
Regis University Regis University

ePublications at Regis University ePublications at Regis University

Regis University Student Publications
(comprehensive collection) Regis University Student Publications

Fall 2017

Process Mining Concepts for Discovering User Behavioral Process Mining Concepts for Discovering User Behavioral

Patterns in Instrumented Software Patterns in Instrumented Software

Kevin Olson

Follow this and additional works at: https://epublications.regis.edu/theses

Recommended Citation Recommended Citation
Olson, Kevin, "Process Mining Concepts for Discovering User Behavioral Patterns in Instrumented
Software" (2017). Regis University Student Publications (comprehensive collection). 842.
https://epublications.regis.edu/theses/842

This Thesis - Open Access is brought to you for free and open access by the Regis University Student Publications
at ePublications at Regis University. It has been accepted for inclusion in Regis University Student Publications
(comprehensive collection) by an authorized administrator of ePublications at Regis University. For more
information, please contact epublications@regis.edu.

https://epublications.regis.edu/
https://epublications.regis.edu/theses
https://epublications.regis.edu/theses
https://epublications.regis.edu/regiscollege_etds
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/842?utm_source=epublications.regis.edu%2Ftheses%2F842&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

PROCESS MINING CONCEPTS FOR DISCOVERING USER BEHAVIORAL

PATTERNS IN INSTRUMENTED SOFTWARE

A THESIS

SUBMITTED ON 14 OF DECEMBER, 2017

TO THE DEPARTMENT OF INFORMATION TECHNOLOGY

OF THE COLLEGE OF COMPUTER & INFORMATION SCIENCES

OF REGIS UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF MASTER OF SCIENCE IN

SOFTWARE ENGINEERING

BY

Kevin Harold Olson

APPROVALS

Kevin Pyatt, Ph. D., Thesis Advisor

Brian Lawler

Ishmael Thomas

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 2

Abstract

Process Mining is a technique for discovering “in-use” processes from traces emitted to

event logs. Researchers have recently explored applying this technique to documenting processes

discovered in software applications. However, the requirements for emitting events to support

Process Mining against software applications have not been well documented. Furthermore, the

linking of end-user intentional behavior to software quality as demonstrated in the discovered

processes has not been well articulated. After evaluating the literature, this thesis suggested

focusing on user goals and actual, in-use processes as an input to an Agile software development

life cycle in order to improve software quality. It also provided suggestions for instrumenting

software applications to support Process Mining techniques.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 3

Acknowledgements

The author gratefully thanks his advisor, Kevin Pyatt, for his patience and guidance in

reviewing and providing improvements to this thesis.

The author also thanks his wife, Shawn, for her proofreading, suggestions, and being a

sounding board for ideas and rants. Her love and support were instrumental in winding this

project towards its conclusion.

Finally, the author thanks his parents for all the assistance they have provided over the

years. They have served as inspirations for achieving goals in life, and for demonstrating that all

individuals are worthy of respect even when the majority may wish to relegate them to obscurity.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 4

Table of Contents

Abstract ... 2

Acknowledgements ... 3

Table of Contents .. 4

List of Figures ... 7

List of Tables .. 8

Chapter 1: Introduction ... 9

Alice and the Dilemma ... 11

Software Is Not Just Features ... 12

Software Employs Implicit Processes ... 15

A Potential Solution .. 16

Contributions and Research Questions ... 18

Structure .. 20

Terminology .. 21

The Need to Better Understand the Users ... 25

Can Agile Resolve the Situation? ... 29

Why Understanding User Behavior Matters for Software Engineering 33

A Repeatable Approach for Software Use Understanding ... 39

Summary ... 40

Chapter 2: Literature Review .. 42

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 5

The First Thread – Process Discovery .. 44

Second Thread – Knowledge Discovery in Databases ... 45

Third Thread – Workflow Mining .. 48

Additional Contributions to the Third Thread .. 52

Early Exploration Summary ... 53

Process Mining Types ... 56

Maturation ... 59

Maturation Summary .. 64

Process Mining for Software .. 65

Summary ... 72

Chapter 3: Considerations for Event Log Creation ... 74

Example Event Log... 77

Definition of a Case .. 79

Considerations of Activities .. 89

Instrumenting vs. Interception .. 96

Log Location and Persistence ... 102

Privacy Concerns .. 107

Conclusion .. 109

Chapter 4: Example Application of Process Mining to a Software Application 111

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 6

Chapter 5: Conclusion... 123

Research Questions and Results ... 124

Support For Software Quality ... 126

DevOps ... 127

Future Research .. 127

Other Considerations .. 129

References ... 133

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 7

List of Figures

Figure 1. Process Mining Types. From van der Aalst et al. (2012). ... 56

Figure 2. Example Petri Net. From van der Aalst and Weijters (2004) .. 78

Figure 3. Structuredness and data-driven vs. process driven application. From van Dongen and

van der Aalst (2005).. 82

Figure 4. Event Logging to Remote Service. From (Rubin, Mitsyuk, et al., 2014, p. 7) 103

Figure 5. Sandia Analysis Workbench Problem Domain ... 112

Figure 6. Sandia Analysis Workbench Application. ... 113

Figure 7. Spaghetti Process from Cluster Analysis of SAW Usage ... 117

Figure 8. Petri Net of SAW Usage.. 118

Figure 9. Heuristic Miner Results ... 119

Figure 10. Fuzzy Miner Results .. 120

file:///F:/home/kholson/GoogleDrive/Thesis/Olson,%20Kevin%20H.%20-%20Thesis.docx%23_Toc500919396
file:///F:/home/kholson/GoogleDrive/Thesis/Olson,%20Kevin%20H.%20-%20Thesis.docx%23_Toc500919396

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 8

List of Tables

Table 1. CQI Quality Survey and Quality Nature... 37

Table 2. Example Entries for an Event Log .. 77

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 9

Chapter 1: Introduction

When a user interacts with a software application, it is possible to discern behavioral

patterns. These patterns reveal the user’s intentions, as well as the processes by which the user

traverses the application’s functionality to achieve desired outcomes. It is insufficient to restrict

analyzing a software application to the expected means of interaction because the user’s

expressed behavior is frequently more diverse than anticipated by developers. This divergence

arises due to the dominant development paradigm that conceptualizes software as a collection of

features. Instead of assuming a particular utilization of features, however, it is possible to

understand the behavior of people when one thinks “about it in terms of their goals, needs, and

motives” (as cited in Zakia, 1995). Rather than attempting to enumerate feature utilization in the

abstract, it is important to understand the goal-revealing processes of users as demonstrated

through their actual interaction with the software. Thus, one must couple the processes an

individual follows when using an application with the individual’s intentional outcomes. High

quality software addresses the question of “can the user accomplish their [sic] goal?” (Summers,

2014). Consequently, quality software supports the efficient attainment of goals by individual

users.

The primary argument of this thesis is the need to discover the actual, in-use processes

that reveal intentional behavior, and to use this information to improve software quality. There

are several reasons to believe that discovering intentional behavior can improve software quality.

First, there is reasonable support in the literature to believe that a focus on goals, rather than on

feature articulation, is the most appropriate locus of concern for software developers. Focusing

on goals, however, is not typically the way in which an individual conceptualizes software;

software is often described as a checklist of features divorced from actual desired outcomes.

Therefore, this locus suggests a need for a paradigmatic change in how software – and therefore

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 10

software quality – is understood. Second, individuals’ goals are revealed in a software

application though the implicit processes in which individuals engage. By instrumenting a

software package, one may collect and then analyze the processes by which individuals use a

software application. Such a collection can reveal the ultimate goals individuals seek.

Furthermore, these goals are individually based, and not necessarily wholly congruent with the

goals as assumed or specified by stakeholders. There are numerous reasons for this lack of

congruency, but stakeholders are, at best, representative of the user community and not the

community itself. Third, Process Mining is a viable, defined, and repeatable methodology that

has the potential to be applied to a software application in order to reveal user behavior. Process

Mining is particularly useful in the “context of human-centric processes for which an

information system does not enforce the activities to be carried out in a particular order”

(Goedertier, De Weerdt, Martens, Vanthienen, & Baesens, 2011, p. 1698). This methodology

provides data that may be analyzed for a variety of purposes. Process Mining is not a software

development life cycle (SDLC) methodology; it is a methodology to support collecting data

about process utilization. Finally, by understanding the actual software utilization and goals,

software quality may be improved by incorporating data gathered into a SDLC.

The scope of this thesis, however, focuses on a definitional gap in the Process Mining

literature. This gap concerns the criteria necessary in order to apply Process Mining to a software

application. In general, this gap is a result of the history of Process Mining being primarily

applied to process-aware workflow systems. It is also associated with the challenges of

developing algorithms to recover actual processes. As noted in Chapter 2, the literature is

moving from a focus on static, pre-defined processes towards broader considerations of user

behavior exhibited in ad-hoc processes. This change in the Process Mining approach closely

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 11

parallels the argument developed in this thesis for the need to change from static, feature-based

conceptualizations of software to an understanding of software as an artifact to support goal

attainment though diverse, implicit, and individual processes.

As a means of introducing the topic of Process Mining and its application to software, an

illustrative story is presented. The Alice scenario is drawn from an actual conundrum faced by an

engineer at a Fortune 50 company. The story illustrates the current dependency of users on

updates driven by the software development community. It also posits that the utilization of a

software application varies depending upon the particular set of users. In addition, the story

reveals the typical paradigmatic thinking that focuses on features rather than goals.

Alice and the Dilemma

Alice works for a manufacturing company that uses computational simulation software to

verify and validate the safety of a delivered product. In essence, Alice uses software to simulate

what would happen if an unexpected event — such as dropping a piece of equipment from some

height — were to occur. As a part of this process, the simulation software itself must be

validated. After spending a couple of months validating the new 2.0 version of the simulation

software for acceptance by the company, Alice receives an e-mail informing her that version

2.01 is available, and it encourages her to upgrade. A question arises: should Alice invest the

time to re-validate the simulation software, or continue with the 2.0 version?

One would think it possible to answer Alice’s question with data relevant to her.

Unfortunately, the standard software documentation consisting of a “User’s Guide,” “Release

Notes,” or lists of bug fixes (or resolved User Stories) does not directly address her concerns.

After all, from Alice’s perspective it intuitively seems that the upgrade is worth accepting only if

a particular fault were resolved that addressed a feature she used in the 2.0 version. If version

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 12

2.01 adds features she does not use, or fixes an error in a feature she does not use, then the

upgrade is likely not worth the investment. Unfortunately, without detailed information about

what features Alice uses, and what features are fixed or added in the software upgrade, it is not

possible to answer Alice’s question using data. In fact, most software today cannot answer these

questions in general, and certainly not in specific customer instances. Such situations led van

Genuchten, Mans, Reijers, and Wismeijer (2014) to suggest that software vendors must change

their approach to software updates by convincing users of “the necessity of an upgrade” (p. 99).

According to these authors, an upgrade’s value should be demonstrated through data, rather than

marketing literature. In effect, the argument is to replace the existing push model of updates,

wherein a release is driven by the software development company’s needs, with a pull model of

updating when the update is of demonstrable benefit to the end-user. As will be shown below,

properly instrumented software may be analyzed through a specific methodology to address

Alice’s question.

For organizations that must maintain approved software, accepting updates imposes a

burden (see, e.g., Ali, 2012; Bloch, 2013; Pogue, 2015; Sahin & Zahedi, 2001). This burden

exists since the software must be verified prior to deployment. Conversely, not accepting the

updates can create technical debt (see, e.g., Brown et al., 2010; Kim, Behr, & Spafford, 2013).

This debt must be paid for in the future. Data that indicated whether a particular update directly

addressed the needs of an organization could help resolve the debate about when to accept an

update.

Software Is Not Just Features

The Alice story, however, reveals an implicit paradigm about software. A feature is “a

distinguishing characteristic of a system item” (IEEE, 2008) or “a chunk of functionality that

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 13

delivers business value” (VersionOne, n.d.). It is the “unit of functionality of a software system

that satisfies a requirement, represents a design decision, and provides a potential configuration

option” (Apel & Kästner, 2009). A given collection of features composes a software application.

Features are “abstractions that shape the reasoning of engineers and other stakeholders”

(Classen, Heymans, & Schobbens, 2008, p. 16). Features are the basis of a worldview about how

software is estimated, managed, modeled, developed, and marketed; they are the basic linguistic

construct for discussing software.

However, as Cooper, Reimann, and Cronin (2007) argued, the purpose of software is to

enable users to achieve goals. A goal is “an expectation of an end condition” (Chapter 1, “Goals

versus tasks”, para. 1) that has value to the user. Khodabandelou, Hug, Deneckère, and Salinesi

(2014) suggested a similar definition with the additional need for a “clear-cut criteria of

satisfaction, which can be fulfilled by the enactment of a process.” Software exists not for

providing features per se, since such features tend to be “activities and tasks [that] are

intermediate steps” (Cooper et al., 2007, Chapter 1, "Goals versus tasks", para. 1). Instead,

software should enable users to achieve an outcome that is of value to them via the software’s

implemented functionality. When the story speaks of the “features” Alice uses, it reduces the

desired outcome (simulating a product’s response to varying conditions) to a list of functionality

divorced from a goal.

The Alice story is not the only attempt to illustrate the issues created by focusing on

features rather than goals. Magnacca (2009) provided a different analogy by considering an

individual purchasing a drill from a hardware store. Generally, if one asks a store employee for

assistance in buying a drill, the probable response is a list of features. Yet the goal of the user is

to make holes, and the feature set of the drill is a means by which to achieve the goal. Like

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 14

Cooper et al. (2007), Magnacca argued that a focus on features is misplaced, with the ultimate

needs and processes by which an individual achieves a goal being subsumed by an emphasis on

feature articulation. To a certain extent, Norman (2002) made a similar argument in suggesting

that engineering constraints outweigh a focus on ensuring individuals can effectively achieve

their goals. The Agile Manifesto (Fowler & Highsmith, 2001) used an analogy of car buying, and

noted that many people conceptualize software as a list of features for which they pay. The

problem, the Manifesto suggested, is that the analogy does not work for software. Instead, there

must be a focus on value delivery as understood though actual, usable software. Ultimately,

software usability implies the achievement of goals (Ferre, Juristo, & Moreno, 2004).

The focus on goals rather than features in software shifts the discussion from static

functionality to dynamic user behavior. In understanding user behavior, one can also understand

the functionality that is used in a software program. The inverse understanding, however, is not

obtainable since it would attempt to derive the dynamic utilization from static definitions.

Focusing on dynamic user behavior illuminates the ways in which software is actually utilized by

individuals. In contrast, a focus on features assumes the means by which the software is used.

As Magnacca illustrated, and as the Alice story assumes, focusing on features provides

insight into the means by which something may be achieved. In contrast, understanding why

something is done provides a richer explanation. Addressing questions of why an individual

utilizes software functionality in a particular way illuminates opportunities for software

improvement. Such questions can provide support to answer the “is the upgrade worth it

question,” since the focus on user behavior demonstrates whether the purported value of the

upgrade meets the usage patterns of the particular individual. Addressing the issue of behavior,

however, moves beyond the question of upgrade value and into the realm of software quality.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 15

Software Employs Implicit Processes

At the base of the discussion regarding goal achievement via tasks (features) is the

realization that all software has within it implicit processes. As an example, consider a word

processor. One user might launch the program, open a document, add text, insert tabs and

carriage returns for formatting, save the file, and exit the program. Another user might launch the

program with a given file, add text, format the document using style sheets, save the file, and

exit. In both cases, the word processor allowed the users to accomplish their specific goal of a

formatted document. However, the users achieved their goals through different processes and

features. Software that provided improvements to style sheets, for example, is not a worthwhile

upgrade for those users who did not use style sheets. However, even for those users that utilized

style sheets, capturing the specific program utilization can indicate how much value may be

obtained. Moreover, this particular value could be calculated for each individual user based upon

the specific way in which a given user achieved their goals through the application’s pathways.

In short, software allows individuals to achieve goals, but the ways in which individuals utilize

software is not uniform. Further, an application’s utilization may diverge from the way software

designers and developers expect. This divergence is not necessarily a bad thing, since it may

reveal additional value in the software.

In van der Aalst (2012c), the author suggested that most approaches to understanding

processes are derived from a single, standard process-model. Applied to software, this single

process model would likely equate to a UML sequence diagram that attempted to capture the

interaction. However, van der Aalst argued that such single models fail when actors have a

variety of purposes they may wish to achieve. Cooper et al. (2007) made a similar argument

when they suggested that different communities involved in various aspects of software

development favor different model types. In addition, maintaining and reconciling these different

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 16

models is difficult and error prone. Worse, these models tend to not be maintained, resulting in a

false paradigm on the part of the developers with respect to how the software is actually utilized.

The single model approach that is common in software development relies upon another

underlying assumption. This assumption states that the value of a particular set of features is

uniform for all users. However, while it is true that software utilization is expressed through the

particular sequence of features that are invoked, it is not merely selecting a sequence of features;

rather, it is utilizing software in a particular way to achieve some desired end-goal. When one

assumes software is a set of features, the user’s goals are lost. As such, value can only be

measured in terms of how well the software assists users in meeting their goals.

When van Genuchten et al. (2014) suggested quantifying the value of an upgrade, there

was an implicit assumption that the quantified value is the same for all users. In other words, the

article assumed the goals of all users are the same, and thus a single number (or perhaps set of

numbers, though the article does not consider such a case) could be derived to indicate the

upgrade value. However, as the Alice story shows, the problem is that the entire user

community’s goals cannot be assumed to be uniform since the particular goals of Alice’s

organization may be different than for other organizations. While van Genuchten et al. (2014)

did suggest the importance of understanding how users interact with the software, it did not

consider variations in the user community writ large.

A Potential Solution

Understanding how users interact with software provides multiple benefits to developers.

For deployed software, it can assist with providing insight into the value of an upgrade. It can

also assist with improving the understanding of the software to support new or refined

functionality. For software that is under development, it can improve the developer’s mental

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 17

models, allowing for the identification of divergence between expected and actual user behavior.

This understanding can highlight the importance of certain software errors, or even reveal errors.

It can also allow for refining the approach to support a more efficient goal achievement, or the

recognition of valuable goals that were not understood in the initial application definition.

Furthermore, interacting with software is also a voyage of discovery, in that software should not

only allow for achieving some set of identified goals, but should also inspire new goals and

suggest new ways to achieve them (Brooks, 1995; Raymond, 2008). In short, collecting

information regarding user behavior may be done in multiple phases of a software development

lifecycle (SDLC), and this information may be used to improve the software application.

Nonetheless, in order to facilitate this understanding, a methodology for collecting and

analyzing the users’ processes is necessary. One promising approach for illuminating user

behavior is found in the application of Process Mining to software applications. Process Mining

seeks to “discover, monitor, and improve real processes (i.e., not assumed processes) by

extracting knowledge from event logs” (van der Aalst et al., 2012, p. 1). By applying algorithms

to collected data, it is possible to reconstruct users’ processes, and thereby illuminate how they

actually use the software. With sufficient costing data (e.g., timing, effort, etc.), it is possible to

quantify users’ activities, providing the answer to upgrade value, potentially on a per user basis.

It is also possible to enumerate the functional points executed by the software, thus addressing

Alice’s issues. Process Mining, therefore, provides an avenue to assist with understanding user

behavior and discovering their intentions. This understanding may be applied in a myriad of

ways to support software improvement.

Process Mining is a technique that can discover the gap between assumed and actual

utilization of the software. By analyzing event logs generated from the runtime utilization of the

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 18

software, one can discover the in-use processes (as opposed to the assumed normative ones) that

users follow. Using Process Mining allows for a defined approach for uncovering the goals of the

users (addressing, e.g., Cooper et al., 2007). It also provides for measurement and improvement

during a software application’s development and deployment phases. Process Mining can also

answer specific value-based questions about particular end-users (the Alice story and van

Genuchten et al., 2014).

Applying Process Mining to the comprehension of a software package in order to

illuminate users’ goals is a relatively novel approach. As will be seen in Chapter 2, there has

been a dearth of literature analyzing an executing software program to highlight the implicit

processes of users. Furthermore, the linking of such an approach to a general understanding of

software quality appears to be, at best assumed — if not absent — in the literature. In general,

when the literature has examined applying Process Mining to software, it has frequently

examined the software development process rather than the actual software application. As an

example of the former, consider Zimmermann, Weisgerber, Diehl, and Zeller (2004); Huo,

Zhang, and Jeffery (2006); Cleland-Huang and Mobasher (2008); Duan, Cleland-Huang, and

Mobasher (2008); Sun, Du, Chen, Khoo, and Yang (2013); and Gupta (2014; Gupta & Sureka,

2014; Gupta, Sureka, & Padmanabhuni, 2014). In contrast, the latter is represented essentially by

Khodabandelou et al. (2014); Rubin, Lomazova, and van der Aalst (2014); Rubin, Mitsyuk,

Lomazova, and van der Aalst (2014); and van Genuchten et al. (2014).

Contributions and Research Questions

This thesis makes four contributions to the overall Process Mining literature. First, it

explicitly links the concept of user goals to the implicit software processes used to achieve these

goals. This argument was suggested above, and it is an extension of several approaches. To the

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 19

best of the author’s knowledge, it has not been definitively made elsewhere. Second, this thesis

argues that Process Mining can mine and illuminate the goals and processes of users as

expressed in a software application. The Process Mining literature is scant in this area. Thus, this

research augments the tentative work done to date in mining user’s intentions. Third, this thesis

collects and comments upon the sparse and diverse suggestions concerning how to generate

relevant event logs. Process Mining requires specific event logs in order to operate. Despite

assertions that, “by definition, software runs on machines that can log user behavior” (van

Genuchten et al., 2014, p. 94), it is not a given that software will log such behavior. Furthermore,

many of the logs generated by software applications are focused on the application’s behavior

(containing, for example, error reports) rather than on the user’s (see, van der Aalst et al., 2012).

Creating a relevant event log is an important requirement for Process Mining (van der Aalst et

al., 2012), and the general assumption in the literature is that such logs simply exist. Thus, this

thesis defines criteria that are necessary in order to apply Process Mining to a software

application. Finally, this thesis provides an illustrative case study of the application of Process

Mining to a software application, demonstrating the feasibility of illuminating the implicit

processes. A team instrumented a software package, applied Process Mining techniques to the

event logs, produced visual graphics of a user community’s interaction with a software package,

and ultimately addressed a discovered software quality issue revealed through the Process

Mining that was not raised by the user community itself. The presentation of mined activities

validates the general argument that it is possible to extract user intentions via the implicit

processes contained within a software application.

In seeking to make these contributions, this thesis is driven by three research questions.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 20

RQ1: Is there sufficient evidence in the Process Mining literature to support the

idea that it can be applied to a non-Process Aware Information System

(PAIS)?

RQ2: What are the requirements of logging such that a non-PAIS application

could be instrumented to apply Process Mining Techniques?

RQ3: Is there evidence that applying Process Mining Techniques could support

improved software quality?

Structure

This thesis is organized as follows. The remainder of this chapter provides an expansion

of the argument for understanding users’ goals in relation to a software application. Further, it

suggests that goal comprehension is an important aspect of software quality. It also briefly

examines whether the issue of goal comprehension can be resolved by using an Agile software

development methodology. Chapter Two examines the existing literature of Process Mining.

Therein, one will find a brief summary of the topic’s historical development, as well as the

benefits and assumptions that this history contains. Further, the chapter presents a summary of

existing research that directly touches upon the application of Process Mining to the mapping of

user intentions and its feedback to the development cycle. Chapter Three addresses the

aforementioned shortcomings that assume the presence of properly constructed event logs.

Process Mining requires the generation of event logs, yet there remains a dearth of

recommendations on how these event logs are to be generated. This chapter presents this thesis’

primary contribution to the literature. Chapter Four provides an example of an early application

of Process Mining to an application, and what type of data may be obtained. Finally, Chapter

Five offers some concluding remarks.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 21

Terminology

Before proceeding with additional elaboration on goals, it may be helpful to provide

definitions for a few terms and concepts. In this thesis, one may discern two different temporal

perspectives when discussing software. The first perspective, exemplified in the Alice scenario

or the word processor example, concerns deployed software. Deployed software is software that

has been released to some set of end-users. A set of end-users is distinct from the developers and

development-associated stakeholders in time and location. These end-users would use the

software to achieve some set of goals. The second perspective, exemplified by the discussions of

Cooper, Patton, and others, seeks to understand the goals and their achievement while the

software is in development. This second perspective emphasizes representative users rather than

actual users, since the software may not have been finalized (or the features to allow a goal to be

realized have not yet been fully implemented).

Consequently, a methodology to assist with understanding user behavior would ideally be

applicable during both software construction and after software deployment. In the construction

phase, such a methodology would allow for capturing software utilization as developers and

testers construct and validate the software. During the deployment phase, such a methodology

would allow capturing utilization from a wider variety of end-users. This larger set of users

would likely exercise the software in different ways (Raymond, 2008, pp. 32-36). This latter set

is also likely to have a greater number of diverse goals. The various pathways exercised in the

software would be different, assuming any degree of flexibility in the software. Nonetheless, the

data collection and analysis methodology would be similar between the two phases. The

deployed software, however, would presumably generate a greater amount of collected data.

Managing the potentially large data collection is briefly considered in Chapter 3.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 22

The primary use of a data gathering and analysis methodology designed to ascertain user

intentions is to illuminate the means by which the users achieve their goals. As such, the

methodology would address both of these temporal perspectives. When the methodology is

applied during development, it may be seen as part of a comprehensive software validation

exercise. Software validation exists to ensure the software conforms to stakeholder expectations

(Christopher, 2003; Paula, 2009; Tomas, 2003; Wallace & Fujii, 1989). Capturing data as

developers and testers exercise the software to ascertain the flow, performance, and goal

realization provides another data point in the validation process. In contrast, when the

methodology is applied to data captured from a variety of end-users, the methodology may be

seen as an aspect of software analytics. Software analytics strives to “enable software

practitioners to perform data exploration and analysis in order to obtain insightful and actionable

information from data-driven tasks around software” (Zhang et al., 2011, p. 55).

Thus, while the timing and the incorporation of collected data is different, it is useful to

have an approach that would cover both of these legitimate temporal perspectives. In van

Genuchten et al. (2014), the authors examined information collected during a development phase

in order to improve the software prior to delivery. In contrast, Khodabandelou et al. (2014)

examined information collected from deployed software in order to ascertain users’ goals. In

both instances, the desired outcome was actionable insight into how users interacted with a

particular software application. A methodology to support the gathering and analysis of data to

support user behavioral analysis would provide benefits across the software life cycle.

A second point of potential ambiguity is in the use of the term “feature.” Elsewhere, it

was noted that a goal might be understood as an expected end condition with criteria for its

satisfaction achieved via a process. In this formulation, a software feature was relegated to an

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 23

intermediary task or activity. It is important to emphasize that while a feature is a step in a

process, the step itself must have value to the user. Returning to the Alice scenario, a “feature”

might be the ability to apply load conditions to an initial model. In a word processor, a “feature”

might be the ability to save a document. Therefore, a feature is, “a unit of functionality of a

software system” (Apel & Kästner, 2009, p. 49). Features are not of uniform size, however, and

are defined solely within the context of the software program. A feature thus has value to the

end-user, and, as noted, it is frequently the definitional unit for stakeholder requests as well as

developer implementation and testing.

