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I. Introduction

Growing up as a Vietnamese-American, I constantly wondered why I looked so 

different from strangers at the park or at Safeway. I encountered people with light and 

dark skin; blonde, red, and black hair; and blue, green, hazel, and brown eyes. In contrast, 

everyone in my family had distinct Asian features – tan skin, dark brown hair, and small, 

brown eyes. Even within my immediate family, nobody looked exactly alike, and in my 

mind, this was beautiful and miraculous. I was told that all humans were created in God’s 

own image and likeness and this was supposedly the reason for our uniqueness. This 

answer never fully satisfied me, but I accepted it until the day I was first exposed to the 

complex study of genetics. 

I later learned that DNA is the essence of our existence; indeed, it is the substance 

in our cells that distinguishes one individual from another. Approximately 99.9% of the 

human genome is shared within the entire human population, and the other 0.1% 

accounts for the genetic variation that is observed amongst individuals (National Human 

Genome Research Institute, 2016). There are only four nucleotide bases that make up 

DNA – adenine, thymine, cytosine, and guanine – and yet various sequences result in 

billions of different and unique characteristics. Nucleotides resemble the English 

alphabet. Twenty-six letters can be organized into a myriad of different words and 

sentences, and in the same way, four nucleotides are pieced together as unique DNA 

sequences. Together, they make one book, or genome, that is encrypted with information 

specific to one person. Sequences can differ by a single nucleotide or in the number of 
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copies of a specific sequence. These variations are called DNA polymorphisms, or DNA 

markers. Upon learning this, I quickly developed a passion for human genetics and 

vowed that I would one day pursue a career in it. I wanted to have a better understanding 

behind the mechanisms underlying our diversity. 

 In a genetics laboratory course during my sophomore year at Regis University, I 

had the opportunity to study a specific polymorphism in my own DNA. I extracted DNA 

from my cheek cells and used a process called polymerase chain reaction (PCR) to 

amplify a specific sequence, called the Alu polymorphism, at the PV92 locus on 

chromosome 16. This polymorphism is a 315 base pair long insertion that does not 

encode any proteins (Mighell, Markham, & Robinson, 1997). There are more than a 

million copies of it scattered throughout the genome. Many of these copies are considered 

“fixed,” which means every person inherits a copy of the insertion at a specific locus. In 

contrast, at other loci, the Alu polymorphism is “non-fixed,” and we can inherit zero, one, 

or two copies of it from our parents. An individual can be homozygous for the sequence 

(+/+), homozygous for its absence (-/-), or a heterozygote (+/-), depending on his/her 

heritage. At the PV92 locus, the frequency of the allele varies in different human 

populations across the world. For example, in France, the frequency is only 27.50%, 

which is significantly lower than Japan’s frequency of 85.71% (Watkins et al., 2001).  

 In this laboratory activity, we were asked to predict our own genotype. We were 

given a blank world map, in which a small number of countries had been highlighted, and 

my classmates and I incorrectly assumed that the featured regions were the only areas 

where the Alu polymorphism was prevalent (Fig. 1). Based on this map, I predicted that I 
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would be heterozygous for Alu. I thought that I could have inherited one copy from my 

father’s side because my great-grandfather is half Chinese, and China was one of the 

marked countries. On the other hand, my mother’s family is only from Vietnam. Vietnam 

was not highlighted on the map, so I did not think I would have inherited the 

polymorphism from her side.   

 

 

Figure. 1. World map that was provided in “Using an Alu Polymorphism to Study 

Human Populations” (Dolan DNA Learning Center, 2006), in which only certain 

countries are highlighted. These regions do not necessarily have a high or low 

insertion frequency. Rather, the laboratory manual simply asked students to focus 

primarily on these areas.   



4 

 

I found that I was homozygous (+/+) for the insertion. Still under the impression 

that the map depicted Alu frequencies, this discovery surprised both me and my family. 

For so many years, my mother’s father, my grandfather, had told me that all of our 

ancestors originated from Vietnam, and he had always spoken with such assurance. The 

results of this simple genetic test suggested otherwise, and it made me seriously question 

my heritage. 

I revisited the Alu polymorphism laboratory a few years later, only to realize that I 

had made a mistake in my prediction and interpretation. Alu at PV92 actually has a 

frequency of 87.50% in Vietnamese populations, not zero. In addition, China’s allele 

frequency is 85.29% (Watkins et al., 2001). It was no wonder that I was homozygous for 

the insertion. This new discovery reaffirmed what I had always known about my family 

and my identity. Correcting the mistake did not significantly affect my life, but it was still 

a relief to know that my grandfather was not mistaken. A small misinterpretation gave me 

some emotional discomfort and had me living with the false impression that my mother’s 

family was partially Chinese for years.  

The full Alu polymorphism laboratory manual includes an “Informed Consent and 

Disclosure” page, but I do not remember ever seeing this page in my genetics laboratory. 

It states that students have the option to refrain from participating in the activity, and they 

should be willingly giving up their DNA samples, knowing that the results could reveal 

information about family relationships (Dolan DNA Learning Center, 2006). Had I 

known this, I could have chosen not to participate in the laboratory activity. I could have 

avoided the unexpected emotional discomfort I felt after seeing my results. In retrospect, 
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I probably would not have opted out of the activity because I loved extracting my own 

DNA and my discomfort was minor. Imagine, though, if we had been analyzing a region 

of my DNA that revealed something more significant, such as my likelihood of 

developing breast cancer. This bit of information would have surely given me severe 

emotional distress.  

My experience has shown me the importance of informed consent when involving 

humans in research. Donors should be aware of how their DNA is being used and the 

potential risks. As a future genetic researcher, it is critical that I keep this in mind. 

Researchers are not always clear about how they will use genetic samples in their studies, 

which creates distrust in the general public (McGuire & Beskow, 2010). Many people are 

not willing to participate in genetic research because they are afraid that their personal 

information will be inappropriately shared with peers, employers, health insurance 

companies, or health care providers, leading to genetic discrimination (Genetics Home 

Reference, 2017). However, if we are to make any progress, we need DNA samples to 

study. In turn, researchers may feel the need to commit DNA theft. They can steal 

abandoned genetic samples, such as strands of hair left at the salon, and potentially 

invade a person’s privacy rights (Joh, 2011). This then raises questions about DNA 

ownership and whether humans have rights to their genetic material and information.  

Humans are fortunate in that they have the ability to voice their opinions and fight 

for the rights that they think they deserve. However, animals do not have this same 

liberty. Non-human primates, in particular, are regularly used as models for studying 

human genes and diseases because they are our closest relatives (NIH, 2007). Unlike 
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humans, they are not psychologically affected by the availability of genetic information, 

and they are not worried that their personal information will fall into the wrong hands; 

however, that does not mean we are free to extract, analyze, or modify their DNA as we 

please. In addition to the few million base pairs that humans and non-human primates 

share, we also share a capacity to suffer. Our shared sentience requires that we reevaluate 

non-primates’ rights and avoid subjecting them to unnecessary suffering in genetic 

research.  

I became interested in human and non-human primates’ rights because of the 

research I had been conducting with Dr. Marie-dominique Franco and Dr. Amy Schreier. 

Since my junior year, I have been extracting DNA from and analyzing the genetic 

structure of two monkey species, mantled howler (Alouatta palliata) and white-faced 

capuchin (Cebus capucinus) monkeys, from La Suerte Biological Research Station 

(LSBRS) in Costa Rica. I worked with fecal samples that Dr. Franco and Dr. Schreier had 

collected during previous summers containing genetic material that was essentially stolen 

from the monkeys without their consent. During the summer of 2016, I traveled to Costa 

Rica to steal some more and then proceeded to extract information from the DNA once I 

returned to Regis University. I did not feel guilty doing either. I was not hurting the 

monkeys in any way. If anything, I was helping them by shedding light on how 

deforestation was negatively affecting their genetic diversity. 

Like so many other people, I previously held an anthropocentric perspective on 

the world, and I valued human life over the lives of animals. I used to think that all 

research involving animals was justified if it provided some sort of benefit to humans, 
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and animals’ rights were trivial compared to our own. I realize now, after working in the 

genetics laboratory, living with and developing such a strong connection to the monkeys 

at LSBRS, and writing my Honors Thesis, that humans and animals are so much more 

connected than I had initially realized. Both humans and animals have rights that must be 

respected when they are involved in any sort of research.    

In Chapter II, I will discuss human DNA ownership and argue that while humans 

do not have rights to their genetic material, they should have ownership over their genetic 

information. Everyone has a right to decide whether or not he/she wants to know what 

information is contained within his/her DNA and who has access to it. Genetic research 

can move forward only if we protect individuals’ rights. Then in Chapter III, I will 

discuss the ethical considerations of using non-human primates in genetic research. In 

addition to sharing over 90% of our DNA (NIH, 2007), non-human primates also share 

our capacity to suffer, and researchers should exercise the humane treatment principle 

when involving them in their studies. In Chapter IV, I will present my findings from the 

behavioral study I conducted in Costa Rica. I examined the effect of food availability on 

social structure and intraspecific interactions in the A. palliata population at LSBRS. I 

hypothesized that adult males and females would spend significantly more time with one 

another as opposed to with individuals of the same sex. This trend was observed amongst 

adult males, but there was no significant difference for females in the amount of time 

spent near individuals of the same or opposite sex. Finally, I will report my research on 

the genetic structure of A. palliata and C. capucinus at LSBRS. I rejected my first 

hypothesis that neither species would be in Hardy-Weinberg Equilibrium. Although both 
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species are inbred, my prediction that habitat fragmentation would more negatively affect 

C. capucinus compared to A. palliata is also rejected.  
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II. Human DNA ownership rights and the progression of 

genetic research

The completion of the Human Genome Project in 2003 led to rapid advancements 

in biotechnology, making it relatively quick, cheap, and easy to obtain and analyze 

genetic information (National Institutes of Health [NIH], 2016c). The Human Genome 

Project revealed the exact sequence of a person’s DNA, which was a major step towards 

uncovering the function of specific genes and identifying mutations associated with 

genetic diseases; however, there is still much to be learned. Researchers require a supply 

of DNA samples to study, but many people are unwilling to donate samples of their 

genetic material (Presidential Commission for the Study of Bioethical Issues, 2012). 

