
Regis University Regis University

ePublications at Regis University ePublications at Regis University

Regis University Student Publications
(comprehensive collection) Regis University Student Publications

Summer 2005

Development Of A Personal Diet Plan Database Application For Development Of A Personal Diet Plan Database Application For

Persons With Severe Food Allergies Persons With Severe Food Allergies

Heather Suzanne Ward
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ward, Heather Suzanne, "Development Of A Personal Diet Plan Database Application For Persons With
Severe Food Allergies" (2005). Regis University Student Publications (comprehensive collection). 772.
https://epublications.regis.edu/theses/772

This Thesis - Open Access is brought to you for free and open access by the Regis University Student Publications
at ePublications at Regis University. It has been accepted for inclusion in Regis University Student Publications
(comprehensive collection) by an authorized administrator of ePublications at Regis University. For more
information, please contact epublications@regis.edu.

https://epublications.regis.edu/
https://epublications.regis.edu/theses
https://epublications.regis.edu/theses
https://epublications.regis.edu/regiscollege_etds
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F772&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F772&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/772?utm_source=epublications.regis.edu%2Ftheses%2F772&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
School for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

iii

Acknowledgements

With thanks to my family for their love and support.

Thanks, Dad, for always being there.

Mom, thank you for not letting me give up.

 Thanks, Sissy, for the much needed proof reading and grammar policing.

Special thanks to my team of volunteer users for taking the time –I truly could not
have done it without you.

iv

Abstract

This project will research, analyze, design, and implement a computerized

system that will assist patients in creating a personal diet plan based upon a

“rotation diet.” This diet, specifically designed for patients with severe food

allergies, requires that a patient may only eat a particular food every n days

(where n is any number), and foods from the same biological food family every n

days.

Currently, patients use either pen-and-paper or a computerized

spreadsheet to create weekly or monthly food meal plans for the diet plan. The

meal plans are usually transferred by hand to their daily or weekly shopping lists.

There are three main problems with the current system. First, many

patients complain that in order to make their meal plans simple enough to follow

easily, they tend to eat the same foods in the same order each week, so their

diets have become very plain and uninteresting. Second, patients frequently

make mistakes on their meal plans relating to which foods belong to a given food

family, which defeats the purpose of the “rotation” diet plan. Finally, hand

transferring the meal plans to shopping lists is time consuming and often

inaccurate.

The ultimate goal of this project is to create a computerized system that

will assist patients to make up a personalized diet plan that allows them to enjoy

a broader range of meals, and also to quickly and accurately make up shopping

lists for the meals.

v

Table of Contents

Document Revision History ... i
Acknowledgements ..iii
Abstract ... iv
Table of Contents ... v
List of Tables ... vi
List of Figures.. vi
1 Introduction.. 1

1.1 Introduction and Background .. 1
1.2 The Rotation Diet .. 1
1.3 Current Process .. 2
1.4 Project Goals .. 4
1.5 Project Scope.. 4
1.5 Project Resources... 4
1.6 Project Timeline .. 5

2 Research ... 6
2.1 Project Methodology ... 6
2.2 Candidate Solutions.. 6

2.2.1 Application Implementation Technologies .. 7
2.2.2 Integrated Development Environment (IDE) Solutions 11
2.2.3 Database Solutions .. 14
2.2.4 Database Application Web Hosting .. 17

2.3 Winning Solutions ... 19
2.3.1 Application Implementation Technology Solution 20
2.3.2 Integrated Development Environment Solution 20
2.3.3 Database Solution .. 20
2.3.4 Database Application Web Hosting Solution 21

2.4 Methods of Research.. 21
2.4.1 User Interviews... 21
2.4.2 World Wide Web... 21

2.5 Summary... 24
3 Project Methodology.. 25

3.1 Rapid Application Development .. 25
3.2 Phases of Rapid Application Development (RAD) 25

3.2.1 Preliminary Investigation .. 26
3.2.2 Problem Analysis.. 26
3.2.3 Iterative Phases.. 32
3.2.4 Implementation (final) ... 36
3.2.5 Operation and Support ... 36

3.3 Summary... 36
4 Project History ... 38

4.1 Beginning the Project .. 38
4.2 Managing the Project .. 38
4.3 What Went Right... 39

vi

4.4 What Went Wrong... 40
4.4.1 Hardware Issues... 40
4.4.2 Development Issues ... 41
4.4.3 Deployment Issues... 42

4.5 Milestones... 43
4.6 Project Summary .. 44

5 Lessons Learned ... 46
5.1 Project Experience.. 46
5.2 Expectations ... 46
5.3 Next Evolution... 47
5.4 Conclusions .. 48
5.5 Summary... 48

Bibliography.. 49
Appendices... 50

Appendix A: User Interview 1 Report .. 50
Appendix B: Requirements Report.. 52
Appendix C: Database Entity Relationship Diagram (ERD) 61
Appendix D: Struts Application Specification .. 62
Appendix E: Struts Application Flowchart ... 77
Appendix F: Final User Interview .. 82
Appendix G: Use Cases.. 84
Appendix H: Glossary ... 86
Appendix I: Views Sample .. 88

List of Tables
Table 1: Partial Meal Plan Sample ... 2
Table 2: Software Publishers.. 22
Table 3: Online Stores.. 22
Table 4: Academic and Technical Sites.. 23
Table 5: Web Hosts .. 23
Table 6: Project Milestones .. 44

List of Figures
Figure 1: Project Timeline... 5
Figure 2: Login Screen ... 88
Figure 3: Create Meal Plans Screen... 88
Figure 4: Choosing the Meals to be Created for the Meal Plans 89
Figure 5: Selecting Foods for a Meal.. 89
Figure 6: View of a Completed Meal Plan .. 90
Figure 7: Shopping List for the Meal Plan Shown in Figure 6............................. 91

1 Introduction

1.1 Introduction and Background

This paper will document a project for the development of a personal diet

plan database application for persons with severe food allergies. The project

proposal was approved in May 2002, and was begun in March 2004.

The goals of this project were to research, analyze, design, and implement

a database application that would assist patients in creating a personal diet plan

based upon a “rotation diet.” This diet, specifically designed for patients with

severe food allergies, requires that a patient may only eat a particular food every

n days (where n is any number), and foods from the same biological food family

every n days.

1.2 The Rotation Diet
The “rotation diet” was specifically designed for patients with severe food

allergies, and was intended to reduce the chance of these patients developing

allergies to foods that are currently safe for them to eat.

The most important feature of the rotation diet is the rotation schedule.

The rotation schedule requires that a patient may only eat a particular food once

every n (where n is any number) days, and may also only eat foods from the

same biological food family every n days. This is notated as family rotation /food

rotation (4/6, 3/7, or 3/5, etc). For example, with a 3/5 day rotation, if the patient

eats broccoli (mustard family) on Monday, they cannot eat broccoli again until

Sunday (five days between), but may eat something else from the mustard

2

family, such as cauliflower, on Friday (three days between). As another

example, if the patient eats string beans (legume family) on Tuesday, they may

eat navy beans on Saturday, but may not eat string beans until Monday.

In order to determine which foods belong to which families, patients

consult a diet manual containing a list of foods categorized by biological food

families. For example, tomatoes are listed under the Nightshade family, cow’s

milk is under the Bovine family, and apples are under the Rose family.

1.3 Current Process
Currently, patients use either pen-and-paper or a spreadsheet to create

daily meal plans for the rotation diet, usually making up one to four weeks worth

of meal plans at a time. The meal plans are then transferred by hand from the

meal plans to their daily or weekly shopping lists.

Below is a sample partial weekly meal plan for a 3/5 day rotation

schedule.

Table 1: Partial Meal Plan Sample
Sun Mon Tues Wed Thurs Fri Sat

Breakfast
Orange
Juice,
Butter,
Wheat
Toast

Breakfast
Goat’s
Milk,
Salmon

Breakfast
Bacon,
Buckwheat

Breakfast
Tea,
Banana

Breakfast
Coffee,
Chicken
Egg,
Honey
Dew

Breakfast
Apricot,
Blueberry,
Beet
Sugar

Breakfast
Orange
Juice,
Butter,
Wheat
Toast

Lunch
Beef,
Wheat
Bun,
Cow’s
Milk
Cheese,
Tomato,
Butter

Lunch
Catfish,
Okra

Lunch
Apple,
Pork
Chop,
Green
Beans

Lunch
Broccoli,
Cod,
Vinegar

Lunch
Cashew,
Chicken,
Curry
Powder,
Jicama

Lunch
Carrots,
Goat’s
Milk
Cheese,
Mutton

Lunch
Beef,
Wheat
Pasta,
Cow’s
Milk
Cheese,
Tomato,
Butter

3

Patients select the foods they put on the meal plans from three sources:

1) A list of “safe” foods that do not cause the patient an allergic reaction.

2) Their diet manual

3) Past meal plans, which help patients remember when they last ate a

food.

There are three main problems with the current system:

 First, many patients complain that in order to make their meal plans

simple enough to follow easily, they tend to eat the same foods in the same order

each week. As a result, their diets have become very plain and uninteresting.

Second, patients sometimes neglect to consult their diet manual in

determining the foods belonging to a particular food family, which often leads to

mistakes with the rotation schedule that are severe enough to defeat the purpose

of the rotation diet.

Finally, hand transferring the meal plans to shopping lists is time

consuming and often inaccurate. This inaccuracy can lead to patients eating

foods out of rotation because they do not wish to make another trip to the grocery

store to buy the food that was actually on their meal plan. Furthermore, most

patients that give up on their rotation diet state that the major contributing factor

to their failure to stay on the diet was the fact that they simply did not have time

to create meal plans properly.

4

1.4 Project Goals
The goals of this project were the development of a database application

that would 1) assist patients in creating their personal diet plan based upon a

rotation diet, 2) allow them to enjoy a broader range of meals, and 3) to quickly

and accurately make up shopping lists for the meals.

1.5 Project Scope
The scope of the project was determined during informal user interviews,

and is based on the project goals.

 It was determined that the application should:

1) Assist patients in the creation of daily meal plans for their personal diet plan.

