Nasr-Esfahani et al., 2016). Cıcero et al. have presented a technique for the 

classification of non-malignant melanotic lesions from the melanomas. In their study, they 

classified the image dataset and transformed the image dataset with rotations to make the deep 



CNN FOR PREDICTING SKIN LESIONS OF MELANOMA 22 

network invariant to rotations in order to improve generalization. For the evaluation they used 

the deep learning framework Caffe and the deep neural network ResNet as a feature extractor 

(Cıcero et al., 2016). Recently, a novel method for melanoma recognition has been proposed 

using fully convolutional residual network (FCRN) for accurate skin lesion segmentation with a 

multi-scale contextual information integration scheme (Yu et al., 2017).  

Codella et al. presented an approach for identification of melanoma in dermoscopy 

images by combining deep learning, sparse coding and support vector machine (SVM) learning 

algorithms. They claimed that their approach is beneficial because it used unsupervised learning 

within the domain and feature transfer from domain of natural photographs, eliminating the need 

of annotated data (Codella et al., 2015).  Focusing on avoiding lesion segmentation and complex 

preprocessing, Kawahara et al. used a fully-convolutional neural network to extract multi-scale 

features from skin lesions in order to classify melanomas with a higher accuracy than other state-

of-the-art techniques (Kawahara et al., 2016). Very recently, Codella et al. proposed a system that 

combines deep leaning with well-established machine learning techniques to create ensemble of 

methods that can segment skin images for analysis (Codella et al., 2016). Towards the goal of 

melanoma recognition with a higher accuracy rate, this study trains a model to identify 

melanoma-positive dermoscopy images using a novel CNN model. 
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Chapter 3- Methodology 

This section presents techniques that were used in developing a novel convolutional 

neural network (CNN) model to classify melanoma as malignant and benign. This CNN model 

was trained using skin lesion images from a publicly available dataset. Here, few CNN 

architectures were created by varying parameters and then a novel CNN model with high 

accuracy was proposed by choosing the most appropriate features/parameters from different 

architectures. To evaluate the proposed model, its performance was compared with few 

published network architectures. 

Dataset  

The International Skin Imaging Collaboration (ISIC) has released a collection of annotated 

dermoscopy images of melanoma for the 2016/2017 International Symposium on Biomedical 

Imaging challenge (https://isic-archive.com/#).  This study uses dermoscopy images that are 

publicly available in International Skin Imaging Collaboration archive. These are stored as RGB 

images with varied sizes in JPG format. There were total 2236 dermoscopy images in the dataset 

(1118 each for malignant and benign).  Sample images from the dataset are shown in Figure 4.  

Preprocessing 

Raw input images (dermoscopy digital images) were preprocessed in different ways to apply 

them into convolutional neural networks. In order to analyze dermoscopy images of melanoma 

skin lesions, this study used labeled melanoma dermoscopy images. Before fed them into 

convolutional architectures, these images were resized to a constant value in order to reduce the 

problem complexity (Gola Isasi, García Zapirain, & Méndez Zorrilla, 2011). Therefore all 

images were resized to 128x128 for few experiments and then resized them to 50x50 dimensions 

using OpenCV. Since the color information of input image is not necessary to detect skin lesions, 
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the RGB images were converted to grayscale image. The grayscale conversion was performed by 

summating the values of each pixel of the red, green and blue images (Gola Isasi et al., 2011, 

p.745).  

Data Augmentation  

Generally, there should be a large number of samples for proper training for any CNN model 

(Nasr-Esfahani et al., 2016). However, because of the difficulties in image collection and 

labeling, there are a limited number of images for melanoma detection. Therefore, for the 

purpose of artificially expand the training data set, data augmentation techniques were followed. 