They are uncomfortable with the thought of someone having direct access to their 

personal genetic information. Yet, humans discard DNA samples, such as hair or saliva, 

daily. Researchers could potentially steal and analyze abandoned DNA, but is it ethical to 

do so? Do humans have ownership rights to their DNA?  

 In this chapter, I discuss human DNA ownership rights and the implications they 

have for human genetic research. I argue that while humans do not own their genetic 

material once it has been removed from their bodies, they do have ownership rights to 

their genetic information. DNA contains very personal data, and we should decide who 

has access to it. The high demand for genetic samples in research can be met if 

researchers vow to respect our DNA ownership rights and are more transparent about 

how they will use our DNA in studies.  
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 DNA is the essence of our existence. It is a string of four nucleotide bases – 

adenine, thymine, cytosine, and guanine – held together by a phosphate-sugar backbone 

and packed in the nuclei of our cells. These nucleotide bases can be arranged in an 

infinite number of ways. Just as the 26 letters of the alphabet are organized into words 

and sentences, nucleotides are pieced together to form genes. Together, they make one 

unique book, or genome, that is encrypted with information. Anyone can access a book in 

a library and gather information from it. Likewise, anyone can access another person’s 

genome by taking a few cell samples and extracting the personal information found 

inside. Genetic researchers are particularly interested in studying these books to better 

understand human nature, such as our evolutionary history, our genetic variability, and 

the mechanisms of genetic diseases.  

An entire genome is contained in the nucleus of each cell, and many people do not 

realize that they leave traces of their DNA everywhere they go. Strands of hair left behind 

at the salon or Starbucks coffee lids thrown in the trash have several copies of a person’s 

genome that he/she has left behind. These are rather convenient sources of DNA for 

researchers to inconspicuously take and analyze without concerning the “donor” (Joh, 

2011). This is called DNA theft, and though it is not so common today, there have been 

cases where researchers have profited from nonconsensual genetic sampling (Skloot, 

2010).  

Henrietta Lacks was an African-American woman who developed cervical cancer 

at the age of 31. She was diagnosed and treated by the doctors at John Hopkins Hospital 

in 1951. John Hopkins was known as a charity hospital and one of the only hospitals at 
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the time to treat African-Americans. Rebecca Skloot (2010), in her book The Immortal 

Life of Henrietta Lacks, describes: 

But first – though no one had told her that [the doctor] was collecting samples or 

asked if she wanted to be a donor – [he] picked up a sharp knife and shaved two 

dime-sized pieces of tissue from Henrietta’s cervix: one from her tumor, and one 

from the healthy cervical tissue (p. 33). 

This demonstrates how Lacks’ cells were essentially stolen from her body without her 

knowledge or consent. Dr. George Gey and his research team immediately discovered 

that Lacks’ cancerous cervix cells were immortal and could proliferate indefinitely with 

ample nutrients and space. Dr. Gey was the first to develop an immortal human cell line, 

which he called “HeLa” for the first two letters of the woman’s first and last name. Then, 

in the 1950s, Microbiological Associates, a biological supply company, was the first to 

commercialize HeLa cells and make a profit by selling them to other laboratories (Skloot, 

2010). Since then, many other biotechnology companies have cultivated HeLa cells and 

thrived off of them. The cell line is still currently used in research, and a single vial of 

HeLa cells costs over $400 (American Type Culture Collection [ATCC], 2017).    

The exploitation of HeLa cells begs the question of whether it was ethical for the 

doctors to have actively taken tissue samples from Lacks without her knowledge and then 

make a profit from it (Skloot, 2010). They committed DNA theft and invaded her genetic 

privacy (Joh, 2011), but Skloot (2010) suggests that they did not do so out of ill will. 

They only wanted to study human cancer cells, and during this time period, it was not 

uncommon to take cells and overlook informed consent (Skloot, 2010). Moreover, 
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Tupasela (2011) argues that human samples, when it is no longer part of the person, 

becomes human waste because it “has no use value for its holder” (p. 514). We have no 

use for saliva left on a coffee mug or excised tissue samples. Aside from the fact that they 

hold copies of our genome, these samples have no value to us. We also leave our DNA 

everywhere, so it is not practical to initiate laws that criminalize DNA theft (Skene, 

2005). Indeed, we do not have ownership rights over our genetic material after it has been 

removed from our bodies.  

It is natural to feel uneasy about this. The thought of researchers stealing our 

DNA nonconsensually is unsettling; however, Skene (2005) points out that our 

discomfort stems not from an attachment to the genetic material, but rather, the 

information contained in it. Our DNA contains very personal data. Genes dictate our 

physical traits, such as eye color, height, and skin tone, that can be directly observed, but 

they can also reveal our likelihood of developing a fatal disease, which is more hidden. I 

concede that we have ownership rights to our genetic information because it contains 

sensitive data. Researchers must obtain consent from the donor before extracting the 

information and sharing it with others (McGuire & Beskow, 2010).  

When we participate in genetic research, we have a right to decide whether we 

want to know the information contained in our DNA (Laurie, 1999; Andorno, 2004; Juth, 

2014). Researchers often feel obligated to disclose significant findings to the person who 

donated their DNA, especially if they discover that he/she has a life-threatening condition 

(Hallowell, Hall, Alberg, & Zimmern, 2015). This is a sensitive situation. Finding out 

that we are at risk for or have developed a genetic disease can harm us psychologically 
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and emotionally, by causing “unwanted changes in self-image, reduced autonomy, [or] 

feelings of anxiety or depression” (Juth, 2014, p. 38). For example, patients who 

discovered they carried mutations in the BRCA1 and/or BRCA2 genes experienced 

elevated emotional distress thinking about possible future cancer treatments and their 

relatives’ risks of developing cancer (Hamilton, Lobel, & Moyer, 2009). Some people 

prefer to remain in blissful ignorance and think genetic information is an unnecessary 

burden (Andorno, 2004; Herring & Foster, 2012). On the other hand, Takala (2001) 

dictates that we should know what is contained in our DNA because it can help us make 

more informed decisions about how we live. We can make simple lifestyle changes, such 

as changing our diets to avoid heart disease, but we can also be more drastic, like 

choosing not to have children so as not to pass on our condition and subject future 

generations to pain (Juth, 2014).  

With genetic research, there is also concern that researchers may inappropriately 

disclose personal genetic information to other parties, such as employers, health care 

providers, health insurance companies, etc., leading to genetic discrimination (Genetics 

Home Reference, 2017). The National Partnership for Women & Families (2004) reports 

several cases where individuals have been inexplicably fired from a job or denied health 

insurance after individuals shared the results of their genetic tests. For example, a young 

boy with Long QT Syndrome, a rare genetic disorder that causes fast, chaotic heartbeats, 

was denied coverage under his father’s health insurance because of his condition. In 

2008, the United States issued the Genetic Information Nondiscrimination Act (GINA) to 

protect individuals from genetic biases. GINA prohibits health insurance companies from 
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using genetic testing to deny or underwrite coverage, and it prevents employers from 

using it to hire or fire employees (NIH, 2016a). However, GINA does not apply to 

companies that have less than 15 employees or to members of the United States Military. 

According to the NIH (2016a), GINA sets a “floor of minimum protection” and state 

legislators are responsible for issuing additional laws to protect individuals. Most states 

have passed laws that then regulate access to and the disclosure of genetic information 

(Presidential Commission for the Study of Bioethical Issues, 2012). Unfortunately, 

despite all of these laws seeking to protect individuals’ DNA ownership rights, voluntary 

human involvement in genetic research is still low (Saulsberry & Terry, 2013).  

Perhaps people would be more willing to participate if researchers were more 

transparent with their goals and the purpose of their experiments. Donors like to know 

how their DNA is being used, and this information should be provided in the consent 

forms they sign beforehand (Skloot, 2010). However, researchers often use broad blanket 

statements in these forms to give them greater flexibility (McGuire & Beskow, 2010). 

For example, in 2004, the Havasupai Native American Tribe filed a lawsuit against 

researchers at Arizona State University for using Havasupai blood samples in projects 

that tribe members had not agreed to (National Congress of American Indians, n.d.). The 

original study was designed to look only at the prevalence of type II diabetes in this 

community, but the samples were also used in schizophrenia and inbreeding studies 

(Markow et al., 1993). Inbreeding, in particular, is a taboo subject amongst the Havasupai 

people. Upon hearing that their samples were improperly used, they grew distressed and 

took the case to court. The tribe received a $700,000 settlement in 2010, and Arizona 
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State University returned all of the Havasupai DNA samples they had collected (National 

Congress of American Indians, n.d.). This demonstrates how important it is that 

researchers are explicit about how they intend to use collected DNA samples. They 

should not violate participants’ trust. McGuire and Beskow (2010) wisely point out, 

though, that it is impossible to know upfront exactly how a sample will be used. Samples 

can be put aside and stored in biobanks for years. When researchers are finally ready for 

them, the original project that the donor agreed to participate in may have changed. It 

may be a hassle to contact the donor and inform him/her of experimental changes, but 

this step is crucial for maintaining trust between participants and researchers. Participants 

should also be comforted by the fact that by federal law, they can withdraw their consent 

to participate at any point, and researchers must stop using their samples (McGuire & 

Beskow, 2010).  