A third point of potential vagueness is found in defining the target audience for a

methodology addressing the concerns raised above. While various audiences could potentially

benefit from a paradigmatic change from a focus on features to one on goals, and different

software development methodologies could potentially benefit from a means by which to analyze

the software-in-use, the primary audience for the application of a Process Mining methodology

to software is an Agile development team. One finds that the literature (e.g., Rubin, Lomazova,

et al. (2014); Rubin, Mitsyuk, et al. (2014); van Genuchten et al. (2014)) has tended to assume an

iterative SDLC where standard routes allow feedback to be incorporated quickly and easily. In

addition, Process Mining is a methodology designed to be executed frequently, and the data

incorporated into a management activity. Agile SDLC’s have distinct opportunities for

incorporating the discovered data, whether in daily meetings or in routinely scheduled review

activities. Plan-based approaches may not have the same level of flexibility to incorporate

findings where gathered data deviate from expectations. Plan-based approaches, following

Boehm and Turner (2004) “are characterized by a systematic engineering approach to software

that carefully adheres to specific processes in moving software through a series of

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 24

representations” (Chapter 1, “Characteristics”, para. 2). Such approaches assert that software

quality improvement results from process improvement (Boehm & Turner, 2004, Chapter 1,

"Characteristics"), rather than from understanding the software itself. One could apply Process

Mining to the software process (and several authors have done so), and potentially utilize

Process Mining to improve the SDLC process. However, the argument in this thesis is that

Process Mining may be applied to a software application itself. The underlying philosophical

differences between an Agile SDLC and a plan-based SLDC contribute to a bias towards Agile,

or at least highly iterative SDLCs. In addition, when examining the application of Process

Mining to process improvement many authors utilized language reminiscent of iterative

conversations (e.g., van der Aalst, 2005).

Another construct is found in the term “stakeholder.” A “stakeholder” may generally be

understood as an individual who has a “right, share, claim, or interest in a system”

(ISO/IEC/IEEE, 2010, p. 343). This definition may be augmented by conceptualizations of risk,

or perceptions of being affected by a decision or activity (ISO/IEC/IEEE, 2010, p. 343). In this

approach, the term is exceedingly broad, incorporating individuals who may directly participate

in the definition of a software application, as well as those potentially affected by decisions

removed in time and space. Ambler (2012a) provided a more expansive definition of a

stakeholder as being:

anyone who is a direct user, indirect user, manager of users, senior manager, operations

staff member, the "gold owner" who funds the project, support (help desk) staff member,

auditors, your program/portfolio manager, developers working on other systems that

integrate or interact with the one under development, or maintenance professionals

potentially affected by the development and/or deployment of a software project.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 25

In addition to the direct incorporation of business-oriented individuals, Ambler also

included developers into the definition of a stakeholder. While these definitions highlight the

variety of potential stakeholders, their broad scope makes distinguishing a stakeholder difficult.

Moreover, to support the Agile principle of, “Our highest priority is to satisfy the customer”

(Fowler & Highsmith, 2001), it is potentially useful to reduce the definitional scope of a

stakeholder.

As such, this thesis adopts a more restricted definition of a stakeholder. For the purposes

of this research, a stakeholder is an individual who provides “product guidance and feedback”

(Amiryar, 2012) during the development of a software application. A stakeholder is therefore

different than the individuals responsible for designing, writing, or testing the application

(consider, e.g., Crispin & Gregory, 2009). Stakeholders contribute the User Stories that are

implemented. The general end-user community, however, is not a stakeholder since these

individuals are not involved in the application development. Furthermore, this community tends

to be more diverse and populous than the stakeholders involved in the development cycle (see,

e.g., Boehm & Turner, 2004).

The Need to Better Understand the Users

Frequently, software is developed, and improvements are implemented and released,

based upon expected behaviors and assumed comprehension of how users interact with a

software program. Using assumed behavior as a basis for software development led Cooper et al.

(2007) to lament that, “Most technology products get built without much understanding of the

users” (Chapter 1, “Ignorance about users”, para. 1). Stated slightly differently, software is

developed based upon the assumed processes by which features are exercised in order to

accomplish some goal. In contrast, Cooper argued for a “repeatable, predictable, and analytical

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 26

process for transforming an understanding of users into products that both meet their needs and

excite their imaginations [emphasis in original]” (Chapter 1, “The lack of a process”, para. 1).

Such an approach is predicated upon an understanding of how users “will actually use the

product” that is being build (Cooper et al., 2007, Chapter 1, "The lack of a process", para. 1).

Adzic and Evans (2014) went further, arguing that software development should not merely

describe the users’ (expected) behavior, but rather incorporate a means to measure the change in

the users’ behavior between two points in time. However, the authors did not suggest a means for

measuring or quantifying the differences. Khodabandelou et al. (2014) argued that it is important

to understand users’ intentions, where intentions are essentially equivalent to goals, in order to

support software improvement. Buse and Zimmermann (2012) proposed understanding the

actual utilization of software as a set of data to satisfy the analysis needs of software engineers.

Thus, there are a number of authors calling for better insight into how software is actually

utilized in order to support a plethora of diverse approaches for improving software quality and

documenting its value.

In a similar vein, Patton (2014) argued that software is about changing the world by

enabling the users to achieve their “goals as a consequence” by using a piece of software

(Chapter 1, “Software Isn’t the Point”, para. 2). Moreover, Patton believed that it is desirable and

possible to “measure what people do differently,” as well as whether the users’ lives are

improved (Chapter 1, “Software Isn’t the Point”, para. 2). Adzic and Evans (2014) noted that

valuable software produces “an observable change in someone’s way of working.” Though

Adzic and Evans (2014) expressed observable behavior in terms of subjective value, their

formulations are compatible with the concepts of goals as articulated by Patton (2014) or Cooper

et al. (2007).

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 27

Actual, in-use software processes stand in contrast to static, feature-based software

conceptualizations. Yet, the predominant paradigm for discussing software is one of feature

articulation. There are multiple reasons why feature articulation is the predominant paradigm,

even though it cannot provide insight into actual user behavior. First, users are frequently unable

to clearly articulate their needs, and “when asked direct questions about the products they use,

most tend to focus on low-level tasks or workarounds to product flaws” (Cooper et al., 2007,

Chapter 1, "The creation of digital products today", para. 1). Second, software development itself

is often structured around a set of features. Whether it is from the requirements to be

implemented, or User Stories, most software development tasks implement and testing specific

features. Buse and Zimmermann (2012), for example, documented how developers focused

almost exclusively on information pertaining to discrete features, rather than on larger issues of

how a user interacted with the product as a whole. Cooper et al. (2007) also noted the lack of

global considerations in software development. Third, the legacy of software engineering as

essentially a “Taylorian” process (Boehm & Turner, 2004; Mahoney, 2004; Maurer & Melnik,

2006) emphasizes discrete tasks defined by one set of specialists, but implemented by a different

set. The discrete task approach removes the global outlook for a product and its uses, and instead

focuses on the achievement of specific tasks.

In essence, the foregoing is an argument for understanding the actual behavior of users

when they interact with a software application. Buse and Zimmermann (2012) asserted, “In any

business endeavor, understanding customers is important; software development is no

exception.” In a similar vein, Cooper et al. (2007) noted that companies have access to a plethora

of data about users, but little data on what makes them happy (Chapter 1, “Ignorance about

users”). Patton (2014) also emphasized a need to understand what makes users happy, but with

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 28

the additional emphasis on goal attainment. Yet to delight the user (Denning, 2016), it is

necessary to understand the user. Buse and Zimmermann (2012), Cooper et al. (2007), along

with the others noted above, argued that understanding users — and ultimately what makes them

happy — is derived from understanding “how a user is using [a] product” and whether the users

are “performing tasks we [developers] expect” or “performing tasks we didn’t anticipate” (Buse

& Zimmermann, 2012, p. 992). If a user undertakes unanticipated tasks, it may be an example of

inefficiencies in the way software supports goal attainment; it may reveal creative, new uses for

the software. Buse and Zimmermann (2012) situated the need to measure actual software

utilization within the framework of software analytics, but did not provide specific means by

which to collect the data nor transform it into information. The approach also remained

steadfastly “task” based. Cooper et al. (2007) proposed a process for data collection and analysis,

but their method relied upon “techniques of ethnography, stakeholder interviews, market

research, detailed user models, scenario-based design, and a core set of interaction principles and

patterns” (Chapter 1, “A process overview”, para. 1). This approach does not allow for

understanding specific users in specific contexts, nor does it (necessarily) utilize the actual

software to document user behavior (or the change in their behavior as suggested by Adzic and

Evans (2014)).

Consequently, understanding how people actually use software in achieving their goals

would provide feedback that could improve the software. Such an approach would sharpen the

focus on the “intentional processes” (Khodabandelou et al., 2014) people use. Answering Alice’s

questions regarding the value of an upgrade could therefore be quantified, as van Genuchten et

al. (2014) suggested. The value, however, would be demonstrable not only in terms of the feature

set, but also in terms of the overall process improvements that may be obtained through the

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 29

upgrade. Such an understanding would assist in answering the direct question of understanding

how users actually use the product (Cooper et al., 2007, Chapter 1, "Ignorance about users").

It therefore seems clear that obtaining better insight into how software is used in the

realization of users’ goals would provide many benefits. Applied correctly, a methodology to

gather data would provide the repeatable and analytical process that Cooper et al. (2007) desired.

With the correct analysis, differences between two models could be calculated, such as shown in

van Genuchten et al. (2014). Extracting the process models that individuals utilize when working

with the software would ensure that development assumptions are accurate, and that anticipated

value is achieved. Such models can provide data-backed analysis of how a given set of changes

in a software update will affect a given set of users.

Can Agile Resolve the Situation?

When confronted with potential issues regarding customer requirements, a frequent

response in the current software development community is to “become Agile.” Consideration of

the Agile movement is important for two reasons. First, it is possible that problems with

understanding users and their goals is rooted in the particular SDLC that a team uses, and is not

an inherent gap in knowledge. If changing to an Agile SDLC would allow for appropriate insight

into users and their goals as expressed through behavior, then investing in Process Mining

techniques likely would not be appropriate. The second reason for considering the Agile SDLC

is that when the Process Mining literature (e.g., Rubin, Lomazova, et al., 2014; Rubin, Mitsyuk,

et al., 2014; van Genuchten et al., 2014) considers software applications, it situates Process

Mining within an Agile SDLC. As these authors suggested, Process Mining can be a means with

which to further engage and educate stakeholders about the actual utilization of a software

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 30

application. There does not appear to be any attempt in the existing literature to link Process

Mining to a more plan-based (as defined by Boehm & Turner, 2004) SDLC.

A full consideration of whether applying Agile methodologies could completely obviate

the need for Process Mining in an SDLC is beyond the scope of this thesis. Instead, the following

considers whether there are sufficient objections in the literature to suggest that Process Mining

could have an important role in revealing user behavior in a way that Agile methodologies

cannot directly address. Ultimately, Agile development is about fostering conversations with

stakeholders (Adzic & Evans, 2014; Hathaway & Hathaway, 2013). Process Mining could

potentially contribute to the conversation by confirming usage assumptions, or raising questions

about the means by which the software is employed. Such input would be another valuable data

point in the refinement of the software’s value proposition. This potential alone, however, is not

necessarily sufficient cause to undertake the investment necessary to use the methodology.

Agile methodologies, following from the Agile Manifesto (see, Fowler & Highsmith,

2001), suggest two points that address understanding user behavior in a software application.

First, one finds the interdependent principles of developers and stakeholders working together

daily on a project, combined with the assertion that developers and stakeholders should have

face-to-face conversations. Second, one finds an emphasis on satisfying stakeholders through the

early and continuous delivery of valuable software. Early, in this context, is defined in

opposition to the “big-bang” plan-based releases where all anticipated features are delivered at a

single point in time. In addition, Agile promotes rigorous acceptance testing on the part of the

stakeholders. Such testing should ensure that the software conforms to expectations, with one

aspect of those expectations being the delivered value.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 31

Unfortunately, it is not clear that Agile methodologies address the full range of concerns

raised above. Cooper et al. (2007) argued that goal elicitation is not inherent in Agile approaches.

Further, integrating stakeholders “directly into the development process on a frequent basis” has

the “salutary effect of sharing the responsibility of design” with the stakeholder, but “ignores a

serious methodological flaw: a confusion of domain knowledge with design knowledge”

(Chapter 1, “The lack of a process”, para. 4). Despite the fact that Agile User Stories should

define value for the stakeholders, the value is frequently measured in terms of the single story,

and not in reference to the program’s totality. Adzic and Evans (2014) also noted that frequently

value is assumed in a given User Story because it is something for which a stakeholder asked

(Chapter 1, “Describe a behavior change”, para. 2). Without external verification, value can often

remain subjective, or limited to a small subset of the stakeholders. Further, as Cooper et al.

(2007) noted, “Unfortunately, reducing an interactive product to a list of hundreds of features

doesn’t lend itself to the kind of graceful orchestration that is required to make complex

technology useful” (Chapter 1, “The creation of digital products today”, para 1).

Similar to the arguments of Cooper et al. (2007), Crispin and Gregory (2009) argued that

developers lack sufficient domain knowledge to facilitate a comprehensive approach. They

suggested developers lack a holistic view of the domain and of how the end-users operate.

Crispin and Gregory (2009) urged that professional testers fill the gap between developers and

stakeholders. However, this method lacks the systematic approach of Cooper et al. (2007) since

it relies upon exceptional individuals (the Agile testers) rather than a repeatable process for

obtaining the larger view of how the software is utilized.

Related data from Boehm and Turner (2004) suggested that a given set of stakeholders

who advocate for a particular user story are not necessarily representative of the organization as

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 32

a whole. This lack of representation was also noted in Duan et al. (2008). In addition, the

competence of the stakeholders who are closely aligned with the development team can vary

across projects, or even over time within a project. In one case study, Boehm and Turner (2004)

noted the early success of an XP Agile project when the embedded stakeholder was highly

committed, motivated, and well informed. However, following a change in the stakeholder, the

project suffered. The data in Boehm and Turner (2004) was not collected, however, with a focus

on how well the software met the user community’s needs. Given Boehm’s historical writings

(e.g., Boehm, 1978; Boehm, 1986, 1989), a lack of understanding the users’ goals would be seen

as a risk to be managed.

Agile approaches typically document the functionality of a software application in User

Stories. A User Story is written from the perspective of a specific role that an individual has

within an organization, and expresses a desired outcome of a single interaction with an

application (Hathaway & Hathaway, 2013, Chapter 1, para. 7). Frequently, User Stories adopt a

template of “As a [role], I want [feature] because [reason]” (Ambler, 2012b; Cohn, 2004; Pool,

2008). The emphasis in the template is on a feature, and not a goal. Nothing prohibits using a

goal statement, rather than a feature, of course. An alternative template did substitute the word

“feature” with “goal” (mountaingoatsoftware.com, n.d.). The textual description, however,

reverted to the term “feature.” This latter example demonstrates the difficulty of thinking in

terms of goals as opposed to features when discussing software development. User Stories are

designed to encourage discussion with the stakeholders; to the extent the discussion is inherently

focused on features, engaging in a conversation does not transcend the potential paradigmatic

restraints associated with feature-based thinking.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 33

Even if the User Story were generated from a goal perspective, two other issues would

remain. The first issue is the level of analysis associated with a User Story. Cooper et al. (2007)

suggested that an application must be seen in total, and not merely as a series of independent

parts. Sufficiently complex and flexible software will support multiple goals, and the means of

obtaining these goals will likely vary by individual user. Optimization on only a subset of

functionality can result in achieving efficient outcomes in measured cases, but inefficiency in the

overall application (see, e.g., Floudas et al., 2013). The second issue is the assumption that all

goals and functionality are captured in independent User Stories. There are many instances

where software enables users to achieve novel, or unexpected, outcomes (see, Buse &

Zimmermann, 2012, p. 992). Consequently, software that is implemented as satisfying a series of

User Stories is not necessarily equivalent to “delighting” the end-users across the entirety of the

application.

Thus, while Agile approaches may reduce the gap between requirements as documented,

interpreted, and implemented by developers, and the actual expectations of stakeholders, it does

not follow that the stakeholders’ expectations are necessarily goal oriented or holistic. Further,

the reliance upon specific stakeholders in the development cycle assumes the representativeness

of these stakeholders to the overall user community. Finally, even to the extent that stakeholders

are representative, a significant number of end-users may have different approaches to using the

software, or divergent goals that are met with the software, but not through the implicit processes

assumed by developers or the embedded stakeholders.

Why Understanding User Behavior Matters for Software Engineering

Applying methods to reveal user behavior is useful only if the data are ultimately applied

to improve the means by which users achieve their goals. Such improvement addresses software

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 34

quality. Though quality is “an elusive term”, and perhaps “especially elusive in the software

field” (Glass, 2003, p. 127), it is nonetheless the overarching measure most important to users.

The field of software engineering was essentially created in the late 1960s to apply systematic

efforts to the productive development of quality software in order to address a perceived

“software crisis” (Pfleeger, 1998). In order to address software quality, the predominant

paradigm of industrial manufacturing was referenced and the terminology and methodology for

quality through process conformance and improvement was adopted. This paradigm essentially

assumed that quality was the result of following a process, and maturity models (such as the

Capability Maturing Model) and ISO 9000 evolved to capture process conformance (Pfleeger,

1998, p. 11).

The difficulty in discussing software quality is that it is not a single attribute (Boehm,

1978; Pfleeger, 1998, p. 472). Instead, quality is a constellation of attributes such as

functionality, reliability, usability, efficiency, maintainability, and portability (ISO9126 in

Pfleeger, 1998). This collection of attributes currently contains 20 measurable factors (Denning,

2016, p. 23). Despite acknowledging that subjectivity is present in any determination of quality,

it seemed an article of faith that a precise definition of software quality resulting in quantitative

measures was the ultimate goal (see, for example, Cavano & McCall, 1978). Such measures are

the natural outcome of the statistical basis of science and traditional engineering (Shewhart,

1931). The end-user perspective is largely absent from most approaches, or it has been

retroactively added (e.g., CMMI), and this lack of an end-user perspective stems from the

underlying paradigm of process conformance and objective measurement.

Quality is not, however, necessarily a purely objective standard. John Locke (1959) in his

work An Essay Concerning Human Understanding created a distinction between primary and

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 35

secondary qualities. Primary qualities are those that are independent of the observer. Software

quality in such a formulation, therefore, would be intrinsic to the program. These primarily

qualities would find realization in the standard “software product quality” characteristics as

proposed by, e.g., (Boehm, 1978) or ISO 25010. Secondary qualities are those that have an effect

on certain people. They are a result of “what we think, feel, or sense as a result of the objective

reality” (Shewhart, 1931). Software quality, in this case, would be perceptual and subjective;

they are extrinsic to the application. Locke also argued that knowledge of these secondary

qualities does not provide objective facts about the objects themselves. Interestingly, the

implication for software quality is that a user's perception of quality does not provide any insight

into the objective quality of the program as might be measured by developers.

The results of a survey (Chartered Quality Institute, 2013) are illustrative of how diverse

“quality” is as a concept. The Chartered Quality Institute, a "professional body dedicated entirely

to quality," asked its members to define quality. Of the 20 proposed definitions of quality, 10 are

extrinsically measured (e.g., “better than you would, or could have, expected,” or “what the

customer perceives it to be”). Two of the definitions cannot be easily categorized, and eight are

intrinsic. The intrinsic measures are primarily the result of following a process (e.g., “reducing

the various around the target”, and “doing the right thing every time”). In contrast, the extrinsic

concepts are focused on perceptual outcomes. The CQI survey results and the mapping to an

intrinsic or extrinsic nature are shown in Table 1.

In van Solingen, Kusters, Trienekens, and van Uijtregt (1999), the authors argued that

“when striving towards software product quality, two main approaches can be distinguished” (p.

475). These approaches are the process approach and the product approach. To a certain extent,

the intrinsic (or primary) quality measures of a software program may be seen as the result of

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 36

following a process. To improve software quality, therefore, one must improve the software

development process. Conversely, the extrinsic (or secondary) quality measures result from

interacting with the end-users, and quality may not necessarily be achieved solely through a

process. That is, these qualities are a found in the product and its utilization, not the development

process.

Understanding the end-user’s goals, as demonstrated through their actual use of a

program, is ultimately a contribution towards software quality. Ferre et al. (2004), in citing ISO

9241-14, directly linked software quality with goal achievement. Usability (one aspect of

software quality) is “the extent to which a product can be used by specified users to achieve

specified goals with effectiveness, efficiency, and satisfaction in a specified context of use.”

Satisfaction, in this approach, is essentially an extrinsic quality that results from the users’

interaction with the software. The concepts of effectiveness and efficiency could be either

extrinsic or intrinsic depending upon the precise definitions and measurement. However, these

latter two concepts do not exist as qualities independent of goal achievement. Rather, these

quality metrics are bound to goal achievement as expressed through the actual use of the

software. Revealing this quality requires a methodology that will illuminate the goals of the

users, and do so in a context that is globally aware of the software program, rather than point-

focused on feature achievement. The actions of users themselves reveal the path towards quality.

In considering the revealed processes, the Process Mining literature tends to leave the

linkage to software quality as an implicit assumption. Though van Genuchten et al. (2014)

discussed a discovered error in the code tied to their case study, and error removal certainly

increases quality, the authors did not otherwise directly address how applying Process Mining

would contribute to software quality. The closest statement in the article was that “end-user

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 37

functionalities… can be compared before and after release” (p. 99). Presumably, this comparison

can illuminate differences between development assumptions and actual utilization, though it

could also be applied between an existing release and improvements made within the

development phase of an SDLC. The authors, however, did not provide an explicit means for

incorporating the information. Rubin, Lomazova, et al. (2014) specifically linked Process Mining

to the Agile SDLC. As noted elsewhere, fostering conversations with stakeholders based upon

the collected data is an important aspect of quality in an Agile methodology. These authors

argued that outputs from Process Mining can contribute to improved communication with

stakeholders, and can support continuous improvement via the reflection on how to be more

effective. Nonetheless, these examples failed to link quality directly to the end-users’

experiences. Quality is found in the effectiveness of goal attainment on the part of various users.

Rubin, Lomazova, et al. (2014) did not appear to consider “legitimate peripheral participants”

(Huang & Liu, 2005), nor did the account for the potential stakeholders to differ from the more

general end-user community. The ultimate application of Process Mining is not just to collect

data, but also to utilize this data to improve the quality of the software application. Consequently,

further elaboration and research on the application of the data to software quality improvement

remain necessary.

Table 1. CQI Quality Survey and Quality Nature

CQI Response Intrinsic/Extrinsic Nature

A measure of excellence Extrinsic

The characteristic of a product or service that bear on

its ability to satisfy stated or implied needs

Both, Note this definition is from ISO

8402

Better than you would, or could, have ever expected Extrinsic

What the customer perceives it to be Extrinsic

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 38

Doing the right thing, every time Indeterminate; may refer to following

a process, which would result in

intrinsic

The degree to which an item or process meets or

exceeds the customer's requirements and

expectations

Both; similar to the ISO definition in

that requirements should be formalized

and thus objectively measurable, but

expectations are likely to be subjective

How closely a product or service meets its design

specification

Intrinsic; the product is objectively

measured

Surpassing customer needs and expectations

throughout the life of the product

Extrinsic

A product or service free of deficiencies Indeterminate; deficiencies is not

defined, and could be free of defects

(objectively measured) or it could

mean not being deficient in the eye of

the customer

Reducing the variation around the target Intrinsic; highly measurable, and tied

to the process. Six Sigma processes

exhibit this characteristic

A state of mind Extrinsic. It does relate to the point

that quality is not something that can

be done at the end of a project.

The extent to which products, services, processes,

and relationships are free from defects, constraints,

and items that do not add value for customers

Probably intrinsic. The value for a

customer is likely to be objectively

measurable.

Never having to say you're sorry Extrinsic; or from a movie

An ever-evolving perception by the customer of the

value provided by a product. It is not a static

perception that never changes but rather a fluid

process that changes as a product matures

(innovation) and other alternatives (competition) are

made available as a basis of comparison

Extrinsic

Peace of Mind Extrinsic

Never an Accident Indeterminate; implies that it is a result

of a plan

The inherent features possessed by a product or

service

Intrinsic

When what comes back is the client, not the product Indeterminate

No surprises Indeterminate

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 39

Not achieved by doing different things; it is achieved

by doing things differently

Most likely a reference to following

process, and thus intrinsic

A Repeatable Approach for Software Use Understanding

What is sought, therefore, is a methodology that can illuminate the processes that are

utilized in a software package in order to achieve a particular goal. Furthermore, the

methodology should provide insight into the goals themselves — that is, the end-state that users

are attempting to achieve. The methodology should not be dependent upon specific stakeholders,

but rather should allow for its application across a variety of users. It should be applicable across

multiple stages in the software life cycle. This methodology should allow not only for the

discovery of the implicit software processes, but for also the comparison of processes at different

times. Finally, the methodology should be repeatable, predictable, and analytical. That is, rather

than relying upon ad-hoc approaches for data collection and analysis, it should have a prescribed

means for such activities. Ideally, the methodology should be available to any relevant member

of development team. Further, the methodology should not require specific expertise in its

application or interpretation. This latter point follows from an implicit assumption in many Agile

approaches of the relative equality of all team-members, self-organization for specific work

notwithstanding.

Advances in a technique known as Process Mining can potentially meet the above

criteria. Process Mining can illuminate the pathways utilized in a software program. That is, it

can discover the process model that is in actual use. Process Mining can allow for conformance

checking between process models, whether the models are the presumed ways in which the

software is used, or are models from different points in time, or models contrasted between users

or a user and a reference group. Process Mining can assist with enhancing the implicit processes

by highlighting areas where there are inefficiencies in the goal attainment. Process Mining can

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 40

help with understanding the intentions/goals of the users by documenting the end states that a

user achieves. In sum, Process Mining is a repeatable methodology, allowing for predictability in

the approach and the data presentation.

Process Mining is not a panacea, however. It may require expertise to interpret results. It

requires specific data to be collected in order to generate the event logs that it mines. While

software packages can creation such logs, a great deal of software today does not generate logs;

and when they are created, logs are either generated only in exceptional cases, or in formats that

are difficult or impossible to adapt to the Process Mining input specifications. The amount of

data collected may be great, and the collected data must be carefully developed to provide value

to the development team while respecting, as appropriate, various concerns regarding privacy.

Process Mining has been applied, as will be seen later, to a variety of domains. It is a

relatively new discipline, but it has shown success in many domains. To date, however, it has not

been rigorously applied to illuminating software utilization. Thus, the proposed application of

Process Mining to enhance software development is a relatively novel utilization of the

technique. The application fits well within the concepts of Process Mining, but it is a largely

unexplored application. The ability to guide software development based upon in-use processes

is a new frontier in software engineering.

Summary

Consider the creation of a pivot table in a spreadsheet program. Typically, a pivot table is

considered a “feature” by which a user may summarize data. To add a pivot table to a

spreadsheet, the user executes a series of steps in order to define the input data. A traditional

measure of software quality might examine – based upon known test inputs – whether the

spreadsheet contained the pivot table, and whether it had the correct results. Such measures

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 41

might be extended into the actual code itself, examining questions of code complexity or

readability. Data regarding “usability” may have been collected and applied to, for example,

implementing or improving wizards to assist with the creation of the pivot table.

It is not a stretch, however, to understand that frequently users must undertake creating

the pivot table multiple times due to struggles with it. As one example, perhaps the data are

presented as counts rather than sums (Debra, 2014). Other issues may require deleting and re-

creating the table itself. In such cases, while the feature met certain aspects of objective quality,

the user failed to meet her goal, and thus subjectivity the software would fail to “delight”

(Denning, 2016, p. 24) the user. Furthermore, this example illustrates how even non-process

aware software implicitly contains processes by which users operate in order to achieve desired

outcomes. If one could examine the process of the user in this example, one might see loops in

the process of table creation, deletion, creation, edit, etc. These loops might be indicative of

quality issues. Yet the standard metrics of quality would not capture the actual, in-use behavior

of the user, and thus such metrics could not be utilized to improve user-centric quality. While

Process Mining applied to event logs created by the application could illuminate the issue, one is

still confronted with the need to capture, analyze, and incorporate the data into the SDLC.