In this study, dermoscopy images were subjected to data augmentation by elastic distortion, 

perspective transformation (there are a total of 12 different types), preserving rotation, size 

preserving shearing and cropping. An augmentation tool, called Augmentor was used for data 

augmentation in this study. Augmentor is a Python package designed to aid the augmentation 

and artificial generation of image data for machine learning. The dataset was increased 6 times 

total using the above mentioned augmentation techniques. These augmented feature vectors were 

used as additional samples to train the classifier and also for testing and validation.  

System Implementation 

The proposed model is implemented with Python 3.5.2 based on Tensorflow 1.1.0 and TFlearn 

0.3 high level API on a server with Intel Core i7 processor with 16 GB of RAM. 

Convolutional Neural Network Architecture 

In order to classify melanoma as malignant or benign, several convolutional neural network 

(CNN) architectures were created by varying  

1) No. of layers and their arrangement 

2) No. of training steps and learning rate 
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3) Activation functions 

4) Optimizer 

This section describes all the CNN architectures in detail. The structure of the CNN 

architectures include a series of convolutional layers, pooling layers, several activation functions, 

single and deep fully-connected layer. Some tunable parameters were included to this network. 

The size of the convolutional kernels were managed as a constant value across all stages. The 

number of filters in the convolutional layers were also tuned. Then, preprocessed dermoscopy 

images were fed into many different CNN architectures. Figure 5 presents a diagram of a general 

CNN architecture used for skin lesion analysis. Following are the four CNN architectures 

designed (default) prior to construct the model to classify melanoma as malignant and benign.  

CNN architecture 1 

1. Convolutional Layer #1: Applies 32, 2x2 filters with ReLU activation function. 

2. Pooling Layer #1: Performs max pooling with a 2x2 filter and stride of 1. 

3. Convolutional Layer #2: Applies 64 2x2 filters with ReLU activation function. 

4. Pooling Layer #2: Again performs max pooling with a 2x2 filter and stride of 1. 

5. Fully-connected Layer: 2 neurons, one for each class (malignant or benign) 

CNN architecture 2 

1. Convolutional Layer #1: Applies 32, 2x2 filters with ReLU activation function. 

2. Pooling Layer #1: Performs max pooling with a 2x2 filter and stride of 1. 

3. Convolutional Layer #2: Applies 64 2x2 filters with ReLU activation function. 

4. Pooling Layer #2: Performs max pooling with a 2x2 filter and stride of 1. 

5. Convolutional Layer #3: Applies 32, 2x2 filters with ReLU activation function. 

6. Pooling Layer #3: Performs max pooling with a 2x2 filter and stride of 1. 
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7. Convolutional Layer #4: Applies 64 2x2 filters with ReLU activation function. 

8. Pooling Layer #4: Again performs max pooling with a 2x2 filter and stride of 1. 

9. Fully-connected Layer #1: 1024 neurons with dropout regularization rate of 0.8. 

10. Fully-connected Layer #2: 2 neurons, one for each class (malignant or benign) 

CNN architecture 3 

The structure of this architecture is similar to the CNN architecture 2. But this architecture 

consists of 6 convolutional and 6 max-pooling layers. 

CNN architecture 4 

This architecture contains 10 convolutional layers and 10 max-pooling layers. All other 

parameters are same to architecture 2 and 3. 

Classification 

There were total 2236 dermoscopy images in the dataset. From that 20% were selected as testing 

data and the rest was divided in to 80:20 ratio for training and validation respectively. The last 

fully connected layer in each CNN architecture provided probability of class based on votes.  

Evaluation Metrics  

In the first part of the study, better CNN architectures were selected based on total loss, 

validation loss, accuracy and validation accuracy.  CNN architectures with lower loss and greater 

accuracy were considered in creating a novel CNN model. 