Although there are many potential risks that come with taking part in genetic 

research, this should not discourage people from doing so. Rather, I think it is important 

that we do opt to participate when given the option. By 2015, over 1,000 human genomes 

were sequenced and made publicly available as part of the 1,000 Genomes Project 

(International Genome Sample Resource, 2015a). Anyone seeking to better understand 

human genetic variation can access these genomes. Researchers have already used this 

data and identified new genetic markers linked to medical conditions, including celiac 

disease, prostate cancer, glioma, type II diabetes, breast cancer, and diabetes (Zheng-

Bradley & Flicek, 2016). This is thanks to the many people who have donated their DNA 

samples for genetic research. New data are currently being added to the public database 
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by the International Genome Sample Resource (IGSR) (International Sample Resource, 

2015b). The IGSR is hoping to add samples from populations that were not part of the 

original 1,000 Genomes Project. This will allow researchers to develop an even better 

understanding of human genetic variation by including samples from across the globe; 

however, this can only be done if people willingly donate their DNA.  

I have worked with DNA samples in the genetics laboratory since my junior year 

at Regis University, but I have never had to ask my research participants for their consent 

to be part of my study. This is because my study subjects have been mantled howler 

(Alouatta palliata) and white-faced capuchin (Cebus capucinus) monkeys who are not 

able to offer any form of consent (See Chapter III and V). In turn, I have been free to 

steal and analyze their DNA without worrying about genetic discrimination or causing 

them psychological harm. As a future genetic researcher, I am most interested in studying 

human diversity and the development of genetic diseases. I will soon be making the 

transition from studying monkeys to humans, and I will need to adjust my research 

practices accordingly. I recognize that I cannot force humans to participate in my future 

experiments by stealing their fecal samples, as I did with the monkeys. I must encourage 

them to do so by ensuring them that I will honor and respect their DNA ownership rights 

and by being transparent with what my studies entail.  
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III. Ethical considerations in non-human primate genetic 

research 
 

In the previous chapter, I examined human DNA ownership rights and argued that 

humans have ownership of their genetic information but not necessarily the material after 

it has been removed from their bodies. Genetic studies involving humans are highly 

regulated in order to protect human interests and prevent physical or psychological harm. 

In contrast, the use of non-human primates in genetic research is still widely debated. 

There are studies that focus on the animals themselves, namely their evolution, kinship 

patterns, and diversity; however, because humans and non-human primates share over 

90% of DNA, they are also useful models for studying human genes and diseases 

(National Institutes of Health [NIH], 2007). They offer many benefits in genetic studies, 

but it is important to keep in mind that humans and non-human primates share more than 

a few million DNA base pairs – we also share a capacity to suffer. This mutual sentience 

requires that we reevaluate how we conduct genetic research with non-human primates. 

Can we justify animal suffering if it provides a significant benefit to human life?  

 In this chapter, I discuss the ethical considerations that must be assessed when 

using non-human primates in genetic research. I argue that because both humans and 

non-human primates have the ability to suffer, researchers must apply the humane 

treatment principle when designing and conducting their studies. In other words, they 

must ensure that non-human primates are not enduring any unnecessary suffering during 

sample collection, sequence analysis, or genome modifications. As so, I have myself 
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implemented the humane treatment principle in my undergraduate research involving 

monkeys, and I plan on upholding this mindset as I pursue my career in genetic research.  

 I first became interested in these issues after having worked with monkey feces 

for over a year in the genetics laboratory at Regis University. Not all genetic research is 

conducted for the sake of humans. Some studies are designed to learn more about the 

animals themselves, namely their evolutionary history, kinship patterns, etc., which could 

have important implications for their well-being and existence. My research project was a 

conservation genetics project, part of larger study overseen by Dr. Marie-dominique 

Franco and Dr. Amy Schreier, in which I analyzed the genetic structures of mantled 

howler (Alouatta palliata) and white-faced capuchin (Cebus capucinus) monkeys from 

La Suerte Biological Research Station (LSBRS) in Costa Rica. I traveled to LSBRS to 

collect A. palliata and C. capucinus fecal samples in the summer of 2016, extracted DNA 

from the feces, and determined both species’ genetic diversity by analyzing specific 

microsatellites (See Chapter V). To put it simply, I stole genetic samples from monkeys 

in Costa Rica and nonconsensually extracted information from their DNA. Although I 

discouraged this type of behavior in my previous chapter, my actions felt justified. 

Indeed, the primary goal of my research project was to determine if deforestation was 

negatively affecting genetic diversity in A. palliata and C. capucinus by forcing them to 

inbreed. I knew that my research was essentially helping the monkeys as my results will 

provide insight into their adverse situation. Moreover, none of my methods, from the 

sampling down to the genetic analysis, harmed the monkeys in any way.    
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Genetic samples can be obtained from animals noninvasively or invasively. In 

noninvasive sampling, Pauli, Whiteman, Riley, and Middleton (2009) explain, “Animals 

are unaware of sampling and, therefore, are unaffected by it…or animals are unrestrained 

and do not exhibit a chronic or severe stress response or experience reduction in survival 

or reproduction” (p. 350). For example, researchers can collect abandoned feces, hair, 

feathers, egg shells, and snake skins and extract DNA from these samples for their studies 

(Taberlet, Walts, & Lulkart, 1999). In contrast, invasive sampling consists of drawing 

blood or scraping tissues. Noninvasive sampling is attractive to many researchers, like 

myself, because it requires less equipment and minimizes physical pain. Moreover, 

projects that use noninvasive sampling are more likely to be approved by the Institutional 

Animal Care and Use Committee (IACUC). The purpose of the Committee is to 

minimize harm inflicted on research animals. This ensures that animals are not subjected 

to unnecessary suffering (Steneck, 1997).   

Unfortunately, the quantity and quality of DNA extracted from noninvasive 

samples are much poorer compared to invasive ones, making them more difficult to 

analyze (Taberlet, Walts, & Lulkart, 1999). Dai, Lin, Fang, Zhou, and Chen (2015) 

extracted DNA from Chinese egrets (Egretta eulophotes) and found that blood yielded 

the highest DNA concentration (252.16 ± 17.05 ng/μL) when compared to plucked 

feathers (182.49 ± 7.95 ng/μL), shed feathers (13.59 ± 2.10 ng/μL), and feces (9.77 ± 

1.83 ng/μL). In addition, noninvasively collected DNA tends to degrade readily and 

contains polymerase chain reaction (PCR) inhibitors, like melanin and keratin, which 

interfere with DNA amplification (McDonald & Griffith, 2011). In contrast, nucleated 



20 

 

blood is purer and more concentrated. For blood, DNA extraction only requires 50 μL of 

volume, and any remaining blood that is drawn can be preserved indefinitely. Should any 

problems arise, researchers can repeat the experiment using the excess. Those that collect 

samples noninvasively do not often have this same liberty, depending on how much of 

the original sample they were able to collect and how much was needed for DNA 

extraction. Researchers cannot make any mistakes in DNA extraction or amplification, 

nor can they repeat their experiments to validate their results when they have a small 

sample size. Rather than dealing with the many problems that come with analyzing 

noninvasive samples, many researchers opt for the more convenient route and study DNA 

collected invasively (McDonald & Griffith, 2011).  

My own experience has shown me that it is incredibly difficult to work with and 

analyze DNA that has been collected using noninvasive techniques. The feces I analyzed 

had only small amounts of DNA. Extraction was difficult because the DNA was not 

evenly distributed in the stool, and the samples were often watery. I spent my first year of 

research trouble-shooting in the laboratory as I was unable to amplify DNA from C. 

capucinus. I had been using the same extraction and PCR procedures for both the A. 

palliata and C. capucinus samples. However, C. capucinus feces have even lower 

concentrations of DNA than A. palliata, and the DNA is more sensitive to time and 

temperature. Therefore, the samples had to be handled differently. After months of trial 

and error, I deteriorated my supply of feces, but I finally perfected the C. capucinus 

extraction and amplification protocols. Nevertheless, I knew that the DNA was fragile, 

and I worried that it might degrade if it was not properly stored or if it was left at room 
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temperature for too long. If the DNA had degraded, I would not have been able to redo 

some of the experiments because I exhausted my supply of original genetic material. 

Therefore, I sympathize with fellow researchers who work with noninvasive genetic 

samples.  

Although I recognize how much easier it would have been to extract DNA from 

and analyze purer genetic samples, like blood, I also maintain that using feces was the 

more ethical route. Obtaining blood would have required capturing the monkeys, 

necessitating professional help to dart them with drugs (usually ketamine solutions) that 

temporarily immobilize them and cause them to fall from the trees (Jones & Bush, 1988). 

However, darting is a dangerous technique. Wasserman, Chapman, Milton, Goldberg, 

and Zigler (2013) found that darting adult red colobus monkeys (Procolobus 

rufomitratus) with telazol and ketamine led to an acute increase in cortisol levels, 

indicating physiological stress. Jones and Bush (1988) note that of the 27 redtail monkeys 

(Cercopithecus ascanius) they darted, two died and one was severely injured. In addition, 

because the understory of the forest was so thick, they could not predict where C. 

ascanius would fall and waited until they hit the ground to capture them (Jones & Bush, 

1988). This demonstrates how darting is a dangerous and difficult procedure that inflicts 

unnecessary pain. Rather than risk harming A. palliata and C. capucinus, I chose to 

follow them in the rainforest and wait for them to defecate instead.  