Consequently, this simple example sets forth the essence of this thesis. Whereas

traditional frameworks of software quality have tended to focus on objective measures of

features, conceptually newer models of quality explicitly focus on the subjective experience of

the user. Furthermore, such subjective experiences are expressed through the processes by which

a user interacts with a software application in pursuit of specific goals. These processes may be

examined by applying Process Mining techniques to event logs if the application is specifically

instrumented to emit logs suitable for analysis.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 42

Chapter 2: Literature Review

This section reviews relevant literature on Process Mining. Process Mining is the

application of computer algorithms to discover the as-is, runtime process as recorded in event

logs. In examining the academic literature on Process Mining as applied to software applications,

one may find an interweaving of three threads. The first thread is the initial work of “process

discovery” initiation by Cook and Wolf. This thread also started with examining software

applications directly. The second thread is the knowledge discovery in databases (KDD)

approach that applied requirements to extracting, merging, and consolidating data contained in

“databases” (of which event logs are one instance). The third thread is the evolution of Workflow

Mining to Process Mining with its associated increase in definitional rigor, algorithms for

process discovery, and the creation of Process Mining software to support process discovery via

a variety of algorithms. This third thread can also be roughly divided into two phases. The early

phase consisted of initial definitions and explorations of various approaches for re-creating a

process from a set of inputs from workflow applications. The early phase generally addressed the

question of how to re-discover a model from an event log. In order for Process Mining to be a

viable approach, it needed to address a number of theoretical and practical issues to demonstrate

process discovery from event-based logs. The later (“maturation”) phase emphasized a

consolidation of definitional terms, a shift from a frequent emphasis on workflow systems to

broader process questions, the emergence of software packages to support Process Mining, and

increasing industry. The IEEE has also backed a “Process Mining Manifesto,” and the

publication of this Manifesto demonstrated the integration of these three threads. Though both

practical and theoretical challenges remain — and as such it is premature to label process mining

as fully mature — continued research and the broader application of Process Mining to a variety

of practical domains indicates a maturing paradigm.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 43

To develop this review, a search was executed against EBSCO, the Association for

Computing Machinery (ACM), and the IEEE databases. These searches were supplemented by

queries against Google Scholar. These searches looked for articles pertaining to “Process

Mining”, “Workflow Mining”, or “Process Discovery.” After filtering duplicate articles and

articles that were not directly relevant (e.g., articles about geological mining extraction

processes), the resultant collection was approximately 480 entries. These articles were then

further filtered by eliminating studies focused on areas not directly relevant to Process Mining

and software or algorithmic development (e.g., the plethora of studies examining Process Mining

and health care or direct business processes). From the approximately 110 remaining articles, the

references were examined to trace additional historical studies. Ultimately, 167 articles provided

the general set of articles. From this collection, the representative articles tracing the

development of Process Mining with special attention to software were used. There were 35

primary articles directly referencing software and process mining, though the 30 of these studies

examined software development processes rather than software applications.

After examining the general Process Mining literature, this section reviews contributions

relating directly to software development. Despite an early impetus around improving the

software process, Process Mining became more strongly associated with business workflow

systems. A few recent case studies, however, have returned to applying Process Mining to

understanding software processes. Unfortunately, the literature around analyzing software

applications, rather than the process by which they are developed, is scant, and therefore

represents an interesting point for research.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 44

The First Thread – Process Discovery

Cook and Wolf (1998a) conducted one of the first studies that encouraged the discovery

of processes from event data. In this paper, the authors developed a data analysis technique they

termed “process discovery.” By applying grammar inference techniques to event logs, they

intended to discover recurring patterns of behavior exhibited by software systems. In order to

discover the processes, they described three methods for discovery: neural networks, a pure

algorithmic approach, and a Markovian approach. The latter two were seen as more promising

for future research. This article conceived of an “event” as a necessary atomic element that

characterized “the dynamic behavior of a process in terms of identifiable, instantaneous actions”

(Cook & Wolf, 1998a). An on-going, evolving software system would inevitably diverge from

its original formal model, according to the article. Therefore, the choices faced in software

development are twofold: expend increasing effort in maintaining the formal model, or allow

algorithms to discover the underlying model as expressed in the actual execution of the software

system. This work is the extension of earlier studies examining software validation that depended

upon an explicit formal model and extended metrics (e.g., Cook & Wolf, 1994). Rather than

assuming a static model was the basis for validation and software improvement, Cook and Wolf

(1998a) suggested that a formal model for software validation may be continually updated

through examining the actual behavior of the software. This article also noted the desirability of

various attributes of an event, including time and actors. At the same time, Cook and Wolf

introduced the concept of an “event stream”, which is the continual sequence of events recorded

by an application. The discovered model was presented as a finite state machine (FSM), which

provided an initial graphical representation, but suffered limitations when modeling concurrent

activities.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 45

Though not applied to a software application itself, Agrawal, Gunopulos, and Leymann

(1998), independently but essentially concurrently with Cook and Wolf (1998a), proposed

creating a general directed graph from the log files. The impetus for the research was to provide

data to support the quality and accuracy of business processes as executed within an organization

(essentially “conformance” verification). Thus, this article fits the early approaches of

advocating for process discovery in order to perform the conformance analysis.

They examined workflow systems, and the “small, unitary actions, called activities”

performed during the execution of a workflow (p. 469). Agrawal et al. (1998) acknowledged that

an activity modified the state of the process, whereas Cook and Wolf (1998a) did not emphasize

this trait. As with the Cook and Wolf (1998a) results, the graphs were sequential. However,

Agrawal et al. (1998) did not examine alternative discovery approaches, but used a single and

specific algorithmic approach. They included suggestions for a specific input structure,

consisting of the process, an associated activity, whether the event was the start or end of the

activity, and a timestamp.

Second Thread – Knowledge Discovery in Databases

While the first thread gave the initial impetus to discovery, it did not consider issues of

large number of event logs, nor logs that might be distributed across the organization.

Furthermore, prior to the suggestions of the first thread, it was usually a manual task to develop

understanding of a process, whether the process was within an organization or within a software

application.

Fayyad, Piatetsky-Shapiro, and Smyth (1996) suggested that in order to deal with

knowledge at a large scale, it would be necessary to rely on more automated approaches rather

than on experts who turn data into knowledge via manual analysis. The field of extracting

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 46

knowledge from data may be understood as “Knowledge Discovery in Databases” (KDD)

according to these authors. Fayyad et al. noted that the “basic problem addressed by the KDD

process is one of mapping low-level data into other forms that might be more compact, more

abstract, or more useful” (p. 39). The authors emphasized the need for a process consisting of

several interactive and iterative steps to make knowledge discovery useful. These steps,

including comprehension of the domain, data set creation, data cleaning and preprocessing, and

so on, were frequently assumed in the general Workflow/Process Mining literature. However, the

early work on Process Mining did not explicitly acknowledge the surrounding tasks needed to

mine data. By focusing on workflow systems that emitted logs, early Process Mining literature

ignored steps necessary if one is not addressing ready-made, consistent event logs.

Utilizing the same KDD terminology as Fayyad, Hill and Jones (1999) defined KDD as

“discovering useful knowledge in data and also as ‘the nontrivial extraction of implicit,

previously unknown and potentially useful information from data’” (p. 49). These authors noted

that traditional data mining techniques resulted in a disconnect between “patterns of interest and

the context of the original data” (Hill & Jones, 1999, p. 50). This distinction separated KDD

from Data Mining in general. In addition, it provided additional definitional support to Process

Mining as a focus on the specific context in which any discovered pattern would operate. Their

research emphasized a “case based reasoning” technology that adopted nodes and semantic links

between the nodes revealed through processing data. Despite their case-based approach, the

authors did not attempt to discover particular processes; instead, the need to retain the linkages

between extracted data points contributed to the paradigm of discovering knowledge rather than

data correlations. As they noted, data mining is primarily concerned with searching for

interesting patterns. As a result, data mining does not necessarily maintain semantic information,

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 47

nor does it likely reveal accumulated knowledge. While Process Mining terminology was not

directly incorporated, the case-based approach and the need to retain linkages in order to

understand patterns rather than correlations also appeared in the Process Mining literature.

Consequently, Process Mining might be understood as a subset of KDD, though neither literature

regularly made such an association. Both Process Mining and KDD argued that data mining

alone is insufficient, as data mining must be located within a larger approach of knowledge

discovery (see also, van der Aalst, 2012a). Each of these fields attempts to wrestle with

positioning data mining as an aspect of their approach.

Schimm (2004) also situated his work in the context of KDD, akin to Hill and Jones

(1999). However, Schimm was examining the development of concurrent workflow modeling,

providing a bridge between KDD and Workflow Mining. This work utilized a block-oriented

approach as opposed to the directed graphs or Petri Net approaches of the other authors. Schimm

introduced “workflow algebra” to translate the input in a multi-stage procedure to the block

diagram. The author suggested that block-structured models offered advantages over other

approaches; a block model is always well-formed, safe and sound, and therefore the extracted

models would not exhibit anomalies (p. 267). One drawback is that the input data requirements

were greater than previous approaches (an issue also seen in Pinter and Golani (2004)).

Moreover, processing event-based data required activities to have an associated life cycle. This

life cycle must be explicitly emitted into the event log. This approach was similar to Pinter and

Golani (2004) in its use of starting and ending points, but Schimm did not use interval

information to derive a life span. The output model was presented in a block notation which was

an approach the authors suggested would provide a more robust representation of parallel

activities. However, van der Aalst et al. (2003) discussed the differences between graph-based

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 48

and block-based techniques, especially the latter’s focus on rewriting requirements. In general,

van der Aalst’s summary indicated that a graph structure (such as a Petri Net) was the most

prevalent approach in the literature, and that block approaches appeared to have limitations that

had already been addressed by graph-based approaches, such as issues with hidden and duplicate

task detection.

The importance of KDD in the early part of the intellectual evolution of the literature, and

in the context of applying Process Mining to ad-hoc instrumented software in particular, was its

insistence on situation knowledge extracted from a database within a particular context. In

addition, in provided guidance and insights into managing and refining large datasets to support

knowledge extraction. The early investigations into “Workflow Mining” relied upon the output

of logs from Process Aware Information Systems – specifically workflow management

applications. As these applications were generally designed to “manage the flow of work through

the organization” (van der Aalst, 1998), they were deployed at an enterprise level with central

logging and a constrained set of operations. Therefore, the early Workflow Mining literature was

able to ignore many of the issues that KDD raised. Later work in the re-branded “Process

Mining” literature (e.g., Bose, Mans, & van der Aalst, 2013; van der Aalst, 2011a) did examine

the need for data cleaning and merging, though never to the extent as emphasized by the KDD

literature.

Third Thread – Workflow Mining

The intellectual impetus for Workflow Mining was a paper by van der Aalst (1998). The

author examined the potential application of Petri Nets to the modeling of workflow systems.

Though the paper did not address questions of re-discovering processes from event logs, it

advanced the argument that Petri Nets were sufficient for modeling workflow processes. In

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 49

contrast to a directed graph (Agrawal et al., 1998) or a Finite State Machine (Cook & Wolf,

1998a), a Petri Net has definitional advantages. Petri Nets represent a “system graphically by

drawing a node for each state and an arrow to mark the transitions” (Pfleeger, 1998, pp. 157-

158). In addition, Petri Nets have formal semantics, are expressive in that they support all

primitives necessary to model a workflow process, and are amenable to formal analysis. These

advantages would become important later in the evolution of the literature as questions regarding

parallelism arose. Moreover, an initial justification for a focus on workflow systems was

prevalent in the paper. Van der Aalst argued that workflow systems were critical for moving

organizations beyond a focus on executing isolated tasks. Workflows, under the concept of a

“case,” allow for the execution of tasks — in serial or parallel — by different resources in a way

that is efficient for the organization. Subsequent literature frequently ignored this van der Aalst

paper, despite having formed an intellectual basis for future work by arguing for the presentation

of workflow processes as Petri Nets. In addition, the paper defined the concept of a “Workflow

Net.” A Workflow Net (WFN) is a Petri Net with a single source and sink that represents the

starting and ending point of the cases contained in the logs. That is, all the cases in workflow

system have an identifiable starting and ending point. Later, van der Aalst, Weijters, and

Maruster (2002) made the argument that a workflow system was not strictly necessary, only that

event logs would need to contain data compatible with a WFN. The original van der Aalst (1998)

paper, nevertheless, set the tone for several years of research emphasizing workflow systems. In

addition, this article laid the foundation for the use of a Petri Net as the basis for modeling re-

discovered processes.

The following year, Bae, Jeong, Seo, Kim, and Kang (1999) examined how workflow

management systems can be an integration approach for traditionally stand-alone systems. This

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 50

study focused on how workflows may support business process re-engineering (BPR). A

significant component of BPR is a thorough understanding of the existing “as-is” process. In

order to support process verification, especially of the “to-be” process, the authors suggested

translating an existing workflow definition to a simulation package in order to analyze process

models. The authors noted, “Workflow and simulation [software systems] are both discrete-event

systems” that share the concepts of activities and events (p. 205). Bae et al. further examined the

process of translating formal “as-is” process models into a simulation suitable for execution and

experimentation. In this sense, they were pre-cursors to the Process Mining concepts of process

enhancement through simulation. In contrast to Cook and Wolf (1998a), the authors did not

advocate examining existing log files to discover the process. Their ideas translating a model to

support investigation and improvement, as well as emphasizing process behavior, was both

reminiscent of Cook and Wolf (1998a) and van der Aalst (1998), but also an important piece of

future development in the literature.

Maruster, van der Aalst, Weijters, van den Bosch, and Daelemans (2001) provided an

early case study of process re-discovery by applying techniques to extract a process from

hospital logs. The article provided an algorithm that could be applied to a workflow log to

discover the process. The discovered process could then be presented as a Workflow Net. The

algorithm was based on a detection of linkages between activities from a source to a sink, and

then merging nodes that had the same past and future nodes. Weijters and van der Aalst (2001),

also the co-authors on the Maruster et al. paper, proposed a different algorithm based upon a

dependency-frequency table. Eventually, these algorithms would evolve into the “alpha

algorithm” described in van der Aalst, Weijters, and Maruster (2004). The alpha algorithm was

the basis for many of the Petri Net models used throughout subsequent literature.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 51

In van der Aalst et al. (2003), one finds the early integration of discovery, workflows, and

semantic links. In contrast to Cook and Wolf (1998a) and their use of an FSM, this van der Aalst

et al. paper examined the application of Petri Net theory to the discovered processes. An FSM

supports the basic structure of sequential processes, such as sequence selection and iteration (see,

Cook, Du, Liu, & Wolf, 2004). A Petri Net formulation, however, supports modeling

concurrency. Van der Aalst et al. (2003) documented three assumptions the logged data must

meet to perform “workflow mining”: an event in the log must refer to a task, each event must

relate to a specific case, and events must be totally ordered (p. 241). Similar to Hill and Jones

(1999), the emphasis was case-based reasoning, and like that of Bae et al. (1999), used workflow

systems. The van der Aalst et al. (2003) paper also proposed an XML DTD, thereby laying the

groundwork for a common log format for workflow mining.

In a similar vein to van der Aalst et al. (2003), Cook et al. (2004) also examined issues of

concurrency in workflow modeling. Two shifts from their previous work are evident. First, they

began to use workflow concepts, drawing some inspiration from Agrawal et al. (1998). Second,

they shifted from their previous reliance on FSM to Moore (state-labeled) or Mealy (transition-

labeled) state machines instead. The use of these state machines provided concise visualizations

of discovered concurrent relationships, but are simpler than “more powerful notations such a

Petri Nets” (p. 302). In order to fully capture concurrency, an event log must contain information

associated with an event, as opposed to the mere existence of an event. Therefore, events should

have related attributes, one of which should be the time of the event. In van der Aalst et al.

(2003), event timing was initially present in the logs, but the derived process model did not

depend upon the recorded time. Indeed, the log format van der Aalst et al. (2003) suggested did

not define any attributes. Instead, the ordered events were sufficient for deriving the workflow

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 52

model. In van der Aalst (1998), the authors noted that it is possible to extend Petri Nets to model

time elements, and suggested including the resources associated with an event. Hill and Jones

(1999) also suggested coupling attributes with events. For Cook et al. (2004), including the time

attribute not only supported event ordering, but also allowed them to distinguish between

activities that were “instantaneous” and activities of longer duration – an idea seen in their earlier

work. They modeled the latter as two events with a duration span. This distinction between

instantaneous and longer running events would allow for understanding process throughput and

potential inefficiencies. In addition to the time attribute, the authors suggested including agents,

resources, and “any other information that gives character to the specific occurrence of that type

of event” (p. 298) in the event log. For the purposes of the paper, however, the authors did not

incorporate these other semantically relevant attributes, though they acknowledged the potential

value of these additions for future work.

Whereas Cook et al. (2004) suggested the use of elapsed time, Pinter and Golani (2004),

directly examined the application of elapsed time to workflow model development. Earlier works

considered each activity to be an atomic (or instantaneous) event, Pinter and Golani considered

an activity as having an explicit life span based upon a starting and ending event present in the

logs. This approach allowed for explicitly recognizing concurrent activities and resulted in a

more accurate process model graph when compared to other algorithmic approaches, such as

those proposed by Agrawal et al. (1998). The resultant model in Pinter and Golani might have

been more correct, but at an increased burden to be met in the logged information.

Additional Contributions to the Third Thread

A few other works provided additional contributions. Herbst (2000a, 2000b; 1998)

examined the application of machine learning techniques to workflow systems. Schimm (2002)

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 53

provided an approach for mining processes, and an early software program to extract mined

processes from algorithmically generated event-based data. Interestingly, Schimm situated his

work in of KDD rather than workflow systems despite the focus on events. Cook and Wolf

(1998a) noted LeBlanc and Robbins (1985)’s contributions for highlighting the concept of an

event in a distributed system as a basic unit of analysis. Cook and Wolf (1998b) acknowledged

the contributions of distributed debugging (e.g., Bates, 1988), with its focus on application

behavior as exhibited in logs.

There have also been periodic attempts to summarize the evolution of Process Mining.

Van der Aalst (2003) presented a summary of the field from 1998 through 2003. They credited

Agrawal et al. (1998) with the first application of process re-discovery to workflow systems.

They also acknowledged Cook and Wolf (1998a, 1998b) while noting potential deficiencies in

the work, such as an inability to generate explicit process models. The summary article also

noted the intersection of Process Mining with the Business Process Intelligence (BPI) literature,

and provided a number of references in the BPI field. In general, the BPI literature operates

against data warehouses rather than event logs, and focuses more on data mining to extract

clustering and performance analysis; in contrast, Process Mining focuses on extracting causal

relations (van der Aalst et al., 2003, p. 241). In van der Aalst (2012b), the authors re-visited

Process Mining history, but acknowledged Datta (1998)’s work that was not elsewhere

mentioned. Datta’s focused on process re-engineering and the need to systematically and

automatically discover the “as-is” model based upon an FSM.

Early Exploration Summary

The reviewed literature established the primary intellectual basis for Process Mining. In

examining the literature, two distinct intellectual differences may been seen. In general, despite

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 54

acknowledging Cook and Wolf, van der Aalst and those who worked in his tradition, tended to

focus on systems that “adopted workflow technology” (Weijters & van der Aalst, 2001). In

contrast, another group following primarily in the Cook and Wolf tradition emphasized software

behavior without necessarily relying upon workflow systems. Thus, there was an early difference

between a focus on process re-discovery in order to understand a system versus an attempt to

understand behavior. Eventually, these two traditions merged somewhat in that the van der Aalst

tradition relaxed its focus on workflow systems, and began to consider process re-discovery from

event logs generated by a variety of applications. For example, one may contrast the evolution in

a span of ten years from van der Aalst (1998)’s argument based solely around workflow systems

to Günther, Rozinat, van der Aalst, and van Uden (2008) and the application of Process Mining

to medical devices. Nonetheless, the van der Aalst tradition continued to implicitly emphasize

system documentation and process improvement rather than discovery of behavior.

As van der Aalst and Weijters (2004) suggested, workflow model discovery was an

important part of the early research agenda. This focus on workflow-based approaches was

ultimately limiting both practically and theoretically. In practice, organizations discovered

workflow management systems that focused on process automation suffered failures, in part due

to a lack of flexibility and diagnosis capabilities (van der Aalst & Weijters, 2004, pp. 231-232).

The overly-specified (and overly controlled nature) of workflow systems also proved

problematic for organizations, as problem resolution frequently required a more flexible

approach (Bezerra & Wainer, 2008).

 The literature therefore began to evolve, starting around 2006, moving away from strict

workflow systems towards general process discovery. There were two main drivers for this

change. First, industry practice moved from workflow systems to business process analysis

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 55

(BPA) systems (van der Aalst & Weijters, 2004). Second, workflow systems themselves contain

subtleties – such as potential Boolean choices proscribing cycles – that constrained the ability to

generalize process discovery. Despite changing focus, the basic logged entities were essentially

fixed by the workflow systems and the experiences in deriving models from them in the context

of the Workflow modelling approach. For example, a log file needed to contain activities that

were tied to specific cases, and the events within a case must be ordered (or orderable). The log

may be enhanced with actor or timestamp information. A log file might also contain additional

relevant semantic contributions. These additions could help examine different “perspectives”

within the data (e.g., Huang & Liu, 2005; van der Aalst, Reijers, & Song, 2005). These additions,

however, might allow for adding additional information, such as weather conditions if the

discovered process could potentially be influenced by such data (de Leoni, van der Aalst, &

Dees, 2016). Thus, the earlier lessons were incorporated in terms of what should be present in a

log, but the focus would henceforth be on more generalized process discovery rather than a more

limited notion of workflow discovery. This approach to more general process discovery also

allowed for an intellectual integration of examining a system and an ability to understand

behavior as expressed in a process.

In terms of theoretical development, workflow systems represented only a subset of the

data available that could be mined for important processes. Not all business processes are neatly

contained in the context of a single workflow execution environment. Nonetheless, these various

business processes are important from an overall organizational perspective. Useful data for

understanding underlying processes might reside in logs generated from multiple disparate

systems (Claes & Poels, 2014), or might reside outside the standard process system entirely. As

an example of the latter, e-mail correspondence frequently contains important information not

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 56

necessarily tied to any particular system (Buffett & Geng, 2010). Most organizations have

numerous process-based systems that are not directly “business” processes, but are amenable to

analysis nevertheless. Later work on security analysis (e,g,, Accorsi & Stocker, 2012; Accorsi,

Stocker, & Müller, 2013; Jans, Alles, & Vasarhelyi, 2013), medical device operation (e.g., van

der Aalst, 2011a, p. 2), or health care provisioning (e.g., Montani, Leonardi, Quaglini, Cavallini,

& Micieli, 2014; Perimal-Lewis, Vries, & Thompson, 2014; Vogelgesang & Appelrath, 2013)

provided examples of Process Mining techniques applied to a diverse body of mostly

unstructured data.

Process Mining Types

Figure 1. Process Mining Types. From van der Aalst et al. (2012).

In addition to expanding beyond workflow systems, the literature also began coalescing

around a common understanding of three distinct “types” (van der Aalst, 2011b) of Process

Mining. Eventually, these types (also referred to as techniques or approaches) would be termed

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 57

discovery, conformance, and enhancement. These types, and their relationships to event logs and

process models, are shown in Figure 1 (van der Aalst, 2012b). The early Process Mining

literature was essentially about the discovery of processes from a control-flow perspective mined

from workflow system generated event logs. Van der Aalst (2005) was among the first to label

the model re-creation from event logs as “discovery” events, though this terminology was

reminiscent of Cook and Wolf (1998a). The discovery technique produces a model from an event

log without using any a priori information (van der Aalst, 2011b); it is the extraction of a model

from the event logs.

The conformance approach was the initial impetus for in-use/as-is process discovery.

Initially Cook and Wolf (1994) investigated the conformance of a software development process

to a given formal model, but used metrics rather than a mined – and therefore discovered –

model. The initial investigations in what would be become discovery in the Process Mining

terminology were seen in Agrawal et al. (1998) and Cook and Wolf (1998a). These approaches

extracted a model from event logs to use as the point of comparison for conformance checking

rather than using metrics. Thus the early metrics approach of Cook and Wolf (1994) or Henry,

Henry, Kafura, and Matheson (1994) to validate conformance to a formal model contrasted

starkly to later conformance checking approaches based upon discovered, behavior-based models

such as seen in Rozinat and van der Aalst (2008). Ultimately, the conformance approach

validates the actual discovered, in-use model against some other model. The comparison model

may be a formal model (e.g., Huo et al., 2006) or another mined model.

The third type of Process Mining is enhancement, as the goal is “to extend or improve an

existing process model using information about the actual process recorded in some event log.

Whereas conformance checking measures the alignment between model and reality, this third

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 58

type of process mining aims at changing or extending the a priori model” (van der Aalst, 2011b).

Process enhancement or process re-engineering that can be validated through simulation or

subsequent mining may ultimately be the most useful application of Process Mining for an

organization. The literature to date, however, has primarily focused around solving issues with

process discovery and application of process mining to conformance checking. There are

practical reasons for the dearth of literature around this enhancement type. First, many process

enhancements entail improvements in an organization’s competitive advantage. Publishing the

exact enhancements would therefore be problematic. As an example, Hammori, Herbst, and

Kleiner (2006) examined a discovered process from a commercial car company, but the supplied

graphics had all specific details (such as the node labels) removed. Understanding the exact

enhancements and benefits was therefore reduced. Second, the theoretical issues with process

model discovery and the quantification of model equivalence for conformance checking are

ongoing and non-trivial intellectual problems. In order for enhancement activities to be

beneficial, these theoretical problems must be well addressed. Gupta and Sureka (2014) noted

the “major research focus [of Process Mining] is towards designing algorithms for process

discovery,” thereby implying the algorithms require additional refinement. Third, process

enhancement is the latest of the three approaches. In order to apply Process Mining for

enhancement, issues with process discovery and conformance must be reasonably resolved. As

Hammori et al. (2006, p. 43) noted, “To be able to redesign the process/workflow, the primary

information needed is how the process participants work with the new system and where and

why they deviate from the intended process.” Early needs for conformance checking drove

advancements in the algorithms for process model discovery; process enhancement did not fit as

neatly into the initial investigative agenda.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 59

Maturation

An article by van der Aalst and Weijters (2004) served as a definitional moment in the

literature, proposing a consolidation of the efforts around “Process Mining” (and the associated

terminology), as well as enumerating a number of challenges that needed to be addressed in

order to continue to advance the process mining research. After this paper, one saw an increase

in the number of domains to which Process Mining was applied, as well as the continued

refinement of the techniques utilized by Process Mining practitioners. In addition, the literature

itself began to adopt the “Process Mining” label rather than the previous workflow terminology.

The intellectual origins of Workflow Mining, however, continued to have reaching effects. For

example, Process Mining continued to emphasize Process Aware Information systems with more

structured processes (as opposed to ad hoc ones; Dustdar, Hoffmann, and van der Aalst (2005)

would acknowledge some of the challenges and opportunities in ad hoc processes in the year

after this definitional article), and with that emphasis tended not to consider as deeply issues of

data amalgamation. Nonetheless, the paean of “Process Mining” as a terminology and specific

research agenda marked the division between the early phase and the on-going maturation phase.

As van der Aalst and Weijters (2004) noted, a range of theoretical issues needed to be

addressed before Process Mining could be generally applicable. The article discussed issues with

hidden or duplicate tasks, non-free-choice constructs, loops, accounting for time, different

perspectives (e.g., control-flow, organizational/resource, etc.), noise, incompleteness, data from

heterogeneous sources, and delta analysis (a part of the conformance approach). Folino, Greco,

Guzzo, and Pontieri (2009) provided definitions for several of these issues. Hidden tasks are

“routing activities that are not registered in the log (e.g., they can be used to skip the execution of

some task).” Duplicate tasks occur “when a task identifier appears in two (or more) different

points of the process at hand”. Non-free-choice constructs “occur when the choice of the next

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 60

activity to execute has to be synchronized with the execution of some activity different than the

current one.” Noise in the log refers to situations where the “log is incomplete, contains errors, or

reflects exceptional behaviors” (Folino et al., 2009, p. 162; see also, van der Aalst & Weijters,

2004, pp. 235-239).