2) Allow patients to specify rules and preferences for their diet plan, in

particular the rotation schedule (3/5, 4/6, etc) and the foods that they are

able to eat.

3) Not allow patients to insert foods into their meal plans that break the rules of

their diet plan.

4) Allow patients to easily transfer their meal plans to weekly and/or daily

shopping lists.

5) Allow patients to easily print out their meal plans and shopping lists.

6) Save meal plans for future reference.

1.5 Project Resources
The primary personnel resource for the project was the student that

initiated the project, fulfilling roles as the project manager, systems analyst,

5

developer, and lead tester. The only other personnel resources were the team of

volunteer application testers.

Hardware resources were two personal desktop computers, and the

budget for the project was limited to $400.00.

1.6 Project Timeline

Figure 1: Project Timeline

6

2 Research

2.1 Project Methodology
One of the first decisions made during the research process was the

selection of the project methodology. After a careful review of the various forms

of Software Development Life Cycle (SDLC) methodologies, the student

determined that since the initial research for the project indicated that it would

most likely be implemented as an n-tiered database application, the most

appropriate methodology for the project would be some form of Rapid Application

Development (RAD).

The student chose to create a development plan based on RAD, outlined

below:

1) Preliminary Investigation

2) Problem Analysis (accelerated)

3) Iterative Phases

a. Design

b. Construction

c. Implementation

d. Analysis

4) Implementation (final)

5) Operation and Support (optional)

2.2 Candidate Solutions
After the project methodology had been selected, the student conducted

research to determine the business and user requirements. These were then

used to complete an initial feasibility analysis of the technologies that would be

7

used for the project. This research was very important, as it would determine the

direction the project would take.

Initial research had indicated that there were no existing off-the-shelf

software applications of any sort designed for assisting patients with creating

personal diet plans based on a rotation diet. Further research confirmed the lack

of existing solutions, so the student determined that a custom application would

have to be built.

Four categories of custom solutions were researched over the course of

the project: 1) Application Implementation Technologies, 2) Integrated

Development Environment (IDE) Solutions, 3) Database Solutions, and 4)

Database Application Web Hosting. The top four candidates in each category

were considered and scored using a candidate systems matrix. The highest

scoring candidate in each matrix was chosen as the solution for that category.

2.2.1 Application Implementation Technologies
One of the most important decisions made was how the application was to

be implemented, since this would directly affect which candidates would be

selected in the other three categories.

The student chose four candidates for review in the application

implementation category: 1) Oracle Portal, 2) Java with Web Start, 3) Java web

application with the Struts framework, and 4) Java web application with the Struts

and iBATIS frameworks.

8

2.2.1.1 Oracle Portal
The first candidate was Oracle Portal, which is part of the Oracle

Application Server suite. There would be several benefits to using Oracle Portal.

First, the student was very familiar with Portal, and thus could implement the

application fairly quickly. Second, she already had an academic developer’s

license for Portal. However, there were several barriers to using Portal for this

project. First, Application Server is extremely expensive to deploy, so users

would not get their wish of actually using the application if the project was

reasonably successful. Also, this solution would have to be deployed and

accessed over the student’s home network, so users would have to come to the

student’s home to test the application for her. Lastly, this solution would require

use of the Oracle database, which is also very expensive to deploy.

2.2.1.2 Java with Web Start
The next candidate was Java with Web Start, which would be used to

create a stand-alone application with an imbedded Borland JDataStore database.

Users would use Java Web Start –which must be downloaded from Sun’s web

site– to download, install, and run the database application. There were several

barriers to using this solution. First, Web Start can be confusing, and is probably

too difficult for novice computer users. Also, using Java to connect to the

database and pass data back and forth between the application and database

would increase the amount of time the implementation would take because it

requires: 1) much more code in the form of JDBC (Java Database Connectivity)

SQL queries and updates than the Oracle solution, and 2) more design work than

9

implementing with Portal, because the user interface, database/application

interface, and application design/design patterns would have to be worked out.

The main benefit of this solution was the fact that it would be much cheaper to

deploy since Java deployment is free. However, the JDataStore imbedded

database would be about $25 per user to deploy. Also, even though Web Start

would be free, users would have to download the application, so a web host

would have to be selected and a domain name purchased, which would add to

the costs. These costs could probably be passed on to users, however.

2.2.1.3 Java with the Struts Framework
The next candidate was to create a Java web application using the Struts

framework. There would be several benefits to this solution. First, the Struts

framework is designed to make the development of a large web application much

easier, inherently providing all the underpinnings for the application such as

design patterns (hence the name Struts). Also, the application could be

supported by any of the database solutions. However, as mentioned above,

using Java for database connectivity would require more time to design and

implement. Also, the student would have to learn to use the Struts framework.

Deployment of this solution would be free, but would also require the purchase of

a domain name and the selection of a database application web host.

2.2.1.4 Java with the Struts & iBATIS Frameworks
The last implementation candidate was to create a Java web application

using both the Struts and iBATIS frameworks. The addition of the iBATIS

framework to the Struts framework could significantly reduce the amount of

10

JDBC code that would be required for the application. The iBATIS framework

eliminates the need to have any actual SQL code at all within Java classes, with

all of the constant parts of the SQL code held in XML (Extensible Markup

Language) files and accessed only by the framework. Again, this application

could be used with any of the database solutions. The only barrier would be the

fact that the student would have to learn to use both the Struts and iBATIS

frameworks. This solution would be free to deploy, but would also require the

selection of a web host and purchase of a domain name.

11

2.2.1.4 Candidate Systems Matrix – Application Implementation
Feasibility
Criteria

Wt. Candidate 1
Oracle
Portal

Candidate 2
Java with Web
Start

Candidate 3
Java Web
App with
Struts

Candidate 4
Java Web
App with
Struts &
iBATIS

Operational
Feasibility
(Functionality)

20% Fully supports all
user
requirements.

Score 100

Does not fully
support all user
requirements.

Score 80

Fully supports all
user
requirements.

Score 100

Fully supports all
user
requirements.

Score 100

Technical
Feasibility

20% Requires Oracle
database back-
end.
Would require
users to have
Internet access,
and some
training.
Very well
integrated with
the Oracle
database and
Oracle developer
solutions.
I am very familiar
with Oracle
products. Would
require at least
one new
computer.

Score 80

Can be used with
any of the
database solutions.
Can be used with
any of the
application
development
solutions except
Oracle.
Would require
users to have
Internet access,
would be very
difficult for most
users to set up.
Would require a lot
of coding to get
data into and out of
the database.

Score 60

Can be used
with any of the
database
solutions and
any of the
application
development
solutions except
Oracle.
 Would require
users to have
Internet access.
Would require a
lot of coding to
get data into and
out of the
database.
Will require
learning the
Struts
framework.

Score80

Can be used with
any of the
database
solutions and any
of the application
development
solutions except
Oracle.
Would require
users to have
Internet access.
Would speed the
coding required to
get data into and
out of the
database.
Will require
learning the Struts
and iBATIS
frameworks.

Score 90
Economic
Feasibility
Cost to Purchase
Licenses to
Deploy and /or
Distribute final
product

55% (Budget $100)

$2000 (for new
computer)

$5000+

Score 0

(Budget $100)

$0
$0

Score 100

(Budget $100)

$0
$0

Score 100

(Budget $100)

$0
$0

Score 100

Schedule
Feasibility
(Can I keep to my
Project Schedule)

5%

Score 100

Score 80

Score 70

Score 80

Ranking 100% Score 41 Score 87 Score 94.5 Score 97

2.2.2 Integrated Development Environment (IDE) Solutions
IDEs are the software used to construct applications. The selection of an

IDE is a very important decision, because the selection of the right IDE for a

project can make development of applications faster and more correct.

12

One of the most important factors in the selection of the IDE for the project

was the fact that the IDE must support whichever application implementation

technology was selected. For example, if the application was to be implemented

as an Oracle Portal application, it would have to be developed with Portal’s

integrated development tools, but if the application was to be implemented in

pure Java, any number of Java IDEs might be considered.

Another important consideration was the cost of purchasing the IDE

software. Since the budget for the IDE was limited to $100, most candidates

proved to be far too expensive, even at an academic discount.

2.2.2.1 Oracle Portal Integrated Development Tools
The first candidate IDE was the development tools integrated with Oracle

Portal. These tools are easy to use, and the student was experienced with them

as she had used them in class. She also had an academic developer’s license

for Portal, so this solution would be free. This solution could only be used with

the Portal implementation solution, and would require the use of an Oracle 9i

database.

2.2.2.2 Borland JBuilder Enterprise Edition
The second candidate was Borland’s powerful JBuilder Enterprise Edition.

This solution could be coupled with any of the Java implementation solutions.

The program would be easy to use and could greatly speed Java development

for the project. However, this solution was very expensive, and even at

discounted academic pricing, would exceed the budget by about 500%.

13

2.2.2.3 Metrowerks CodeWarrior Pro
The third candidate was Metrowerks CodeWarrior Pro. This program is

not as powerful as JBuilder, but is easy to use and would speed Java

development. This solution could be coupled with any of the Java implementation

solutions. This candidate would exceed the budget by about 10% at discounted

academic pricing.

2.2.2.4 NetBeans
The last IDE candidate was NetBeans, an open source IDE. NetBeans is

not as powerful as CodeWarrior or JBuilder, but its no-frills interface would be

easy to use. This solution could be coupled with any of the Java implementation

solution, and is free.

14

2.2.2.5 Candidate Systems Matrix - Integrated Development Environments
Feasibility Criteria Wt. Candidate 1

Oracle
Portal Tools

Candidate 2
Borland
JBuilder
Enterprise

Candidate 3
Metrowerks
CodeWarrior

Candidate 4
NetBeans

Operational
Feasibility
(Functionality)

20% Fully supports all
user
requirements,
but cannot
create a stand-
alone product.
May require a lot
of training for
end users.

Score 80

Fully supports all
user
requirements. Can
create a stand-
alone product.
End product may
require less end
user training.

Score 100

Fully supports all
user
requirements.
Can create a
stand-alone
product.
End product may
require less end
user training.