My research ethics have been guided by the “humane treatment principle” 

outlined by Gary L. Francione. He dictates, “[The] humane treatment principle…[is] the 

view that because animals can suffer, we have a moral obligation that we owe directly to 
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animals not to impose unnecessary suffering on them” (Francione, 2004, p. 113). The 

term “unnecessary” is key in Francione’s definition, but it constitutes a gray area. How 

do we decide what is considered “unnecessary suffering,” especially in genetic research 

involving non-human primates? There is a significant difference between simply 

analyzing sequences for the sake of the monkeys, as I have done, and analyzing and 

modifying the DNA to benefit humans. Cohen (2001) argues that we have a “duty” to use 

animals in biomedical experiments to promote human health and save lives (p. 5). In 

doing so, he implies that their suffering on our behalf is absolutely necessary. Because 

they are our closest evolutionary relatives, non-human primates are regularly used as 

models for studying human disease (Harding, 2013). Rhesus macaque (Macaca mulatta) 

oocytes have been injected with viruses expressing exon 1 of the human huntingtin 

(HTT) gene to model Huntington’s disease. The authors argue that M. mulatta models 

more accurately mimic the neurological and behavioral mechanisms of Huntington’s 

compared to rodent models (Yang et al., 2008). Researchers are drawn to non-human 

primates because they are often better models for studying human physiology, behavior, 

disease, and genetics (Harding, 2013). They do not see the experiments as “unnecessary 

suffering” because the monkeys are essentially helping humans.  

Though this may be true, it is important to keep in mind that humans and non-

human primates share more than physiological factors and homologous genes – we also 

share a capacity to suffer. Indeed, Ferdowsian et al. (2011) found that when chimpanzees 

(Pan troglodytes) were subjected to experimentation or experienced other traumatic 

events, they exhibited behaviors similar to those observed in humans with post-traumatic 
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stress disorder (PTSD) and depression. They refused to engage in play or grooming, were 

antagonistic towards peers, isolated themselves, and sat in a hunched, remote posture 

(Ferdowsian et al., 2011). Given our shared sentience, Francione (2004) supplements his 

humane treatment principle with the “principle of equal consideration,” which states that 

we are required to “weigh our suffering in not using animals against animal interests in 

avoiding suffering” (p. 121). Before conducting an experiment, we must consider the 

costs and benefits to both parties, and the benefits to one must significantly outweigh the 

costs to the other (Sandoe & Holtug, 1996). However, in a primarily anthropocentric 

world as our own, we cannot help but prioritize our own needs above other animals’.  

Francione (2004) has observed that even when animal and human interests have 

an equal weight, we almost always disregard the animals’ interests in favor of our own. 

For example, M. mulatta have been used as models to test the efficacy of vaccines against 

Shigella dysenteriae 1 (SD1). SD1 causes Shigellosis exclusively in humans and non-

human primates, and they experience the same symptoms, namely lymphocytosis, acute 

colitis, fevers, dehydration, and bloody diarrhea (Islam et al., 2014). However, only M. 

mulatta, not humans, are used in the initial stages of vaccine tests, demonstrating how we 

prioritize human interests above animals’. We tend to view animals as “property” in our 

society, or “nothing more than things” (Francione, 2004, p. 108). This type of mindset is 

alarming, as it gives researchers the false impression that they can use animals, 

particularly non-human primates, as they please. Therefore, instead of seeing them as 

“property,” we should try to remember that non-human primates are our relatives.  
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That is not to say that we should completely ban the use of non-human primates 

in genetic research. Francione (2004) argues, “[We] ought to treat like cases alike unless 

there is a good reason not to do so” (p. 121). “Like cases,” in my opinion, are the species 

that are most closely related to us, namely the great apes. Orangutans, gorillas, 

chimpanzees, and bonobos are our closest relatives, sharing between 97.0-98.8% of DNA 

with us (NIH, 2011; Wall, 2013). They have cognitive abilities and are capable of using 

tools (Chuecco, n.d.). In addition, P. troglodytes can communicate with humans through 

American Sign Language (Rivas, 2005) and even grieve deceased group members (van 

Leeuwen, Mulenga, Bodamer, & Cronin, 2016). These significant similarities render that 

they be treated like humans with regard to genetic research. They should be protected 

from experiments that inflict any physical, emotional, or psychological pain on them. The 

Great Ape Project, created in 1994, is working towards establishing international 

personhood rights to all of the great apes. Several countries, including Spain, New 

Zealand, and Austria, have already banned biomedical research involving great apes 

(Project R&R, 2017). In 2015, the United States banned the use of P. troglodytes in all 

biomedical research. P. troglodytes individuals owned by the NIH are expected to be 

reallocated to Chimp Haven, a federal sanctuary located in Louisiana, by 2025 – 10 years 

after the ban was instated (NIH, 2016b).  

As we move along the phylogenetic tree, our relatedness to other non-human 

primates, such as monkeys including M. mulatta, A. palliata, and C. capucinus, 

decreases. In turn, they are no longer considered “like cases.” In other words, our 

physiologic and genetic similarities are enough to justify their use in some research, but 
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not enough to offer them limited human rights, like the great apes. For example, humans 

share 98.8% of their DNA with P. troglodytes (Wall, 2013) and approximately 93% with 

M. mulatta (NIH, 2007). In addition, the great apes behave more similarly to humans than 

monkeys. Mark Mirror Tests were administered to P. troglodytes (Gallup, 1970), M. 

mulatta (Gallup, Wallnau, & Suarez, 1980), and brown capuchins (Cebus apella) (Roma 

et al., 2007), in which individuals were marked with a red mark on their heads and placed 

in front of a mirror. Only P. troglodytes noticed and reached for the mark on themselves, 

indicating that they are self-aware (Suddendorf & Butler, 2013).  

Studying non-human primate DNA can, and has, provided incredible insight into 

our own genes and evolutionary history. Primates are thus indispensable in genetic 

research. Recent advancements in biotechnology, such as the development of the 

CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats) system, will 

undoubtedly increase their involvement in genetic research. CRISPR-Cas9 takes 

advantage of a mechanism utilized by bacteria to fight viral infections using a DNA-

cleaving enzyme called Cas9 to edit genomes (Jinek et al., 2013). Chen et al. (2015) have 

mutated a dystrophin gene in M. mulatta to give them Duchenne muscular dystrophy 

(DMD), a severe genetic disorder characterized by progressive muscle loss. The 

genetically modified M. mulatta will allow researchers to study the pathology of the 

disease and uncover a future cure for humans. The significant benefits the study could 

provide justifies the research, though it pains me to think about M. mulatta being 

subjected to pain for our sake.  
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I have struggled thinking about where we should draw the line on what is 

considered morally ethical in genetic research involving non-human primates. It was not 

until just recently that I began advocating in favor of the humane treatment principle and 

the principle of ethical consideration. Before I traveled to Costa Rica and lived in the 

jungle for a month, I believed any kind of research involving animals was morally 

permissible if it provided any kind of benefit to human life because I value humans over 

animals. The gap that once separated humans from animals has decreased after my time 

with the monkeys and other wildlife in Costa Rica.  

I developed a connection to them – a month in the rainforest will have that effect 

on you. I studied their social behavior (See Chapter IV) and observed firsthand how 

similar the monkeys were to us. Suddenly the line separating what is right and wrong for 

animal experimentation has blurred. I cannot even imagine the devastation I would feel if 

I heard about researchers genetically modifying A. palliata or C. capucinus. Before my 

trip, I would not have been bothered by it. It is sad to think that it took a month of being 

immersed in the rainforest for me to finally recognize that humans and animals, 

particularly non-human primates, have a deeper connection than I had recently thought. 

When we feel a connection to a particular animal, whether that is C. capucinus or simply 

a pet dog, we are more likely to fight against their mistreatment. It is important to 

recognize, however, that we are connected to all animals, not just our favorite ones. My 

willingness to allow researchers to modify M. mulatta on our behalf, but not A. palliata 

or C. capucinus, indicates that I am guilty of biases as well.  
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Of course, humans and animals share a right to live a life free from unnecessary 

suffering (Singer, 1975). Therefore, researchers have a responsibility to follow the 

humane treatment principle and the principle of ethical consideration when designing and 

conducting genetic experiments. Thus far, it has been relatively easy for me because I am 

simply looking at DNA sequences, not modifying it. Later in my career, I may be 

presented with opportunities to conduct more invasive genetic studies, like genome 

editing. I have already established a commitment to the humane treatment principle and 

principle of equal consideration that will guide my ethical decisions as I pursue a career 

in genetic research. 
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IV. The effect of food availability on intraspecific interactions 

in mantled howler monkeys (Alouatta palliata) in La Suerte, 

Costa Rica 

Introduction 

 In the previous chapter, I discussed the ethical considerations that must be 

acknowledged when conducting research with non-human primates. I argued that 

researchers should not subject them to unnecessary suffering because they are sentient 

creatures like us. These feelings developed after I spent a month in Costa Rica observing 

mantled howler (Alouatta palliata) monkeys firsthand for this behavioral study.  

Primate social systems are influenced by the environment, especially the 

availability of resources. Female primates organize themselves around the availability of 

food, and male relationships are structured around access to females (van Schaik, 1989). 

When food is abundant and evenly dispersed, contest competition, or direct aggression, 

between individuals is less likely to occur, and within group scramble competition, or the 

exploitation of resources, is more common (Koenig, 2002). For example, leaves are an 

abundant food source, so primates with folivorous diets typically have egalitarian social 

structures with nonlinear dominance hierarchies.  

 A. palliata are arboreal New World primates with a frugivorous and folivorous 

diet (Crockett & Eisenberg, 1987). Fruit is seasonal and not always readily available. 

Even when A. palliata are able to find fruit, they supplement their meal with leaves, 

indicating that they are more folivorous (Milton, 1981). Leaves are evenly distributed and 
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more accessible, so A. palliata are characterized as being non-aggressive and egalitarian 

with limited contest competition (Wang & Milton, 2002). Moreover, A. palliata groups 

are relatively large (>10 individuals) and contain multiple males and females (Clarke, 

Zucker, & Scott, 1986). Even so, direct social interactions between individuals are not 

common, and the easiest way to observe relationships in A. palliata groups is looking at 

proximity to an individual’s nearest neighbor (Crockett & Eisenberg, 1987).  

Males are not often in close proximity, but they are highly tolerant of one another. 