 Early work in Process Mining focused almost exclusively on the discovery approach,

and with a control-flow perspective (an issue critiqued by Calvanese, Giacomo, & Montali,

2013). It was assumed that a single entity created the logs; multiple input streams for log creation

were not generally considered. Furthermore, the logs were assumed to be essentially clean (i.e.,

without noise, all tasks present in the log, etc.). Without resolution of the theoretical issues,

Process Mining would have remained workflow mining; an exercise in extracting processes

derived from a normative, monolithic model expressed in a limited range of possible event logs.

In this shift from monolithic, pre-defined processes, Dustdar et al. (2005) examined the

application of mining techniques to ad-hoc business processes. In contrast to the assumptions

that a normative model existed in some form, ad-hoc processes may be seen as a special category

of processes without any underlying process definition. Nonetheless, the existence of ad-hoc

processes directly addressed “in-use” process questions, and to a certain extent mining these

processes addressed the hidden task mining challenge noted by van der Aalst and Weijters

(2004). When considering user behavior as seen in application interaction, ad-hoc processes are

the dominant process type. Günther and van der Aalst (2007) also considered ad-hoc processes,

and believed that discovering these types of processes would “unveil previously hidden

knowledge” (p. 328).

Alves de Medeiros, van der Aalst, and Weijters (2008) examined the issue of quantifying

process equivalence. The general question was to indicate not only if two processes differ (a

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 61

binary true/false question), but by what degree. Furthermore, there were theoretical issues with

what constituted similarities and differences between models. To examine these similarities and

differences, they reduced models discovered via Process Mining to include only typical behavior.

Utilizing concepts of precision (is a second model’s behavior possible given the first model’s

behavior) and recall (how much of the first model’s behavior is covered by the second), the

authors presented a quantifiable measure of process equivalence. The work is important

primarily in conformance checking approaches, since it is not enough to only understand if a

newly mined model is different, but by how much it differs as well. The approach also has

application to process enhancement, especially via simulation, since models may be repeatedly

designed and simulated (or re-discovered), with a goal of maximizing the conformance

coefficient. The issues of process equivalence were also examined in van der Aalst (2005),

Hammori et al. (2006), Rozinat and van der Aalst (2008), and Caron, Vanthienen, and Baesens

(2013).

Kovács and Gönczy (2008) examined the ability to formally validate process models.

Similar to (Bae et al., 1999), they also looked at the ability to simulate the models in a

deterministic fashion. Formal proof of a model supported the validity of Petri Nets, and provided

a means of translation between modeling languages (such as Business Process Execution

Language (BPEL)) and discovered models. BPEL is potentially problematic as a means for

expressing process models that could be used in conformance checks. Issues arise from vendors

not fully implementing the BPEL specification (van der Aalst, 2012c), the monolithic nature of

the expressions (”all activities at all the different levels refer to status changes of the same

process instance” (van der Aalst, 2012c, p. 564)), and a focus on a process at the expense of the

operational data (Calvanese et al., 2013). In addition, BPEL models, or models generated from

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 62

the Business Process Modeling Language (BPML) are not necessarily valid, in that they may

contain deadlocks or unreachable activities. Rozinat, Mans, Song, and van der Aalst (2009),

Rozinat, Wynn, van der Aalst, ter Hofstede, and Fidge (2009), Giuseppe, Valerio, Teresa, and

Carmela (2014), and Khodyrev and Popova (2014) examined similar issues with simulation and

process modeling.

Folino et al. (2009) examined issues of duplicate and hidden tasks, noise and non-free

choice relationships. In this paper, the authors proposed a new algorithm to deal with these

various issues. Earlier approaches used a local search space in order to re-create the process

model. A local search relies solely upon “knowledge about the tasks that directly precede or

succeed one other given task in some process instance” (p. 162). In theory, an approach that

utilized a more global approach would overcome some of the issues. For example, approaches

based upon genetic algorithms address noise better than more simplistic local searches such as

the standard alpha miner. Genetic miners can use a more global search space, but may have

issues with producing a properly fitted model (p. 162). (see also, Alves de Medeiros, Weijters, &

Van der Aalst, 2006). Folino’s approach, therefore, relied upon an augmented local search

strategy, culminating in an “Enhanced WFMiner” algorithm. Wen, Wang, van der Aalst, Huang,

and Sun (2010) also examined the hidden tasks issue (called “invisible tasks”), and provided an

extension to the traditional alpha algorithm to support their inclusion in a discovered model. Ma,

Tang, and Wu (2011) examined issues of loops and parallelism based upon an incremental

mining method.

 In (van der Aalst & van Dongen, 2013), issues with noise and incompleteness were

examined. The resultant model used a Petri Net, and raised arguments against block-based

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 63

approaches. The article also articulated four criteria a process discovery technique needed to

balance:

fitness (the discovered model should allow for the behavior seen in the event log),

precision (the discovered model should not allow for behavior completely unrelated to

what was seen in the event log), generalization (the discovered model should generalize

the example behavior seen in the event log), and simplicity (the discovered model should

be as simple as possible) (p. 376, emphasis added).

The article provided critiques of the standard alpha algorithm, noting its issues with

loops, concurrency, and noise (see also, Weijters & van der Aalst, 2003). It discussed different

mining approaches, such as genetic mining, heuristic mining, fuzzy mining, and synthesis based

on regions, and provided a detailed review of region-based mining approaches. Genetic mining

approaches were examined in (Alves de Medeiros et al., 2006; Alves de Medeiros, Weijters, &

van der Aalst, 2007; Bratosin, Sidorova, & van der Aalst, 2010; Turner, Tiwari, & Mehnen,

2008). Fuzzy mining was explored in Günther and van der Aalst (2007). A heuristic based miner

was developed in Weijters and van der Aalst (2003) to deal with noise and incompleteness.

Evermann and Assadipour (2014) examined issues of the standard algorithms in the presence of

large data sets, proposing the application of map-reduce approaches to support massive data sets.

Yue, Wu, Wang, and Bai (2011) provided an overview of mining algorithms by author, noting

some advantages and disadvantages of each algorithm. This article also provided information on

algorithms developed in the Chinese literature that were not frequently cited or discussed

elsewhere in the English literature.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 64

In 2011, an IEEE task force published the “Process Mining Manifesto” (van der Aalst,

2011b; van der Aalst et al., 2012). The manifesto put forth a canonical definition of Process

Mining and its components:

The idea of process mining is to discover, monitor and improve real processes (i.e., not

assumed processes) by extracting knowledge from event logs readily available in today's

(information) systems. Process mining includes (automated) process discovery (i.e.,

extracting process models from an event log), conformance checking (i.e., monitoring

deviations by comparing model and log), social network/organizational mining,

automated construction of simulation models, model extension, model repair, case

prediction, and history-based recommendations.

The manifesto also enumerated six guiding principles, a simplified lifecycle for Process

Mining (similar to, but less robust than, the KDD process), a maturity model for event logs, and

11 challenges that remained problematic. Two of the challenges addressed non-experts utilizing

Process Mining tools and techniques. Other challenges remained from the van der Aalst and

Weijters (2004) article, such as incompleteness and noise. The manifesto also noted that data

may be distributed and in need of merging, as well as the potential for large event logs. It also re-

affirmed the need to balance the quality criteria of fitness, simplicity, precision, and

generalization. Unfortunately, the balancing necessary to achieve quality currently requires

experts during the Process Mining task, and it is difficult to specify the trade-offs a priori.

Finally, it noted that an XML-based standard for event logs (XES) had been adopted.

Maturation Summary

From the van der Aalst and Weijters (2004) article until today, Process Mining has

continued to mature. The literature surrounding Process Mining has addressed, if not fully

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 65

resolved, the challenges identified in that article. The Manifesto, backed by a number of

academic and industry participants, provided definitional support for Process Mining concepts.

Process Mining has been applied to a number of case studies, demonstrating its effectiveness in

discovering processes from event logs in various domains. There are also several Process Mining

tools, both open source (ProM) and commercial (e.g., Disco) that support the process discovery.

Consequently, Process Mining is a viable approach for the recovery, visualization, and

comparison of processes extracted from event logs.

Process Mining for Software

In the foregoing review, the focus was on general Process Mining techniques and

challenges. A few case studies were noted, but no specific investigation of applying Process

Mining to the software development and software quality question was presented. This section

examines the literature with specific reference to the application of Process Mining to software,

rather than business processes.

Process Mining seeks to discover actual processes from logged data. One potential

application of Process Mining is to the software development process itself. Software is

developed using a process, whether that process is formal and plan-based, a part of an Agile

methodology, or simply ad-hoc. It is a general article of faith in the software engineering field

that the process that is used “to develop and maintain software significantly affects the cost,

quality, and timeliness of software products” (Henry et al., 1994, p. 67). Furthermore, “the

software development process is widely recognized as a key factor that contributes to the quality

of software” (M. Valle, A.P. Santos, & R. Loures, 2017, p. 19). In the traditional approach that

relates development processes to software quality, a positive benefit to the resultant software

should occur from understanding, monitoring, and improving the software development process.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 66

Prior to the Process Mining movement, Henry et al. (1994) utilized a process-assessment

methodology to evaluate software development at Martin Marietta. Though the techniques were

based upon statistics rather than a re-created graph, the careful documentation of the normative

and actual processes aligns with the general Process Mining literature. Their goal was not only to

evaluate existing processes, but also to be able to quantitatively evaluate the effectiveness of

process improvements. Had Process Mining, as a body of literature existed, the study at Martin

Marietta would have been an interesting application. To a certain extent, the work in Alves de

Medeiros et al. (2008) would have provided the underlying quantitative comparison approach

that Henry et al. had to develop via statistical means. The delta analysis approach described in

van der Aalst (2005) or the process equivalence detection of Alves de Medeiros et al. (2008)

would also have been useful. Nonetheless, the article demonstrated that software development

produces artifacts that are amenable to process analysis.

Rubin et al. (2007) examined the log of a software configuration management system,

and applied Process Mining algorithms to derive the actual, in-use process model. The authors

suggested that understanding the actual, discovered model addressed deficiencies with the

standard process-centric software engineering environment. The primary deficiency is that the

designed model is prescriptive, and does not “necessarily reflect the actual way of work in the

company” (p. 173). The authors also addressed issues of abstracting and filtering the event log,

as the document logs contained too many details or overly specific document names. The

fundamental issue, therefore, was the need to derive a mapping from application behavior to user

behavior. The authors examined the discovered process from the resource, performance, and

information perspectives. When the log was mapped such that user behavior was the primary

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 67

event, and the event was associated with a particular author and timestamp, the authors were able

to address additional perspectives to provide a richer description of the discovered process.

Several authors examined the history contained in source code control systems.

Zimmermann et al. (2004) sought to find common related changes in source code. The goal was

to build a program that could provide guidance to a developer when the developer modified

source code. Essentially, the examination of the repositories revealed that source code

modification contained a process whereby modifications in one part of the source code typically

resulted in modifications in another part. Thus, if a given function/method were changed, it was

likely that an associated function/method would need to be changed as well. Software quality

could therefore be improved by ensuring that requisite coupled changes were properly addressed.

Huang and Liu (2005) examined version histories with the goal of finding “peripheral

participants.” This approach was essentially a social network/organizational perspective applied

to the version logs. Peripheral participants may make significant contributions to a software

project, but their lower profile due to fewer commits (absolute numbers or number of modified

modules) was shown to be an impediment to their full inclusion in a project. These authors

provided two insights. First, there were a great number of processes that were implicit but

important. These processes may be discovered and utilized for improvement activities. Second,

there were a number of legitimate peripheral participants who were often overshadowed by more

vocal or aggrandizing individuals.

Gupta (2014; Gupta & Sureka, 2014; Gupta et al., 2014) examined software logs,

including version histories and issue tracker entries. This series of articles explored software

process improvement, as well as ways to identify various classes of participants involved in the

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 68

development of several open source projects. These works progress from process discovery in a

single type of event log (version history) through the mining of multiple heterogeneous logs.

Mittal and Sureka (2014) mined a set of heterogeneous logs to provide insight into the

“practices and procedures followed during various phases of a software development life-cycle”

of undergraduate students in a software engineering class (p. 344). The goal was to provide

feedback to the instructor on the development process and quality of the development activities.

The work was similar to Gupta’s, but with a focus on instructional improvement rather than

software development improvement per se.

Requirements analysis was examined in Cleland-Huang and Mobasher (2008) and Duan

et al. (2008). In these articles, the authors asserted that an increasing number of requirements

from an increasing number of stakeholders would render traditional approaches to requirements

analysis obsolete due to volume. In these “ultra large scale” projects, it will be impractical for

requirements specialists to elicit, categorize, and prioritize requirements. Thus, the ability to

cluster requirements into sets of related functionality, as well as to avoid issues of undue

stakeholder influence in requirements prioritization, will be critical in the near future for

software development and acceptance.

Huo et al. (2006) examined a discovered process from developer activity logs. The

discovered process was then compared to an exemplar ISO 12207 software development process

adopted by a firm. The observed differences were then used to modify practices on the part of the

developers or suggest changes to the firm’s exemplar process.

Sun et al. (2013) also sought to improve the software development process by extracting

the in-use process as an input to a maturity calculation. Whereas Huo et al. (2006) contrasted the

discovered process to an expected process, Sun et al. sought to reduce the dependency on a

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 69

manual evaluation performed by subjective experts to understand process maturity. The stated

assumption was that process conformance would lead inexorably to improved software quality.

In contrast with the above authors who examined the software development process, a

few authors have examined the application of Process Mining directly to a software application.

Rather than analyzing a development process, the general intent was to analyze a software

program and use the collected information to improve the software experience.

Günther et al. (2008) examined applying Process Mining techniques to “deployed

applications, i.e., some application [that] is used at different sites” (p. 1). The authors suggested

that it was possible to describe the actual use of the application, revealing typical usage patterns

as well as certain features that were “never used or that… [were] only used by particular

customers under particular circumstances” (p. 1). In addition to discovering user-behavior, the

authors suggested that the discovered models could also be used for reliability improvement,

usability improvement, and remote diagnostics. A key aspect of the approach relied upon the

remote applications posting event logs to a central service. The case study concerned medical

devices, and thus was similar to Maruster et al. (2001) or Montani et al. (2014). The article raised

issues concerning data privacy. Günther et al. (2008) also noted the case study application posted

events that were very “low level, representing single commands of the system” (p. 3). Thus,

deciphering user behavior from the logged application behavior was a challenge, and required a

complicated process (reminiscent of the KDD processes) to clean the logs given the diversity and

complexity of the logged events. Low level application logging also generated a large amount of

data. Such large amounts of data “excludes any kind of interactive analysis, since most mining

algorithms scale with the size of the log” (p. 4). The authors also noted deployed applications

exhibit “ad-hoc process[es]” (p. 4). Even when “short episodes of using the system may be well-

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 70

structured,” the goals and means vary across invocations of the application. The authors

concluded that:

For any sufficiently advanced and complex application or machine, the manufacturer

typically has a very limited understanding of how exactly the system is being used in

practice. This is especially true for generic applications (e.g., tools) and highly

configurable, interactive applications (e.g., software)” (p. 7).

Zhao, Liu, Ye, and Wei (2013) sought to understand the “characteristic pattern of daily

activities” as recorded in event logs from the utilization of software on a local computer as well

as website access. The authors did not utilize traditional Process Mining approaches, relying

instead upon an expectation maximization algorithm. Nonetheless, the authors referenced the

Process Mining literature, and the discovery of behavioral patterns from event logs fits within the

overall approach of applying Process Mining to a software application.

Rubin, Mitsyuk, et al. (2014, p. 1) focused on user behavior in an application, and

proposed that, “When the [software] systems are utilized, user interaction [should be] recorded in

event logs.” The authors suggested that understanding the recorded user interaction would allow

for improving software, as well as monitoring and measuring its real usage. The article’s focus

was on “user workflows” and the associated expression of user behavior exhibited at runtime.

The authors captured data from both acceptance testing and when the system was “productively

used”, providing input from testers or stakeholders, as well as from actual end-users. The authors

concluded that software process mining (SWPM) was a valid domain for Process Mining

techniques. SWPM provided critical insights into the actual (as opposed to theoretical/normative)

utilization of a software program.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 71

In Rubin, Lomazova, et al. (2014), the SWPM was used as a part of an Agile

development process. The authors discovered that processes extracted from the event logs as

users interacted with the system differed from expectations expressed in the functional

specification. Thus, the in-use processes of users as they sought to achieve their goals varied

from the normative expectations of the developers and the “representative” stakeholders that

originally defined the system. SWPM also provided a global overview of the application that was

not provided by the standard development approach. Applying SWPM to the application

revealed critical performance issues, but these issues were identifiable only through the complete

exercise of the program, rather than in isolated features or individual implemented user stories.

The ability to provide actual in-use process maps allowed for extended conversations with the

stakeholders. Interactive discussions with stakeholders during the development cycle are an

integral aspect of Agile’s philosophy (Boehm & Turner, 2004; Maurer & Melnik, 2006; Rubin,

Lomazova, et al., 2014, pp. 72-73; Schwaber & Beedle, 2002).

As noted elsewhere, Khodabandelou et al. (2014) applied Process Mining to discover

intentional actions on the part of users in the Eclipse IDE. Here the event logs generated from the

Eclipse Usage Data Collector were utilized to map the means and goals of developers through

the features they utilized in the software. In van Genuchten et al. (2014), the authors applied

Process Mining to a software program that contained an embedded workflow process. Rather

than the ad-hoc processes of Rubin, Lomazova, et al. (2014) or Khodabandelou et al. (2014), the

dental software that was analyzed had an explicit process within it. Nonetheless, mining the

process revealed unexpected pathways in the software, as well as performance issues. The

authors concluded that employing Process Mining in their Agile development process gave

“users a more dominant role in the development phase” (p. 99).

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 72

Summary

“Process mining deals with discovering, monitoring and improving real processes by

extracting knowledge from event logs available in modern information systems” (Rubin,

Lomazova, et al., 2014, p. 70). The history of Process Mining originated with the issues

associated with process discovery, and it was heavily influenced by workflow systems.

Nonetheless, a second intellectual tradition of behavioral rather than pure procedural process re-

creation was evident. Recently the literature has been less emphatically restricted to workflow

systems. The Process Mining Manifesto emphasized the need for events recorded in logs, and for

the events have orderable activities associated with a particular case contained within them. The

business process and workflow system restrictions are thus no longer as evident.

Utilizing Process Mining requires algorithms to analyze the event logs, and there

continue to be theoretical issues associated with process discovery. Academic and commercial

investigations continue to address these issues. In addition to the traditional control-flow process

discovery, other perspectives such as organizational or resource cost models are also

discoverable. Case studies have been applied to a variety of areas, some with a more business

process focus (e.g., van der Aalst, 2011a), and some with a greater behavioral focus (e.g., Jans et

al., 2013).

Process Mining has also been applied directly to software applications. In these

investigations, the goal was the discovery of the pathways (processes) that users take in order to

achieve goals. The software may include expected workflows, but the ad-hoc processes implicit

in software applications can be discovered, compared, and analyzed.

Process Mining therefore appears to be a fruitful approach for understanding how

individuals utilize software. From this understanding, it is possible to improve software quality

by incorporating the lessons extracted from the process logs into the SDLC. The event logs may

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 73

be generated either during the development phase, or during normal program utilization. By

utilizing the discovered processes, and the deviations from developer or stakeholder

expectations, conversations may be generated in an Agile methodology. It is possible, though not

explored in the literature, that more traditional plan-based SDLCs could utilize the discovered

processes as well.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 74

Chapter 3: Considerations for Event Log Creation

Process Mining requires input from an event log. The Process Mining literature is replete

with phrases that suggested the logs “can be easily extracted” (Weijters & van der Aalst, 2001, p.

93) or “are readily available” (van der Aalst et al., 2012, p. 1). These logs may also be “referred

to as ‘’history’, ‘audit trail’, ‘transaction log’, etc.” (van der Aalst et al., 2007, p. 713), and

frequently the literature assumed a “Process Aware Information System” (PAIS) (Rozinat & van

der Aalst, 2008, p. 64) that produced them. As noted above, the literature has evolved to not

strictly require a PAIS to produce the log, but nonetheless an event log must exist.

The literature has provided rough guidelines as to the contents of an event log. Following

(van der Aalst, 2012b, pp. 1-2), each event in the log refers to an activity. An activity is a well-

defined step in some process. Each activity is bound to a specific case, which is a particular

process instance. The events in a case must be orderable, and a case may be seen as one “run” of

the process. Earlier, it was noted that the activity must also be one that provides value to the user.

One potential issue when considering an event log is the continued assumption of an

underlying normative process. Despite the assertions that, “We do not assume the presence of a

workflow management system. The only assumption we make is that it is possible to collect

workflow logs with event data” (van der Aalst et al., 2004, p. 1128), the language as evinced in

the Process Mining Manifesto continued to utilize terms such as “process instance.” Pérez-

Castillo, Weber, de Guzmán, and Piattini (2011) also noted this underlying assumption:

“Unfortunately, process mining focuses on process-aware information systems” (p. 304). Yet

these authors were interested in applying Process Mining to legacy applications that were not a

PAIS, and demonstrated the generation of event logs with ordered events. This case study,

among others, showed the need for ordered events related to a case was not necessarily an

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 75

unduly onerous burden, and need not be directly tied to some implicit process management

within a software application.

When one considers applying Process Mining to a non-PAIS software application, the

ready availability of event logs is not guaranteed. As noted above, such non-PAIS software may

only emit logs of interest to developers, or the log may be application focused rather than user

behavior focused. Interestingly, even in the case studies directly addressing the application of

Process Mining to software applications, the fundamental definitions of what developers should

consider emitting into an event log are absent. It is one thing to discover the process as seen from

a PAIS with event transition logging; it is quite another when the application is desktop

application implemented without consideration of generating an end-user, behavioral focused

event log.

This chapter, therefore, collects and reviews the scattered suggestions for generating an

application event log. Understanding how users interact with an application requires that the

application log said interaction. Moreover, the interaction that is logged is most useful for

documenting the implicit processes that users take in pursuit of their goals if the activities are

meaningful and related to user-initiated activities. It is, in almost all applications, possible to

collect every mouse move, mouse click, and keyboard interaction. In certain circumstances, this

information could be valuable. For example, in User Experience (UX) design, understanding the

mouse distance could provide insight into usability questions. The focus in this thesis, however,

is not on UX directly, but rather on how users interact with the application in pursuit of goal

realization. Thus, the driving questions are, as an example, related to the means by which data

are created and modified in an application rather than, for example, how many menus must be

navigated in order to access a feature. Applying Process Mining to UX is a potentially interesting

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 76

area of investigation, requiring a different sort of event logging, but likely amenable to Process

Mining techniques. Nonetheless, such an investigation is beyond the scope of this thesis.

This section presents a basic example event log, and illustrates the discovered process as

a Petri Net. The primary purpose of this presentation is to provide a visualization of the Process

Mining approach reviewed above. This section then presents a definition of a case and a

definition of an activity. It considers questions of instrumenting an application as opposed to

intercepting activities. It then briefly discusses considerations of privacy in relation to event

logging. Without the ability to collect information, which may be limited by privacy concerns,

and the ability to log events as activities associated to a case, it is not possible to apply Process

Mining techniques. Thus, while Process Mining has the potential to reveal insights into the

behavior of users in relation to software applications, Process Mining has strict requirements in

order to operate.

This section also has a particular bias towards understanding user behavior in a single,

non-PAIS application. In addition, the implied purpose is to enable a development team to apply

Process Mining to event logs in order to improve the software during a development cycle, as

well as to capture data from a broader user community in order to validate development

assumptions. At an enterprise level, Process Mining may be applied to a large number of

disparate systems, involving a variety of log types, and requiring an expenditure of effort in

order to reconcile these various logs. To a certain extent, in order to support smaller development

teams, the issues associated with enterprise-level event reconciliation serve as the boundaries of

what a team instrumenting an application should consider. For example, if one had an application

that invoked a number of smaller constituent parts, it is conceivable for each part to emit an

independent event log with different types of events unrelated to an overarching case. Such an

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 77

approach is, in effect, rejected in the suggestions below. While the text will review the literature

on how such situations might be addressed, in general it is better to carefully define a case and

associated activities than to apply various remediation techniques. Nonetheless, in understanding

the struggles of such remediation, the rationale for the recommendations is made clearer.

Example Event Log

An event log need not be expansive: “The logging requirements for process mining are

simple” (van Genuchten et al., 2014, p. 98). In van der Aalst and Weijters (2004), a table

consisting solely of a case identifier and a task (elsewhere the “event” or “activity”) was

presented (p. 232). Table 2 provides such example entries. The table structure implied the order

of events. From this table, a Petri Net may be discovered, as shown in van der Aalst and Weijters

(2004). The Petri Net that was discovered from the entries in Table 2 is shown in Figure 2. In

essence, from the simple logging of activities tied to a case and emitted in a sequential manner

the process is discoverable and may be presented as a Petri Net. This discovered net also

demonstrated the source and sink (start and finish) of the process despite the absence of specific

activities associated with the process initiation or termination. In van der Aalst et al. (2004), the

authors provided a formal definition of an event log.

Table 2. Example Entries for an Event Log

Case Identifier Task Identifier

Case 1 Task A

Case 2 Task A

Case 3 Task A

Case 3 Task B

Case 1 Task B

Case 1 Task C

Case 2 Task C

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 78

Case 4 Task A

Case 2 Task B

Case 2 Task D

Case 5 Task E

Case 4 Task C

Case 1 Task D

Case 3 Task C

Case 3 Task D

Case 4 Task B

Case 5 Task F

Case 4 Task D

Figure 2. Example Petri Net. From van der Aalst and Weijters (2004)

In van der Aalst et al. (2005), the event table was augmented with the individual

associated with the task (the performer). Dustdar et al. (2005) suggested that an event table

should always contain the performer and a timestamp. Other relevant data entities may be

present as well (Cook & Wolf, 1998a; van Dongen & van der Aalst, 2005), though the exact

nature of this additional data is domain specific (Fayyad et al., 1996). To achieve a fully data-

aware process discovery (Calvanese et al., 2013), an event log must be more than a mere ordered

list of the tuple of cases and activities. The exact additional attributes contained in the log

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 79

requires input from the domain experts involved with the application. However, the inclusion

and analysis of domain specific data are beyond the scope of this current investigation. The

presence of these additional domain specific data attributes is potentially useful, but not required

for process discovery. The presence of an actor or resource supports mining from additional

perspectives. The presence of a timestamp not only assists with the ordering, especially in larger

event streams (Appel, Kleber, Frischbier, Freudenreich, & Buchmann, 2014) where events could

potentially arrive out of strict chronological order, but also provides meaningful insight into

bottlenecks. As noted elsewhere, at least two case studies identified performance issues with the

processes discovered from the event logs, and timestamp information is important for such

throughput analysis.

Definition of a Case

At first glance, it would seem that defining a case should be simple. A case associates a

set of events to a unique instance of a given process flow. However, the scope of a given process

flow is not necessarily obvious. One advantage of the reliance upon a PAIS in the Process

Mining literature is that a case is a natural part of the software system. In essence, a given

workflow instantiation constitutes the case, and all events associated with that workflow instance

are therefore associated with a case. The largest problem, therefore, would be ensuring a unique

case identifier exists and is consistently utilized for a given process instance. The studies of

health care (e.g., Maruster et al., 2001; Perimal-Lewis et al., 2014; Vogelgesang & Appelrath,

2013), for example, revolved around a single patient visit. When considering fine payment (van

der Aalst et al., 2003; van der Aalst & Weijters, 2004), the case spanned from the issuance of the

ticket to the payment of the fine. In examining an appeals process for property tax assessment

(van der Aalst, 2011a, 2011b), a case started with a citizen’s form submission, and concluded

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 80

with a finding for or against the citizen. In these instances, a case is easily determined, contains

the requisite source and sink points, and is not necessarily tied to a single software application

since a workflow controlled the overall flow.