Score 100

Fully supports all
user
requirements. Can
create a stand-
alone product.
End product may
require less end
user training.

Score 100
Technical
Feasibility

20% Have experience
with Portal.
Difficult to install.
Requires an
Oracle DB back-
end.

Score 50

RAD tools. Can
be used with all
candidate
database
solutions. Uses
my Java
experience.

Score 100

RAD tools. Can
be used with all
candidate
database
solutions. Uses
my Java
experience.

Score 100

No RAD tools.
Can be used with
all candidate
database
solutions. Uses
my Java
experience.

Score 100

Economic
Feasibility
Cost to Purchase
Licenses to Deploy
and Distribute final
product

55% (Budget $100)

$5000+ (inc. with
Portal)

$0

Score 0

(Budget $100)

$400 (academic
price)

$0

Score 70

(Budget $100)

$110 (academic
price)

$0

Score 90

(Budget $100)

Free (Open
Source)

Free

Score 100

Schedule
Feasibility
(Can I keep to my
Project Schedule)

5%

Score 70

Score 90

Score 90

Score 90

Ranking 100% Score 29.5 Score 83 Score 94 Score 99.5

2.2.3 Database Solutions
Four candidates were considered in the database category: 1) Oracle 9i

Enterprise Edition, 2) Borland JDataStore, 3) Microsoft SQL Server 2000, and 4)

MySQL.

2.2.3.1 Oracle 9i Enterprise Edition
The first candidate was Oracle 9i Enterprise Edition. There were three

main benefits to using this candidate. First, this was the most powerful of the

database candidates. Next, the student was very familiar with Oracle 9i

15

Enterprise Edition, and she already had an academic developer’s license for the

product. Lastly, this solution would work with any of the web-based or Oracle-

based implementation solutions. The only real barrier to using this solution was

the fact that it would be extremely expensive to deploy.

2.2.3.2 Borland JDataStore
The second candidate database was Borland JDataStore. This solution

comes built-in with Borland JBuilder 8 Enterprise Edition, but can be purchased

by developers as a separate product for approximately $40. JDataStore was the

only solution that could be used to create a stand alone product, because the

database could be imbedded in the application. This would be much cheaper

than deploying JDataStore on the web; however there would still be the problem

of application installation, addressed under the implementation solutions.

2.2.3.3 Microsoft SQL Server 2000
The next candidate was Microsoft SQL Server 2000. The benefits of this

solution included the facts that 1) it could be coupled with any of the web-based

Java implementation solutions, and 2) the student already had a developer’s

license for SQL Server. Unfortunately, SQL Server is also very expensive to

deploy.

2.2.3.4 MySQL
The last candidate was the open source MySQL database. There would

be three main benefits to using MySQL: 1) MySQL is free, 2) it would be able to

do nearly everything the more expensive candidates could do, and 3) this

solution could be coupled with any of the web-based Java implementation

16

solutions. The only barrier found was the fact that MySQL does not support the

use of foreign keys for data validation. However, the student determined that

foreign key data validation was not critical to the project, because data validation

could be implemented in the application.

2.2.3.4 Candidate Systems Matrix - Database Solutions
Feasibility Criteria Wt. Candidate 1

Oracle 8i(9i)
Database

Candidate 2
Borland
JDataStore

Candidate 3
Microsoft SQL
Server 2000

Candidate 4
MySQL

Operational
Feasibility
(Functionality)

20% Fully supports all
user
requirements.

Score 100

Fully supports all
user requirements.

Score 100

Fully supports all
user requirements.

Score 100

Fully supports
all user
requirements.

Score 100

Technical Feasibility

20% Can be used
with any of the
application
implementation
& development
solutions.
Would require
users to have
Internet access.

Score 80

Can be used with
any of the Java
application
implementation
solutions, and all of
the application
development
solutions except
Oracle.
Can be imbedded
in the application to
create a stand-
alone application.

Score 100

Can be used with
any of the Java
application
implementation
solutions, and all of
the application
development
solutions except
Oracle.
 Would require
users to have
Internet access.

Score 100

Can be used
with any of the
Java application
implementation
solutions, and
all of the
application
development
solutions except
Oracle.
Does not
support Foreign
Keys.
Would require
users to have
Internet access.

Score 90

Economic Feasibility
Cost to Purchase
Licenses to Deploy
and /or Distribute
final product

55% (Budget $100)

$15,000+
$0

Score 0

(Budget $100)
$0 with JBuilder
$40 dev. license

$25 per copy
or approx. $400 for

web deployment

Score 70

(Budget $100)

$0 (have developer

lic)
$5000+

Score 0

(Budget $100)

$0
$0 For non-

commercial use

Score 100
Schedule Feasibility
(Can I keep to my
Project Schedule)

5%

Score 100

Score 100

Score 100

Score 100

Ranking 100% Score 41 Score 83.5 Score 45 Score 98

17

2.2.4 Database Application Web Hosting
This category was optional, as only the Java implementation solutions

would require a database application web host.

As such, all of the candidates would be able to provide all of the services

required by a Java database application, namely database hosting, a JVM (Java

Virtual Machine) engine and a Java servlet engine, as well as sufficient disk

storage and monthly bandwidth. All the candidates also provided domain

registration, which would be required, and used Linux servers.

The budget of $100 for this category was for the cost of web hosting for

the duration needed for development, testing, and deployment of the project,

documenting the deployment, and presenting the project, an estimated 6 months.

2.2.4.1 jspzone.net
The first web host candidate was jspzone.net. This host allowed a

respectable 800MB of disk storage, 20GB of monthly bandwidth, and provided a

99.7% uptime guarantee. They also guaranteed daily web site and system

backups, and used Tomcat for the servlet engine. This was the second least

expensive of the candidates profiled here, but would overrun the budget by about

17%.

2.2.4.2 lunarpages.com
The next candidate was lunarpages.com. This host tied for the most disk

storage allowed at 1000MB, and had the best monthly bandwidth allowance at

40GB. They used the servlet engine Resin and the older J2SE 1.4.1. The

18

student was much more familiar with the Tomcat servlet engine than Resin,

however Resin appeared to be very similar. Lunarpages also guaranteed 99.9%

uptime. This was the least expensive candidate, and but would still overrun the

budget by about 1%.

2.2.4.3 assortedinternet.com
The next candidate was assortedinternet.com. This host would provide

the lowest disk storage allowance at 125 MB and lowest bandwidth allowance at

5000MB, with a guarantee of 99% uptime. This host used Tomcat, which the

student is familiar with. This was the most expensive candidate.

2.2.4.4 cwihosting.com

The last host is cwihosting.com. This host tied with lunarpages.com for

the most disk storage allowed (1000MB) and had the second best monthly

bandwidth allowance at 25GB.They used Resin with JDK 1.4.2. They also

claimed a 100% uptime guarantee. This was the second most expensive

candidate.

19

2.2.4.5 Candidate Systems Matrix – Database Application Web Hosting
Feasibility
Criteria

Wt. Candidate 1

jspzone.net

Candidate 2

lunarpages.com

Candidate 3

assortedinternet.com

Candidate 4

cwihosting.com

Operational
Feasibility
(Functionality
)

20% Fully supports
all user
requirements.

Score 100

Fully supports all
user requirements.

Score 100

Fully supports all user
requirements.

Score 100

Fully supports all
user requirements.

Score 100
Technical
Feasibility

20% 800MB storage
20GB
bandwidth
Unlimited email
with webmail
Uses Tomcat
99.7% uptime

Score 100

1000MB storage
40GB bandwidth
Unlimited email with
webmail
Uses Resin
Uses older JDK
99.9% uptime

Score 95

125MB storage
5000MB bandwidth
Unlimited email and
webmail
Uses Tomcat
99% uptime

Score 50

1000MB storage
25GB bandwidth
55 pop3 email
accounts
Uses Resin
100% uptime

Score 100
Economic
Feasibility

Domain
Registration

Hosting Cost

Setup Fees

Total for 6
months

55% (Budget $100
for 6 months)

$15.00 year
-

$203.88 year
or

$50.97
quarterly

or
$16.99 month

-

Free

$116.94

-

Score 85

(Budget $100 for 6
months)

$14.95 year
-

$119.40 year
or

$65.70 bi-yearly
or

$35.85 quarterly
-

$20 unless subscribe
to yearly plan

$100.65
-

Score 100

(Budget $100 for 6 months)

$15 year
-

$299.88 year
or

$29.99 month
-

Free

$194.94
-

Score 0

(Budget $100 for 6
months)

$25 year
-

$175 year + $3
month for jsp/Resin

or
$14.95 month
+ $3 month

-

$20 unless subscribe
to yearly plan

$132.70
-

Score 70
Schedule
Feasibility
(Can I keep to
my Project
Schedule)

5%

Score 100

Score 100

Score 100

Score 100

Ranking 100
%

Score 91.75 Score 99 Score 35 Score 83.5

2.3 Winning Solutions
After careful consideration, the best available solution was selected from

the candidates for each of these four categories: 1) Application Implementation

Technologies, 2) Integrated Development Environment (IDE) Solutions, 3)

Database Solutions, and 4) Database Application Web Hosting.

20

2.3.1 Application Implementation Technology Solution
The student chose Java with the Struts and iBATIS frameworks for the

application implementation technology solution. She selected this solution for

several reasons. First, Struts has become a standard for Java web development

and incorporates many best practices and Java design patterns. Next, though the

frameworks would add some complexity, and would require the student to learn

the frameworks, this would be balanced by the fact that both frameworks were

well-tested, stable, and among other things, would make the project easier to

document. Lastly, the iBATIS framework would allow all the SQL code for the

project to be logically organized and stored in one place.

2.3.2 Integrated Development Environment Solution
Since one of the Java candidates was selected for the implementation

technology solution, an IDE that supported Java development was required for

the IDE solution. The student chose NetBeans. There were several benefits to

using NetBeans, such as faster development, but the primary reason it was

selected over the other candidates was the fact that it was free.