They generally benefit from living in multi-male groups. With more males, there are 

more individuals to help defend resources and protect other members (Bezanson, Garber, 

Murphy & Premo, 2008). A. palliata groups also consist of nonlinear hierarchies with one 

alpha, or dominant, male. The alpha male is one of the most vocal individuals and his 

position is usually spatially centered. Alpha males are prioritized and have greater access 

to food, but otherwise, all A. palliata males have equal access to estrous and receptive 

females (Wang & Milton, 2002). Nevertheless, reproductive success decreases when 

there are too many males in a single group (Ryan, Philip, Milton, & Getz, 2008). Males 

also rarely show aggression towards one another. When agonistic events occur, A. 

palliata males exhibit more “ritualized” behaviors, such as baring teeth or shaking 

branches, that do not require a high amount of energy (Jones, 1980). In contrast, it is not 

uncommon to see females close to one another. At Hacienda La Pacifica in Costa Rica, 

Zucker and Clarke (1998) found that high-ranking females were seen together more often 

than low-ranking ones, especially when one female had an infant. They also noted that 

when a new male immigrated into a group, females banded together and stayed in closer 



30 

 

proximity to one another for added protection. However, because their food is readily 

available, A. palliata females do not usually rely on one another for foraging and 

generally have weaker affiliative relationships compared to other primate species limited 

by a clumped distribution of food (Rodrigues, 2002; Wrangham, 1980).  

 Male-female relationships, or interactions between individuals of the opposite 

sex, appear to be common for A. palliata. Males usually prefer adult females over adult 

males or juveniles as their nearest neighbor (Wang & Milton, 2002; Rodrigues, 2002). 

Males spend more time resting and feeding close to females who act as potential mates. 

In addition, females develop relationships with males who can help them find food or 

provide protection from predators or infanticidal males (Bezanson et al., 2008). Although 

A. palliata are typically egalitarian, acts of aggression are often observed between males 

and females during feeding times (Wang & Milton, 2002).  

This demonstrates how a specific primate social system has been shaped by its 

environment, especially the availability of food resources. Severe changes to the 

environment, such as habitat fragmentation, may have negative implications for primate 

social relationships (Arroyo-Rodriguez & Diaz, 2010). Since the 1970s, tropical 

rainforests of Costa Rica have been subjected to human-induced deforestation, leading to 

reduced habitats for inhabitants and a decrease in both the quantity and quality of food 

resources (Garber, Molina, & Molina, 2010; Arroyo-Rodriguez & Mandujano, 2006). La 

Suerte Biological Research Station (LSBRS) in Costa Rica is a fragmented forest and 

acts as a home for A. palliata. Because habitat fragmentation can have drastic negative 

effects on primate social systems, I have conducted a study to examine intraspecific 
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interactions among adult A. palliata at LSBRS. I predict that interactions between 

members of the opposite sex will occur more frequently than same-sex interactions in the 

A. palliata groups. More specifically, I expect an individual’s nearest neighbor within 5 

meters to be another individual of the opposite sex, and that behaviors, including 

grooming, mating, resting, feeding, following, and various forms of aggression will occur 

more frequently near and between individuals of the opposite sex. These behaviors are 

listed and defined in the provided ethogram (Table 1). Due to the even distribution of 

food, competition is not prevalent amongst females, leading to weak relationships and 

minimal interactions. Rather, females will associate more with males because they are 

dependent on them for protection. Males will then orient themselves around females for 

mating purposes, but they will limit aggressive interactions with other males as there is 

no need to compete with one another for estrous females.  

Methods 

Location of Study 

I conducted this study from June 4-13, 2016 at La Suerte Biological Research 

Station (LSBRS) in Costa Rica (10°26’N, 83°46’W). LSBRS contains over 300 hectares 

(ha) of primary forest, secondary forest, and regenerating pastures (Garber et al., 2010). 

LSBRS is comprised of two forest fragments: the small forest and the large forest (Pruetz 

& Leasor, 2002). 

Sampling Protocol 

 In order to examine the effect of an even food distribution on intraspecific 

interactions, I studied A. palliata for a total of 25 hours using instantaneous focal 
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sampling for 30 minutes with 2 minute intervals (Altmann, 1974). I collected 12.5 hours 

of data for adult males and 12.5 hours for adult females. At each interval, I noted the sex 

and age of the focal individual’s nearest neighbor within a 5-meter radius (Wang & 

Milton, 2002). I also recorded behaviors including resting, feeding, and following and 

used ad libitum sampling to note instances of grooming, mating, and various forms of 

aggression (Table 1). For each 30-minute sample, the focal individual could not be out of 

view (OOV) for more than 10 minutes, and the same individual could not be re-sampled 

until at least 30 minutes had passed.  

Table 1. Ethogram for A. palliata 

Behavior Code Definition 

Grooming Gr Using limbs to pluck at the hair of another individual.  

Mating Mat Male individual mounts a female and thrusts visibly. 

Resting R Little to no physical movement. Focal individual may move 

his/her head, limbs, or tail, but cannot travel more than 1 

meter.  

Feeding Fed Picking, chewing, and/or swallowing any type of food.  

Following Fol Traveling in the same direction as and/or moving towards 

another individual. Focal individual may not be more than 2 

meters from the nearest neighbor. 

Aggression Ag Pushing, biting, grabbing, baring teeth at, and/or vocalizing 

towards another individual.   

Other Oth Any other behavior that is observed.  

Out of View OOV Focal Individual’s behavior cannot be determined or the 

individual is not visible.  

Data Analysis 

 I calculated the average percentage of time in which male and female mantled 

howler monkeys were within 5 meters of an individual of the same and opposite sex. I 

also examined the average frequencies of each behavior generally and then specifically 

calculated how often the behavior was performed around an individual of the same and 
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opposite sex. Finally, I analyzed the data using one-tailed two sample student’s t-tests 

with a 0.05 significance level. 

Results 

 For 25 hours, I observed intraspecific interactions in A. palliata populations by 

studying proximity to and interactions with and around an individual’s nearest neighbor 

within 5 meters. On average, males spent significantly less time in close proximity to 

another male (3.86%) compared to in close proximity to females (34.33%) (p<0.05; Fig. 

2). In contrast, there was no significant difference in the time females spent near males 

(16.22%) and females (17.63%) (p>0.05; Fig. 2). 

 

  

 

Figure 2. The average percentage of time A. palliata males and females spent with 

their nearest neighbor (NN) within 5 meters. The asterisk (*) indicates statistical 

significance at α = 0.05. 
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 Resting was the most common activity for both males (68.16%) and females 

(76.57%). Individuals rested alone, near immature monkeys, or near other adults. For 

males, only 1.9% of this time was spent around another male, which was significantly 

less than the time spent near a female (37.42%) (p<0.05; Fig. 3). In contrast, females 

rested near males 16.55% of the time and 18.72% near females, and this difference was 

not statistically significant (p>0.05; Fig. 3). 

 

 On average, males occupied 13.05% of their time feeding. Only 0.67% of the total 

feeding time was around another male, which was significantly lower than the amount of 

time spent in close proximity to a female (17.93%) (p<0.05; Fig. 4). Females similarly 

spent 13.53% of time feeding. However, there was no significant difference in the 

amount of time spent feeding near males (5.91%) and females (1.33%) (p>0.05; Fig. 4).    

 

Figure 3. The average percentage of time A. palliata males and females spent resting 

within 5 meters of their nearest neighbor (NN). The asterisk (*) indicates statistical 

significance at α = 0.05.  

1.39

16.55

37.42*

18.72

0

5

10

15

20

25

30

35

40

Male Female

A
v
er

ag
e 

P
er

ce
n
ta

g
e 

o
f 

T
im

e

NN Male

NN Female



35 

 

 

Males occasionally followed close behind adult females, but only during 0.98% of 

their time. Conversely, females did not follow other individuals. There were two events 

of aggression. Both were performed by an adult male; however, one instance was 

directed at another male, while the other was towards an adult female. I did not observe 

any individuals grooming or mating with one another.  

Discussion 

 To an extent, the data support my hypothesis that intraspecific interactions in A. 

palliata groups would occur more frequently between members of the opposite sex. 

Males spent almost 10 times as much time within 5 meters of a female than a male, and 

more than a third of their time spent resting was in close proximity to a female. Males 

rarely fed near one another and often chose to eat near females instead. This proportion of 

 

Figure 4. The average percentage of time A. palliata males and females spent feeding 

within 5 meters of their nearest neighbor (NN). The asterisk (*) indicates statistical 

significance at α = 0.05.  
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the data supports my hypothesis that opposite sex interactions are more common in A. 

palliata groups. In addition, they were consistent with other studies which found that 

males prefer to be in close proximity to adult females, or individuals who can act as 

potential mates, rather than adult males or juveniles (Wang & Milton, 2002; Rodrigues, 

2002). I only observed two events of aggression, one between a male and female and 

another between two males. Similarly, other studies have indicated that aggression events 

are rare because the even distribution of food restricts any need for competition (Jones, 

1980; Koenig, 2002; Wang & Milton, 2002).  

However, the data also reject my hypothesis. For females, there was no significant 

difference in the general time spent near males and females. Indeed, they spent an almost 

equal amount of time resting in close proximity to both. Females fed near males 5 times 

more often than near a female, but this difference was not statistically significant. 

Bezanson et al. (2008) point out that A. palliata male-female relationships are fairly 

common. Females rely on males to help find food or protect them, but they do not limit 

themselves to interacting only with members of the opposite sex. Likewise, Rodrigues 

(2002) suggests that females in close proximity to one another are probably kin. 

Nevertheless, the average proportion of time spent around another female was low, 

implying that the relationships between them are weak. With an even distribution of food, 

females are not dependent on one another for foraging and do not need to establish strong 

bonds (Wrangham, 1980).  