For quantitative evaluation of the performance of the proposed system, three commonly used 

metrics; Recall or Sensitivity (SENS), Classification accuracy (ACC), and Specificity (SPEC) 

were used. The metrics are defined as follow: 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑎𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑎𝑠𝑒𝑠
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𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑐𝑎𝑠𝑒𝑠

𝐴𝑙𝑙 𝑐𝑎𝑠𝑒𝑠
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑛𝑜𝑛 − 𝑚𝑒𝑙𝑎𝑛𝑜𝑚𝑎 𝑐𝑎𝑠𝑒𝑠

𝐴𝑙𝑙 𝑛𝑜𝑛 − 𝑚𝑒𝑙𝑎𝑛𝑜𝑚𝑎 𝑐𝑎𝑠𝑒𝑠
 

 

Experiments on other published CNN models 

The same dermoscopy image dataset was fed into four published CNN models namely AlexNet, 

VGGNet, Highway CNN and Google Inception v3. Then their performance on classifying 

melanoma was compared.  

Design of a novel CNN model 

According to the results obtained by the tested CNN architectures, a general CNN model was 

created by doing variations across layers. By evaluating the performance of published CNN 

models, fine tuning was done to the created model to propose a novel CNN model with high 

accuracy and recall. 
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Chapter 4 - Results and Discussion 

In this study, a novel CNN model was proposed by optimizing the conditions of the CNN 

architecture based on the performance of the previously created architectures. All created CNN 

architectures were constructed using TensorFlow. TensorFlow provides high-level API to 

construct a neural network easily. It facilitates the creation of convolutional layers, dense layers 

(fully-connected), adding activation functions and applying dropout regularization.  All CNN 

architectures created in this study composed of number of convolutional layers, pooling layers 

fully connected layers, dropout layers. Convolutional layers apply convolutional filters to the 

image and the layer performs mathematical operations for each sub region, to produce a single 

value in the output of the feature map. Pooling layers reduce the size of the feature maps by 

using some function to summarize subregions. Max pooling was utilized in constructing the 

CNN architectures that extract subregions of the feature map, keeps their maximum value and 

disregard all other values. Fully-connected layers perform the classification based on the features 

extracted by convolutional layers. The purpose of applying dropout layer is to reduce overfitting. 

When developing a CNN model for classifications, we usually come up with several questions; 

how many layers to use, how many convolutional layers, what are the filter sizes or the values 

for stride and padding. But there is not a standard way to do that, because the network largely 

depends on the type of data, which can be vary by size, complexity of the image etc. Therefore, 

one way to think about to choose the hyperparameters is to find the right combination.  

A typical CNN is composed of a stack of layers to perform feature extraction. In the first 

part of this study, four different CNN architectures were created by varying the number of layers 

and its arrangement. The objective of using different CNN architectures is to identify good 

architectures which extract high-level features of melanoma from dermoscopic lesions as much 
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as possible. Four CNN architectures used in this study contains 2, 4, 6 and 10 convolving layers 

respectively with the kernel size of 2x2. There is one pooling layer after each convolutional 

layer. In the first CNN architecture, there is only one fully-connected layer, whereas other three 

architectures contain two fully-connected layers. In these three architectures, a dropout layer is 

applied to the pooling layers before the second fully-connected layer. In addition to the number 

of layers in the CNN architecture, there are two parameters that we can change to modify the 

behavior of each layer. After choosing the kernel size, we have to choose the stride and padding. 

A convolutional layer’s output shape is affected by the shape of its input and the choice of kernel 

size, zero padding and strides. Stride controls how the kernel convolves around the input. In 

other words it measures how much the kernel is translated and it shows how much of the output 

is retained. Stride is normally set in a way, so that the output volume is an integer and not a 

fraction. For all CNN architectures of this study, the stride was set to 1. Because by setting stride 

to 1, the receptive fields overlap more and it increases the feature extraction capability.  As keep 

applying the convolutional layers, the size of the output volume decreases fast.  If we can retain 

the output volume same to the original input volume, we can preserve as much details about the 

original input volume. By applying zero padding, the output volume remains same in size to the 

original input volume. Thus, to all convolutional layers in the created CNN architectures, zero 

padding was added.  