2.3.3 Database Solution
After careful consideration, the student chose MySQL for the database

solution. She selected this solution for several reasons. First, many database

application web hosts include MySQL databases in the price of hosting. Next,

setup of a MySQL datasource would be very easy, and would not require any

special tasks. Lastly, deployment of MySQL databases was free. The student did

have some reservations about MySQL, because it would not support the use of

21

views or foreign keys. However, she decided that since she would be using Java

JDBC for any updates to the database, she could enforce the keys

programmatically.

2.3.4 Database Application Web Hosting Solution
The student selected lunarpages.com to host the project. This solution

was chosen because lunarpages.com would provide by far the best value for the

money. The student was somewhat concerned about using the Resin JVM, since

she had never used it before, but decided that this was a minor issue.

2.4 Methods of Research

2.4.1 User Interviews
In order to have a group of users for guidance and prototype testing

purposes, the student formed a team of volunteers who were: 1) actively

following a rotation diet or had been following a rotation diet in the past two

years, 2) computer literate, and 3) able to test the application. This user team

was the source for all user interviews, and provided the user feedback that was

used to revise the project requirements after major testing milestones.

2.4.2 World Wide Web
The majority of the research that was done on the project was conducted

online, at software publisher’s web sites, online stores, academic and technical

library sites, and web hosting provider sites (web hosts). Only the best candidate

solutions were included in the feasibility analysis, but many more were

researched.

22

2.4.2.1 Software Publishers

Software publisher web sites were visited to determine the features and

manufacturer’s suggested retail price of software candidates.

The software publisher web sites that were visited include:

Table 2: Software Publishers
Publisher Product(s)

Researched
URL

Apache Software
Foundation

Struts http://www.apache.com

Borland Corporation JBuilder Enterprise
Edition; JDataStore

http://www.borland.com

Eclipse Foundation Eclipse http://eclipse.org
Helios Software
Solutions

Textpad http://www.textpad.com/

iBATIS iBATIS framework http://www.ibatis.com
JetBrains IntelliJ http://www.jetbrains.com/idea/
Metrowerks CodeWarrior Pro http://www.metrowerks.com
Microsoft Corporation SQL Server http://www.microsoft.com
MySQL AB MySQL http://www.mysql.com
NetBeans NetBeans http://www.netbeans.org
Oracle Corporation Oracle 9i Enterprise

Edition; Oracle Portal
http://www.oracle.com

PostgreSQL Global
Development Group

PostgreSQL http://postgresql.org

Sun Microsystems Java http://java.sun.com
Xinox Software JCreator http://www.jcreator.com/

2.4.2.2 Online Stores
Online stores were visited to determine the retail and/or academic prices

of the software researched at the software publisher’s sites. Stores visited

include:

Table 3: Online Stores
Site URL

Amazon.com, Inc. http://www.amazon.com
Edu Tech Store http://www.edu.com
Efollet Software Store http://www.efollett.journeyed.com
SAM'S West, Inc http://www.samsclub.com

23

2.4.2.3 Academic and Technical Web Sites
The academic and technical web sites were the source for all of the

journal articles and some of the books used during the course of the project.

The primary sites visited were:

Table 4: Academic and Technical Sites
Site Type URL

ONJava.com Technical Web
Journal

http://www.onjava.com/

O’Reilly
Network Safari
Bookshelf

Subscription
Technical Library

http://safari.oreilly.com/

Regis
University
Libraries Online

Academic Library http://www.regis.edu/libdatabase.asp?sctn
=lib&p1=empty

TheServerSide Technical Web
Journal

http://www.theserverside.com/

2.4.2.4 Web Hosts
The web site hosting provider sites were visited to research the costs of

the various feature and options that would be needed when the project was

finally deployed online.

Web hosts visited include:

Table 5: Web Hosts
 Web Host URL

Add2Net, Inc. http://lunarpages.com
Assorted Internet Ventures, LLC http://assortedinternet.com
CWIHosting.com http://cwihosting.com
Iniquinet.com http://iniquinet.com
JavaServletHosting.com http://javaservlethosting.com
JSPZone.net http://jspzone.net
KGB Internet Solutions http://kgbinternet.com
Oxxus.net http://oxxus.net

24

2.5 Summary
The project required extensive research. The bulk of the research was

conducted to discover the requirements of the project and to determine candidate

solutions for the project.

User interviews were conducted using a team of volunteers for

requirements discovery, and the internet was used primarily in the search for

candidate solutions for the project.

Four categories of candidate solutions were researched: 1) Application

Implementation Technologies, 2) Integrated Development Environments, 3)

Database Solutions, and 4) Database Application Web Hosting. The winning

solutions for the project in each of the four categories were determined with a

feasibility study using candidate systems matrices.

25

3 Project Methodology

3.1 Rapid Application Development
As mentioned in the previous chapter, the student felt that the most

appropriate methodology for the project would be some form of Rapid Application

Development (RAD).

According to Whitten, et al., the iterative phases of RAD create a

development spiral or “prototyping loop” that continues “until the prototype is

considered a ‘candidate system’ for implementation” (98-100). Some of the most

important benefits of RAD are that it speeds analysis and design and actively

involves users in development. Also, RAD allows for some experimentation to

occur without developers having to finalize a design for a project that users may

find completely unsuitable after implementation.

This experimentation proved to be critical to the success of the project; the
student could not have completed the project without it. This was due in good
measure to her inexperience in systems design and development, but fortunately
over the course of the project the RAD methodology provided many opportunities
for learning.

3.2 Phases of Rapid Application Development (RAD)
The student created a development plan somewhat loosely based on

RAD, which would consist of the following phases:

1) Preliminary Investigation

2) Problem Analysis (accelerated)

3) Iterative Phases

a. Design

b. Construction

c. Implementation

d. Analysis

26

4) Implementation (final)

5) Operation and Support (optional)

A description of each of the phases in the development plan follows.

3.2.1 Preliminary Investigation
The preliminary investigation phase researched and defined: 1) the

reasons for and scope of the project, 2) the initial requirements and constraints,

including budget, and schedule, and 3) the project methodology that would be

used. This phase was completed with the approval of the project proposal.

3.2.2 Problem Analysis
The problem analysis phase combined problem analysis with

requirements discovery and decision analysis. During this phase formal user

interviews were conducted to help determine the project requirements, and the

feasibility and requirements analyses were completed.

3.2.2.1 Requirements Discovery
As mentioned in the previous chapter, in order to have a group of users for

guidance and prototype testing purposes, the student formed a team of

volunteers who were: 1) actively following a rotation diet or had been following a

rotation diet in the past two years, 2) computer literate, and 3) able to test the

application.

Once the user team was formed, she met individually with each user for

an initial interview to confirm the scope of the project as well as determine the

initial user requirements. The user team explained their needs and expectations

for the application, including: 1) multiple lists of “safe” foods and their

27

corresponding rotation schedules must be allowed to be created and stored for

each user, 2) meal plans and shopping lists must be printable, and 3) users

should only be able to add foods to any given meal plan that are allowed by that

user’s rotation schedule. The full results of the interviews are compiled in User

Interview Report 1 (Appendix A). This report was used as a reference in the

creation of the business rules and initial application requirements, presented

below.

3.2.2.1.1 Business Rules
1. Each user must be assigned a unique identification (id) number.

2. Each user must have a unique username.

3. Each user must have a password.

4. Each user must have an email address.

5. Each food must have a unique id number.

6. Each food must have a unique name.

7. Each food must be associated with a food family.

8. Each food family must have a unique id number.

9. Each food family must have a unique name.

10. Multiple food lists may be associated with each user id number.

11. Each food list must have a unique id number.

12. Each food list must have a name that is not already in use by another food

list associated with the specified user id. (Name is unique only to the

user’s account).

28

13. Each food list must have a rotation schedule consisting of both the food

rotation in days and food family rotation in days.

14. Multiple food list items (foods) may be associated with each food list.

15. Each food list item must be associated with a food.

16. Multiple meal plans may be associated with each food list.

17. Each meal plan must be for a specific date.

18. Only one meal plan per date may be associated with each user id number.

19. Each meal plan must have a unique id number.

20. Multiple meals may be associated with each meal plan.

21. Each meal must have a unique id number.

22. Each meal must be named, but each name must not be already in use by

another meal associated with the specified meal plan. (Name is unique

only within each meal plan).

23. Multiple meal items (foods) may be associated with each meal.

24. Each meal item must be associated with a food list item (in turn

associated with the specified food list).

25. Only those foods that are allowed by the specified food list’s rotation

schedule may be added to any meal associated with the meal plan for any

specified date.

29

3.2.2.1.1 Application Requirements

1. The food and food family tables may not be modified using the application.

2. Each user must create an account to use the application.

3. Each user must login to their account to use the application.

4. Each user can only see food lists, meal plans, and meals associated with

their account.

5. Each user may create an unlimited number of food lists, meal plans, and

meals.

6. Each user may modify and/or delete their food lists, meal plans, and

meals as often as they wish.

7. Each display page for the application must have links to each major page

of the application (Home, Meal Plans, Food Lists, and Shopping Lists).

8. Each multi-page form must contain appropriate form navigation buttons

(previous, next, finish, etc).

The business rules and initial application requirements were the basis for

the requirements definition report, which was updated with each iteration of the

development cycle. The final Requirements Definition Report is included as

Appendix B.

3.2.2.2 Feasibility Analysis
After the initial Requirements Definition Report was completed, the

student conducted research to determine if there were any off-the-shelf software

programs that were focused on the target user group, namely persons with

30

severe food allergies that had been prescribed rotation diets. She found no

evidence of the availability of any such software programs, and concluded that a

custom application would have to be built. Since there were no existing off-the-

shelf solutions that could be used for the project; the student spent the rest of the

problem analysis phase researching candidate technology solutions for the

construction and implementation of a custom database application, which were

presented in the previous chapter.

The student completed the initial Feasibility Analysis of the candidate

technologies in March of 2004, completed the initial application design, and had

begun preparations for first iteration of the construction phase.

It was at this stage that the student discovered a costly mistake in her

initial feasibility study, which ultimately caused more than a month-long delay in

the project schedule.