It is important to note possible limitations of the study. It was often difficult to 

keep track of focal individuals, especially when the foliage blocked my line of sight 
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and/or multiple individuals were close together. My estimates for gauging 5 meters may 

not have been accurate, and an individual’s nearest neighbor may have been hidden from 

view during sampling intervals. For many females, even though they were within 5 

meters of an adult male or female, their nearest neighbor was deemed a juvenile because 

it was closest to them. Finally, because the sample size was small, the data may not 

accurately portray intraspecific interactions in A. palliata groups at LSBRS.  

In the future, I would like to conduct a similar study looking at intraspecific 

interactions for white-faced capuchin monkeys (Cebus capucinus) at LSBRS. A. palliata 

and C. capucinus have different diets, which may lead to divergent social interactions. C. 

capucinus are mainly frugivores. Food is not readily available and is distributed in 

uneven clumps (Chapman, 1987). In turn, female-female interactions are more prevalent 

than male-male or male-female interactions because females rely on one another for 

finding and defending food (Fedigan, 1993; Perry, 1996). I can then compare the two 

species and further confirm the effect of food distribution on primate social systems.  

  



38 

 

V. Comparison of genetic structure between mantled howler 

(Alouatta palliata) and white-faced capuchin (Cebus capucinus) 

monkeys in La Suerte, Costa Rica

Introduction 

In the previous chapter, I reported my findings from a behavioral study on 

mantled howler monkeys (Alouatta palliata) that I conducted at La Suerte Biological 

Research Station (LSBRS) in Costa Rica. I looked specifically at intraspecific 

interactions between adults and point out that primate social systems are shaped by the 

environment, especially the availability of resources. Severe changes to the environment, 

such as habitat fragmentation, can have important implications for not only primate social 

behavior, but also their genetic structures, as it can negatively affect their ability to 

disperse from their natal groups. Therefore, in this chapter, I present my genetic research 

analyzing genetic diversity and the level of inbreeding in A. palliata and white-faced 

capuchin monkeys (Cebus capucinus).  

Some of the biggest threats to biodiversity over the last few decades are 

deforestation leading to habitat loss and fragmentation (Clarke, Zucker, & Scott, 1986; 

Arroyo-Rodriguez & Diaz, 2010). Forests are often cleared and then transformed for 

agricultural use. For example, in Costa Rica, a vast proportion of land now serves as 

banana and pineapple plantations (Garber, Molina, & Molina, 2010). Human-induced 

habitat destruction forces animals to abandon their native land and settle elsewhere. 

Moreover, the remaining suitable living spaces are now more scattered and have 
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decreased in size (Oklander, Kowalewski, & Corach, 2010). As a result, animals’ access 

to resources is limited, placing certain species at risk for extinction. 

For non-human primates, habitat fragmentation limits their ability to disperse 

(Arroyo-Rodriguez & Diaz, 2010). In most species of non-human primates, at least one 

sex emigrates from its natal group once it reaches sexual maturity. In doing so, males or 

females avoid competing with relatives for resources (Glander, 1992). Moreover, 

individuals who disperse can undergo random mating and thus avoid inbreeding (Storz, 

1999; Oklander et al., 2010). Indeed, in continuous forests, genetic tests reveal that males 

and females within non-human primate groups are not as closely related compared to 

individuals in groups that reside in fragmented forests (Oklander et al., 2010). The latter 

is an indication that individuals are forced to mate within the same gene pool. Inbreeding 

limits gene flow, decreases heterozygosity, and negatively affects genetic diversity, 

ultimately resulting in species extinction (Pope, 1992).  

Gene flow is the transfer of alleles from one population to another. Alleles are 

variations of a gene. In diploid species, such as A. palliata and C. capucinus, for each 

gene, individuals inherit two alleles, one from each parent. Consistent gene flow is 

necessary for increasing genetic diversity within groups. In diverse groups, there are 

individuals who have variations in their alleles that make them better equipped to survive 

a negative situation, such as the onset of a fatal disease. Those that survive can then pass 

on these beneficial alleles to future offspring. In contrast, in groups with low genetic 

diversity, a majority of group members are susceptible to the disease and will not survive 

(Oklander et al., 2010). Maintaining genetic diversity is important for the group’s, and 
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ultimately the species’, survival. Habitat fragmentation and deforestation act as major 

threats to genetic variation, particularly for non-human primates.  

A. palliata and C. capucinus are New World monkeys with different diets, social 

behaviors, and dispersal patterns. A. palliata are folivorous, tree-dwelling monkeys. Both 

males (79%) and females (96%) disperse from their natal groups (Glander, 1992). 

Juveniles are forced out of their natal groups, and individuals may travel alone for up to 4 

years before joining an already established group or creating a separate group with other 

emigrating individuals (Glander, 1992). When individuals disperse, they run the risk of 

predation or being rejected by groups that have already been established. In A. palliata 

groups the alpha male may not want to compete for food with new males attempting to 

join his group (Wang & Milton, 2002). Pope (1992) found that it is even more difficult 

for A. palliata females to join established groups, and they typically create new groups 

with other wandering females that have been forced to disperse. Although it is costly and 

dangerous to emigrate, both sexes in A. palliata do so to avoid inbreeding. A. palliata 

females reach sexual maturity at 4.5 years, and males remain in a single group for an 

average of 7.5 years. If the female matures before her father leaves the group, it is 

possible for incest to occur. Because most males and females disperse from their natal 

groups, however, incest is rare (Pope, 1992).  

C. capucinus are also New World monkeys, but they are frugivores/insectivores 

and reside mainly in the understory layers of the forest (Garber and Rehg, 1999). Once 

they are 4 years old, C. capucinus males disperse, but females are philopatric (Perry, 

1996; Jack & Fedigan, 2009; Wikberg et al., 2014). In other words, males will leave their 



41 

 

natal group, while females stay throughout their lives. Males often engage in parallel 

dispersal, meaning that they emigrate from their natal groups with a relative and join 

another group together (Wikberg et al., 2014). Because females are philopatric, they live 

in a group with other female relatives, with whom they develop strong affiliative bonds 

(Fedigan, 1993; Perry, 1996). In one study conducted in Santa Rosa, Costa Rica, a few C. 

capucinus females left their natal groups, but this is rare due to aggression imposed on 

emigrant females by outside groups (Jack & Fedigan, 2009). However, female philopatry 

increases the probability of inbreeding compared to when both sexes disperse. If only one 

sex disperses, then there is more limited gene flow in a group (Wikberg et al., 2014). 

Female C. capucinus reach sexual maturity at 6 years. On average, C. capucinus alpha 

males remain in a group for 4.5 years, but their tenure can last up to 15 years (Wikberg et 

al, 2017). Although incest is rare, Muniz et al. (2010) reported one incidence of incest 

and two cases where paternal half-siblings mated in Lomas Barbudal, Costa Rica.  

Since the 1970s, deforestation has taken a major toll on the tropical rainforests of 

Costa Rica (Garber et al., 2010). A vast proportion of the land has been transformed for 

agricultural use, and much of the remaining forest is privately owned. Conservationists at 

La Suerte Biological Research Station (LSBRS) in Costa Rica are protecting the 

ecosystems by replanting trees, protecting the wildlife from hunters, and bridging the gap 

between privately owned forests and national forests by establishing biological corridors 

between them. LSBRS is home to both A. palliata and C. capucinus. Because habitat 

fragmentation can have drastic negative effects on the genetic diversity of organisms, I 

conducted a study to analyze the genetic structure of both the A. palliata and C. 
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capucinus populations using selected microsatellites. Microsatellites are short segments 

of DNA with 2-6 base pairs that repeat up to 80 times. These segments are highly 

variable amongst individuals and can be used as molecular markers to determine an 

individual’s genotype and the genetic diversity of a given animal population (Winkler et 

al., 2004). Individuals have two alleles at each microsatellite locus. If the alleles are the 

same, the individual is homozygous, whereas two different alleles indicate a 

heterozygote.  

Heterozygosity, or the proportion of heterozygous individuals at a locus, can be 

used to signify genetic diversity in a population. In addition, observed allele and 

genotype frequencies dictate whether or not a population is in Hardy-Weinberg 

Equilibrium. If the observed frequencies are consistent with the calculated expected 

values, then the population is not evolving. In other words, in the population, natural 

selection is not occurring; there are no mutations; individuals are randomly mating; the 

population is large enough (Andrews, 2010). I estimated genetic diversity and inbreeding 

using F-statistics (Wright, 1951). Using observed and expected heterozygosity 

frequencies, I calculated an inbreeding coefficient, FIS, for each species. FIS measures any 

changes in heterozygosity due to non-random mating in a subpopulation. Values range 

from -1 to +1, where -1 indicates excess heterozygosity, while +1 implies excess 

homozygosity.  

For my study, I compare the genetic structures of A. palliata and C. capucinus 

populations and analyze the effects of human-induced habitat fragmentation on their 

genes. I hypothesize that neither species will be in Hardy-Weinberg Equilibrium and that 
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evolution is occurring in both. There will be reduced gene flow and a high level of 

inbreeding for both species because habitat fragmentation limits the monkeys’ ability to 

disperse. However, due to their differences in dispersal patterns, I predict that the genetic 

structure of C. capucinus will be more negatively affected than that of A. palliata because 

only one sex of C. capucinus disperses from the natal group. C. capucinus will be more 

susceptible to inbreeding and have a more positive FIS value than A. palliata.  

Methods 

Location of Study 

I collected fecal samples for my study at La Suerte Biological Research Station 

(LSBRS) in Costa Rica. Additional information about LSBRS can be found in Chapter 

IV under the Methods section.  