For the first set of experiments, all images of 128x128 size were fed in to an architecture 

of 2 convolutional layers with 32 and 64 convolutional filters, 2 pooling layers and a fully-

connected layer.  Table 1 presents a summary of the experiments in the first set. When training 

steps were increased from 230 to 4600, there was not a significant change in training and 

validation accuracies. Then the input image size was reduced from 128x128 to 50x50 to see 
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whether it affects for the training efficiency of the model. The results showed that reduction of 

the size of images was not greatly affected to the loss or the accuracy of the training dataset. 

Therefore for the next models, the image size was maintained in 50x50, because it speeds up 

running the model even in low computational power. When introduced Tanh activation function 

for convolutional layers in place of ReLU activation, the model produced lower loss and greater 

training and validation accuracies. Also, the total loss was decreased as goes along with training 

steps, which is an indicator of good performance. However, when Tanh was used in the fully-

connected layer, it didn’t even calculate the loss, because the back propagation was not occurred.  

As shown in Table 1, the models performed better with Tanh activation function in convolutional 

layers than ReLU and sigmoid activation.  When compare the performance of models, Adam 

optimizer worked better than Stochastic gradient descent (SGD) optimizer. To examine the effect 

of data augmentation for the performance of models, data augmentation was carried out to some 

experiments. The models with data augmentation showed higher accuracy (both training and 

validation) and lower loss than the models without data augmentation. In the data augmented 

models also, Tanh and Adam were the best activation function and best optimizer respectively. 

For the second set of experiments, a different architecture with 4 convolution layers 

(alternating 32 and 64 convolutional filters) and 4 pooling layers was used. There was a fully 

connected layer followed by a dropout layer of 0.8 and again a fully-connected layer.  For all the 

networks that used this architecture, followed Softmax activation function in second fully-

connected layer.  The second set of experiments were summarized in Table 2. When increasing 

the training steps from 690 to 5024, and reducing learning rate from 1E-3 to 1E-6, the total loss 

was significantly dropped and training and validation accuracies were increased to ~56%. 

Therefore for this set of experiments best number of training steps was 5024 and best learning 
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rate was 1E-6.  Figure 8 shows that Tanh activation moreover reduces the total loss while 

enhancing the accuracy to 58.20%. The performance of models were not affected by reducing the 

dropout layer to 0.4, from 0.8.  

For the third set of experiments, the number of alternating convolutional and pooling 

layers were increased to 6 each. For these networks 5024 training steps, 1E-6 learning rate and 

Adam optimizer for regression were used. As shown in Table 2 and 3, all the five tested CNN 

architectures showed better results for loss and accuracy than the previous networks with 4 

convolutional and pooling layer pairs. When Tanh activation was introduced to all convolutional 

layers replacing ReLU activation, it showed similar training and validation accuracies and total 

loss and validation loss (Figure 10 and 11). These results demonstrate that Adam optimizer 

performs better than SGD in regression in all network structures.  

For the next set of experiments, number of alternating convolutional and pooling layers 

were further increased to 10 each. According to the results obtained from these networks (Table 

4), the performance still places the networks in the same place as with 6 convolutional and 

pooling layers. This demonstrates that, further increment of layers doesn’t make a contribution to 

greater accuracies and lower loss.   Based on these results, it can be concluded that deeper 

structures do not always provide better performance.  Among the tested networks in this 

structure, the one with Tanh activation on convolutional layers and Adam optimizer regression 

performed better than other networks with ReLU and Sigmoid activation (Figure 12).  

In the final set of experiments, few well-known CNN models were used to train the same 

dataset with 5024 training steps  and 1E-6 learning rate which used in this study . The AlexNet 

that regarded as one of the most influential publication in the field of computer vision and 
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convolutional neural network, has the structure of 5 convolutional layers, max-pooling layers, 

dropout layers and three fully-connected layers (Krizhevsky et al., 2012) with ReLU activation.  