She had planned to implement the project with Oracle 9i database, Oracle

9iAS Portal, and a small amount of Java thrown in. However, she found that she

had neglected to check the hardware requirements for Portal. Portal is powered

by Oracle 9i Application Server (AS), which is in turn supported by an Oracle

database. The student determined that her existing hardware was not powerful

enough to run the AS, let alone both the AS and Portal at the same time, and

could not be further upgraded. Because she had not budgeted for new

hardware, a new computer would overrun her planned project budget of $400 by

200-600%. Also, the user team had indicated that if the project was successful,

they would like to continue to use the completed application; however, the

31

licensing fees for the Oracle 9i database and Oracle Portal would be prohibitive.

For these reasons, the student decided to look for alternatives to the Oracle

products – which required completion of a new feasibility study.

In the course of the second feasibility analysis, the student determined

that she could design and build a Java application that could replace Portal, and

found several candidate IDEs (Integrated Development Environment) to speed

the Java development. She also discovered several alternatives to the Oracle 9i

database, and since the project would be implemented on the web, she

researched several candidates for database application web hosting.

Once the second feasibility study was complete, the student reviewed her

original application design, and discovered that the existing design was not going

to be adequate for the project, as it could only be well implemented with Oracle

Portal. Consequently, she started on a redesign in May 2004.

In the course of the redesign, while researching design patterns for Java

and the web, the student discovered the Struts framework, which has become a

standard for Java web application development. It incorporates many best

practices and Java design patterns. However, since the Struts framework is

based on the Model 2 design pattern (a variation of the Model-View-Controller

(MVC) design pattern), and in addition is designed to work with any datasource

(Model-neutral), the framework does not determine how the datasource is

accessed (Husted et al. (39, 41). Because of this, some research on datasource

frameworks that are Struts compatible was completed, and showed that the

iBATIS framework would be a good fit for the project.

32

After the research was completed, the student revisited the second

feasibility study and added a section for application implementation technologies,

such as Struts. The study confirmed her belief that the Struts and iBATIS

frameworks would be an excellent choice for the project implementation.

Based on the results of her research, the student determined what she felt

were the best solutions for each of the four categories mentioned above:

1) Integrated Development Environment Solution: NetBeans

2) Database Solution: MySQL

3) Database Application Web Hosting: lunarpages.com

4) Application Implementation Technology

The final revision of the feasibility study was completed in May of 2004.

3.2.3 Iterative Phases
The student had planned for the project to flow through the iterative

phases sequentially in a spiral, but the reality turned out to be rather different.

When the project first moved into the iterative phases, there was not a clear

spiral because the project did not complete a full iteration of all the phases until

the project was nearly a quarter done. In retrospect, a good deal of this

confusion was due to the inexperience of the student in her role as project

manager, and as she became more experienced, the phases began to spiral as

planned. Following is a definition of each of the iterative design phases, followed

by an explanation of how these processes actually occurred during the course of

the project.

33

3.2.3.1 Design

The design phase defined models for the application and database. These

models were continually updated as the project evolved further through the other

iterative phases of the lifecycle. Deliverables for this phase were the application

and database models, which were revised after each iteration of the analysis

phase had been completed. The final application and database models were

completed after the final implementation was approved by users. The final

application model is presented as Appendix E, and the final database model is

presented as Appendix C.

3.2.3.2 Construction
During the construction phase, a working prototype of the database

application was built, based on the most current design. The database

application prototype was the only deliverable for this phase.

3.2.3.3 Implementation
The implementation phase allowed users to test and give feedback on the

latest build of the application, which was then used to refine the requirements

and design of the database application. The deliverables for this phase were the

user feedback from the testing.

3.2.3.4 Analysis
During the analysis phase, the requirements of the project were reviewed

and updated based on the user feedback from the previous phase. Deliverables

for this phase were a revised requirements report.

34

3.2.3.5 Explanation
As discussed in chapter 2, the student had decided to implement the

application with Struts. Because Struts is based on the MVC design pattern, the

student decided to design the project in the order suggested by Turner and

Bedell in their book Struts Kick Start (89-105). She first designed the View (web

pages), next the Model (database), and then the Controller (the application itself).

The first step was to map out and design the web pages that would form

the views (jsp pages) required by the Struts application. The student drew up

use cases for the project, which were used to determine the pages that would be

needed, as well as the inputs and outputs required for those pages. Within each

use case, the pages needed to fulfill that use case were mapped out and then

designed. The use cases are presented in Appendix H.

The next step, designing the Model, was begun by determining the tables

that were needed for the database. Next, the student normalized the database

tables that she had created, and prepared a database design matrix. From this

design matrix, she created the initial database Entity Relation Diagram (ERD).

After the Model had been designed, the student began working on the

Controller (application) design while studying the use of the Struts framework.

She had been taught to use UML (Unified Modeling Language) modeling for Java

programming, but Struts applications cannot be easily modeled in UML, and after

much frustration she came to the realization that she did not understand how

Struts worked well enough to create any sort of Controller design at that point. As

a result, the student decided to construct a trial version of the web pages and

35

Java classes required for user account creation and login, which would use a test

version of the database. The experiment took about two weeks to complete, and

enabled the student to see how all of the Struts components worked together;

however, it also revealed a serious flaw in the initial database design.

The original database design would have required the application to

create one or more tables in the database for each user, containing data such as

the user’s lists of acceptable foods, meal plans, and the dates each food was last

eaten. However, during the Struts experiment the student quickly realized that 1)

the iBATIS framework does not directly support database table creation, 2) a

workaround could be implemented but would compromise the framework’s built-

in data security features and explode the size of the database, and 3) having to

create new tables at all instead of using existing tables was a strong indication

that the database was poorly designed.

Once the database had been redesigned and normalized, it was again

time to undertake the Controller design. The student decided that instead of

creating UML models, she would put together an Application Specification

document, based on the application plan suggested by Husted, et al., in their

book Struts in Action (87-89). This document is intended to track the various

Struts components, including the jsp pages used for the views, the ActionForms

that are passed from the views to the application, and the Action classes that

make up the application itself. The final Application Specification document is

included as Appendix D. This document was used as a guide for the remainder

of the project, and was updated as needed.

36

Construction then began in earnest. As each section of the project was

completed, the student implemented and tested the entire project to that point.

The users were called on for tests only at major milestones, usually about once

every two months.

The Iteration phases were concluded in December 2004.

3.2.4 Implementation (final)
The final implementation would be complete when the working prototype

had been approved by the users, and the final build of the database application

had been deployed. Deliverables for this phase were the finished design models,

final requirements report, and the final build of the database application.

The final implementation was completed on January 9, 2005, with the

deployment of the final build of the application to rotationdietproject.com, at the

web host lunarpages.com. The final user interview is documented in Appendix F,

and a small sample of the views for the project is included in Appendix I.

3.2.5 Operation and Support
The final phase of the development lifecycle would consist of maintaining

the system in an operational state and providing support for users. However, this

phase fell outside the scope of this project, which is focusing on development, so

no deliverables were required.

3.3 Summary

The right choice of methodology proved to be critical to the success of the

project. The iterative phases of the RAD methodology allowed experimentation

37

that gave the student time to find the best solution for the project by learning from

her mistakes. RAD methodology had seemed the best choice for the project, and

over the course of the project this proved to be true.

38

4 Project History

4.1 Beginning the Project
In October, 2002, the student received approval to begin work on her

professional project, “Development of a Personal Diet Plan Database Application

for Persons with Severe Food Allergies”. She felt that she was not ready to

undertake the project at that time, and took several classes before she actually

started the project in March of 2004.

The goal of this project was to research, analyze, design, and implement a

database application that would assist patients in creating a personal diet plan

based upon a “rotation diet.” The application was intended to allow patients to

create a broader range of meals than currently possible with existing manual

methods, and also to quickly and accurately make up shopping lists for their

planned meals. The project would be considered successful if the user team felt

that these goals were met.

4.2 Managing the Project
The student acted as the sole personnel resource, and her only

experience as a project manager was in a classroom setting. This proved to be a

definite disadvantage for the project, and many of the delays that occurred were

due to inexperience and a lack of confidence.

In addition, since the student was also the systems analyst, designer, and

developer, there was no-one to, for example, catch design mistakes before the

developer could implement them. There were several situations in which this was

39

a problem; if there was a mistake it was all hers and she would have to fix it

herself. This led to yet more delays.

Fortunately, as the student gained experience and confidence in her

abilities in all the roles, the project went more smoothly. Admittedly, however,

the user team played a large role in helping her gain confidence, because they

were pleased with her work and very happy to help test the application.

4.3 What Went Right
A couple of months after the student had begun working on the project, if

she had been asked what was going right with the project, she would have

replied, “Nothing is going right.” Fortunately, this was not the case in the long

term.

The Struts and iBATIS frameworks proved to be an excellent choice for

the application, and made the development process less of a chore than it might

have been. This was particularly important because of the inexperience of the

student. It is very likely that if she had not found the Struts framework, she would

not have been able to complete the project due to its complexity.

The volunteer user testing team was extremely positive and graciously

forgiving of mistakes. Their contribution to the project was more important to the

project than the student initially thought it would be. The user team was crucial

to the requirements discovery process; in testing the application they not only

helped find the bugs in the project but also put forward important suggestions

that greatly improved the usability of the application.

40

4.4 What Went Wrong

So many things went wrong with the project that it is difficult to know

where to begin. Most of the problems that occurred in the course of the project

would have been avoided had the student had more experience in all her roles,

particularly the project management and developer roles.

4.4.1 Hardware Issues
As mentioned in chapter 3, the student made a serious mistake in her first

feasibility study. She had neglected to check the system requirements for the

Oracle products she had intended to use for the project development and

implementation. The desktop computer that she had intended to host the Oracle

products was simply underpowered for the task, and furthermore, the operating

system required was incompatible with her other computer. Purchasing a new

computer was not an option, because it had not been included in the budget of

$400.

The cost of this mistake was paid primarily in time; the project was

completed in January 2005 instead of August 2004. This was for several

reasons: 1) Research had to be conducted and another feasibility study

completed to find alternatives to the Oracle products; this took nearly a month.