In contrast, consider an e-commerce site. Is the case a single web-browser session? If the

system maintains a shopping cart across sessions (such as Amazon), is a case from the initial

connection to a purchase? Maintaining information on a single session (identifiable by a session

id) is potentially easier and would provide insight into the behavior of users at a given point in

time, but may not capture the entire transaction history (see, Zou & Hung, 2006). Understanding

the ways in which people interact with the site, and whether a session concludes with a purchase

or departure is also highly relevant. In examining an application for the tour agent industry,

Rubin, Mitsyuk, et al. (2014) used a single web-like session as the defining case, despite the fact

that a customer might inquire one day, and return and purchase a ticket another day. In

examining a dental software application, van Genuchten et al. (2014) utilized a patient’s mold

generation from the initial dentist visit to the installation of the dental prosthesis. In this study,

the case is closer to the health care case studies, as the application could be launched multiple

times, than to the tour agency. In addition, the software contained a type of workflow

management. In the case of a word processor, should one attempt to define a case as all activity

related to a particular file (if it were possible to unambiguously identify a file), or a given

execution of the program? Returning to the Alice conundrum, is a case better defined by a

complete analysis of a given product (which may have multiple simulations), or a given

execution of the simulation software?

In van Dongen and van der Aalst (2005) the authors attempted to clarify these differences

by creating a spectrum of PAIS applications (p. 3), and restricted their meta-model to essentially

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 81

PAIS applications. The article asserted that in contrast to standard PAIS systems, “Systems such

as Lotus Notes provide a structured way to store and retrieve data, but no processes are defined

at all” (p. 3). In the spectrum shown in Figure 3, applications such as Lotus Notes, or a word

processor, would be located in the lower left corner. Yet these types of applications may still be

of interest for mining user behavior.

The assertion that one would not find processes in applications such as Lotus Notes

would be true only if one considers a formally defined workflow-like process, such as one would

have in a PAIS. Further, it is an odd assertion that a data driven applications would necessarily

preclude a type of process for dealing with the data over a life cycle, even if the processes were

more idiosyncratic or ad-hoc. If one considers that in Lotus Notes an individual will utilize an

implicit process in order to achieve a goal, then the statement is incorrect. This particular

assertion was written, of course, earlier in the evolution of the literature. It was situated in the

workflow process paradigm of software applications, as opposed to the behavioral view. Yet the

article was fundamentally about the ontology required for event logging, and with the

appropriate case definition and activity logging, there is no reason to exclude a priori

applications such as Lotus Notes from Process Mining other than the fact such applications do

not, as a matter of course, log user behavior.

A different approach to the division is found in Sun et al. (2014). These authors noted

that attempts to classify software engineering data divided into approaches that focused on the

relational aspect of the data and those approaches that focused on the textual and document

oriented aspect of the data. In effect, the authors suggested that focusing on the how the data

progressed through a series of status changes would afford a holistic view of a software project.

Rather than attempting to approach the question from an initial perspective of a potential process

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 82

(recall Huo et al., 2006), the focus should be on how behavior was expressed in transforming

data. This conceptualization is similar to Calvanese et al. (2013). These authors examined several

means by which business process analysis originating from a data perspective may be

implemented. However, of particular note, the authors suggested that an “Artifact-centric

approach provides a simple and robust structure for business process development, which has

been advocated as superior to the traditional activity-centric approach, especially when dealing

with complex and large process models” (p. 6). The artifact approach relies upon an implicit or

explicit artifact lifecycle that ultimately has, “A procedural flavor, based on finite state machines

whose transitions either create a new artifact, or modify/eliminate an existing one” (p. 6). In

these document/artifact centered approaches, one can see a linkage back to the goals of users. A

user does not utilize a process for the sake of the process, but rather because the process allows

for some creation or transformation of an artifact. The underlying emphasis on PAIS applications

in much of the Process Mining subsumes the goals of the user to the controlling process.

From the focus on data/artifact transformation, a more general approach to a case

definition may be derived. Such an approach focuses on how users would transform data. This

Figure 3. Structuredness and data-driven vs. process driven application. From van Dongen

and van der Aalst (2005)

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 83

approach remains compatible with PAIS approaches, since ultimately a business-process collects

and transforms data in such approaches. Consider, for example, the property tax system case

study noted above. A series of documents were collected, routed, examined, and used to render a

judgment regarding an appeal. The authors mined a process controlling this document flow, but

started from the process approach. It would have been equally valid to start with a behavioral

approach of how users would interact with artifacts and their associated changes, and then

discover the processes that would describe the means by which the documents are collected and

transformed. In other examples, such as the tour agency, the hypothetical word processor, or the

Alice story, assuming a process model first would be inappropriate. In these instances, the

starting point should be on a bounded set of associated user behaviors focused on data creation or

transformation. The events correspond, in these cases, to user actions that modify some ultimate

artifact. It is certainly easier when a PAIS is present, since a case instance is more readily

recognizable, but the “process first” paradigm is not a necessary pre-condition for discovering

the behavioral processes utilized to interact with artifacts.

Another critical consideration surrounding a case definition is the need for an identifiable

beginning (source) and end (sink) point. In van Dongen and van der Aalst (2005), the authors

needed to infer the source and the sink of the audit log in the PAIS under investigation, and as

such the ontology of the application suffered from a construct defect. Nonetheless, if the source

and sink information can be inferred, it is possible to discover the process despite the ontological

issue. If it is not possible to determine these starting and ending points, it will not be possible to

utilize Process Mining techniques. The definition of a starting and ending point follow from the

data manipulation considerations discussed earlier. However, there may be instances where

complete data transformation cannot be easily tracked, and thus a case will need to be more

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 84

narrowly defined. In the tour agency case study, the TOMA protocol by which the software

application clients interact with the back-end servers defined a start- and end-point for

interaction. It does not appear this interaction necessarily spanned multiple instances of the client

application. In the hospital study, the case was limited to a single patient visit, and did not

attempt to span all visits by the patient. In the hypothetical word processor, a case is likely

limited to – at most – a single invocation of the program, as tracking across multiple program

launches would require a larger meta-conceptualization of the user’s behavior. If one attempted

to define the start point as the initial creation of a document in a word processor, how would one

determine when the document was completed, since there is no necessary final state or time of

such a document? This ambiguity drove the assertions that applications such as Lotus Notes

lacked a process. Yet the fact that users exhibit behavior when interacting with a program simply

indicates the need to define a case in a manner that allows for associating the behavior in a

meaningful way with the application. If an application manipulates artifacts in a way that has a

clearly defined start and end-point, then a case may be defined as relating to that artifact.

Otherwise, other approaches must be considered, and it is possible a single web-session or

application launch is the appropriate definition. As noted above, the ultimate purpose under

consideration is the behavior that users exhibit in pursuit of their goals when interacting with a

program. These goals must be achievable through interacting with the software application.

A case requires the ability to have events associated with it. In turn, every event in the log

must be associated with a case. This requirement also provides a boundary for a case, as there

must be a logical connection between the logged event and some case. Understanding the range

of events under consideration may also provide insight into the proper delineation of a case. In

van Dongen and van der Aalst (2005), the authors suggested a construction of a complete

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 85

ontology for events. The full ontology of events would provide guidance to the definition of a

case. This approach is potentially useful, but also potentially quite involved, and it likely requires

ongoing effort to maintain the vocabulary. In Rubin, Mitsyuk, et al. (2014), the events concerned

tour reservations. The authors captured the events through the communication protocol, leading

to a case bound to a session. Pérez-Castillo et al. (2011) also examined the binding of events to a

case in legacy business applications that are not specifically workflow aware and do not,

therefore, typically produce event logs. However, these authors suggested that, “Business experts

and system analysts must provide this information to establish the scope of the business

processes supported in the information system” (p. 306). While these authors had suggestions

concerning what constituted an event (see below), they did not provide similar guidance to

defining a case, with the exception of the tight coupling of an application activity to a domain-

expert defined case. Such domain-experts might use a collection of Use Cases for the application

as an input for the case boundary definition (van Genuchten et al., 2014).

If an application maintains state information associated with a given set of artifacts, and

there is a definable end-point in the set of states, it is possible for a case to transcend a single

instantiation of a given application. User behavior, therefore, could be tracked across multiple

application launches, and events may be related to a case generated from the overall artifact

lifecycle. However, if the application does not maintain a set of states across instantiations, or

does not define a set of states, the most likely upper boundary on a case definition is a single

application session, or some identifiable subset of behavior in the application. An application

may allow for a variety of “tasks” to be accomplished in the pursuit of some particular goal

(Pérez-Castillo et al., 2011), but without maintaining some type of state the implicit assumption

is that some outcome, even if only partially realized, is achievable in a single application

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 86

instance. For example, it may be necessary to edit a file multiple times in a word processor.

However, in any given session (which might constitute a case), some meaningful behavior may

be documented and associated via event logging. A word processor does not (typically) maintain

any state information regarding a given file. Thus, the unit of measure must be the observable

behavior in a given session, which therefore defines the upper limit of a case boundary, such that

the source is a program launch and the sink is program termination.

The event association to a case must also result in cases that are of a manageable size.

Though the literature does not appear to address or define such a concept very well (though see

complexity metrics in Benner-Wickner, Book, Bruckmann, & Gruhn, 2014), many of the noted

“spaghetti” models (van der Aalst et al., 2004) were the result of cases with a large number of

overly fine-grained events. Understanding user behavior is reduced when cases contain too many

events. Models are not reality, and a degree of abstraction is required in order to derive

knowledge from the data. In van der Aalst et al. (2004), for example, in the case study of health

care, it was necessary to focus “on specific tasks and [abstract] from infrequent tasks” in order to

successfully mine the process (p. 1140). In that case study, the amount of noise in the log

reduced the effectiveness of the mining until pre-processing reduced the noise level. In general,

the larger number of events associated with a case, the more likely it is the event log will contain

noise. Some miners can deal with noise in the event log more effectively than the alpha-miner

used in the health care case study. Nonetheless, it is worth considering defining cases so that the

events reveal the essential behavior for the case. Returning to the word processor example, rather

than using program launch and termination, in which one might find events associated with a

number of documents, it might be better to define the case as the events associated with a single

document in a given program execution. That is, the primary goal of a user is to produce a

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 87

document, and the primary artifact is a document, so rather than logging events across the entire

application session, the case could be defined as a document in a given session.

A case must have a unique identifier associated with it. The case identifier must be

unique in a given event log, rather than globally unique. Uniqueness in a log is required to

associate events with a specific case. In a standard PAIS system, this identifier is driven by a

particular process instance. In non-PAIS systems, it must be possible to identify or generate an

identifier in some fashion. For example, in the health care case study, the patient number (e.g., a

social security number) would not be sufficient, since a patient could visit multiple times. In the

word document example, the name of the document is not necessarily unique, since many

documents could have the same name. In the legacy application case study, the cases would need

some generated unique identifier, though the article did not specify how such an identifier would

be generated. Though it is not a strict requirement, there may be advantages if the identifier is

stable across time as well. For example, the usual input into many of the Process Miner software

packages is an XML file. If this XML file is generated from some other source (e.g., a relational

database), cases could be uniquely numbered in a given file by sequentially numbering as the

case is added to the XML file. However, there is no guarantee that a subsequently generated

XML file would contain the same ordering. From the perspective of the process discovery

algorithm for a particular mining run, it is irrelevant, but from a comparison and replay

perspective, the inability to identify the same case over time could be problematic.

An additional consideration for the definition of case is whether the application in

question contains sufficient functionality to support a case. It is likely there is a minimal

complexity that an application must support before a case can be defined. Consider, for example,

the *nix program “ls”. This program provides a listing of files. Though the program has a

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 88

number of “features” (extended attribute listing, recursive, color, etc.), it provides a single piece

of functionality. From the perspective of this single application, the user only has a single goal,

namely to display the files. Though it may be combined with other operations (e.g., piping the

output to another application), the single supported outcome limits the usefulness of attempting

to mine the application. There is an element of choice in how to achieve a given goal that must

be present before a case may be defined. A case, therefore, is the collection of choices

(behaviors) that are exhibited by the user. If a user has no choices in relation to a goal, the

benefit of Process Mining is reduced. However, most interactive programs allow some degree of

freedom in achieving goals. Furthermore, as noted elsewhere, highly controlled workflows

exhibit reduced flexibility. The general trend is to allow users to optimize within some set of

constraints (e.g., Bezerra & Wainer, 2008; Borrego & Barba, 2014). What is of interest,

therefore, is the behavior of users in obtaining a goal, as well as uncovering these various goals.

A case must defined in a way that allows for answering these questions, and where there is no

question of user choice, there is no case to be defined.

A case, as shown above, has a number of requirements in order to be useful. In a PAIS, a

case follows from the embedded workflow, events are associated with the case, a case has a

relatively bounded lifespan and number of events, but is sufficiently complex to support choice.

The bulk of the Process Mining literature starts from a PAIS assumption, and seeks to mine

processes from these types of systems. However, there are a few articles investigating non-PAIS

applications. In these applications, it requires effort to define a case. Many of these applications

are data-driven, produce artifacts, and frequently these artifacts have a lifecycle associated with

them. These applications, therefore, produce non-transient artifacts. Further, these applications

play an important role within many organizations. Above, one has been encouraged to consider a

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 89

word processor, or an e-mail program. One might also consider a spreadsheet application that

drives a tremendous number of decisions, but may not be integrated into any overarching PAIS.

However, to understand the goals and the behavior associated with their achievement by using

Process Mining techniques, one must define a containing “case” to which events may be

associated. There is no single, complete approach to defining a case. Utilizing guidelines that a

case must have an identifiable source and sink, a manageable number of associated events, and a

focus on user behavior associated with data transformation (perhaps driven initially by use case

analysis) rather than application behavior provides a starting point for the case boundaries.

Considerations of Activities

The second required element in an event log is the activity (or task, or more generally

“event”) itself. In order to successfully mine an event log, these activities must also have certain

characteristics. The literature has shown slightly more concern with understanding the

characteristics of an activity than it has with the definition of a case. There is, of course, a

general bias towards an activity being a task defined in a workflow. Even in these PAIS

applications, as noted above, ontological deficiencies have been observed, as not all activities

required for mining are necessarily present in a workflow vocabulary. Consequently, PAIS

systems may have issues with effective activity logging, or require additional processing in order

to effectively delineate a case. Activities exist at some level of abstraction, and consideration of

the granularity is important. An over-abundance of activities associated with an event can

increase the noise in a log. Activities must have some identifier, and providing non-interpretable

identifiers requires, at best, additional translation in order to interpret a mined process. At worst,

a discovered process is unintelligible due to the identifiers not having any referent as experienced

by the stakeholders. The identifiers should also be named such that a given name refers to one

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 90

activity only. While there could be, for example, two activities in an event log with the identifier

“collect signature,” unless these refer to the exact same activity, providing different identifiers is

highly advisable. If two different activities share the same identifier, one must contend with the

“duplicate task” issue.

Pérez-Castillo et al. (2011) noted the difficulty in specifying the granularity associated

with activity logging in non-PAIS systems. In these systems, the general tendency is to utilize a

method or procedure as a candidate for the locus of logging. However, source code procedures or

methods have widely disparate granularity in their implemented functionality. If the granularity

of the logged information is too fine, the event log will be unnecessarily bloated. Further, at this

level the logging is tracing the application’s behavior, and not necessarily the way in which the

user is interacting with the application. Conversely, overly course grained logging will obscure

the nuances in the process, leading to models that fail to reflect the potential diversity of

approaches taken by users. The authors stated that finding the correct granularity is an important

challenge that the literature needed to address, and ranked it in a similar fashion to defining the

correct definition of a case (or “process scope”) (p. 306).

Baier, Mendling, and Weske (2014) were also concerned with this granularity, or “level

of abstraction” issue. For these authors, the issue was the potential incongruences between the

events/activities that were recorded in a log and the business users’ mental abstractions. For

example, in their examined case study, a log might have a set of sequential activities identified as

“Group, Classification, Detail, Detail, Group…” for a given case. However, the first four entries

might map to a single “Incident Classification” step in a mental model. The second “Group”

activity identifier (which also demonstrated a duplicate task issue), might indicate a “Functional

Escalation” step. A mined process with an undue level of details, the authors suggested, inhibits

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 91

interpretation of the discovered process. The resultant process model would, at best, devolve into

the “spaghetti” model, or at worst contain too much noise to be useful. In short, application level

mining does not match the experience of the users based upon their interaction with the

application. The authors therefore suggested the need to create a mapping between the event

logging abstraction and the business model abstraction. The authors proposed a way to automate

the mapping by relying upon external knowledge (i.e., documentation). However, when the goal

is to discover a process that is not elsewhere documented, the suggestion of external knowledge

is difficult to apply. The case study involved an ITIL application, and the application logged

based upon application events, not necessarily user actions. However, the existence of the ITIL

provided the external reference necessary to support the mapping. If one were considering event

logging for a non-PAIS application, it would be preferable to log at an abstraction that more

closely aligns with the user’s behavior rather than the application’s behavior. Otherwise, one

must apply some sort of translation, mapping, or pre-processing to exclude events.

“One thing that much of the literature has failed to address, however, is the difficulty in

simply identifying machine-level events as the high-level tasks they represent. That is, most

research assumes that an accurate labeling of tasks is already obtained or is easily determined”

(Buffett & Geng, 2010, p. 498). In contrast to the mapping approach of Baier et al. (2014),

Buffett and Geng (2010) proposed utilizing clustering techniques based upon textual analysis.

However, in order to apply the labeling, the authors assumed a pre-existing model to support the

association of the machine-level events to the high-level tasks. To a certain extent, the question

was also one of a mapping, and demonstrated the difficulty of associating tasks to a mental map

when the level of abstraction is different between the two.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 92

The basic difficulty stems from the desire to understand user behavior, but logging

typically being application behavior. When van Genuchten et al. (2014) asserted that “software

runs on machines that can log user behavior [and] these user behaviors are stored in a so-called

event log” (p. 94; emphasis in original), the authors made an assumption about granularity. The

authors examined events such as “import scan”, “create CAD model”, etc. In these cases, the

events derived from the steps in high-level Use Cases rather than from application traces. These

authors also suggested that “end-user functionalities” (p. 99) should be the proper focus for

mining and comparison. Moreover, the authors suggested that event logging requires iterative

refinement. Further, the analysis of the logs was applied immediately during development (by

collecting information from testers and early adopters), as well as after deployment. The goal of

Process Mining applied to applications should be to better understand the users, not the

application.

In Rubin, Mitsyuk, et al. (2014), the authors also suggested focusing on user behavior as

recorded from the interaction of the user with an application. A “user action” combined with

some object (a widget or dialog) represented a user activity (p. 6). In this case, the logged events

would be behavior as initiated through a user interface. Though this approach can place the

granularity in line with user experiences, it also takes careful consideration of what objects

constitute an appropriate event, and the authors did not provide further guidance. If every widget

interaction is captured (e.g., every drop-down on every form), the granularity will decrease and

the number of logged events will increase. Again, from a UX perspective, this logging is

potentially useful, but from an overall user behavior perspective in pursuit of some goal it may

be less so. Submitting a form, however, follows both a data approach (likely, some artifact is

created, retrieved, or modified in response) as well as a user behavioral approach. In the article,

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 93

the authors provided sample events such as “make pre-reservation” or “get reservation” (p. 4).

These logged events resulted from a form submission on the part of the user, and utilized an

artifact. There was a translation applied from “T1-BA” to “make pre-reservation,” but the issues

of mapping across levels of granularity were avoided by focusing on events corresponding to

user behavior.

In summary, when the goal is to understand user behavior, logging activities that have a

granularity congruent with the way a user interacts with an application will provide a more direct

route to mining the logs. Users exhibit a variety of approaches to achieve goals, despite original

assumptions about the processes they will use. Capturing the steps users take as they interact

with an application to manipulate data or artifacts allows for discovering this variety. When the

event log is generated following the application logic rather than the users’ behavior, the

granularity of the logged events will not align with the mental maps of the broader user

community, though it may match developer experiences. In such cases, it will be necessary to

map application-logged events into behavioral events. While it is not impossible to generate such

a mapping, it may be a manual process unless sufficient external documentation exists to assist

with automating the mapping. Consequently, if one is attempting to use Process Mining as a part

of application development, especially if the application is a non-PAIS one, careful consideration

of the granularity will allow for mining without the extra mapping effort. In Rubin, Mitsyuk, et

al. (2014), the authors were able to exhibit discovered process maps to various stakeholders

multiple times per day. If the granularity were not closely aligned with the mental maps of the

stakeholders then explaining the discovered processes would have been much more difficult or

required additional effort to pre-process the event logs. By starting with a close alignment, the

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 94

case study illuminated the benefits that Process Mining applied to software development can

deliver to developers, testers, and other stakeholders.

As noted above, Process Mining has several unresolved challenges in its mining

algorithms Two of these challenges, “duplicate tasks” and “noise” can be partially or completed

alleviated by what is emitted to the event log. To a certain extent, both of these issues are

exacerbated by logging at an application trace level rather than a user behavioral level. Process

Mining is made easier when the logs do not need extensive pre-processing.

The “duplicate task” issue arises when a given identifier binds to more than one point in

the process. In Baier et al. (2014), the application event “Group” appeared in multiple places,

even though it indicated different steps in the data flow. It is difficult for the mining algorithms

to detect these conceptual collisions, since the appearance of the task label could represent a loop

or a new step in the discovered process. One is better served by ensuring that activity labels are

unique. Further, by logging user behavior rather than application behavior, one has a better

chance of avoiding the duplicate labeling. As another example, in Rubin, Mitsyuk, et al. (2014)

the log had entries such as “window/load.” It is probable that with additional data associated with

the event one could derive which window was opened. This particular activity label itself,

however, is ambiguous. This logged event is more akin to an application log than a behavioral

log (where the latter would have been more akin to “search reservation”). There is thus a

potential relationship between the concepts of “granularity” and “duplicate tasks” insofar as

application-level logging is more likely to generate duplicate task entries. However, even in

more traditional workflow systems the labels associated with a particular step are not necessarily

unique. One should consider expending effort to ensure steps are uniquely named (e.g., not

“collect signature” but “approve invoice” and “approve payment”), as this will enable more

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 95

efficient application of Process Mining algorithms. Though often not stated, the inverse problem

of using a different identifier for the same activity should also be avoided.

Noise is another issue that can be related to granularity of the activity or the definition of

a case. It can also be the result of missing log entries, or the presence of infrequent behaviors.

The questions of granularity have been discussed above. The problem of missing entries is

difficult to address. For example, assume a log contained activities for four cases of {A,B,C,D;

A,B,C,D; A,B,D; A,B,C,D}. Does the third case indicate a potential (though perhaps infrequent)

routing from B to D, or a missing log entry? Depending upon the particular question, the third

case could be an example of fraud (e.g., Accorsi & Stocker, 2012; Accorsi et al., 2013; Jans,

Lybaert, & Vanhoof, 2010), if, for example, step C were some type of oversight preceding a

funds transfer in D. One should undertake efforts to ensure the completeness, integrity, and

accuracy of logged events wherever possible. Logging via an external location if one is

instrumenting a non-PAIS application, for example, can assist with the integrity question.

However, if the external service is unavailable for some reason the completeness of the log could

be an issue.

Human readable activity identifiers are also useful whenever possible. “Task A” is not an

immediately understandable identifier, whereas “make pre-reservation” is potentially

comprehensible. Many Process Mining algorithms will use the activity identifiers in the resultant

process model diagram(s). If the identifiers are not immediately intelligible, additional effort to

interpret the discovered model will be necessary. Conversely, one may apply “translations” to

the identifiers prior to running a particular miner. However, one must invest effort in order to

construct, execute, and maintain such translators. Therefore, wherever possible, human

interpretable identifiers are preferable.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 96

Successful mining relies upon activities in an event log that have a correspondence to the

mental model of an application’s process. The process may be explicit, as is the case in many

PAIS applications, or it may be implicit. The actual processes in-use, as discovered through

Process Mining, may not align completely with a priori expectations about the process even in

PAIS applications. In addition, with the rise in flexible resolutions to issues, many PAIS systems

are moving away from strictly normative approaches to prescriptive approaches. In these latter

instances, the process to be discovered is more fluid but more representative of actual behavior

than overly constrained workflow processes.

In addition to carefully defining the granularity of the activities present in an event log,

the activities must also “be normalized on a comparable level of abstraction” (Benner-Wickner et

al., 2014, p. 109). This requirement argues against using method or procedure tracing as a

suitable level for event logging. Moreover, since the goal is to discover processes reflective of

user behavior, focusing on application behavior inevitably leads to mapping considerations. The

object-activity model of Rubin, Mitsyuk, et al. (2014), combined with considerations of artifact

transformations, can assist in leveling the granularity of logged events. Ensuring that activities

have unique, human interpretable identifiers can also assist with issues of abstraction. Differing

activities with the same label inherently confuse the process model, increasing the difficulty in

mining or interpreting the discovered model. As a result, ensuring that activities have a well-

defined identifier is an important consideration.

Instrumenting vs. Interception

When considering event logging with non-PAIS applications, the means by which events

are gathered should be considered. In general, applications may be divided into three categories:

stand-alone clients, clients that communicate with a server, and web-applications (see Rubin,

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 97

Mitsyuk, et al., 2014). In order to emit the events to a log, there are two basic approaches. In the

first, a developer may decide to “instrument” the application. Instrumenting an application adds

specific commands in order to log the event, or it implements an “observer pattern” on user

activities. The second approach is to “intercept” the communication between the client and the

server. In this approach, some monitoring or pre-processing of the protocol between the client

and the server is added and the event log is emitted by this interceptor.

 In the case of completely stand-alone applications, interception of a communication

protocol is not an option. These applications must have logic inserted into the application in

order to capture activities to be emitted to the event log. Two main difficulties must be addressed

when instrumenting an application. The first is “what” should be captured. The second is “how”

to instrument the application. These two questions are not completely orthogonal. If one answers

the “how” question as essentially procedure level tracing, the “what” turns out to be application

level event logging, rather than user behavior logging. Observing only menu selections, on the

other hand, precludes understanding system-generated events that result from an initial user

selection. This approach may distort the discovered processes.

As Pérez-Castillo et al. (2011) noted, “Non-process-aware systems entail some

challenges for obtaining meaningful event logs… [since] it is not clear which events should be

recorded in the event log” (p. 304). These authors were concerned with recovering business

processes from legacy systems. Their primary argument was that static analysis of legacy

systems discarded knowledge “since some specific knowledge is only discovered at runtime” (p.

305). Part of the knowledge that is discovered through dynamic analysis is the actual way in

which users interact with the application, as opposed to the theoretical approach that might be

discoverable solely in the source code. In short, dynamic analysis captures user behavior that in

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 98

turn reveals in-use processes. However, to capture dynamic analysis, the code must be

instrumented in order to generate event logs consisting of activities captured at runtime. The

authors suggested that the code be instrumented “in a non-invasive way (i.e. small changes

without affecting the behaviour and performance of the system) to enable the registration of

events during system execution” (p. 307). The authors relied upon systems analysts to identify

the correct events to log. In addition, the proposed model for activity delineation ultimately gave

definition to the requisite case to which the activities would be related. This specific notion of a

case was not as well articulated in other discussions of application instrumentation. The benefit

of the relying on experts for activity definition approach is that it moves from application tracing

(which is the essence of, e.g., Zou & Hung, 2006) to behavioral tracing. The activities are

defined as the value-added steps undertaken by the user as expressed during the dynamic

execution of the software. These authors indicated the most likely approach for capturing events

in stand-alone applications is through instrumenting the code, though they did not specify exactly

“how” the non-invasive approach should be implemented.

In a different approach, Snoeck, Poelmans, and Dedene (2000) and Michiels, Snoeck,

Lemahieu, Goethals, and Dedene (2003) considered object-oriented thick client applications.

These authors suggested that frequently in software design the events that drive the application

are subordinated to objects. Further, they argued that almost all use cases and UML diagrams

treat the interaction of the application as a sequence of activities, rather than patterns of events.