Fecal Sample Collection 

 In order to study the genetic structure of A. palliata and C. capucinus monkeys, I 

collected fecal samples from individuals of both species as a non-invasive DNA 

collection method since fecal samples have epithelial cells from the monkeys’ gastro-

intestinal linings. I, along with other students and professors, collected fecal samples 

from the forest floor after monkey defecation events using sterile tongue depressors. For 

each fecal sample, I transferred approximately 5 g of fresh feces into 5-ml collection vials 

containing 2.5 mL of RNAlater™ Stabilizing Solution (Thermo Fischer Scientific), 

labeled the vials (i.e., date, sex, age-class), and stored them at room temperature at 

LSBRS. At the end of the field season, the samples were shipped via FedEx to the 

Biology Department at Regis University, where they were stored at -20oC for processing.  
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DNA Extraction 

I extracted all DNA from gastro-intestinal epithelial cells found in the fecal 

samples using the QIAamp DNA Stool Mini Kit (Qiagen) and a modified protocol. For 

both the A. palliata and C. capucinus samples, I lysed 1 g of stool in 5 mL of InhibitEx 

buffer, rather than 10 mL (as indicated by the manufacturer) in order to increase the 

concentration of purified DNA. In C. capucinus samples, I incubated the samples in 

Buffer AL at room temperature for 24 hours, and the final elution with Buffer ATE 

incubated at room temperature for 30 minutes before centrifuging at full speed 

(Hiramatsu et al., 2005). There were 25 samples of purified DNA for each species, and 

all samples were stored at -20oC.  

Nuclear Microsatellite Genotypes  

Polymerase Chain Reaction and Sequencing. I used a process called 

polymerase chain reaction (PCR) to amplify polymorphic microsatellites found in the 

DNA. I amplified A. palliata sequences using 0.5 µM of forward and reverse primers 

Apm01 for A. palliata (Cortés-Ortiz, Mondragón, & Cabotage, 2009) and C. capucinus 

sequences using 0.46 µM of forward and reverse primers Ceb02 (Muniz & Vigilant, 

2008). PCR reactions contained 1X Taq polymerase buffer (New England BioLabs), 1.5 

mM MgCl2 (Thermo Fischer Scientific), 200 µM dNTPs (Qiagen), forward and reverse 

primers, and 1.5 units of Taq DNA polymerase (New England BioLabs). I added 

approximately 50 ng of DNA to each reaction, and used sterilized RNAse free water to 

bring the final volume to 20 µL. For A. palliata samples, PCR cycles were as follows: 

initial denaturation at 94oC for 2 minutes; 35 cycles of: denaturation at 94oC for 20 
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seconds, annealing at 64oC for 20 seconds (Cortés-Ortiz et al., 2009), extension at 72oC 

for 45 seconds; and a final extension at 72oC for 10 minutes (Nechvatal et al., 2008). For 

C. capucinus samples, PCR cycles were as follows: initial denaturation at 95oC for 3 

minutes; 45 cycles of: denaturation at 95oC for 30 seconds, annealing at 55oC for 30 

seconds, extension at 72oC for 30 seconds; and a final extension at 72oC for 30 minutes 

(Muniz & Vigilant, 2008).    

To ensure that the sequences were amplified successfully, I identified the PCR 

products using 1.75% agarose gel electrophoresis run at 100 V for 1 hour. I used Bullseye 

DNA SafeStain (MIDSCI) and an ultraviolet lamp to visualize the PCR amplification 

products, and I photographed the gels.  

After ensuring the presence of the various microsatellite sequences in each 

sample, I repeated the PCR reactions and sent 20 µL of the crude PCR products and 10 

µL of the corresponding forward primer to Functional Biosciences for Sanger DNA 

sequencing (Madison, WI). Once I received sequencing results, I analyzed the 

electropherograms using Sequencing Scanner Software 2.0.   

Allele Typing 

 The sequencing data allowed me to better analyze the genetic structure of the two 

monkey species. I was able to genotype the individuals and determine whether the 

monkeys were heterozygous or homozygous for a specific microsatellite. I devised a list 

of rules for analyzing the nucleotides in the electropherogram (adapted from DNA 

Sequencing Core, 2016; Barton, 2016).  
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1. I looked at how clean the beginning of the sequence was before the repeat motif. 

If the sequence had many overlapping peaks, then I determined this was a 

heterozygote and proceeded to count the number of repeats for the motif.  

2. If the sequence was clean, then I started base counting using the first clear 

occurrence of the repeat motif.  

3. The last distinct base of the repeat motif marked the end of the length of the first 

allele. Towards the end of the sequence, the peaks had more overlaps. These 

overlaps were equal in height, but half as tall as the repeat motif that preceded 

them. If there were additional repeat motifs after the last distinct base, then this 

was a heterozygote, and I proceeded to count the bases for the second allele (Fig. 

2B).  

4. If there were no additional repeat motifs after the last distinct base, then I 

determined this sample to be homozygous (Fig 2A).   

Statistical Analysis  

I analyzed the data by first determining the allele frequencies. I tested the null 

hypothesis of no evolution using Hardy-Weinberg Equilibrium and tested the significance 

between the observed and expected genotypes using a chi-square goodness of fit test. The 

null hypothesis was rejected when the p-value from the chi-square test was less than 0.05. 

These allowed me to indirectly assess the level of inbreeding in the population. Then I 

calculated the observed (Ho) and expected (He) heterozygosities and used these to 

determine the inbreeding coefficient (FIS) for each species using the formulae outlined in 

Peakall and Sound (2009) and Barton (2016) (See Box 1). These allowed me to directly 
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assess the level of inbreeding within and between various groups of individuals 

(Oklander et al., 2010).  

 

  

Box 1: Heterozygosity measurements and fixation index. The two species 

considered in this study are A. palliata and C. capucinus. Values for FIS 

range from -1 to +1. Values close to zero indicate non-random mating. 

Positive values indicate inbreeding and excess homozygosity, while 

negative values indicate excess heterozygosity.  

HO is observed heterozygosity in each species and is given as the 

proportion of N samples that are heterozygous at the locus.  

𝐻𝑂 =  
𝑁𝑜. 𝑜𝑓 𝐻𝑒𝑡𝑒𝑟𝑜𝑧𝑦𝑔𝑜𝑡𝑒𝑠

𝑁
 

HE is expected heterozygosity in each species and is the sum of the 

squares of allele frequencies subtracted from 1.  

𝐻𝐸 =  1 −  ∑ 𝑝𝑖
2 

FIS is the inbreeding coefficient within individuals relative to the 

population, measuring the reduction in heterozygosity of an individual 

due to non-random mating within its subpopulation.  

𝐹𝐼𝑆 =  
𝐻𝐸 −  𝐻𝑂

𝐻𝐸
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Results 

 To begin analyzing the genetic structures of the A. palliata and C. capucinus 

populations, I verified that the DNA was extracted from the fecal samples and contained 

the various microsatellite loci using PCR and gel electrophoresis. The gel was 

insufficient for genotyping individuals, but it confirmed amplification of the 

microsatellites. At the Apm01 locus, alleles were between 208-220 base pairs long (Fig. 

5A) (Cortés-Ortiz et al., 2009), and at the Ceb02 locus, alleles were between 225-233 

base pairs (Fig. 5B) (Muniz & Vigilant, 2008). Sanger sequencing allowed me to more 

closely analyze the microsatellites. Using the electropherograms generated for each 

sample, I counted the sequence repeats and determined the individuals’ genotypes (Fig. 

6A & 6B). I found five different alleles at the Apm01 locus, and each allele ranged from 

42-50 base pairs. I also observed only two alleles at Ceb02 that were either 32 or 36 base 

pairs long. I calculated the allele frequencies at the Apm01 and Ceb02 loci, and using 

chi-square goodness of fit tests, I found that both species were in Hardy-Weinberg 

Equilibrium. There was no significant difference between the observed and expected 

allele frequencies in A. palliata [χ2 (2, N =25) = 19.61, p > 0.05] and C. capucinus [χ2 (2, 

N =25) = 0.66, p > 0.05]. 
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Figure 5. Gel electrophoresis results following PCR. (A) A. palliata samples (lanes 3-

9) amplified with primer Apm01. The microsatellite bands are between 200-300 base 

pairs, which was expected (Cortés-Ortiz et al., 2009). (B) C. capucinus samples (lanes 

3-7) amplified with primer Ceb02. The microsatellite bands are between 200-300 base 

pairs, which was also expected (Muniz & Vigilant, 2008). The primer dimers at the 

bottom of the gel formed because the primers annealed to one another, instead of the 

template DNA.   
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B 

 

Figure 6. Electropherogram results from Sanger sequencing. (A) A. palliata sample 

amplified with primer Apm01. The highlighted yellow shows the TG repeats in the 

microsatellite. This individual is homozygous with 24 repeats on both alleles. 

Following the last TG, the sequence is TA. (B) C. capucinus sample amplified with 

primer Ceb02. The highlighted yellow shows the TCTA repeats in the microsatellite. 

The individual is heterozygous with 8 repeats on one allele and 9 on the other. After 

the last TCTA, past the yellow highlight, the peaks are overlapping, have equal 

heights, but are about half the height of previous peaks.  
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For both A. palliata and C. capucinus, there were more homozygote individuals 

than heterozygotes. At the Apm01 locus, 17 of the 25 samples were homozygous, and 

similarly, 18 of the 25 C. capucinus were also homozygous. I used F-statistics to estimate 

the observed (HO) and expected (HE) heterozygosities in each species. In A. palliata, the 

HO was 0.320, and this was less than the HE of 0.449. For C. capucinus, the HO was 

0.280, which was only slightly greater than the HE of 0.241 (Table 2). Using these values, 

I calculated the inbreeding coefficient (FIS) in each population. In A. palliata, FIS was 

positive at 0.287, indicating that the population is inbred. However, C. capucinus had a 

negative value of -0.163, which implies that the population was more heterozygous and 

not as inbred (Table 2).  