2) The student had to learn to use the selected alternatives, in particular the

Struts and iBATIS frameworks, which took another month. 3) She was less

experienced with Java in general than the Oracle development tools, which

delayed the project another two months.

41

4.4.2 Development Issues
The major development issues encountered were a direct result of the fact

that the student was not an experienced Java developer, furthermore, all of her

Java experience was classroom based instead of real-world.

The first development issue that was encountered was the fact that the

Struts framework is not a good candidate for UML based development, which

was the primary method that the student had been taught in class. In fact, Struts

was very difficult to model in full by any existing method. This is mainly due to

the fact that the framework is based on the MVC design pattern; each of the

three components (Model, View, and Controller) is completely separate from the

others, and their primary interface is hidden by the XML Struts configuration file.

The second development issue was the fact that the current release of the

iBATIS framework did not support a small number of standard SQL commands.

In most cases, this did not present much of a problem, as alternate commands

could be used. However, the inability of the framework to allow exclusive queries

of the database became a problem during the development of the Java classes

dealing with the rotation logic. Instead of using one exclusive query, for example,

to find all of the available foods that were not in food families that had already

been eaten within a specific time period, the student had to make three inclusive

queries and sift them with Java to come up with the same data that would have

been received from the single exclusive query.

The final development issue was the fact that the student had no real

practical experience in Java programming. All her experience was in the

42

classroom, and was limited to projects that could be completed in 5 weeks or

less. Fortunately, the decision to use the Struts framework helped alleviate most

of the difficulties that might have arisen, because Struts was designed for

simplicity.

4.4.3 Deployment Issues
There was only one real deployment issue that was dealt with, which was

again primarily related to the student’s inexperience.

When the student had purchased the web hosting package at

lunarpages.com, she knew that the Resin servlet runner that would power the

Java portion of the project was somewhat different that the Tomcat 5.0 servlet

runner she was using for development, but thought that this would not be much

of a problem since the current version of Resin supported all the standards

required by her project. Unfortunately, she neglected to make sure that the web

host was using the current version of Resin; they were not. The older version of

Resin that the web host was using had two major problems: 1) it did not support

the new Java JSP 2.0 expression language that her current jsp pages required,

and 2) it was not as forgiving of errors in XML and JSP files as Tomcat; minor

errors that Tomcat could ignore were causing fatal servlet errors.

 The result of this was approximately two days spent doing nothing but

recoding her jsp web pages to use the older JSP 1.2 tags instead of expression

language, as well as several hours hunting down minor errors in the project’s

XML and JSP files.

43

4.5 Milestones
The project proposal was approved in May of 2002, but the project was

not actually begun until March of 2004. RAD was chosen as the project

methodology in March, and the first full spiral of the iterative phases of RAD was

completed in July.

Also in July, the user team completed their first test of the application.

Only the food list section of the application was functional at this time, but it gave

the users an idea of how the finished application would look and function. They

were pleased, but had a few suggestions that were incorporated into the next

design iteration for the project.

After the first user test was completed, the student took a hard look at the

Java packages and JSP pages within the application in light of the suggestions

that the users had made. She decided that the Java packages and JSP pages

were badly in need of reorganization. The reorganization was finished in early

August, and greatly benefited the project because it made it easier to find a

specific class or page for editing and/or debugging.

In October, further user testing was completed on the meal plan and

shopping list sections of the application. Also, the student completed the final test

of the logic for the rotation schedule. This was a critical milestone, because the

logic for the rotation schedule had to be correct for the project to meet its goal of

allowing users to create meal plans based on a rotation schedule.

Once the logic was deemed correct, the project was tested for web

readiness and fully deployed online in November. After deployment, the first

44

round of online user testing of the entire application was completed. The users

were mostly pleased but found several problems and short-comings with the

application, which were addressed.

After the problems and short-comings found in the previous testing had

been addressed, the final round of online user testing was completed January 5,

2005. The user team was very pleased with the application, and felt that it was

ready for final deployment.

The final build of the application was deployed on January 9, 2005.

Table 6: Project Milestones
Milestone Date

Project proposal approved May 2002
Project begun March 03, 2004
RAD chosen as the project methodology March 2004
First full RAD spiral completed July 5, 2004
Completed user testing of the Food List section of the project July 31, 2004
Reorganization of Java packages and jsp pages Aug 9, 2004
Completed user testing of the meal plan section of the project Oct 02, 2004
Completed user testing of the shopping list section of the
project

Oct 09, 2004

Final Rotation logic test completed Oct 10, 2004
Web deployment readiness tests completed Oct 20, 2004
Deployed database online Oct 29, 2004
Application deployed online Nov, 12, 2004
Completed first round of online user testing of the entire
application

Nov 29, 2004

Completed final round of online user testing of the entire
application

Jan 05, 2005

User team approves the final version of the project Jan 05, 2005
Final deployment of application completed Jan 09, 2005

4.6 Project Summary
The goal of the project was to research, analyze, design, and implement a

database application that would assist patients in creating a personal diet plan

based upon a “rotation diet.” The project was begun in March of 2004, and was

45

successfully concluded in January 2005 when the user team approved the final

build of the application.

In spite of poor management, false starts, and numerous problems, the

project was a very positive learning experience, and the student was very

pleased with the successful outcome of the project.

46

5 Lessons Learned

5.1 Project Experience
I learned a great deal from this project. I feel that my project

management skills have improved somewhat and that my systems analysis and

design, as well as my Java programming skills have improved tremendously. On

a personal level, I think that I am more patient when I cannot seem to find a

solution for a problem, and more methodical in finding an answer.

Overall, I feel a great sense of accomplishment, because in spite of

problems, confusion, and a false start, the project was more successful than I

dreamed possible. I am very grateful to my user team because only their support

and encouragement made it possible for me to complete this project.

5.2 Expectations
The project was able to meet all expectations, and in actuality exceeded

the student’s initial vision for the project when it was proposed in May of 2002.

The goals of the project, as stated in chapter 1, were the development of a

database application that would:

5.2.1 Assist patients in creating their personal diet plan based upon a
rotation diet.

This goal was met. According to the testers, the application was of great

assistance in making up accurate meal plans for their person diet plan.

47

5.2.2 Allow patients to enjoy a broader range of meals
This goal was met. The testers felt that the application made it much

easier for them to easily create more interesting meals for their diet plans,

because they did not have to keep track of the rotation schedule themselves.

5.2.3 Allow patients to quickly and accurately make up shopping lists for
the meals.

This goal was met. The testers agreed that the application made it very

easy to make up shopping lists because all they had to do was select the date(s)

they wanted to shop for. The application would then automatically make up a

shopping list containing a list of all the foods that would be eaten on those

date(s), including the number of meals that each food appeared on.

5.3 Next Evolution
There are several things that could be done to improve the application.

For example, some graphics could be added, to make the application’s view

pages look nicer. It would also be nice to make shopping lists modifiable, so that

users could adjust the amount of food they want to buy right on the screen

instead of manually. Both the application and database could be updated to

make better use of the meal_names table, and also to allow user initiated

account deletions. The datasource connection Java classes could be more

efficient and error handling could be improved.

The user team also had several excellent suggestions, which included a

personal weight tracking module, and a food information reference containing

information about each food such as recommended serving size, fat content, etc.

48

Another possibility would be making the application available online; perhaps on

a donation basis, or with a monthly or yearly user fee to offset the costs of

support and maintenance.

5.4 Conclusions
Despite a number of problems, the goals that were set at the outset of the

project were successfully met. The student learned a great deal in the process of

completing the project, and the user team was pleased with the results.

5.5 Summary
Overall, the project experience was very positive, and it gave the student

opportunities to learn a great deal about project management and application

development, and also to experience personal growth by working through

seeming insurmountable difficulties to produce a successful project.

49

Bibliography

Barker, R. CASE*METHOD Entity Relationship Modelling. United

Kingdom: Addison-Wesley Publishing Company, 1990.

Cavaness, C., B. Keeton. Jakarta Struts Pocket Reference. USA: O’Reilly

& Associates, Inc., 2003.

Deitel, H.M., P.J. Deitel. Java How to Program. USA: Pearson Education,

Inc., 2003.

Husted, T., et al. Struts In Action. USA: Manning Publications Co., 2003.

Kline, K. SQL in a Nutshell. USA: O’Reilly & Associates, Inc., 2000.

Reese, C., (2000). Database Programming with JDBC and Java. USA:

O’Reilly & Associates, Inc., 2000.

Richter, C. Designing Flexible Object-Oriented Systems with UML. USA:

Macmillan Technical Publishing, 1999.

Schach, S. Object-Oriented and Classical Software Engineering. USA:

McGraw-Hill Higher Education, 2002.

“MySQL Manual”. Official MySQL Web Site. 2004. MySQL AB. 03 Jan.

2005 <http://dev.mysql.com/doc/mysql/en/index.html>.

Stevens, P., R. Pooley. (2000). Using UML: Software Engineering with

Objects and Components. United Kingdom: Pearson Education Limited, 2000.

Turner, J., K. Bedell. Struts Kick Start. USA: Sam’s Publishing, 2002.

White. S., et al. JDBC API Tutorial and Reference: Universal Data Access

for the Java 2 Platform. USA: Sun Microsystems, Inc., 1999.

Whitten, J. L., L. D. Bentley, K.C. Dittman. Systems Analysis and Design

Methods. USA: Irwin/McGraw-Hill, 1998.

50

Appendices

Appendix A: User Interview 1 Report
1. What, in your opinion, is the main problem with the way you currently

make up rotation menus?

a. It is very hard to write out a menu that covers a period of time

without making mistakes related to food family and rotation.

b. Too much work.

c. It’s too time consuming.

d. Mistakes cause cascading problems with the rotation, which often

require a complete redo of the menu to fix.

e. It is hard to find an accurate, easy to use list of what foods are in a

food family.

f. It is difficult to get all the food groups into the diet every day.