For these authors, “events are atomic units of action that represent things that happen in the

world” (p. 458), whereas activities are the messages between objects. The critical aspect, these

authors suggested, is to understand that events form “a fundamental part of the structure of

experience” (Michiels et al., 2003, p. 3). Though these authors were not directly considering

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 99

Process Mining event capture, the focus on events as structuring the experience provides another

possible means for understanding how to instrument thick clients. By capturing said events rather

than attempting to find the correct point for instrumenting the business logic invoked by the

events, following user behavior is easier. In addition, proper event handlers are likely easier to

“observe”, supporting potentially less invasive instrumentation. It is possible that not all

experiential events are appropriate for capture, of course, but it does provide a potential starting

point for consideration, as these authors envisioned events as the basic glue between a more

malleable GUI front-end and the more stable logic back-end. This architectural division is absent

in Pérez-Castillo et al. (2011), but then the particular experiences that informed that article may

have lacked the clearer architectural delineation that Snoeck et al. (2000) or Michiels et al.

(2003) suggested was necessary in order to support maintainable applications.

For thick-client applications, therefore, two approaches seem to be evident. If the

application has a sufficiently rich internal “event” mechanism, mostly likely because of a

particular architectural design and emphasis on events as first-order participants in the

application logic, then applying an “observer” pattern to capture these application events may

provide the input for the mineable event log. Though not discussed in such terms, the

experiential events are reminiscent of the object-activity model of Rubin, Mitsyuk, et al. (2014).

On the other hand, since many applications likely fail to have such an architectural design, one is

reduced to ascertaining the correct location in the code that corresponds to a valuable activity

and inserting calls that will emit the requisite data to an event log.

The other two categories (client-server and web-applications) have similar considerations

in terms of event logging. If the communication protocol contains “data about the user behavior”

(Rubin, Mitsyuk, et al., 2014, p. 6), and the data may be related to some defined case, then

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 100

intercepting the protocol on the server and logging it is an option. However, the presence of a

communication protocol does not necessarily indicate the best approach is “interception”. For

example, the communication protocol may not reveal the actor and the selected event, but rather

consist of lower-level communication (e.g., requests for a particular set of records). That is, the

communication protocol must meet strict requirements in order to reveal exhibited user behavior

rather than simply application logic. The tour agency case study logged events based upon the

intercepted protocol. This logging was possible as the protocol corresponded to user-driven

events. Elsewhere Rubin, Mitsyuk, et al. (2014) suggested that implementing logging on the

client side even in web applications would result in a better correspondence between user activity

and the logged events. The authors suggested considering Javascript-based logging, much akin to

the way Google Analytics is added, for web-pages. The concept of the object-action model also

drives one towards instrumentation rather than interception, since one would wish to log the

actions applied to objects rather than the resultant stream.

The general approach, therefore, seems to be towards instrumenting at the client-side

(either a client or in the web-application). Though protocol interception may be possible, it is

only when the protocol is sufficiently well defined and has sufficient correspondence to user

behavior that it is truly useful. Since event logs assume a complete trace of the activities, the

protocol must be robust enough to cover all possible actions. In other words, a protocol that

mixes user behavioral requests with lower level requests is not suitable since it would mix

granularities and likely reflect only a subset of user behavior. Furthermore, there may be useful

behavioral characteristics that should be captured but are not transmitted to a server. Such

activities are likely to be present in AJAX applications, for example, where some user

functionality is handled solely in the browser and not communicated to the back-end servers. As

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 101

interactiveness is added to web-applications via code executing in the browsers, the ability to

capture user behavior is naturally driven towards logging originating from this code.

Instrumenting, however, has a higher cost in terms of code development and

maintenance. When new functionality is added to the software, one must consider where to add

instrumentation to capture the expressed behavior. Event driven software can potentially reduce

the need for additional instrumentation, relying instead upon the ability to observe the events.

However, Michiels et al. (2003) suggested most software is not designed from a perspective

where events are first-class contributors to the software architectural model. The need for

considering event capture when software is created or modified suggests another “-ility” in the

software quality matrix suggested by Boehm (1978) and others. In addition to such things as

“readability” or “maintainability”, one must also now consider “measurability”. This quality

attribute is more than just user or feature counts, but rather the full range of behavioral

expressiveness. In order to understand how software is actually used, one must provide

sufficiently refined logging that can be subjected to analysis. Further, the goal is not simply a

listing of “page” (e.g., Google Analytics) or “features”, but the pathways through the application.

What users are attempting to achieve (their “goals”) is as important a question as how (the

process) they are achieving the resultant outcomes.

The unfortunate conclusion, however, is that the literature only provides rough guidance

regarding how to collect the event logs. The bulk of the literature has traditionally assumed a

PAIS application with ready-made event logs. When the literature moved towards the

investigation of user behavior rather than application event re-discovery (e.g., Günther & van der

Aalst, 2007), the focus was on improving the mining algorithms, and still assumed the presence

of logs produced from the execution history. Only a few articles have directly examined the

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 102

question of how to add event logging suitable for Process Mining. To a certain extent, the wide

variety of potential application architectures, languages, and deployment approaches makes

generalization difficult. The one potential thread is that instrumenting by inserting code to emit a

log entry is likely the best approach, despite the need for careful consideration of where the event

is actually invoked.

Log Location and Persistence

Where the event log should be stored is another important consideration. In general, the

application of Process Mining to process aware information systems (PAIS) assumes the

presence of not only a log, but a central log. Often the assumption is the event data is in a single

database table (Fahland & van der Aalst, 2013), though more nuanced approaches recognized

that, “Events may be stored in database tables, message logs, mail archives, transaction logs, and

other data sources” (van der Aalst, 2012c, p. 557). When events are scattered among various

logs, however, they must be merged before they can be useful. Merging entails a series of issues,

from assuring events in different logs are associated with relevant cases to issues with non-

homogeneity (Diamantini, Potena, & Storti, 2012; Günther & van der Aalst, 2007) and

granularity differences in the recorded events. Non-PAIS applications, however, must explicitly

define not only how to emit an event log, but where the event log should be stored. Dispersed

logs will require collection and merging, if not additional processing effort. A centralized log

avoids the collection and merging issues (there may still be pre-processing involved), but

requires connectivity as well as an awareness of what data is being transmitted and in what way.

In addition, the raw event logs are of little interest to a local user. It is the revelation of the

process itself via Process Mining that provides the value.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 103

Figure 4. Event Logging to Remote Service. From (Rubin, Mitsyuk, et al., 2014, p. 7)

To a certain extent, Rubin, Mitsyuk, et al. (2014) presented the typical approach for most

applications types. Figure 4 shows their approach for a remote event logging service to which

different applications may post via a variety of protocols. The authors envisioned Process Mining

as a separate service where the log “is stored separately and separated from the core of the

software system” (p. 6). The general approach focused on a centralized log (or potentially set of

logs) feeding a Process Mining core. The particular diagram depicted a single application with

differing front-ends. One could also interpret the diagram as suggesting the means by which

centralized event logging could be achieved by the various types of clients. Regardless,

separating the event logging into a discrete, centralized service provides the easiest approach for

subsequent Process Mining. That is, when developing event logging, posting an event to a

centralized service that maintains the logs is the general recommended approach in the literature.

Of course, the primary assumption in the diagram is that the application has the ability to

communicate with a remote server. The issues of dealing with non-networked, stand-alone

clients are not examined herein, nor in the literature in general.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 104

When event logs are not centralized and generated in a uniform manner, a merged event

log must be generated. Claes and Poels (2014) noted that merging can be accomplished at the

raw data level (merging databases and/or files), structured data level (merging event logs), or

model level (merging process models) (p. 7291). Each of these approaches has different issues,

such as the differences in abstraction (or granularity), or the need to understand the meaning and

relationship between different database records. Addressing these difficulties is not trivial. For

example, issues of granularity were discussed above, with the conclusion that it is better to avoid

the issue than attempt to apply mappings to rectify the situation. Claes and Poels (2014)

attempted to address issues of merging at the structured data level, but despite the application of

rules, the final merge required user interaction. One of the basic issues the user must address is

aligning the definition of a case between the disparate logs. In van der Aalst (2011a), the ability

to define the case was assumed, but the need to merge data from a variety of data sources was

directly noted. In this instance, the preferred approach was to load disparate data sources into a

single data warehouse, and then to extract XML-based event logs for a given process from this

location.

In general, there is a tendency in the literature to assume that the event logs are stored in

a relational database. The general language of the literature (assuming as it does a PAIS)

discussed ERP systems (such as SAP) backed by relational databases. Rubin, Mitsyuk, et al.

(2014) is an exception in making a passing reference to NoSQL databases, but did not discuss

any implications of the specific storage approaches. Bui, Hadzic, and Hecker (2012) assumed the

availability of XML event logs, and only made a short reference to the potential need to “extract

and transform” the data (p. 111). Kwanghoon (2009) also presumed the presence of (distributed)

XML files containing the event data. Constructing XML files from what is essentially an “event

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 105

stream” (Appel et al., 2014) would appear to be a difficult task, since the events might arrive in

any order, but the XML files require all events for a specific case to be children of the parent

case entity. Consequently, it is most likely preferable to first store the incoming events into some

type of database that supports set operations, and then emit the XML files for processing in a

separate step. Some Process Mining applications, such as ProM, support reading delineated files,

though the general standard for Process Mining is the XES file format based upon XML (see

Günther & Verbeek, 2014; van der Aalst et al., 2012). In addition, event logs require a high

degree of completeness. One must consider the implications of “eventually consistent” databases

versus ACID-compliant databases (e.g., Vogels, 2009) when implementing the storage strategy.

In van der Aalst et al. (2012), the authors noted that events need not be stored in dedicated log

files, but that the quality of the log files was critically important. Event logs, the authors argued,

must not be a by-product of “debugging or profiling”, but rather “first-class citizens.” While how

the logs should be stored, to a certain extent, is less important that ensuring they are of a high

quality, one cannot escape the relationship between the storage strategy and the resultant quality,

especially if logs become distributed and in need of merging.

When considering instrumenting a single, non-PAIS application, therefore, logging to a

separate “Process Mining Service” located on a remote machine seems to be the preferred

approach. This remote service should accept a posting of an event, and add it to a database. As

discussed above, the posted event must consist of a minimum of two fields: an activity identifier

and the associated case identifier. Other data may also be present if appropriate. If the case can

be inferred via the activities (i.e., there is a definitive start and stop point for an identifiable

session), it may be possible to omit the case identifier from the event posting, and generate it

later. However, as noted, there are potential issues with case number in such an approach. A

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 106

remote service also increases the potential integrity of the data. Such considerations are

extremely important if one wishes to apply Process Mining to anomalous event detection, such

as fraud. Full consideration, however, of what would constitute a secure Process Mining Service

is beyond the scope of this investigation.

Whether the timestamp should be passed as a field to the server or added automatically

by the server is an interesting question. Ordering of the activities in a case is a critical

requirement, as activities that are incorrectly ordered will result in noise or incorrectly

discovered processes. Passing the timestamp from dispersed clients raises the possibility of such

noise, since different clients may have different clock settings. Generally, of course, for a single

application running on a single machine, the clock would be constant for that given machine.

However, not all databases support fine-grained time storage, and thus two events generated only

a few microseconds apart could conceivably have the same resolution in the database.

Conversely, allowing the Process Mining Service to add the timestamp could introduce the very

noise one is seeking to avoid, since there is no guarantee regarding the order in which nearly

simultaneous events would be added to the database. That is, a multi-threaded service processing

multiple inbound posted events is non-deterministic with regards to the order in which the events

are ultimately processed (though see Chu-Carroll, 2016 for a discussion of Lamport Timestamps

to address order). Consequently, a single client posting two events A and B to a service cannot

guarantee the order in which the events will be processed by the service. The existing Process

Mining literature does not provide specific guidance on this point. Since a timestamp may not be

sufficient to ensuring ordering, alternative approaches may need to be considered. For example,

an atomically increasing integer for a given case could be specified in the event posting.

Conversely, a sufficiently refined timestamp generated on the client, backed by the appropriate

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 107

storage in the service, could suffice. Unfortunately, outside of the general desire to have a

timestamp to support potential ordering as well as potential costing analysis (such as

bottlenecks), the specific approach depends upon the implementation of the Process Mining

Service.

One cannot undertake Process Mining without a well-formed event log. In general, the

literature has assumed the presence of this log, without offering specific guidance on where to

find the log. Rubin, Mitsyuk, et al. (2014) suggested an independent Process Mining Service as

the appropriate receptor and storage location for events. The general assumption is that the

events received by the Process Mining Service would be entered into a database, and then later

extracted into relevant XML files. In van der Aalst (2011a), the larger enterprise approach

acknowledged a variety of potential data sources for a given event stream, and recommended

consolidation into a data warehouse. Centralizing the collection is, however, a common theme in

the literature, to support easier extraction. Certainly to support Process Mining during an Agile

iteration, a centralized repository provides benefits in that potentially dispersed logs do not need

to be gathered, and potentially merged. From a defined central repository, batch processing to

generate the XML event logs is straightforward, leaving only the execution of the miner itself as

a potentially interactive step for a member of the development team.

Privacy Concerns

In van der Aalst et al. (2005), one finds the warning that if an event can be traced to a

person, the person must be aware of the logging. Fayyad et al. (1996) also noted that when one

collects any personal data, it is necessary to consider the privacy and legal issues. As one would

expect, given the myriad of legal jurisdictions, the Process Mining literature provides little

specific guidance. In the case studies dealing with medical records (e.g., Kaymak, Mans, van de

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 108

Steeg, & Dierks, 2012; Maruster et al., 2001; Montani et al., 2014; Perimal-Lewis et al., 2014;

Sabhnani, Neill, & Moore, 2005; van Genuchten et al., 2014), the patient data was rendered

anonymous. Beyond these considerations, however, one only has the stipulation in General

Principle One of the Process Mining Manifesto that “the event data should be safe in the sense

that privacy and security concerns are addressed when recording the events” (van der Aalst,

2011b, p. 7).

In general, within an organization, a sufficiently comprehensive acceptable use policy

(AUP) should be sufficient (e.g., Siau, Nah, & Teng, 2002; Stanton, Stam, Mastrangelo, &

Jolton, 2005), though of course competent legal advice should always be sought. The AUP

should detail the ability of the organization to monitor and record activities. The situation is

slightly more complex if the organization crosses international boundaries, since different legal

jurisdictions may attempt to impose differences in what may be collected or the length of time

data may be retained.

However, if one wishes to collect data from a broader audience, detailing what will be

collected, how it will be used, and how it will be retained becomes critical. For example, the

Eclipse Usage Data Collector (EUDC) had such a disclosure (Beaton, 2011; Khodabandelou et

al., 2014). Many web applications, web sites, and operating systems collect usage data (Bright,

2015) without explicitly disclosing the data collection. There are potentials for understanding

user behavior that arise from looking at a wider set of users. Conversely, one must also be aware

of the amount of data that may be generated, and have a plan to actively utilize the data. The

EUDC, for example, failed to capitalize upon the collected data, and eventually terminated the

program. Questions of opt-in versus opt-out for contributing must be addressed, and different

jurisdictions may have different requirements for the default approach. The collection of

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 109

personally identifiable information during events may also create additional requirements for the

storage and handling of the data.

Unfortunately, since data privacy inevitably becomes intertwined with legal

requirements, there is little guidance provided by the literature. Privacy is an important

consideration, but cannot be determined outside of the specific application and its collection

approach. Ignoring privacy concerns is inappropriate, however. When considering event log

creation, it is imperative that privacy and data security be considered. Beyond that imperative,

however, specific legal guidance is likely required.

Conclusion

An application need meet only three criteria when generating an event log. An

application must be able to, “Record events such that (i) each event refers to an activity (i.e., a

well-defined step in the process), (ii) each event refers to a case (i.e., a process instance), and (iii)

events are totally ordered” (van Dongen & van der Aalst, 2005, pp. 1-2). Additional domain

specific data may be present, if appropriate. Defining a case and defining an activity require

definitional effort. The Process Mining literature has tended to assume a process aware

information system (PAIS) as the basis of the application. Such applications contain an explicit

workflow system. Given the explicit workflow, a case corresponds to a particular workflow

instantiation, and an activity is a step in the workflow. However, there are a variety of non-PAIS

applications that are amenable to Process Mining. In these instances, a “case” and an “activity”

must be carefully considered and defined in order for the event log to contain useful information.

The potential of Process Mining to discern user behavior, and then to apply this

knowledge to refine programs, is very intriguing. In the articles that directly examined the

application of Process Mining to non-PAIS applications, the discourse focused on “user

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 110

behavior” rather than explicit processes. Activities, therefore, derive from the actions invoked by

a user, rather than what an application might log as its traces through its internal logic. A case

must collect a reasonable set of related activities undertaken by a user within some bounds. That

is, the collection of user activities must have an identifiable start and end point.

One critique of the emphasis on user behavior is that it appears to rely upon interactive

applications; events are the result of direct user interaction. There may be a number of batch-

oriented applications that would also benefit from an application of Process Mining. Discovering

user intent in batch applications, however, may be more difficult, since other than launching the

application it is not immediately evident a user exhibits intent during the run. The questions of

case definition (a single batch run, all runs related to some given set of data, etc.), and activity

definition (granularity, labeling, etc.) are still important. However, the application of Process

Mining to support application development is not investigated for such non-interactive

applications in this thesis.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 111

Chapter 4: Example Application of Process Mining to a Software Application

This section provides an example of Process Mining with a non-process aware

information system (PAIS) application. It shows how event logging can be applied to discover

user behavior associated with application usage. It is not a case study in the classic sense. First,

the application examined in this section (the Sandia Analysis Workbench) was both originated

and instrumented for feature logging without reference to the broader Process Mining literature.

Second, the initial application of Process Mining reported in this section pre-dates the origin of

this thesis. Third, it is not “an intensive study of a single unit for the purpose of understanding a

larger class of (similar) units” (Gerring, 2004, p. 342). Rather, it provides some “life” to the

above discussion by providing visual displays and general discussion of one instance of Process

Mining on an application with the goal of supporting software quality improvement in an Agile

development environment. All of the information relating to the Sandia Analysis Workbench and

the discovered processes is taken from Olson et al. (2015).

The Sandia Analysis Workbench (SAW) is a thick-client application built on top of the

Eclipse framework. It was developed at Sandia National Laboratories to support the

computational simulation analysis community. Its vision is to provide an integrated working

environment to enable analysts to more effectively deal with the artifacts and tasks necessary to

perform computational simulation. Analysts face a complex environment requiring them to

interact with and transferring data between a variety of individual applications across several

different computer platforms. The general “process” is to start with an design engineering based

solid model (usually produced in a CAD system), apply a number of transformations to that solid

model, add specific information relevant to the particular simulation, submit the simulation to

run on a high-performance compute cluster (HPC), obtain specific measures from the simulation

(possibly including visualized results), and produce a final report. SAW brings together a

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 112

number of useful features, such as data management, secure team-based artifact sharing, model

assembly, job submission and monitoring on the HPCs, distributed file management and remote

visualization.

SAW (under a different original name) was originated in 2004. It has been developed by

a core team of four developers utilizing an SCRUM based Agile development methodology. It

supports a highly technical community of computational simulation analysts working in a variety

of simulation physics, such as thermal, structural, and radiation emissivity.

In 2014, the developers instrumented SAW to produce logging for documenting feature

utilization. In this sense, the original purpose to answer a question akin to the Alice story above:

namely, what features are being utilized to what degree by the user community? The hope was to

discover patterns of utilization to support software development efforts, and to foster

conversations with the stakeholders pertaining to development priorities and opportunities. The

collected data has not, to date, been used to “quantify” upgrade benefits (per van Genuchten et

al., 2014), but some changes in user behavior over time have been documented as evidence of

the effectiveness of changes to, or additions of, specific features.

Figure 5. Sandia Analysis Workbench Problem Domain

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 113

Figure 6. Sandia Analysis Workbench Application.

When the SAW development team first decided to explore Process Mining, it needed to

confront several conceptual issues. First, it needed to understand a “case” from the perspective of

Process Mining. When the application was first instrumented, associating events with a particular

instance was not part of the consideration. Second, it needed to understand whether the logged

activities were compatible with the general requirements of Process Mining. The logged features

corresponded to user activities in the interactive application, but granularity questions were not

considered during the initial log development. Finally, it was not clear that Process Mining

would necessarily discover a model that would provide insights into the behavior of the user

community.

A Process Mining case for SAW is defined as a single instance of the application from

program launch to termination. The original goal of SAW was to support the analysts from

design through the final report. From this perspective, it might seem that a more workflow like

definition would be appropriate, tracking user behavior across program launches. However, there

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 114

are several factors that mitigate against such a higher level, PAIS-like approach. First, despite the

concept of a “project” being integral to the application, and the “project” supporting lifecycle

states, the analysts have not utilized the functionality to move a project through various stages. In

addition, some analysis have created only a single “project” artifact, and co-mingled the various

investigations in folders under this one project object. Thus, while the original use-cases pre-

supposed a particular behavior on the part of the user community, the reality has been quite

different. This behavioral deviation was observed early in the development of SAW, without the

need to apply Process Mining. Indeed, the analysis community has focused more on the file

versions and the sharing of files between the team members than any larger artifact lifecycle

concerns. Second, the application is deployed on several networks that are disconnected from

one another. A single “project” may be present on multiple networks, but there is no way to

relate activity across the networks. Third, and related to the first, there is a distinct lack of a

terminating event for a project on the part of the analysts. Finally, there was a desire to

understand user behavior within the application, rather than user behavior in relation to a

workflow process. Thus, the focus of investigation was the implicit processes of users in the

application rather than a larger, more formal workflow. This focus is more akin to software

application focus of Rubin, Mitsyuk, et al. (2014) or van Genuchten et al. (2014) than the process

focused found in the case studies of ticket paying or property tax appeals found in van der Aalst

(2011a; 2003; 2004).

The case definition, however, is not perfect. In the event log, the application launch and

application termination are logged. However, the case lacks a unique identifier. Consequently,

when the data are prepared for Process Mining, activities are assumed to be related to a case

because they are sequentially logged for a user between these two events. Since there are

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 115

instances where an application termination event is absent (e.g., the application crashes), there

are invalid cases present in the log (defined as two application launch events without an

intervening termination event). In addition, there is nothing that prohibits users from launching

multiple instances of the application at the same time (especially on different operating systems).

The lack of a specific and unique case number allows for the potential interleaving of events

from disassociated application instances. Consequently, the event logs may contain a type of

“noise” in the form of extraneous events within a case.

An activity is defined as functionality invoked directly by the user. For example, “Open

Project”, “Edit File”, or “Submit Job” are activities that are logged. The activities are uniquely

named across the application, thus the issues associated with “duplicate tasks” are avoided. The

granularity is not exactly the same across all events. For example, “Submit Job” requires file

transfers to the HPCs, remote program invocations, and associated monitoring. While these

lower-level activities provide a benefit to the user, they are part of a higher-level user activity

that more closely aligns with what the user is accomplishing. Thus, while the application has

certain “features” (such as file movement), this application level tracing is not logged. This level

of logging avoids the need to map between levels of granularity. In addition, the activity names

are sufficiently human readable as to avoid the need for translation of the activity identifiers.

As a thick-client, the application is instrumented to support the event logging. The events

are logged via a separate service, and stored via a RESTful protocol invocation on a remote

server. Developers must decide where in the code to insert an event logging posting. It is not,

therefore, truly an “observer pattern” (Gamma, Helm, Johnson, & Vlissides, 1995) on the

application as suggested as an appropriate approach by Rubin, Mitsyuk, et al. (2014). While the

underlying Eclipse framework supports such a pattern, and in fact that approach was the basis of

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 116

the User Data Collector (see Beaton, 2011) that provided the input to Khodabandelou et al.

(2014), the current implementation does not utilize such an approach. The advantage is that the

“feature” that is being measured can be defined at precise locations, with control over what is

added to the event log. The disadvantage is the need to specifically instrument the code, and

adding new functionality requires discussions on the appropriate place to insert the event logging

call.

In 2015, the development team became interested in applying Process Mining techniques

to the event log to see if behavioral processes could be discovered. The hope was that Process

Mining would reveal usage patterns that would be helpful in generating discussions with

stakeholders. The decision to apply Process Mining was part of a larger effort to more formally

understand the general workflow processes in-use by the user community. One driver of this

effort was to increase the automatic documentation and (potential) re-execution of these

processes. It is accepted that different analysts and simulation analyses will follow different

pathways to completion. However, the documentation of these processes was frequently lacking,

and further they could not be repeated by a different analyst. In essence, the verification and

validation of a computational simulation came to include not just the utilized software and

produced artifacts, but also the process by which the inputs to the simulation software were

developed.

In order to mine the collected event logs, the events stored in the MySQL database, the

events needed to be extracted and converted to the XES standard (Günther & Verbeek, 2014). A

Java program was written to convert entries from the database to a well-formed XES document.

This program had to account for the issues with the aforementioned case definition. In the

following discussion, 633,510 initial MySQL records were processed into 3491 cases with

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 117

141,583 events. As the collected information contained user names, these cases came from 160

originators. The events were collected from a single network only, and it is possible that the

mined behavior is different on the various networks. These questions were not investigated in

this initial work.

After the XES document was generated, it was provided as an input to ProM, version 6.4.

ProM is an Open Source miner supported by various academic researchers (see van der Aalst et

al., 2012). After collecting the basic statistics concerning the input file, the first question was

whether any basic process flow was evident. A cluster analysis was executed against the data.

The results indicated a potential “spaghetti” process, but there was a general overall flow and

identifiable clusters.

Figure 7. Spaghetti Process from Cluster Analysis of SAW Usage

The team then explored a standard Petri Net generation. The alpha algorithm approach

failed to converge into a coherent Petri Net. As noted above, there are potential issues with the

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 118

alpha algorithm when confronted with loops and noise. Using an inductive Petri Net miner

(Leemans, Fahland, & van der Aalst, 2014), a general Petri Net was discovered. The fact that a

generally recognizable process flow from the event log could be discovered demonstrated the

basic value of applying Process Mining. The number of loops and “hidden” process steps shown

in the inductively mined Petri Net suggested why the alpha algorithm approach failed.

Figure 8. Petri Net of SAW Usage

Next, the team explored the application of a Heuristic Miner to the data. A Heuristic

Miner utilizes an algorithm that is highly resilient to noise in the event log (Weijters & van der

Aalst, 2003). It also produces output that supports loops as well as frequency counts. In addition,

it calculates an overall fitness, indicating the number of cases accounted for in the output. The

resulting model indicated two main flows through the application. It appears users tend to most

frequently launch the application to either commit files (file_checkin) or retrieve files

(file_checkout). The overall fitness of the mined model was .9532, indicating that 95% of the

events were accounted for in the model. This model provided a good discussion point with

stakeholders. Despite a plethora of requests for new functionality, if the primary utilization of the

software as demonstrated by actual behavior is on one of these two predominant pathways, then

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 119

it is possible that User Stories relating to these areas should receive higher prioritization. This

model also implicitly illuminated the goals of the users. Whereas many of the stakeholders have

advocated, for example, for increased investment in editors for simulation code production, the

currently demonstrated behavior indicates the primary goals of the users is to store or retrieve

files in the application. Such file storage supports developing computational simulations with

other team members, as well as providing permanent reference to particular artifact versions.