As shown in the Table 5, this network showed total loss 0.53, validation loss 0.73, training 

accuracy 72.76% and validation accuracy 60.46%. Then the same dataset was fed into the 

network of VGG Net published in 2014, which is a 19 layer CNN with 2x2 max-pooling layers 

of stride 2 (Simonyan & Zisserman, 2014). Figure 14 shows that it performs better than AlexNet 

for the given dataset with total loss 0.17, validation loss 2.31, training accuracy 97.96% and 

validation accuracy 65.69%. When used the Highway convolutional network architecture that 

was published in 2015 (Srivastava, Greff, & Schmidhuber, 2015), it showed total loss 0.22, 

validation loss 1.54,  training accuracy 93.18% and validation accuracy 60.88% (Figure 15). This 

architecture contains highway convolutional layers with normalized function. By comparing 

these three network architectures, it showed that simple architectures performs well in image 

classification.  When it comes to the GoogleNet (inception v3), the idea of simplicity in the 

network architecture is out as it contains huge number of layers. GoogleNet was one of the first 

CNN architectures that strayed from the general approach of simply stacking convolutional and 

pooling layers on top of each other in a sequential structure (Szegedy et al., 2015). In the 

architecture of GoogleNet, the layers were not arranged in a sequential order.  In the general 

approach we have to make a choice of whether to have a pooling operation or convolutional 

operation. But in Inception v3 module, all these operations perform parallel. When the training 

dataset was applied to Inception v3, it showed total loss 0.37 validation loss 0.82, training 

accuracy 81.83% and validation accuracy 61.68% (Figure 16). The performance of Inception v3 

places it at the third rank in the classification of melanoma in this study, while VGG and 

Highway CNN models place first and second ranks respectively.  
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By comparing the outcome of each architecture it was easier to get a general idea, how to 

optimize the array of layers in the architecture to train a better model with lowest loss and best 

accuracy. The lowest total loss and validation loss obtained for created CNN architecture were 

0.67. The maximum training accuracy and the validation accuracy were 58.2% and 57.92% 

respectively. Many of the research on CNNs showed that depth of neural networks is a crucial 

ingredient for their success. The published paper of VGGNet reinforced the notion that 

convolutional neural networks have to have a deep network of layers in order for hierarchical 

representation of visual data to work (Simonyan & Zisserman, 2014).   In their study, they 

increased the depth of network by using an architecture with very small convolutional filters 

(3x3) which shows a significant improvement on the prior-art configurations by pushing the 

depth to 16-19 weight layers (Simonyan & Zisserman, 2014). Therefore, when the structure goes 

deeper and simple, the success rate of the network become high. Based on that the structure of 

the array of layers were changed to two successive convolutional layers followed by a max-

pooling layer. Following is the structure of the CNN architecture. 

Convolutional Layer #1: Applies 16, 5x5 filters with Tanh activation function. 

Convolutional Layer #2: Applies 16, 5x5 filters with Tanh activation function. 

Pooling Layer #1: Performs max pooling with a 2x2 filter and stride of 1. 

This structure was repeated six times by doubling the filter size of convolutional layer from one 

to next. Finally there is a fully connected later with 0.8 dropout regularization. This network 

showed total loss 0.71, validation loss 0.70, training accuracy 48.56% and validation accuracy 

69.82%.  Training of this model was difficult, as this structure is deep, and it took lots of 

computational cost. Network training becomes more difficult with increasing depth. To 

overcome this problem Srivastava et al. proposed a highway network with hundreds of layers, 
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which can be trained directly using SGD with variety of activation functions (Srivastava et al., 

2015). For the proposed model, convolutional highway layers were used because convolutional 

highway layers utilize weight sharing and local receptive fields for non-linear transformation. 

For the proposed model, batch normalization was applied after each max-pooling operation 

because this technique accelerate deep network training by reducing internal covariate shift 

(Ioffe & Szegedy, 2015).   Following is the proposed architecture.   