2. Thinking in general about a computer program that would make creating

rotation menus and shopping lists from those menus, what features would

be most important to have?

a. Accurate food/food family lists.

b. To be able to make multiple, customizable food lists (for each

person in the family), because not everyone can eat the same

foods.

c. A customizable rotation schedule for each person in the family: not

just 3/5 day rotation, need any combination rotation, including none.

d. Rotation options should be clearly explained, for example, what will

3/5 mean in the program M/W/F, or M/F/Sun?

e. Must be able to print out and save menus and shopping lists.

f. Must be simple to use/idiot proof.

g. When selecting foods for daily menus, foods/food families that

would violate the rotation should not be available for selection, and

preferably not even visible.

51

3. What features would be nice to have, but could be done without?

a. An option for tracking specific nutritional information such as fat,

carbohydrate, protein, and caloric content for each day on a menu.

b. It would be nice to be able to store my weight, etc., in the computer

to track how well the diet is going.

c. An option to remove foods that you do not need to buy from the

shopping list before printing.

d. Printing options for menus/shopping lists, so I can print only the

number of days/weeks that I need to plan for. Such as all of next

week’s menus, but no shopping list, or today’s menu and the

shopping list for the next three days. (interviewer note: This would

require saving the menus in the database)

e. It would be nice if it was a stand alone program, so we didn’t have

to buy MS Access, for example, to use it.

f. I would like to use the program on my Mac.

52

Appendix B: Requirements Report
1. Introduction

1.1. Purpose
1.1.1. The purpose of this document is to explain the user requirements for

a personal diet plan database application for persons with severe
food allergies.

1.2. Background
1.2.1. The “rotation diet” is specifically designed for patients with severe

food allergies, and requires that a patient may only eat a particular
food once every n days (where n is any number), and foods from the
same genus family every n days. For example, on a 3/5 day rotation
diet, if a patient eats broccoli (Mustard family) on Monday, they
cannot eat broccoli again until Sunday (five days between), but may
eat something else from the Mustard family, such as cauliflower, on
Thursday (three days between).

1.2.2. Currently, patients use either pen-and-paper or a spreadsheet to
create weekly or monthly meal plans for the rotation diet plan. The
meal plans are usually then transferred by hand to their daily or
weekly shopping lists.

1.3. Scope
1.3.1. The scope of these requirements is the necessary features that must

be included in the application, as well as development concerns such
as the budget.

1.4. Definitions and Acronyms
1.4.1. Definitions:

1.4.1.1. Rotation Diet: A diet for patients with severe food allergies,
designed to prevent them from becoming allergic to the foods
they are not already allergic to.

1.4.1.2. Food: Refers to a specific food, such as apples or fish, not
food in general.

1.4.1.3. Food Family: Refers to the biological family of a specific food.
For example, apples belong to the Rose family, and tomatoes to
the Nightshade family.

1.4.1.4. Food List: A list of all the foods that a particular person can
eat.

1.4.1.5. Rotation Schedule: Schedule that determines when a
particular food may be eaten, such as 3/5 day or 4/8 day.

1.4.1.5.1. The numbers notated in the schedule refer to the number
of days between any day a particular food or food family is
eaten and the next day the food/food family may be eaten.

1.4.1.5.2. Example: on a 4/7 day rotation schedule, if the patient eats
apples on Monday, another food from the Rose family may
be eaten on Saturday (four days between), but apples may

53

not be eaten again until the next Tuesday (7 days
between). (See point 1.2.1 above for another example.)

1.4.1.6. Meal Plan: Planned meals created for a specific date, using a
rotation schedule.

1.4.1.7. Shopping List: List of foods needed for the selected meal plans.
1.4.1.8. Account: Allows the user to securely access and store their

personalized food lists, rotation schedule, etc. without worries of
another user accidentally (or maliciously) modifying information.

1.4.1.9. Login: The user’s unique Username and password combination.
1.5. References

1.5.1. The iBATIS framework: online: http://www.ibatis.com
1.5.2. The Struts framework: online: http://struts.apache.org
1.5.3. Sun Java: online: http://java.sun.com

2. General Project Descriptions
2.1. System Objectives

2.1.1. The system shall consist of a database application that will assist
patients in creating a personal diet plan based upon a “rotation diet.”

2.1.2. The application will allow patients to create a broader range of meals
than currently possible, and also to quickly and accurately make up
shopping lists for their planned meals.

2.1.3. The application will be accessible from a standard web browser
without any special configuration of the browser required.

3. Requirements and Constraints
3.1. Business Rules

3.1.1. Each user must be assigned a unique identification (id) number.
3.1.2. Each user must have a unique username.
3.1.3. Each user must have a password.
3.1.4. Each user must have an email address.
3.1.5. Each food must have a unique id number.
3.1.6. Each food must have a unique name.
3.1.7. Each food must be associated with a food family.
3.1.8. Each food family must have a unique id number.
3.1.9. Each food family must have a unique name.
3.1.10. Multiple food lists may be associated with each user id number.
3.1.11. Each food list must have a unique id number.
3.1.12. Each food list must have a name that is not already in use by

another food list associated with the specified user id. (Name is
unique only to the user’s account).

3.1.13. Each food list must have a rotation schedule consisting of both the
food rotation in days and food family rotation in days.

3.1.14. Multiple food list items (foods) may be associated with each food
list.

3.1.15. Each food list item must be associated with a food.
3.1.16. Multiple meal plans may be associated with each food list.
3.1.17. Each meal plan must be for a specific date.

54

3.1.18. Only one meal plan per date may be associated with each user id
number.

3.1.19. Each meal plan must have a unique id number.
3.1.20. Multiple meals may be associated with each meal plan.
3.1.21. Each meal must have a unique id number.
3.1.22. Each meal must be named, but each name must not be already in

use by another meal associated with the specified meal plan. (Name
is unique only within each meal plan).

3.1.23. Multiple meal items (foods) may be associated with each meal.
3.1.24. Each meal item must be associated with a food list item (in turn

associated with the specified food list).
3.1.25. Only those foods that are allowed by the specified food list’s

rotation schedule may be added to any meal associated with the
meal plan for any specified date.

3.2. Functional Requirements
3.2.1. The food and food family tables may not be modified using the

application.
3.2.2. Each user must create an account to use the application.
3.2.3. Each user must login to their account to use the application.
3.2.4. Each user can only see food lists, meal plans, and meals associated

with their account.
3.2.5. Each user may create an unlimited number of food lists, meal plans,

and meals.
3.2.6. Each user may modify and/or delete their food lists, meal plans, and

meals as often as they wish.
3.2.7. Each display page for the application must have links to each major

page of the application (Home, Meal Plans, Food Lists, and
Shopping Lists).

3.2.8. Each multi-page form must contain appropriate form navigation
buttons (previous, next, finish, etc).

3.2.9. Inputs (inputs received from user unless otherwise noted)
3.2.9.1. New users must create an account containing

3.2.9.1.1. Unique username
3.2.9.1.2. Password
3.2.9.1.3. Email address
3.2.9.1.4. Confirm email address

3.2.9.2. User’s Login
3.2.9.2.1. Username
3.2.9.2.2. Password

3.2.9.3. Lost Login info
3.2.9.3.1. Email address

3.2.9.4. Creating food list:
3.2.9.4.1. User’s id number (from application)
3.2.9.4.2. Rotation schedule

3.2.9.4.2.1. Family rotation

55

3.2.9.4.2.2. Food rotation
3.2.9.4.3. Name of the food list

3.2.9.5. Selecting food list:
3.2.9.5.1. User’s id number (from application)
3.2.9.5.2. Desired food list

3.2.9.6. Modifying food list
3.2.9.6.1. User-selected food list
3.2.9.6.2. Id of selected food list (from application)
3.2.9.6.3. User’s id number (from application)
3.2.9.6.4. Foods that may be eaten by the user
3.2.9.6.5. Foods that the user no longer wants in the list

3.2.9.7. Deleting food list
3.2.9.7.1. User-selected food list
3.2.9.7.2. Id of selected food list (from application)

3.2.9.8. Creating Meal Plans
3.2.9.8.1. User-selected food list
3.2.9.8.2. Id of selected food list (from application)
3.2.9.8.3. Start date
3.2.9.8.4. Number of days planning meals for

3.2.9.9. Modifying Meal Plan
3.2.9.9.1. User-selected food list
3.2.9.9.2. Id of selected food list (from application)
3.2.9.9.3. User-selected meal plan
3.2.9.9.4. Id of the selected meal plan

3.2.9.10. Selecting Meal Plan
3.2.9.10.1. User-selected food list
3.2.9.10.2. Id of selected food list (from application)
3.2.9.10.3. Desired meal plan

3.2.9.11.Deleting meal plan
3.2.9.11.1. User-selected food list
3.2.9.11.2. Id of selected food list (from application)
3.2.9.11.3. User-selected meal plan
3.2.9.11.4. id of selected meal plan

3.2.9.12. Creating Meals
3.2.9.12.1. User-selected meal plan OR list of meal plans (from

application)
3.2.9.12.2. Names of meals to be created

3.2.9.13. Modifying Meals
3.2.9.13.1. User-selected food list
3.2.9.13.2. Id of selected food list (from application)
3.2.9.13.3. User-selected meal OR list of meals (from application)
3.2.9.13.4. Id(s) of meal(s) to be modified
3.2.9.13.5. Foods that are allowed to be eaten according to the

rotation schedule for the food list.
3.2.9.13.6. Foods that will be eaten at the meal

56

3.2.9.14.Selecting Meals
3.2.9.14.1. User-selected meal plan
3.2.9.14.2. Id of selected meal plan
3.2.9.14.3. Desired meal

3.2.9.15.Deleting meal
3.2.9.15.1. User-selected meal plan
3.2.9.15.2. Id of selected meal plan
3.2.9.15.3. User-selected meal
3.2.9.15.4. Id of selected meal

3.2.9.16.Creating shopping list
3.2.9.16.1. User-selected food list
3.2.9.16.2. Id of selected food list
3.2.9.16.3. Start date
3.2.9.16.4. Number of days to shop for

3.2.10. Processes
3.2.10.1. Create Account (username/password/email combination)

3.2.10.1.1. Enter unique username
3.2.10.1.2. Enter password
3.2.10.1.3. Enter email address
3.2.10.1.4. Confirm email address (double entry)
3.2.10.1.5. Inserts new account into database.
3.2.10.1.6. Forward to home page

3.2.10.2. Login to Account
3.2.10.2.1. Enter username
3.2.10.2.2. Enter password
3.2.10.2.3. Checks database for username/password combination.
3.2.10.2.4. If correct forwards to home page
3.2.10.2.5. If incorrect, prompts for correct username/password

combination.
3.2.10.3. Find Lost Account

3.2.10.3.1. Enter email address
3.2.10.3.2. Checks database to see if the email address can be found.
3.2.10.3.3. If the email address is found, forwards to lost account

page.
3.2.10.3.4. If not email address not found, prompts for correct email

address.
3.2.10.4. Create Food List

3.2.10.4.1. Enter rotation schedule
3.2.10.4.2. Enter food list name
3.2.10.4.3. Checks to see if food list name is already in use by this

user.
3.2.10.4.3.1. If yes, prompts to Enter different food list name
3.2.10.4.3.2. If no, inserts the new food list into the database.