Figure 9. Heuristic Miner Results

The team then investigated the application of a Fuzzy Miner (Günther & van der Aalst,

2007) to the event log. The Fuzzy Miner was developed specifically to deal with less structured

processes. The cluster analysis model presented above demonstrated the problem of too much

detail in a model. As Günther and van der Aalst (2007) stated, “The problem is that the resulting

model shows all details without providing a suitable abstraction” (p. 329). This model provides a

visual indication via line thickness of the relative frequency of the pathway executions through

the model while reducing the overall displayed noise. Whereas the Heuristic Miner demonstrated

the prevalence of two specific goals, this mined result indicated other potential areas for

improvement. For example, the relatively thicker loops associated with “open_project” and

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 120

“retrieve_project_list” tended to suggest that users are frequently attempting to find a project

containing some set of files. Again, this discovery would be a good discussion point with the

stakeholders, as developing functionality that allowed for a more efficient retrieval of the desired

file from a given analysis project could provide a useful benefit. This discovery also indicates

that just because a set of features is present, it does not follow the features are presented in a way

that maximizes goal achievement. From a different example, consider how often one must

navigate the save dialog in various Microsoft Windows applications, as the directory is not set to

a desired location. The functionality to save a file is present, but it is not necessarily

implemented in a way that is optimal for achieving a goal.

Figure 10. Fuzzy Miner Results

The logged events contained user information. The team has not investigated mining a

social network. Other domain specific data is also present in the event log. However, it too has

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 121

not yet been examined. The logging of the user and the specific activities could potentially raise

privacy concerns. However, the corporate computer usage policy specifically indicates that all

activity may be logged and examined, and there should be no expectation of privacy. In contrast,

however, some of the collected data is potentially restricted due to need-to-know (NTK)

concerns. For example, when editing a simulation input file, it might be helpful to know if the

same file is being edited multiple times. In order to answer that question, some tracking of the

file would be necessary. The specific file names, however, are potentially NTK controlled. The

application, therefore, stores a hash of the file path and name rather than actual name. The hash

allows, to a certain extent, for addressing questions of repeated editing without divulging the

actual filename. Other such information, such as the project name, is similarly encoded. Though

not exactly equivalent, the need to protect information relating to patient data in aforementioned

case studies required similar approaches to anonymizing or encoding data. Therefore, while

collecting usage information is covered under the corporate policy, it is still necessary to protect

certain pieces of the collected information.

This section provided an example of applying Process Mining to a non-PAIS application.

Though it is not a case study, it does fit within the general literature of Rubin, Mitsyuk, et al.

(2014) or van Genuchten et al. (2014). It provided the definitions for a case and an activity as

used by the Sandia Analysis Workbench development team, and noted some issues with how the

team has implemented these concepts. In short, while the definitions have provided value as seen

in the mined processes, they are not necessarily optimal.

Despite the ability to obtain some visual mined processes, the full benefits for this

approach have not yet been realized by the team. For example, the extraction and transformation

is not systematically integrated anywhere in the current Sprint cycles. As a result, the extracted

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 122

information is used in a very ad-hoc fashion. Further, the use has been entirely within the team,

and has not been utilized to develop conversations with the stakeholders. Since it is not

incorporated into the Sprint tasks, it is not being used to refine the software as it is being

developed. There is also an issue related to expertise as well. It takes expertise in the Process

Mining literature to properly develop the data transformations from the MySQL repository to the

requisite XES file format, as well as how to execute the mining itself. Adjustments to the miners

to achieve the best results require in-depth knowledge of the algorithms. These problems were

identified in the Manifesto, but in the small team size of many Agile projects (and the SAW

project fits into that category), it is a serious barrier to its adoption. Lastly, the information is not

being correlated with software quality in general. Though some differences in user behavior have

been noted across releases (though not explored in the foregoing), this information has not been

quantified, nor has it been related to any measures of improved quality from the user community.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 123

Chapter 5: Conclusion

When a user interacts with a software application, the user has a specific desired goal to

achieve. Process Mining can provide insight into the actual utilization of a software program,

discovering these ad-hoc processes. In addition, Process Mining can reveal the intentions of the

users.

Process Mining requires specific input in order for the algorithms to be effective. The

basic input is an event log, consisting of a sequence of events, with each event associated with a

case. The event may be augmented with additional attributes, such as a timestamp or a user.

Though any software application (or more generally, any information system) has the potential to

generate an event log, not all applications are designed to emit such logs. Furthermore, there is a

distinct difference between application logging and logging user behavior. The former tends to

focus on application logic and error conditions at a level that is overly fine-grained and not

reflective of the domain experience of the user or analyst. In contrast, user behavior logging

emits behavioral interaction as the logged events. It may be possible to map application behavior

to user behavior, but doing so introduces additional effort in terms of developing and

maintaining the mapping.

Despite the requirements of Process Mining, it is nonetheless remarkable that one can

discover intentional usage and correlated patterns of behavior from logged process traces. These

traces may be mined by applying algorithms to “yield an aggregate description of…observed

behavior, e.g. in form of a process model” (Günther & van der Aalst, 2007, p. 329). Behavior

may be modeled as a process for achieving a desired goal.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 124

Research Questions and Results

The initial research objectives of this thesis were to understand the potential to apply

Process Mining to standard, non-process aware software applications (RQ1). Further, if it

appeared reasonable based upon the literature that such an endeavor were possible, to then

illuminate the requirements of event logs in order to support such an endeavor (RQ2). In contrast

to Process Mining where — to a certain extent — the ultimate goal is process improvement, this

thesis suggested that Process Mining when applied to such instrumented applications could

provide data to improve software quality by understanding the experience of a user (RQ3). In

order to improve software quality, however, the focus of software quality must shift from a

development process basis focused on features to a user focus based on behavioral interaction

with the software application.

The history of Process Mining began with (Cook & Wolf, 1998a) and the desire to

understand the behavior of software as expressed by a sequence of actions performed by agents.

The captured event data could then be examined in order to construct a finite state model that

graphically represented the recurring patterns of behavior. One of the founding documents in the

literature, therefore, emphasized the need to understand behavior as expressed by agents, and

furthermore applied the approach in some instances to non-process aware software.

From this auspicious beginning, however, Process Mining primarily evolved by focusing

on workflow systems. Workflow systems have two advantages that supported early

investigation: they had a defined reference model for comparison and they were generally

designed to emit some type of event log around a series of activities. These advantages allowed

Process Mining to focus on the algorithms necessary for accurate process discovery and useful

representations of the discovered process. However, the fact workflow systems had defined

processes that generally emitted events also obscured the underlying requirements for applying

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 125

Process Mining to non-Process Aware Information Systems. In addition, Process Mining has

tended to accept or promote the idea that quality is seen in conformance to a (perhaps ideal)

process, and that the contribution of Process Mining is in demonstrating variances between an

ideal model and the discovered in-use model.

Nonetheless, the difficulty in developing the algorithms to support Process Mining should

not be underestimated, and the reduced scope afforded by a focus on workflow systems assisted

in this endeavor. Yet as a result, and despite the wide-range of case studies that accompanied the

algorithmic development, the literature moved away from user behavior in software. Only a few

studies examined software applications directly (e.g., Kwan Hee, Boram, & Jeonghwan, 2015;

Rubin, Mitsyuk, et al., 2014; van Genuchten et al., 2014), but these studies did not link the

discovered processes with software quality improvement.

In surveying the literature, there was, therefore, some indication that applying Process

Mining to a standard software application would be possible even though it was not the primary

focus of the literature. This survey provided sufficient support for RQ1. Based upon this initial

condition, it was then possible to extract and expand upon the requirements for instrumenting an

application in order to successfully generate event logs that could be analyzed. In generating

these requirements, the focus remained on instrumenting an application to highlight user

behavior in order to apply discovered user interactions to improve software quality. The

discovered process models are most likely to be of benefit if easily incorporated into an Agile-

based SDLC. The elaboration based upon the literature provided an answer to RQ2.

The quasi-case study demonstrated a practical application of an instrumented software

application and Process Mining to support software quality improvement, thus providing some

initial, albeit tentative support, for RQ3. An instrumented application emitted event logs that

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 126

could then be processed by specific algorithms resulting in a visual process diagram. By

analyzing the diagram, potential software quality issues that were not reported by the user

community were identified during a SCRUM-based Sprint Review, and the team generated user

stories to ameliorate these issues. Consequently, the interweaving of user behavior as

documented in event logs, Process Mining, and software quality was achieved in this thesis. The

result is a demonstration of a potentially enhanced mechanism for improving subjective, user-

based quality by understanding the way users actually interact with a software application.

Support For Software Quality

Software quality is difficult to achieve. Quality itself is not uniformly defined, and has

subjective interpretations. Basili (1989) argued that software development has “evolved from

focusing on the project, e.g. schedule and resource allocation concerns, to focusing on the

product, e.g. reliability and maintenance concerns, to focusing on the process, e.g., improved

methods and process models.” For Basili, the goal was to improve software quality by

implementing a measurement program throughout the entire life cycle of an application. This

measurement program was, in effect, an attempt to improve the process of software

development.

To a certain extent, the argument for applying Process Mining to instrumented software

applications is the need to move beyond the focus on a development process to a focus on how

individuals achieve desired goals when interacting with an application. The focus therefore is on

the user behavior and user goals, rather than the process that develops the software. Quality is

therefore maximized not through a particular development process but by measuring how well

people achieve goals.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 127

DevOps

A newly emerging group of concepts collected under the auspices of “DevOps” (Mueller,

2017) provides another aspect to the foregoing. Among various points of emphasis, DevOps

encourages continual application monitoring. This monitoring is not only to assist with

operational issues, but also to provide demonstrate to software developers instances where

quality (especially standard non-functional requirements such as responsiveness) may be

substandard. The emphasis on using metrics feed to the development team to support quality

resonates with the general themes of this thesis. However, it is important to note the general

description of the collected metrics do not generally favor understanding how a user is

interacting with an application, but tend to focus on general responsiveness on page loads,

database inserts, etc. This emphasis may be seen, for example, in the types of tools presented in

the “Periodic Table of DevOps Tools” (XebiaLabs, 2017). As such, while DevOps is an

interesting additional source of encouragement to developers to utilize in-use data to guide

quality considerations, without careful additions or additional processing the general discussion

in DevOps about application monitoring suffers from many of the defects discussed in Chapter 3.

Future Research

In examining the Process Mining literature, a few areas for future research are evident.

One such area, as noted in the Process Mining Manifesto (van der Aalst et al., 2012), is the

continued refinement of the algorithms used to discover the processes. Process Conformance

algorithms, especially in terms of quantified differences, are also a noted area for continued

research. While the discovery of processes from PAIS systems has enjoyed success, the

application of Process Mining to non-PAIS systems is a continued area of research (Günther &

van der Aalst, 2007).

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 128

Several articles noted the need to refine data prior to applying Process Mining techniques.

For example, Günther et al. (2008) noted the need to filter and map low-level events from

medical devices. Rubin et al. (2007) also required pre-processing of event data in order to derive

user-behavior from the logged application data. Khodabandelou et al. (2014) reduced the data set

size in order to focus on specific events relevant to source code configuration management. In

van der Aalst (2011a), a basic “L*” lifecycle was proposed for event analysis. A part of this

lifecycle concerned data gathering and cleaning. The book also noted the general approach of

“extract, transform, and load” (p. 97) as a necessary step in order to generate acceptable input for

the mining. These proposals, however, are very high-level and simple in their definition. The

bulk of the Process Mining literature has concerned itself with the techniques necessary to

discover, monitor, or improve processes. As a result, the literature has not presented a well-

defined approach to the complete process for data transformation.

The range of needed transformations is potentially large. In addition, in order to allow

Process Mining to be a defined and repeatable methodology, the extraction, transformation, and

mining steps must be fully defined. The example study examined in Chapter 4 demonstrated a

small subset of issues associated with a centralized event logging service. Chapter 3 noted the

potential mapping issues associated with cases and activities. Several authors in the literature, as

noted elsewhere, have briefly described extraction and transformation steps, but generally have

not located these steps within a repeatable process.

As noted in Chapter 2, a few authors (e.g., Hill & Jones, 1999; Schimm, 2002) have

attempted to situate Process Mining in the Knowledge Discovery in Databases (KDD) field. The

KDD literature(e.g., Fayyad et al., 1996) appears to have a more refined understanding of the

issues associated with transforming data into knowledge. Like Process Mining, the goal of KDD

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 129

is to discover patterns (processes) that reflect domain specific knowledge (Fayyad et al., 1996, p.

41). The KDD literature, however, has typically presented a more robust approach to the full

process for data collection, extraction, transformation, and mining. Consequently, further

research into merging these intellectual traditions is likely useful.

Other Considerations

There are a number of limitations in this study. Chief among these are its limitation to a

single, quasi-case study. While the investigation into an instrumented software application and

the resultant ability to glean information relevant to software quality was fruitful, further

research into whether the application of Process Mining in an easily repeatable fashion is clearly

needed. Bolt, de Leoni, and van der Aalst (2016) applied Process Mining techniques to online

collegiate coursework in a way that provided weekly data summaries for both mined data and

process conformance. However, this study is almost unique so far for its easy repeatability.

The Bolt et al. (2016) study is also interesting in that it pursued new types of data

visualization, using novel charting rather than the Petri Net or other static model output as

mentioned above. Other authors (e.g., de Leoni, Suriadi, Hofstede, & van der Aalst, 2016) have

begun to examine animating the discovered processes in order to produce additional insights.

One limitation of Process Mining may be found in the relatively limited ways in which the

discovered models are represented, and further research into more effective presentations and

visualizations would likely assist Process Mining in general. Such improvements might be

especially beneficial to applying Process Mining to instrumented software applications as the

very nature of the ad-hoc processes lend themselves to more “spaghetti-like” discovered

processes. Thus, another limitation of this work is in its very traditional presentation of the

discovered processes in the quasi-case study. This visualization limitation, combined with the

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 130

difficulty in cleaning and mining the data, likely contributed to the lack of a broad adoption of

Process Mining by the team.

If consistent repeatability and a better visualization output mechanism were discovered, it

might be easier for teams to incorporate Process Mining into their SDLC. While it has been

argued that it should be possible and desirable to incorporate the discovered, in-use processes

exhibited by users into an SDLC in order to verify and improve software quality, this thesis did

not provide support for the long-term actual inclusion of such techniques. Studies that did

directly examine Process Mining and software interaction, such as van Genuchten et al. (2014)

and Rubin, Mitsyuk, et al. (2014), also had a single iteration of gleaned information. Thus, while

an Agile SDLC that emphasis “early feedback from the user” (Rubin, Lomazova, et al., 2014, p.

71) would seem appropriate for incorporating Process Mining discoveries, to date the literature

has not documented on-going efforts by teams to routinely integrate Process Mining into their

processes. Further examination of the barriers to such integration would likely be useful.

This thesis also focused on stand-alone applications, and some of the issues with creating

a secure Process Mining Service. It may be the case for stand-alone applications that the data

collection will be limited to development teams or confined to a single organization, as wide-

scale deployment could prove problematic. While the general statements about the requirements

for instrumenting an application are applicable to web-based deployments as well, the specifics

of such applications were not directly considered. One benefit of web-based applications is the

likely increase in the ability to securely collect data, tough potentially coupled with the difficulty

in clearly delimiting the start and end points of a user traversal (see also Rubin, Mitsyuk, et al.,

2014). Kwan Hee et al. (2015) applied Process Mining techniques to analyze a university

website, but the study could not definitively link visits to a user, and had to assume that visits on

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 131

different days had particular implications of user behavior (i.e., additional information

acquisition which was therefore an implication about how the website was organized).

Nonetheless, with the continued rise of Software as a Service (SaaS) applications, additional

work on how to expand the initial recommendations detailed herein may prove useful for web-

based applications as well.

Finally, it should be noted that the examined Process Mining literature was drawn from

academic sources, and looked specifically at the specialized technique of “Process Mining.” If

non-academic industry utilizes Process Mining techniques and publishes results other than in the

academic databases, such knowledge was not utilized. In addition, if the terminology of industry

were different from the academic approaches, such articles would not have been located.

However, if such articles exist, it is important to note that the references of the academic Process

Mining literature are also not providing pointers to them.

Overall, Process Mining can be applied to understanding the behavior of a user when

interacting with a software application. It is, however, “an advanced technique” (Rubin, Mitsyuk,

et al., 2014, p. 7) for understanding such behavior, and standard applications must be

instrumented to emit the requisite event logs in order to support Process Mining. However, in

contrast with simply understanding the process that a user undertakes within an application,

integrating these discoveries within an Agile-based software development lifecycle has the

strong potential to feed continual software quality improvements by documenting potentially

deficient areas in an application or by comparing user behavior (and associated information such

as timing/effort) between software releases. The ability of Process Mining to provide insight at

various levels of analysis — from a single user to groups to a whole community — and to allow

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 132

for comparing various discovered models is a potential advancement in the field of software

engineering.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 133

References

Accorsi, R., & Stocker, T. (2012). On the exploitation of process mining for security

audits: The conformance checking case. Proceedings of the 27th Annual ACM Symposium on

Applied Computing. Trento, Italy (pp. 1709-1716). doi: 10.1145/2245276.2232051

Accorsi, R., Stocker, T., & Müller, G. (2013). On the exploitation of process mining for

security audits: The process discovery case. Proceedings of the 28th Annual ACM Symposium on

Applied Computing. Coimbra, Portugal (pp. 1462-1468). doi: 10.1145/2480362.2480634

Adzic, G., & Evans, D. (2014). Fifty quick ideas to improve your user stories (Kindle

ed.). London: Neuri Consulting, LLP.

Agrawal, R., Gunopulos, D., & Leymann, F. (1998). Mining process models from

workflow logs. Proceedings of the 6th International Conference on Extending Database

Technology: Advances in Database Technology. Valencia, Spain (pp. 469-483).

Ali, A. (2012). A framework for using cost-benefit analysis in making the case for

software upgrade. Issues in Informing Science & Information Technology, 9, 399-409.

Alves de Medeiros, A.K., van der Aalst, W.M.P., & Weijters, A.J.M.M. (2008).

Quantifying process equivalence based on observed behavior. Data & Knowledge Engineering,

64(1), 55-74. doi: http://dx.doi.org/10.1016/j.datak.2007.06.010

Alves de Medeiros, A.K., Weijters, A.J.M.M., & Van der Aalst, W.M.P. (2006). Genetic

process mining: A basic approach and its challenges. Paper presented at the Business Process

Management Workshops.

Alves de Medeiros, A.K., Weijters, A.J.M.M., & van der Aalst, W.M.P. (2007). Genetic

process mining: An experimental evaluation. Data Mining and Knowledge Discovery, 14(2),

245-304.

http://dx.doi.org/10.1016/j.datak.2007.06.010

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 134

Ambler, S.W. (2012a). Active stakeholder participation: An agile best practice.

Retrieved from http://agilemodeling.com/essays/activeStakeholderParticipation.htm

Ambler, S.W. (2012b). Introduction to user stories. Retrieved March 3, 2014, from

http://www.agilemodeling.com/artifacts/userStory.htm

Amiryar, H. (2012). Agile scrum roles and responsibilities. Retrieved from

http://www.pmdocuments.com/2012/09/15/agile-scrum-roles-and-responsibilities/

Apel, S., & Kästner, C. (2009). An overview of feature-oriented software development.

Journal of Object Technology, 8(5 (July/August)), 49-84.

Appel, S., Kleber, P., Frischbier, S., Freudenreich, T., & Buchmann, A. (2014). Modeling

and execution of event stream processing in business processes. Information Systems, 46(0), 140-

156. doi: http://dx.doi.org/10.1016/j.is.2014.04.002

Bae, J.-S., Jeong, S.-C., Seo, Y., Kim, Y., & Kang, S. (1999). Integration of workflow

management and simulation. Computers & Industrial Engineering, 37(1–2), 203-206. doi:

http://dx.doi.org/10.1016/S0360-8352(99)00055-8

Baier, T., Mendling, J., & Weske, M. (2014). Bridging abstraction layers in process

mining. Information Systems, 46, 123-139. doi: 10.1016/j.is.2014.04.004

Basili, V.R. (1989, 20-22 Sep 1989). Software development: A paradigm for the future.

Paper presented at the Computer Software and Applications Conference, 1989. COMPSAC 89.,

Proceedings of the 13th Annual International.

Bates, P. (1988). Debugging heterogeneous distributed systems using event-based models

of behavior. Proceedings of the 1988 ACM SIGPLAN and SIGOPS workshop on parallel and

distributed debugging. Madison, Wisconsin, USA (pp. 11-22). doi: 10.1145/68210.69217

http://agilemodeling.com/essays/activeStakeholderParticipation.htm
http://www.agilemodeling.com/artifacts/userStory.htm
http://www.pmdocuments.com/2012/09/15/agile-scrum-roles-and-responsibilities/
http://dx.doi.org/10.1016/j.is.2014.04.002
http://dx.doi.org/10.1016/S0360-8352(99)00055-8

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 135

Beaton, W. (2011). Bye bye mon UDC. Retrieved February 16, 2015, from

https://waynebeaton.wordpress.com/2011/09/16/bye-bye-mon-udc/

Benner-Wickner, M., Book, M., Bruckmann, T., & Gruhn, V. (2014, 1-2 Sept. 2014).

Examining case management demand using event log complexity metrics. Paper presented at the

Enterprise Distributed Object Computing Conference Workshops and Demonstrations

(EDOCW), 2014 IEEE 18th International.

Bezerra, F., & Wainer, J. (2008). Anomaly detection algorithms in logs of process aware

systems. Proceedings of the 2008 ACM symposium on Applied computing. Fortaleza, Ceara,

Brazil (pp. 951-952). doi: 10.1145/1363686.1363904

Bloch, H. (2013). Use simplified lifecycle-cost computations to justify upgrades.

Chemical Engineering, 120(1), 53-56.

Boehm, B.W. (1978). Characteristics of software quality. New York: American Elsevier.

Boehm, B.W. (1986). A spiral model of software development and enhancement.

SIGSOFT Softw. Eng. Notes, 11(4), 14-24. doi: 10.1145/12944.12948

Boehm, B.W. (1989). Software risk management. Washington, D.C.: IEEE Computer

Society Press.

Boehm, B.W., & Turner, R. (2004). Balancing agility and discipline: A guide for the

perplexed. Crawsfordsville, Indiana: Addison-Wesley.

Bolt, A., de Leoni, M., & van der Aalst, W.M.P. (2016). Scientific workflows for process

mining: Building blocks, scenarios, and implementation. International Journal on Software

Tools for Technology Transfer, 18(6), 607-628. doi: 10.1007/s10009-015-0399-5

https://waynebeaton.wordpress.com/2011/09/16/bye-bye-mon-udc/

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 136

Borrego, D., & Barba, I. (2014). Conformance checking and diagnosis for declarative

business process models in data-aware scenarios. Expert Systems with Applications, 41(11),

5340-5352. doi: 10.1016/j.eswa.2014.03.010

Bose, R.P.J.C., Mans, R.S., & van der Aalst, W.M.P. (2013, 16-19 April 2013). Wanna

improve process mining results? Paper presented at the Computational Intelligence and Data

Mining (CIDM), 2013 IEEE Symposium on.

Bratosin, C., Sidorova, N., & van der Aalst, W.M.P. (2010, 18-23 July 2010). Distributed

genetic process mining. Paper presented at the Evolutionary Computation (CEC), 2010 IEEE

Congress on.

Bright, P. (2015). Windows 10's privacy policy is the new normal. Retrieved August 8,

2015, from http://arstechnica.com/information-technology/2015/08/windows-10s-privacy-policy-

is-the-new-normal/

Brooks, F.P. (1995). The mythical man-month : Essays on software engineering

(Anniversary, Kindle ed.). Reading, Mass.: Addison-Wesley Pub. Co.

Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., . . . Zazworka, N.

(2010). Managing technical debt in software-reliant systems. Paper presented at the Proceedings

of the FSE/SDP workshop on Future of software engineering research, Santa Fe, New Mexico,

USA.

Buffett, S., & Geng, L. (2010). Using classification methods to label tasks in process

mining. Journal of Software Maintenance & Evolution: Research & Practice, 22(6/7), 497-517.

doi: 10.1002/smr.463

http://arstechnica.com/information-technology/2015/08/windows-10s-privacy-policy-is-the-new-normal/
http://arstechnica.com/information-technology/2015/08/windows-10s-privacy-policy-is-the-new-normal/

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 137

Bui, D.B., Hadzic, F., & Hecker, M. (2012). Application of tree-structured data mining

for analysis of process logs in xml format. Proceedings of the Tenth Australasian Data Mining

Conference - Volume 134. Sydney, Australia (pp. 109-118).

Buse, R.P.L., & Zimmermann, T. (2012, 2-9 June 2012). Information needs for software

development analytics. Paper presented at the Software Engineering (ICSE), 2012 34th

International Conference on.

Calvanese, D., Giacomo, G.D., & Montali, M. (2013). Foundations of data-aware process

analysis: A database theory perspective. Proceedings of the 32nd symposium on Principles of

database systems. New York, New York, USA (pp. 1-12). doi: 10.1145/2463664.2467796

Caron, F., Vanthienen, J., & Baesens, B. (2013). Comprehensive rule-based compliance

checking and risk management with process mining. Decision Support Systems, 54(3), 1357-

1369. doi: http://dx.doi.org/10.1016/j.dss.2012.12.012

Cavano, J.P., & McCall, J.A. (1978). A framework for the measurement of software

quality. Paper presented at the ACM SIGMETRICS Performance Evaluation Review.

Chartered Quality Institute. (2013). Evolution of quality thinking, post c1970. Retrieved

June 2, 2013, from http://www.thecqi.org/Knowledge-Hub/Knowledge-portal/Concepts-of-

quality/Evolution-of-quality-thinking/

Christopher, F. (2003). Software verification and validation within the (rational) unified

process.

Chu-Carroll, M. (2016). Time in distributed systems: Lamport timestamps. Retrieved

March 18, 2016, from http://www.goodmath.org/blog/2016/03/16/time-in-distributed-systems-

lamport-timestamps/

http://dx.doi.org/10.1016/j.dss.2012.12.012
http://www.thecqi.org/Knowledge-Hub/Knowledge-portal/Concepts-of-quality/Evolution-of-quality-thinking/
http://www.thecqi.org/Knowledge-Hub/Knowledge-portal/Concepts-of-quality/Evolution-of-quality-thinking/
http://www.goodmath.org/blog/2016/03/16/time-in-distributed-systems-lamport-timestamps/
http://www.goodmath.org/blog/2016/03/16/time-in-distributed-systems-lamport-timestamps/

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 138

Claes, J., & Poels, G. (2014). Merging event logs for process mining: A rule based

merging method and rule suggestion algorithm. Expert Systems with Applications, 41(16), 7291-

7306. doi: 10.1016/j.eswa.2014.06.012

Classen, A., Heymans, P., & Schobbens, P.-Y. (2008). What’s in a feature: A

requirements engineering perspective. Paper presented at the Fundamental Approaches to

Software Engineering, Budapest, Hungary.

Cleland-Huang, J., & Mobasher, B. (2008). Using data mining and recommender systems

to scale up the requirements process. Proceedings of the 2nd international workshop on Ultra-

large-scale software-intensive systems. Leipzig, Germany (pp. 3-6). doi:

10.1145/1370700.1370702

Cohn, M. (2004). User stories applied : For agile software development. Boston:

Addison-Wesley.

Cook, J.E., Du, Z., Liu, C., & Wolf, A.L. (2004). Discovering models of behavior for

concurrent workflows. Computers in Industry, 53(3), 297-319. doi:

http://dx.doi.org/10.1016/j.compind.2003.10.005

Cook, J.E., & Wolf, A.L. (1994, 10-11 Oct). Toward metrics for process validation.

Paper presented at the Third International Conference on the Software Process.

Cook, J.E., & Wolf, A.L. (1998a). Discovering models of software processes from event-

based data. ACM Transactions on Software Engineering and Methodology, 7(3), 215-249. doi:

10.1145/287000.287001

Cook, J.E., & Wolf, A.L. (1998b). Event-based detection of concurrency. Paper presented

at the Sixth International Symposium on the Foundations of Software Engineering, Lake Buena

Vista, FL, USA.

http://dx.doi.org/10.1016/j.compind.2003.10.005

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 139

Cooper, A., Reimann, R., & Cronin, D. (2007). About face 3 : The essentials of

interaction design (3rd, Kindle ed.). Indianapolis, IN: Wiley Pub.