1. Highway Convolutional Layer #1: Applies 32, 3x3 filters with elu activation function. 

2. Highway Convolutional Layer #2: Applies 32, 2x2 filters with elu activation function. 

3. Highway Convolutional Layer #3: Applies 32, 1x1 filters with elu activation function. 

4. Pooling Layer #1: Performs max pooling with a 2x2 filter and stride of 1. 

5. Batch normalization 

6. Highway Convolutional Layer #4: Applies 64, 3x3 filters with elu activation function. 

7. Highway Convolutional Layer #5: Applies 64, 2x2 filters with elu activation function. 

8. Highway Convolutional Layer #6: Applies 64, 1x1 filters with elu activation function. 

9. Pooling Layer #2: Performs max pooling with a 2x2 filter and stride of 1. 

10. Batch normalization 

11. Highway Convolutional Layer #7: Applies 32, 3x3 filters with elu activation function. 

12. Highway Convolutional Layer #8: Applies 32, 2x2 filters with elu activation function. 

13. Highway Convolutional Layer #9: Applies 32, 1x1 filters with elu activation function. 

14. Pooling Layer #3: Performs max pooling with a 2x2 filter and stride of 1. 

15. Batch normalization 

16. Highway Convolutional Layer #10: Applies 64, 3x3 filters with elu activation function. 

17. Highway Convolutional Layer #11: Applies 64, 2x2 filters with elu activation function. 
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18.  Highway Convolutional Layer #12: Applies 64, 1x1 filters with elu activation function. 

19. Pooling Layer #4: Performs max pooling with a 2x2 filter and stride of 1. 

20. Batch normalization 

21. Highway Convolutional Layer #13: Applies 32, 3x3 filters with elu activation function. 

22. Highway Convolutional Layer #14: Applies 32, 2x2 filters with elu activation function. 

23.  Highway Convolutional Layer #15: Applies 32, 1x1 filters with elu activation function. 

24. Pooling Layer #5: Performs max pooling with a 2x2 filter and stride of 1. 

25. Batch normalization 

26. Highway Convolutional Layer #16: Applies 64, 3x3 filters with elu activation function. 

27. Highway Convolutional Layer #17: Applies 64, 2x2 filters with elu activation function. 

28.  Highway Convolutional Layer #18: Applies 64, 1x1 filters with elu activation function. 

29. Pooling Layer #6: Performs max pooling with a 2x2 filter and stride of 1. 

30. Batch normalization 

31. Fully-connected Layer #1: 128 neurons with elu activation function. 

32. Fully-connected Layer #2: 256 neurons with elu activation function. 

33. Fully-connected Layer #3: 1024 neurons with elu activation function. 

34. Dropout regularization (0.8) 

35. Fully-connected Layer #4: 2 neurons, one for each class; Benign and Malignant, with 

Softmax activation function. 

This structure showed total loss 0.07, validation loss 1.05, training accuracy 98% and validation 

accuracy 64.57%. This structure showed lowest loss and greater accuracy in comparison to tested 

other published networks. The sensitivity, specificity and classification accuracy of this model 

were 46%, 60% and 64% respectively. 
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Chapter 5- Conclusion  

This paper proposes a novel CNN for the classification of melanoma from dermoscopic images 

of skin. The method was evaluated on the largest public benchmark for melanoma recognition 

available. This paper presented an extended study on how to optimize the conditions of CNN 

architecture to train a model to classify melanoma as malignant and benign with high validation 

accuracy and low loss. This study demonstrated the performance of a trained model by varying 

the array of different layers, activation functions, number of filters and filter size, optimizers and 

dropout regularization.  Then the same dataset was used to train the models of state-of-the-art 

networks such as AlexNet, Highway CNN, VGGNet and Google Inception v3.  Based on the 

performance of each tested CNN architecture and state-of-the-art networks, a novel neural 

network model was proposed. The proposed model is a deep highway CNN with batch 

normalization. The proposed system produced training accuracy of 98% and validation accuracy 

of 64.57% and it performs similar to the state-of the-art networks.  
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Tables 

Table 1. Accuracy and loss of all predictions in the CNN architecture 1.  