 

Discussion 

 The data reject my hypothesis that neither A. palliata nor C. capucinus would be 

in Hardy-Weinberg Equilibrium. The observed allele frequencies in both species were 

consistent with the calculated expected values. Although the HO of A. palliata was lower 

than expected, this value was not statistically significant (p>0.05). The HO value in C. 

capucinus was actually greater than the HE, which implies the population is more 

heterozygous. Because both species are in Hardy-Weinberg Equilibrium, evolution is not 

occurring. This means neither are experiencing a significant amount of genetic pressure -- 

Table 2. Observed (HO) and expected (HE) mean heterozygosities and inbreeding 

coefficients (FIS) for A. palliata and C. capucinus. 

Species HO HE FIS 

A. palliata 0.320 0.449 0.287 

C. capucinus 0.280 0.241 -0.163 
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natural selection is not occurring; there are no mutations; there is gene flow; and 

individuals are randomly mating (Andrews, 2010).  

To an extent, my results support my hypothesis that both species are inbred. The 

positive FIS value for A. palliata implies excess homozygosity in the population. 

Although the FIS in C. capucinus was negative (-0.163, Table 1), the value is closer to 

zero than -1. This suggests that the population is heterozygous, but not excessively so. 

Pope (1992) points out, though, that FIS values do not always accurately represent 

inbreeding in a population, at least not initially. In her study, she found that low 

migration rates in red howler monkeys (Alouatta seniculus) led to high levels of 

inbreeding in the whole population, but she calculated negative FIS values, or high 

heterozygosity within individual groups. The FIS value should match what is occurring in 

the population and will probably become more positive over time (Pope, 1992). 

Unfortunately, to my knowledge, there have been no other studies that calculated FIS 

values for A. palliata and C. capucinus at LSBRS. Therefore, I do not know how the FIS 

values have changed as a result of deforestation. My study can act as a baseline for future 

genetic studies conducted at LSBRS.  

Next, I reject my primary hypothesis that C. capucinus would be more inbred than 

A. palliata. My results are consistent with other studies that support this finding. Muniz et 

al. (2006) report that although only male C. capucinus disperse from their natal groups, 

there is almost no inbreeding in C. capucinus populations. Alpha males can remain in a 

group for up to 15 years and are the fathers of most offspring in a group.Muniz et al. 

(2010) assert that alpha males are willing to share estrous females with subordinate males 
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that they have strong bonds with. Wikberg et al. (2017) assert that C. capucinus females 

actively avoid inbreeding and are more inclined to do so because they are more invested 

in their offspring than males. Females also prefer to mate with strong, young males that 

recently emigrated into their group (Wikberg et al., 2017). These studies did not look 

specifically at the effect of habitat fragmentation on inbreeding and dispersal in C. 

capucinus; however, they suggest that inbreeding would still be rare because individuals 

very actively avoid inbreeding when mating.  

 A. palliata, in contrast, do not. Their primary strategy for avoiding inbreeding is 

forcing both sexes to disperse from their natal groups (Glander, 1992). I found that the A. 

palliata population at LSBRS was inbred. It is likely that habitat fragmentation 

negatively affected their ability to disperse from their natal groups. It is dangerous and 

costly to disperse, but it is necessary if individuals want to avoid inbreeding and 

competing with relatives for resources (Glander, 1992). Oklander et al. (2010) found that 

in continuous forests, black-and-gold howler (Alouatta caraya) monkeys emigrated more 

easily in continuous forests, and groups consisted of individuals that were not closely 

related. In fragmented forest groups, many females chose not to disperse and genetic 

relatedness was higher compared to continuous forest groups (Oklander et al., 2010; van 

Belle, Estrada, Strier, and Di Piore, 2012).  

 Because A. palliata are not as proactive in inbreeding avoidance as C. capucinus, 

it makes sense that A. palliata are more vulnerable to habitat fragmentation at LSBRS. 

Clarke, Collins, and Zucker (2002) argue that A. palliata are behaviorally flexible and do 

adjust to environmental changes over time. In their study conducted in 1984-2000, A. 
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palliata at Hacienda La Pacifica, Costa Rica responded to deforestation by establishing 

longer, more narrow home ranges and extending the length of daily travel. Still, their 

home ranges are only about 40 ha (Neville, Glander, Brata, & Rylands, 1988), which is 

substantially less than C. capucinus’ home range of 116 ha (Crofoot, 2007). In addition, 

as an arboreal monkey, A. palliata is found almost exclusively in the trees (Crockett & 

Eisenberg, 1987). C. capucinus are largely arboreal as well. However, they also spend 

time traveling on the ground, and they may do so to move between forest fragments 

(Gebo, 1992). As a result, C. capucinus are more likely to encounter other groups which 

encourages gene flow in the population. As co-inhabitants of the fragmented forests of 

LSBRS, A. palliata and C. capucinus are exposed to the same environmental pressures, 

but their behavioral differences render C. capucinus better at maintaining its genetic 

diversity than A. palliata.  

It is important to note the limitations to this study that may have affected my 

results. The sample size was small at only 25 for each species. In A. palliata, 11 of these 

samples were collected from individuals in the small forest fragment, while 8 C. 

capucinus samples were from this part of LSBRS. The small forest is approximately 15 

ha, which is half the size of the large forest. There are fewer monkey groups living in the 

small forest and gene flow is more limited (Pruetz & Leasor, 2002). This could have 

contributed to the observation that A. palliata was more inbred. For this study, I looked at 

the inbreeding within the whole population. It would have been interesting to look at the 

level of inbreeding within individual groups. In addition, due to time constraints and 

technical difficulties, I only analyzed one microsatellite for each species. The data would 
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have been more complete had I been able to analyze more loci, as heterozygosity in 

microsatellites do vary. More data would have allowed me to more accurately judge 

whether or not the species were inbred. Finally, there may have been errors in my allele 

scoring. It was difficult to analyze the electropherograms and count the number of repeats 

for each allele, especially when there were many peaks overlapping one another. This 

could have led to errors in genotyping.  

This study has demonstrated how human-induced habitat fragmentation is 

negatively affecting the genetic structures of these two monkey species. It will act as a 

genetic baseline for evaluating the effectiveness of conservation projects at LSBRS, 

including the construction of biological corridors between the forest fragments that will 

allow organisms to move more freely between them (Garber et al., 2010). Humans 

consume much of earth’s resources and destroy habitats without considering how this 

may affect the environment or its inhabitants. As stewards of the earth, we all have a 

responsibility to care for the environment and ensure that it is well-maintained for future 

generations. This includes both humans and non-human species.  
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VI. Conclusion 

 When I look back on my time at Regis University, it is amazing to see how much 

I have grown as a student, researcher, and person. This personal growth began the 

moment I signed on to be part of Dr. Marie-dominique Franco and Dr. Amy Schreier’s 

research team during my junior year. I was part of every step in the research process, 

from the fecal sample collection in the rainforests of Costa Rica, down to the genetic 

analysis in the laboratories in Denver, CO. I never thought that working with monkey 

feces could have affected my life in such a positive way. 

Like so many others, I used to have a primarily anthropocentric viewpoint on the 

world, and I was not concerned with animal rights or environmentalism. I knew these 

were important issues because I had learned about them in classes, but I did not feel truly 

invested in them. I had always prioritized our human wants and needs over those of 

animals or the environment. For example, I believed that any kind of research involving 

animals was morally permissible if it provided any kind of benefit to human life. I also 

thought sustainable practices, such as recycling, were an unnecessary hassle. It was not 

until after I had spent a month in the rainforest; walked the barren paths between the 

forest fragments; lived amongst mantled howler (Alouatta palliata) and white-faced 

capuchin (Cebus capucinus) monkeys; and analyzed the effects of deforestation on these 

monkeys’ genetic structures that I experienced a change of heart. I realized we are more 

connected to other animals and the environment that I had initially thought, and I 

suddenly became aware of how selfish and narrow-minded I had been.  
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 This shift in focus from humans to animals and the environment is mirrored in the 

structure of my Honors Thesis. I began by establishing our human rights to our genetic 

information, and I stressed the importance of transparency and informed consent in 

genetic research involving humans (Chapter II). Humans are fortunate in that they can 

choose whether or not to participate in a study. Animals, on the other hand, cannot. In 

Chapter III, I discussed the ethics of using non-human primates, our closest relatives, in 

genetic research. I conceded that because non-human primates are sentient creatures, 

researchers must abide by the humane treatment principle and avoid inflicting 

unnecessary suffering on them. This chapter was inspired by my experiences in Costa 

Rica and the connections I developed with A. palliata and C. capucinus. I spent a month 

in the rainforest studying the social structure of A. palliata groups in relation to their 

distribution of food (Chapter IV). Studying the monkeys’ behavior and living amongst 

them forced me to recognize how similar we were to them. Finally, I presented the results 

of my genetics study and illustrated how human-induced habitat fragmentation is 

negatively affecting the genetic structures of A. palliata and C. capucinus (Chapter V).  

 It is too often that we focus only on our human wants and needs without 

considering how our actions are affecting the lives of animals or the environment. We 

must recognize that we are not the most important organisms living on Earth. I see now 

that it is not ethical for us to consistently subject animals to pain and suffering on our 

behalf, and it is not morally permissible for us to destroy habitats without considering the 

consequences. Although I have acknowledged and embraced these problems, I have still 

struggled to draw the moral line between what is right or wrong, and I cannot offer any 
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final solutions to the animal rights or conservation issues. Indeed, I do not think we will 

ever be able to completely eradicate animal involvement in genetic studies or adopt a 

purely sustainable lifestyle; however, we are morally obligated to try. Therefore, I end on 

a quote by Annie Dillard (1999) from her book For the Time Being, in which she 

concedes, “The work is not yours to finish…but neither are you free to take no part in it” 

(p. 202). Recognizing that we are connected to other animals and to the environment is 

the first step in the right direction – the first step towards just coexistence with the earth 

and its non-human species.   
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