Crispin, L., & Gregory, J. (2009). Agile testing : A practical guide for testers and agile

teams. Upper Saddle River, NJ: Addison-Wesley.

Datta, A. (1998). Automating the discovery of as-is business process models:

Probabilistic and algorithmic approaches. Information Systems Research, 9(3), 275-301.

de Leoni, M., Suriadi, S., Hofstede, A., & van der Aalst, W.M.P. (2016). Turning event

logs into process movies: Animating what has really happened. Software & Systems Modeling,

15(3), 707-732. doi: 10.1007/s10270-014-0432-2

de Leoni, M., van der Aalst, W.M.P., & Dees, M. (2016). A general process mining

framework for correlating, predicting and clustering dynamic behavior based on event logs.

Information Systems, 56, 235-257. doi: 10.1016/j.is.2015.07.003

Debra. (2014). 5 annoying pivot table problems. Retrieved November 11, 2017, from

http://www.pivot-table.com/2014/09/03/5-annoying-pivot-table-problems/

Denning, P.J. (2016). Software quality. Communications of the ACM, 59(9), 23-25. doi:

10.1145/2971327

Diamantini, C., Potena, D., & Storti, E. (2012). Mining usage patterns from a repository

of scientific workflows. Proceedings of the 27th Annual ACM Symposium on Applied

Computing. Trento, Italy (pp. 152-157). doi: 10.1145/2245276.2245307

Duan, C., Cleland-Huang, J., & Mobasher, B. (2008). A consensus based approach to

constrained clustering of software requirements. Proceedings of the 17th ACM conference on

Information and knowledge management. Napa Valley, California, USA (pp. 1073-1082). doi:

10.1145/1458082.1458225

http://www.pivot-table.com/2014/09/03/5-annoying-pivot-table-problems/

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 140

Dustdar, S., Hoffmann, T., & van der Aalst, W.M.P. (2005). Mining of ad-hoc business

processes with TeamLog. Data & Knowledge Engineering, 55(2), 129-158. doi:

10.1016/j.datak.2005.02.002

Evermann, J., & Assadipour, G. (2014). Big data meets process mining: Implementing

the alpha algorithm with map-reduce. Proceedings of the 29th Annual ACM Symposium on

Applied Computing. Gyeongju, Republic of Korea (pp. 1414-1416). doi:

10.1145/2554850.2555076

Fahland, D., & van der Aalst, W.M.P. (2013). Simplifying discovered process models in

a controlled manner. Information Systems, 38(4), 585-605. doi: 10.1016/j.is.2012.07.004

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge

discovery in databases. AI magazine, 17(3), 37-54.

Ferre, X., Juristo, N., & Moreno, A.M. (2004). Improving software engineering practice

with HCI aspects Software engineering research and applications (pp. 349-363): Springer.

Floudas, C.A., Pardalos, P.M., Adjiman, C., Esposito, W.R., Gümüs, Z.H., Harding, S.T.,

. . . Schweiger, C.A. (2013). Handbook of test problems in local and global optimization (Vol.

33): Springer Science & Business Media.

Folino, F., Greco, G., Guzzo, A., & Pontieri, L. (2009). Discovering expressive process

models from noised log data. Proceedings of the 2009 International Database Engineering &

Applications Symposium. Cetraro - Calabria, Italy (pp. 162-172). doi: 10.1145/1620432.1620449

Fowler, M., & Highsmith, J. (2001). The agile manifesto. Retrieved August 31, 2013,

from http://andrey.hristov.com/fht-stuttgart/The_Agile_Manifesto_SDMagazine.pdf

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns : Elements of

reusable object-oriented software. Reading, Mass.: Addison-Wesley.

http://andrey.hristov.com/fht-stuttgart/The_Agile_Manifesto_SDMagazine.pdf

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 141

Gerring, J. (2004). What is a case study and what is it good for? American Political

Science Review, 98(02), 341-354.

Giuseppe, C., Valerio, M., Teresa, M., & Carmela, S.L. (2014). A simulation approach in

process mining conformance analysis. The introduction of a brand new BPMN element. IERI

Procedia, 6(0), 45-51. doi: http://dx.doi.org/10.1016/j.ieri.2014.03.008

Glass, R.L. (2003). Facts and fallacies of software engineering. Boston, MA: Addison-

Wesley.

Goedertier, S., De Weerdt, J., Martens, D., Vanthienen, J., & Baesens, B. (2011). Process

discovery in event logs: An application in the telecom industry. Applied Soft Computing, 11(2),

1697-1710. doi: http://dx.doi.org/10.1016/j.asoc.2010.04.025

Günther, C.W., Rozinat, A., van der Aalst, W.M.P., & van Uden, K. (2008). Monitoring

deployed application usage with process mining. BPM Center Report BPM-08-11, 1-8.

Günther, C.W., & van der Aalst, W.M.P. (2007). Fuzzy mining–adaptive process

simplification based on multi-perspective metrics Business process management (pp. 328-343):

Springer.

Günther, C.W., & Verbeek, E. (2014). Openxes: Developer guide. Retrieved March 3,

2015, from http://www.xes-standard.org/_media/openxes/openxesdeveloperguide-2.0.pdf

Gupta, M. (2014). Nirikshan: Process mining software repositories to identify

inefficiencies, imperfections, and enhance existing process capabilities. Companion Proceedings

of the 36th International Conference on Software Engineering. Hyderabad, India (pp. 658-661).

doi: 10.1145/2591062.2591080

http://dx.doi.org/10.1016/j.ieri.2014.03.008
http://dx.doi.org/10.1016/j.asoc.2010.04.025
http://www.xes-standard.org/_media/openxes/openxesdeveloperguide-2.0.pdf

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 142

Gupta, M., & Sureka, A. (2014). Nirikshan: Mining bug report history for discovering

process maps, inefficiencies and inconsistencies. Proceedings of the 7th India Software

Engineering Conference. Chennai, India (pp. 1-10). doi: 10.1145/2590748.2590749

Gupta, M., Sureka, A., & Padmanabhuni, S. (2014). Process mining multiple repositories

for software defect resolution from control and organizational perspective. Proceedings of the

11th Working Conference on Mining Software Repositories. Hyderabad, India (pp. 122-131).

doi: 10.1145/2597073.2597081

Hammori, M., Herbst, J., & Kleiner, N. (2006). Interactive workflow mining—

requirements, concepts and implementation. Data & Knowledge Engineering, 56(1), 41-63. doi:

10.1016/j.datak.2005.02.006

Hathaway, T., & Hathaway, A. (2013). Writing effective user stories (Kindle ed.): BA-

Experts.

Henry, J., Henry, S., Kafura, D., & Matheson, L. (1994). Improving software

maintenance at Martin Marietta. IEEE Software, 11, 67-75.

Herbst, J. (2000a). Dealing with concurrency in workflow induction. Paper presented at

the European Concurrent Engineering Conference. SCS Europe.

Herbst, J. (2000b). A machine learning approach to workflow management Machine

learning: Ecml 2000 (pp. 183-194): Springer.

Herbst, J., & Karagiannis, D. (1998). Integrating machine learning and workflow

management to support acquisition and adaptation of workflow models. Paper presented at the

Ninth International Workshop on Database and Expert Systems Applications, 1998.

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 143

Hill, A.E., & Jones, W.T. (1999, April 15-18). Retrospective case base browsing: A data

mining process enhancement. Proceedings of the 37th annual Southeast regional conference

(CD-ROM). Mobile, AL (pp. 49-53). doi: 10.1145/306363.306425

Huang, S.-K., & Liu, K.-m. (2005). Mining version histories to verify the learning

process of legitimate peripheral participants. SIGSOFT Softw. Eng. Notes, 30(4), 1-5. doi:

10.1145/1082983.1083158

Huo, M., Zhang, H., & Jeffery, R. (2006). An exploratory study of process enactment as

input to software process improvement. Proceedings of the 2006 International Workshop on

Software Quality. Shanghai, China (pp. 39-44). doi: 10.1145/1137702.1137711

IEEE. (2008). IEEE standard for software and system test documentation. IEEE Std 829-

2008, 1-150. doi: 10.1109/IEEESTD.2008.4578383

ISO/IEC/IEEE. (2010). Systems and software engineering -- vocabulary (ISO/IEC/IEEE

24765:2010(e)). Geneva/New York: ISO/IEEE.

Jans, M., Alles, M., & Vasarhelyi, M. (2013). The case for process mining in auditing:

Sources of value added and areas of application. International Journal of Accounting

Information Systems, 14(1), 1-20. doi: http://dx.doi.org/10.1016/j.accinf.2012.06.015

Jans, M., Lybaert, N., & Vanhoof, K. (2010). Internal fraud risk reduction: Results of a

data mining case study. International Journal of Accounting Information Systems, 11(1), 17-41.

doi: http://dx.doi.org/10.1016/j.accinf.2009.12.004

Kaymak, U., Mans, R., van de Steeg, T., & Dierks, M. (2012, 14-17 Oct. 2012). On

process mining in health care. Paper presented at the Systems, Man, and Cybernetics (SMC),

2012 IEEE International Conference on.

http://dx.doi.org/10.1016/j.accinf.2012.06.015
http://dx.doi.org/10.1016/j.accinf.2009.12.004

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 144

Khodabandelou, G., Hug, C., Deneckère, R., & Salinesi, C. (2014). Unsupervised

discovery of intentional process models from event logs. Proceedings of the 11th Working

Conference on Mining Software Repositories. Hyderabad, India (pp. 282-291). doi:

10.1145/2597073.2597101

Khodyrev, I., & Popova, S. (2014). Discrete modeling and simulation of business

processes using event logs. Procedia Computer Science, 29(0), 322-331. doi:

http://dx.doi.org/10.1016/j.procs.2014.05.029

Kim, G., Behr, K., & Spafford, G. (2013). The phoenix project: A novel about IT,

DevOps, and helping your business win. Portland, OR: IT Revolution Press.

Kovács, M., & Gönczy, L. (2008). Simulation and formal analysis of workflow models.

Electronic Notes in Theoretical Computer Science, 211(0), 221-230. doi:

http://dx.doi.org/10.1016/j.entcs.2008.04.044

Kwan Hee, H., Boram, H., & Jeonghwan, J. (2015). A navigation pattern analysis of

university department's websites using a processing mining approach. Innovations in Education

& Teaching International, 52(5), 485-498. doi: 10.1080/14703297.2013.832634

Kwanghoon, K. (2009, 22-25 Sept. 2009). Mining workflow processes from XML-based

distributed workflow event logs. Paper presented at the International Conference on Parallel

Processing Workshops, 2009.

LeBlanc, R.J., & Robbins, A.D. (1985). Event-driven monitoring of distributed

programs. Paper presented at the ICDCS.

Leemans, S.J., Fahland, D., & van der Aalst, W.M.P. (2014). Discovering block-

structured process models from event logs containing infrequent behaviour. Paper presented at

the Business Process Management Workshops.

http://dx.doi.org/10.1016/j.procs.2014.05.029
http://dx.doi.org/10.1016/j.entcs.2008.04.044

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 145

Locke, J. (1959). An essay concerning human understanding. New York,: Dover

Publications.

M. Valle, A., A.P. Santos, E., & R. Loures, E. (2017). Applying process mining

techniques in software process appraisals. Information & Software Technology, 87, 19-31. doi:

10.1016/j.infsof.2017.01.004

Ma, H.U.I., Tang, Y., & Wu, L. (2011). Incremental mining of processes with loops.

International Journal on Artificial Intelligence Tools, 20(1), 221-235.

Magnacca, M. (2009). So what? : How to communicate what really matters to your

audience. Upper Saddle River, N.J.: FT Press.

Mahoney, M.S. (2004). Finding a history for software engineering. Annals of the History

of Computing, IEEE, 26(1), 8-19. doi: 10.1109/MAHC.2004.1278847

Maruster, L., van der Aalst, W.M.P., Weijters, A.J.M.M., van den Bosch, A., &

Daelemans, W. (2001). Automated discovery of workflow models from hospital data. Paper

presented at the 13th Dutch-Belgian Artificial Intelligence Conference, De Rode Hoed,

Amsterdam, The Netherlands.

Maurer, F., & Melnik, G. (2006). Agile methods: Moving towards the mainstream of the

software industry. Paper presented at the Proceedings of the 28th international conference on

Software engineering, Shanghai, China.

Michiels, C., Snoeck, M., Lemahieu, W., Goethals, F., & Dedene, G. (2003). A layered

architecture sustaining model-driven and event-driven software development. Paper presented at

the Perspectives of System Informatics.

Mittal, M., & Sureka, A. (2014). Process mining software repositories from student

projects in an undergraduate software engineering course. Companion Proceedings of the 36th

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 146

International Conference on Software Engineering. Hyderabad, India (pp. 344-353). doi:

10.1145/2591062.2591152

Montani, S., Leonardi, G., Quaglini, S., Cavallini, A., & Micieli, G. (2014). Improving

structural medical process comparison by exploiting domain knowledge and mined information.

Artificial Intelligence in Medicine, 62(1), 33-45. doi: 10.1016/j.artmed.2014.07.001

mountaingoatsoftware.com. (n.d.). User stories. Retrieved February 12, 2015, from

https://www.mountaingoatsoftware.com/agile/user-stories

Mueller, E. (2017). What is DevOps? Retrieved November 1, 2017, from

https://theagileadmin.com/what-is-devops/

Norman, D.A. (2002). The design of everyday things (1st Basic paperback. ed.). New

York: Basic Books.

Olson, K.H., Friendman-Hill, E.J., Hoffman, E.L., Gibson, M.J., Greenfield, J.A., &

Clay, R.L. (2015). Process mining and agile methods in the Sandia Analysis Workbench. Paper

presented at the National Laboratories Information Technology Summit, Seattle, WA.

https://www.fbcinc.com/e/nlit/presentations/Monday/OlsonKevin-NLIT2015.pdf

Patton, J. (2014). User story mapping (Kindle ed.). Sebastopol, CA: O'Reilly.

Paula, M. (2009). Inception of software validation and verification practices within

CMMI level 2. In J. M. Ricardo & K. Rick (Eds.), International conference on software

engineering advances (pp. 536-541).

Pérez-Castillo, R., Weber, B., de Guzmán, I.G.-R., & Piattini, M. (2011). Process mining

through dynamic analysis for modernising legacy systems. IET Software, 5(3), 304-319. doi:

10.1049/iet-sen.2010.0103

https://www.mountaingoatsoftware.com/agile/user-stories
https://theagileadmin.com/what-is-devops/
https://www.fbcinc.com/e/nlit/presentations/Monday/OlsonKevin-NLIT2015.pdf

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 147

Perimal-Lewis, L., Vries, D.D., & Thompson, C.H. (2014). Health intelligence:

Discovering the process model using process mining by constructing start-to-end patient

journeys. Proceedings of the Seventh Australasian Workshop on Health Informatics and

Knowledge Management - Volume 153. Auckland, New Zealand (pp. 59-67).

Pfleeger, S.L. (1998). Software engineering : Theory and practice. Upper Saddle River,

NJ: Prentice Hall.

Pinter, S.S., & Golani, M. (2004). Discovering workflow models from activities’

lifespans. Computers in Industry, 53(3), 283-296. doi:

http://dx.doi.org/10.1016/j.compind.2003.10.004

Pogue, D. (2015). The upgrade game. Scientific American, 312(6), 29-29.

Pool, M. (2008). The easy way to writing good user stories. Retrieved from

http://codesqueeze.com/the-easy-way-to-writing-good-user-stories/

Raymond, E.S. (2008). The cathedral and the bazaar: Musings on linux and open source

by an accidental revolutionary (Kindle ed.). Sebastopol, CA: O'Reilly Media.

Rozinat, A., Mans, R.S., Song, M., & van der Aalst, W.M.P. (2009). Discovering

simulation models. Information Systems, 34(3), 305-327. doi: 10.1016/j.is.2008.09.002

Rozinat, A., & van der Aalst, W.M.P. (2008). Conformance checking of processes based

on monitoring real behavior. Information Systems, 33(1), 64-95. doi: 10.1016/j.is.2007.07.001

Rozinat, A., Wynn, M.T., van der Aalst, W.M.P., ter Hofstede, A.H.M., & Fidge, C.J.

(2009). Workflow simulation for operational decision support. Data & Knowledge Engineering,

68(9), 834-850. doi: http://dx.doi.org/10.1016/j.datak.2009.02.014

http://dx.doi.org/10.1016/j.compind.2003.10.004
http://codesqueeze.com/the-easy-way-to-writing-good-user-stories/
http://dx.doi.org/10.1016/j.datak.2009.02.014

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 148

Rubin, V.A., Günther, C.W., van der Aalst, W.M.P., Kindler, E., van Dongen, B.F., &

Schäfer, W. (2007). Process mining framework for software processes. In Q. Wang, D. Pfahl &

D. M. Raffo (Eds.), Software process dynamics and agility (pp. 169-181). Berlin: Springer.

Rubin, V.A., Lomazova, I., & van der Aalst, W.M.P. (2014). Agile development with

software process mining. Proceedings of the 2014 International Conference on Software and

System Process. Nanjing, China (pp. 70-74). doi: 10.1145/2600821.2600842

Rubin, V.A., Mitsyuk, A.A., Lomazova, I.A., & van der Aalst, W.M.P. (2014). Process

mining can be applied to software too! Proceedings of the 8th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement. Torino, Italy (pp. 1-8). doi:

10.1145/2652524.2652583

Sabhnani, M.R., Neill, D.B., & Moore, A.W. (2005). Detecting anomalous patterns in

pharmacy retail data. Data Mining Methods for Anomaly Detection, 58.

Sahin, I., & Zahedi, F. (2001). Control limit policies for warranty, maintenance and

upgrade of software systems. IIE Transactions, 33(9), 729.

Schimm, G. (2002). Process miner—a tool for mining process schemes from event-based

data Logics in artificial intelligence (pp. 525-528): Springer.

Schimm, G. (2004). Mining exact models of concurrent workflows. Computers in

Industry, 53(3), 265-281. doi: http://dx.doi.org/10.1016/j.compind.2003.10.003

Schwaber, K., & Beedle, M. (2002). Agile software development with scrum. Upper

Saddle River, NJ: Prentice Hall.

Shewhart, W.A. (1931). Economic control of quality of manufactured product. New

York: D. Van Nostrand Company.

http://dx.doi.org/10.1016/j.compind.2003.10.003

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 149

Siau, K., Nah, F.F.-H., & Teng, L. (2002). Acceptable internet use policy. Commun.

ACM, 45(1), 75-79. doi: 10.1145/502269.502302

Snoeck, M., Poelmans, S., & Dedene, G. (2000). A layered software specification

architecture Conceptual modeling—er 2000 (pp. 454-469): Springer.

Stanton, J.M., Stam, K.R., Mastrangelo, P., & Jolton, J. (2005). Analysis of end user

security behaviors. Computers & Security, 24(2), 124-133. doi:

http://dx.doi.org/10.1016/j.cose.2004.07.001

Summers, B. (2014). 50 tweetable quotes about ux. Retrieved from

http://www.dtelepathy.com/blog/inspiration/50-shareable-ux-quotes

Sun, C., Du, J., Chen, N., Khoo, S.-C., & Yang, Y. (2013). Mining explicit rules for

software process evaluation. Proceedings of the 2013 International Conference on Software and

System Process. San Francisco, CA, USA (pp. 118-125). doi: 10.1145/2486046.2486067

Sun, C., Zhang, H., Lou, J.-G., Zhang, H., Wang, Q., Zhang, D., & Khoo, S.-C. (2014).

Querying sequential software engineering data. Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering. Hong Kong, China (pp. 700-

710). doi: 10.1145/2635868.2635902

Tomas, B. (2003). A case study investigating the characteristics of verification and

validation activities in the software development process.

Turner, C.J., Tiwari, A., & Mehnen, J. (2008). A genetic programming approach to

business process mining. Proceedings of the 10th annual conference on Genetic and

evolutionary computation. Atlanta, GA, USA (pp. 1307-1314). doi: 10.1145/1389095.1389345

van der Aalst, W.M.P. (1998). The application of Petri nets to workflow management.

Journal of Circuits, Systems, and Computers, 8(01), 21-66.

http://dx.doi.org/10.1016/j.cose.2004.07.001
http://www.dtelepathy.com/blog/inspiration/50-shareable-ux-quotes

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 150

van der Aalst, W.M.P. (2005). Business alignment: Using process mining as a tool for

delta analysis and conformance testing. Requirements Engineering, 10(3), 198-211. doi:

10.1007/s00766-005-0001-x

van der Aalst, W.M.P. (2011a). Process mining : Discovery, conformance and

enhancement of business processes (Kindle ed.). New York: Springer.

van der Aalst, W.M.P. (2011b). Process mining manifesto: Toward real business

intelligence. Computing Now. Retrieved September 27, 2014, from

http://www.computer.org.dml.regis.edu/portal/web/computingnow/pmm#lm

van der Aalst, W.M.P. (2012a). Process mining: Making knowledge discovery process

centric. SIGKDD Explor. Newsl., 13(2), 45-49. doi: 10.1145/2207243.2207251

van der Aalst, W.M.P. (2012b). Process mining: Overview and opportunities. ACM

Trans. Manage. Inf. Syst., 3(2), 1-17. doi: 10.1145/2229156.2229157

van der Aalst, W.M.P. (2012c). What makes a good process model? Software & Systems

Modeling, 11(4), 557-569. doi: 10.1007/s10270-012-0265-9

van der Aalst, W.M.P., Adriansyah, A., Alves de Medeiros, A.K., Arcieri, F., Baier, T.,

Blickle, T., . . . Wynn, M. (2012). Process mining manifesto. In F. Daniel, K. Barkaoui & S.

Dustdar (Eds.), Business process management workshops (Vol. 99, pp. 169-194): Springer Berlin

Heidelberg.

van der Aalst, W.M.P., Reijers, H.A., & Song, M. (2005). Discovering social networks

from event logs. Computer Supported Cooperative Work: The Journal of Collaborative

Computing, 14(6), 549-593. doi: 10.1007/s10606-005-9005-9

http://www.computer.org.dml.regis.edu/portal/web/computingnow/pmm#lm

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 151

van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., Alves de

Medeiros, A.K., Song, M., & Verbeek, H.M.W. (2007). Business process mining: An industrial

application. Information Systems, 32(5), 713-732. doi: http://dx.doi.org/10.1016/j.is.2006.05.003

van der Aalst, W.M.P., & van Dongen, B.F. (2013). Discovering Petri nets from event

logs. In K. Jensen, W. P. van der Aalst, G. Balbo, M. Koutny & K. Wolf (Eds.), Transactions on

Petri nets and other models of concurrency vii (Vol. 7480, pp. 372-422): Springer Berlin

Heidelberg.

van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., &

Weijters, A.J.M.M. (2003). Workflow mining: A survey of issues and approaches. Data &

Knowledge Engineering, 47(2), 237-267. doi: http://dx.doi.org/10.1016/S0169-023X(03)00066-1

van der Aalst, W.M.P., & Weijters, A.J.M.M. (2004). Process mining: A research agenda.

Computers in Industry, 53(3), 231-244. doi: http://dx.doi.org/10.1016/j.compind.2003.10.001

van der Aalst, W.M.P., Weijters, A.J.M.M., & Maruster, L. (2002). Workflow mining:

Which processes can be rediscovered: Citeseer.

van der Aalst, W.M.P., Weijters, A.J.M.M., & Maruster, L. (2004). Workflow mining:

Discovering process models from event logs. IEEE Transactions on Knowledge and Data

Engineering, 16(9), 1128-1142. doi: 10.1109/TKDE.2004.47

van Dongen, B.F., & van der Aalst, W.M.P. (2005). A meta model for process mining

data. Paper presented at the EMOI-INTEROP, Porto, Portugal.

van Genuchten, M., Mans, R., Reijers, H., & Wismeijer, D. (2014). Is your upgrade

worth it? Process mining can tell. IEEE Software(September/October), 94-100.

van Solingen, R., Kusters, R.J., Trienekens, J.J.M., & van Uijtregt, A. (1999). Product-

focused software process improvement (p-spi): Concepts and their application. Quality and

http://dx.doi.org/10.1016/j.is.2006.05.003
http://dx.doi.org/10.1016/S0169-023X(03)00066-1
http://dx.doi.org/10.1016/j.compind.2003.10.001

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 152

Reliability Engineering International, 15(6), 475-483. doi: 10.1002/(SICI)1099-

1638(199911/12)15:6<475::AID-QRE296>3.0.CO;2-1

VersionOne. (n.d.). Feature estimation. Retrieved from

https://www.versionone.com/agile-101/agile-project-management-customer-management-best-

practices/agile-feature-estimation/

Vogelgesang, T., & Appelrath, H.-J. (2013). Multidimensional process mining: A flexible

analysis approach for health services research. Proceedings of the Joint EDBT/ICDT 2013

Workshops. Genoa, Italy (pp. 17-22). doi: 10.1145/2457317.2457321

Vogels, W. (2009). Eventually consistent. Communications of the ACM, 52(1), 40-44.

Wallace, D.R., & Fujii, R.U. (1989). Software verification and validation: An overview.

IEEE Software, 6(3), 10-17.

Weijters, A.J.M.M., & van der Aalst, W.M.P. (2001). Rediscovering workflow models

from event-based data. Paper presented at the Proceedings of the 11th Dutch-Belgian Conference

on Machine Learning (Benelearn 2001).

Weijters, A.J.M.M., & van der Aalst, W.M.P. (2003). Rediscovering workflow models

from event-based data using Little Thumb. Integrated Computer-Aided Engineering, 10(2), 151-

162.

Wen, L., Wang, J., van der Aalst, W.M.P., Huang, B., & Sun, J. (2010). Mining process

models with prime invisible tasks. Data & Knowledge Engineering, 69(10), 999-1021. doi:

http://dx.doi.org/10.1016/j.datak.2010.06.001

XebiaLabs. (2017). Periodic table of DevOps tools. Retrieved November 1, 2017, from

https://xebialabs.com/periodic-table-of-devops-tools/

https://www.versionone.com/agile-101/agile-project-management-customer-management-best-practices/agile-feature-estimation/
https://www.versionone.com/agile-101/agile-project-management-customer-management-best-practices/agile-feature-estimation/
http://dx.doi.org/10.1016/j.datak.2010.06.001
https://xebialabs.com/periodic-table-of-devops-tools/

PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS 153

Yue, D., Wu, X., Wang, H., & Bai, J. (2011, 13-15 May 2011). A review of process

mining algorithms. Paper presented at the Business Management and Electronic Information

(BMEI), 2011 International Conference on.

Zakia, R. (1995). Quotes for teachers. Retrieved from

http://scholarworks.rit.edu/cgi/viewcontent.cgi?article=1381&context=article

Zhang, D., Dang, Y., Lou, J.-G., Han, S., Zhang, H., & Xie, T. (2011). Software analytics

as a learning case in practice: Approaches and experiences. Paper presented at the Proceedings

of the International Workshop on Machine Learning Technologies in Software Engineering,

Lawrence, Kansas, USA.

Zhao, W., Liu, J., Ye, D., & Wei, J. (2013). Mining user daily behavior patterns from

access logs of massive software and websites. Proceedings of the 5th Asia-Pacific Symposium on

Internetware. Changsha, China (pp. 1-4). doi: 10.1145/2532443.2532462

Zimmermann, T., Weisgerber, P., Diehl, S., & Zeller, A. (2004). Mining version histories

to guide software changes. Proceedings of the 26th International Conference on Software

Engineering. (pp. 563-572).

Zou, Y., & Hung, M. (2006). An approach for extracting workflows from e-commerce

applications. Paper presented at the Program Comprehension, 2006. ICPC 2006. 14th IEEE

International Conference on.

http://scholarworks.rit.edu/cgi/viewcontent.cgi?article=1381&context=article

	Process Mining Concepts for Discovering User Behavioral Patterns in Instrumented Software
	Recommended Citation

	PROCESS MINING CONCEPTS FOR SOFTWARE APPLICATIONS