  

Aug 
Training 
steps 

Learning 
rate 

Act. 
Function 
in Conv  

Act. 
Function 

in FC 

 
Optimizer 

Total 
loss Validation 

loss 

Training 
Accuracy 

% 

Validation 
accuracy 

% 

a no 230 1.00E-05 ReLU Softmax Adam 11.46 11.37 50.19 50.56 

b no 4600 1.00E-05 ReLU Softmax Adam 11.37 11.44 50.59 50.28 

c no 1150 1.00E-02 ReLU Softmax Adam 11.56 11.57 50.2 50.6 

d no 1150 1.00E-06 Tanh Softmax Adam 0.69 0.69 52.83 51.4 

e no 1150 1.00E-06 Softmax Softmax Adam 0.69 0.69 50.57 49.72 

f no 1150 1.00E-06 Sigmoid Softmax Adam 0.69 0.69 49.33 47.77 

g no 1150 1.00E-06 ReLU Tanh Adam _ _ 50.61 50.28 

h no 1150 1.00E-06 ReLU Softmax SGD 11.45 11.72 49.96 48.88 

i yes 15700 1.00E-02 ReLU Softmax Adam 11.47 11.51 50.13 50 

j yes 4710 1.00E-06 ReLU Softmax Adam 11.47 11.51 50.17 50 

k yes 5024 1.00E-06 Tanh Softmax Adam 0.67 0.68 57.41 54.91 

l yes 4710 1.00E-06 ReLU Softmax SGD 11.12 11.51 51.66 50 

m yes 5024 1.00E-06 Sigmoid Softmax Adam 0.72 0.69 53.9 54.08 

n yes 5024 1.00E-06 Tanh Softmax SGD 0.85 0.7 53.66 52.66 

 

 

Table 2. Accuracy and loss of all predictions in the CNN architecture 2.  

  

Training 
steps 

Leraning 
rate 

Act. 
Function 
in Conv  

Act. 
Function 
in FC 1 

Dropout 
Layer 

Optimizer 
Total 
loss Validation 

loss 

Training 
Accuracy 

% 

Validation 
accuracy 

% 

a 690 1.00E-03 ReLU ReLU 0.8 Adam 11.31 11.57 50.85 49.72 

b 5024 1.00E-06 ReLU ReLU 0.8 Adam 0.73 0.7 56.85 56.4 

c 5024 1.00E-06 Tanh ReLU 0.8 Adam 0.67 0.67 58.2 57.92 

d 5024 1.00E-06 Sigmoid ReLU 0.8 Adam 0.69 0.69 50.77 50 

e 5024 1.00E-06 ReLU ReLU 0.8 SGD 2.15 0.79 52.04 52.74 

f 5024 1.00E-06 Tanh ReLU 0.8 SGD 0.69 0.69 50.84 50.45 

g 5024 1.00E-06 ReLU ReLU 0.4 Adam 2 0.75 57.25 58.59 

h 5024 1.00E-06 ReLU Tanh 0.8 Adam 0.68 0.66 56.11 61.6 
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Table 3. Accuracy and loss of all predictions in the CNN architecture 3.  

  

Act. 
Function in 

Conv &  
FC1  

Optimizer 
Total 
loss Validation 

loss 

 Training 
Accuracy 

% 

Validation 
accuracy 

% 

a ReLU Adam 0.68 0.68 54.47 56.4 

b Tanh Adam 0.69 0.69 54.98 57.07 

c Sigmoid Adam 0.69 0.69 52.49 50 

d ReLU SGD 0.73 0.69 49.79 48.61 

e Tanh SGD 0.69 0.69 49.9 50 

 

Table 4. Accuracy and loss of all predictions in the CNN architecture 4.  

  

Act. 
Function 
in Conv &  

FC1  

Optimizer 
Total 
loss 

Validation 
loss 

 Training 
Accuracy 

% 

Validation 
accuracy 

% 

a ReLU Adam 0.69 0.69 53.65 49.4 

b Tanh Adam 0.69 0.69 55.8 55.1 

c Sigmoid Adam 0.69 0.69 50.61 50 

d ReLU SGD 0.69 0.69 48.74 49.95 

e Tanh SGD 0.69 0.69 50.07 50 

 

Table 5. Accuracy and loss of all predictions in published networks 

  
CNN Model 

Total 
loss 

Validation 
loss 

 Training 
Accuracy 

% 

Validation 
accuracy % 

a AlexNet 0.53 0.73 72.76 60.46 

b VGGNet 0.17 2.31 97.96 65.69 

c Highway CNN 0.22 1.54 93.18 60.88 

d Google Inception v3 0.37 0.82 81.83 61.68 
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Figures 

 

 

 

 

  

 

Figure 1: Typical illustration of convolutional neural network (Haley, 2015)  

 

 

 

 

Figure 2: a) The sigmoid non-linearity squashes real numbers to range between [0, 1] b) The 

Tanh non-linearity squashes real numbers to range between [-1,1]   
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Figure 3: Rectified Linear Unit (ReLU) activation function, which is zero when x < 0 and then 

linear with slope 1 when x > 0.  

 

 

 

 

 

 

 

 

 

 

 

       

               Figure 4: Example dermoscopic images from ISBI 2017 Challenge  

a)  Benign      b) Malignant 

a 

b 
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         Figure 5: Diagram of a general CNN architecture used for skin lesion analysis 
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c 

d 

Figure 6: The Performance analysis of CNN architecture 1-d 

(a): Total loss  (b):Validation loss  (c): Training accuracy  (d): Validation accuracy  

a 
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b 

 

c 

 

d 

 

Figure 7: The Performance analysis of CNN architecture 1-k 

(a): Total loss  (b):Validation loss  (c): Training accuracy  (d): Validation accuracy  
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d 

Figure 8: The Performance analysis of CNN architecture 2-c 

(a): Total loss  (b):Validation loss  (c): Training accuracy  (d): Validation accuracy  

a 

 

 

b 
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c 

d 

 

Figure 9: The Performance analysis of CNN architecture 2-h 

(a): Total loss  (b):Validation loss  (c): Training accuracy  (d): Validation accuracy  

a 

 

 

 



CNN FOR PREDICTING SKIN LESIONS OF MELANOMA 52 

b 

 

c 
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Figure 10: The Performance analysis of CNN architecture 3-a 

(a): Total loss  (b):Validation loss  (c): Training accuracy  (d): Validation accuracy  
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d 

Figure 11: The Performance analysis of CNN architecture 3-b 

(a): Total loss  (b):Validation loss  (c): Training accuracy  (d): Validation accuracy  

a 

 

b 
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Figure 12: The Performance analysis of CNN architecture 4-b 

(a): Total loss  (b):Validation loss  (c): Training accuracy  (d): Validation accuracy  

a 
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b 
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Figure 13: The Performance analysis of AlexNet 

(a): Total loss  (b):Validation loss  (c): Training accuracy  (d): Validation accuracy  
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d 

 

Figure 14: The Performance analysis of VGGNet 

(a): Total loss  (b):Validation loss  (c): Training accuracy  (d): Validation accuracy  

a 

 

 

b 
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Figure 15: The Performance analysis of Highway CNN 

(a): Total loss  (b):Validation loss  (c): Training accuracy  (d): Validation accuracy  

a 
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Figure 16: The Performance analysis of Google Inception V3 model 

(a): Total loss  (b):Validation loss  (c): Training accuracy  (d): Validation accuracy  
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Figure 17: The Performance analysis of proposed Highway convolutional neural network 

(a): Total loss  (b):Validation loss  (c): Training accuracy  (d): Validation accuracy  
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