3.2.10.4.4. Forwards to Modify Food List
3.2.10.5. Modify Food List

57

3.2.10.5.1. Select Food List OR selected list is received from CREATE
FOOD LIST.

3.2.10.5.2. Select foods from the list.
3.2.10.5.3. Inserts the selected foods into the database.
3.2.10.5.4. Forwards to food lists home page.

3.2.10.6. Select Food List
3.2.10.6.1. Select the desired food list.

3.2.10.7. Delete Food List
3.2.10.7.1. Select Food List
3.2.10.7.2. Confirm deletion.
3.2.10.7.3. Deletes from the database all foods in the meals in the

meal plans associated with the selected food list.
3.2.10.7.4. Deletes from the database all the meals in the meal plans

associated with the selected food list.
3.2.10.7.5. Deletes from the database all the meal plans associated

with the selected food list.
3.2.10.7.6. Deletes from the database all the foods in the food list.
3.2.10.7.7. Deletes the selected food list from the database.
3.2.10.7.8. Forwards to the food list home page.

3.2.10.8. View Food List
3.2.10.8.1. Select a Food List
3.2.10.8.2. Gets the foods in the food list and their associated food

families from the database for display to the user.
3.2.10.9. Create Meal Plan

3.2.10.9.1. Select Food List
3.2.10.9.2. Enter start date
3.2.10.9.3. Enter number of days to be planned for.
3.2.10.9.4. Checks to see if a meal plan already exists for the start

date
3.2.10.9.4.1. If yes, prompts to enter a different start date.
3.2.10.9.4.2. If no:

3.2.10.9.4.2.1. If only one meal plan is being created, inserts
the meal plan into the database.

3.2.10.9.4.2.2. If more than one meal plans are to be created,
checks to see if a meal plan exists for any of these
days.

3.2.10.9.4.2.2.1. If yes, displays error message to user.
3.2.10.9.4.2.2.2. If no, inserts meal plans into the

database.
3.2.10.9.5. Forwards to Create Meals

3.2.10.10. Select Meal Plan
3.2.10.10.1. Select the desired meal plan.

3.2.10.11. View Meal Plan(s)
3.2.10.11.1. Enter start date
3.2.10.11.2. Enter number of days to shop for.

58

3.2.10.11.3. Displays the meal plan dates, meal names, and foods
in the meals to the user.

3.2.10.12. Delete Meal Plan
3.2.10.12.1. Select Meal Plan
3.2.10.12.2. Confirm deletion.
3.2.10.12.3. Deletes from the database all the foods in the meals

associated with the selected meal plan.
3.2.10.12.4. Deletes from the database all the meals associated

with the selected meal plan.
3.2.10.12.5. Deletes the selected meal plan from the database.
3.2.10.12.6. Forwards to the meal plan home page.

3.2.10.13. Create Meals
3.2.10.13.1. Enter the names of the desired meal(s)
3.2.10.13.2. Inserts the new meals into the database.
3.2.10.13.3. Forwards to Modify Meals

3.2.10.14. Modify Meals
3.2.10.14.1. Select Meal OR receives a list of one or more meals

from Create Meals
3.2.10.14.2. For each meal

3.2.10.14.2.1. Select the foods to be eaten at this meal.
3.2.10.14.2.2. Inserts the foods into the database.

3.2.10.14.3. Forwards to the meal plan home page.
3.2.10.15. Select Meal

3.2.10.15.1. Select the desired meal.
3.2.10.16. Delete Meal

3.2.10.16.1. Select Meal
3.2.10.16.2. Confirm deletion.
3.2.10.16.3. Deletes the foods in the meal from the database.
3.2.10.16.4. Deletes the meal from the database.
3.2.10.16.5. Forwards to the modify meal plan page.

3.2.10.17. View Shopping List
3.2.10.17.1. Select a food list
3.2.10.17.2. Enter start date
3.2.10.17.3. Enter number of days to shop for.
3.2.10.17.4. Displays the foods in the meals for these dates, as

well as the number of meals each food is to be eaten on.
3.2.11. Outputs

3.2.11.1. Input screens for each process requiring user input
3.2.11.2. Screens for each process requiring display output.
3.2.11.3. Food Lists
3.2.11.4. Meal Plans
3.2.11.5. Meals
3.2.11.6. Shopping Lists

3.2.12. Stored Data
3.2.12.1. Accounts

59

3.2.12.1.1. username
3.2.12.1.2. password
3.2.12.1.3. email address
3.2.12.1.4. user id (auto number generated by database)

3.2.12.2. Foods
3.2.12.2.1. food id (auto number generated by database)
3.2.12.2.2. food name
3.2.12.2.3. family id

3.2.12.3. Food Families
3.2.12.3.1. family id (auto number generated by database)
3.2.12.3.2. family name

3.2.12.4. Food Lists
3.2.12.4.1. user id
3.2.12.4.2. list name
3.2.12.4.3. list id (auto number generated by database)
3.2.12.4.4. rotation schedule

3.2.12.5. Food List Items (foods associated with a food list)
3.2.12.5.1. food id
3.2.12.5.2. food list id

3.2.12.6. Meal Plans
3.2.12.6.1. meal plan id (auto number generated by database)
3.2.12.6.2. food list id
3.2.12.6.3. date

3.2.12.7. Meals
3.2.12.7.1. meal plan id
3.2.12.7.2. meal id (auto number generated by database)
3.2.12.7.3. meal name

3.2.12.8. Meal Items (foods associated with a meal)
3.2.12.8.1. meal id
3.2.12.8.2. food id

3.3. Nonfunctional Requirements
3.3.1. Throughput/Response Time

3.3.1.1. Processes should not take an unreasonable amount of time to
complete.

3.3.2. Ease of Use
3.3.2.1. The application should be easy to use, requiring only

familiarity with the chosen operating system, an internet
browser, and perhaps a minimal amount of training, which
should be easily obtained by reading the application manual.

3.3.3. Budget
3.3.3.1. $400.00

3.3.4. Costs
3.3.4.1. Application Development Solution

3.3.4.1.1. The software used to develop the application.
3.3.4.1.2. Budget: $100

60

3.3.4.2. Database Software
3.3.4.2.1. The database back-end for the application.
3.3.4.2.2. Budget: $100

3.3.4.3. Application Implementation Technology
3.3.4.3.1. The technology used to implement the application.
3.3.4.3.2. Budget: $100

3.3.4.4. Database Application Web Hosting
3.3.4.4.1. An internet web host for the database application.
3.3.4.4.2. Needed for approximately six months, until the project

presentation is concluded.
3.3.4.4.3. Budget: $100

3.3.5. Cost Savings
3.3.5.1. Time Savings on tasks such as creating Meal Plans and

shopping lists should be significant.
3.3.6. Timetables/Deadline

3.3.6.1. The project implementation must be completed by January 10,
2005.

3.3.7. Documentation and Training Needs
3.3.7.1. Documentation should be ongoing throughout the project.
3.3.7.2. Users should only need to be familiar with their operating

system and browser to successfully use the application.
3.3.8. Quality Management

3.3.8.1. Quality will be assured and approved by the user/testers.
4. Conclusion

4.1. Outstanding Issues
4.1.1. I would like to add an action for deleting a user’s account.
4.1.2. The deployed application works fine offline, but does not work online.

61

Appendix C: Database Entity Relationship Diagram (ERD)

62

Appendix D: Struts Application Specification

Struts Specifications for Rotation Diet Project
The purpose of this document is to give a general description of each building
block of this Struts project (JSPs, ActionForms, Actions, etc), which will also
include the general purpose of each building block.

1. JavaServer Pages

1.1. Account Pages
1.1.1. createAccount.jsp

1.1.1.1. Form: CreateAccountForm
1.1.1.2. Action: CreateAccountAction
1.1.1.3. Allows user to enter a unique username as well as a password

and valid email address, and confirm the email address.
1.1.1.4. If the email addresses entered match, the program will check to

see if the username is unique. Otherwise it will reset() the fields
and prompt the user to re-enter the info.

1.1.1.5. If the username is unique the account will be created, otherwise
the user will be prompted to try a different username

1.1.1.6. If the account is successfully created, the user will automatically
be logged in.

1.1.1.7. Links
1.1.1.7.1. privacyPolicy.jsp
1.1.1.7.2. createAccount.jsp

1.1.2. login.jsp
1.1.2.1. Form: LoginForm
1.1.2.2. Action: LoginAction
1.1.2.3. Allows users to Login
1.1.2.4. Allows user to Create a New Account.
1.1.2.5. If the user enters a correct username/password combination

they will be logged in. Otherwise, the user will be prompted to
try again.

1.1.2.6. Links
1.1.2.6.1. lostAccount.jsp.
1.1.2.6.2. createAccount.jsp.

1.1.3. lostAccount.jsp
1.1.3.1. Form: LostAccountForm
1.1.3.2. Action: LostAccountAction
1.1.3.3. Allows user to enter and confirm the email address associated

with their account to retrieve their account information.
1.1.3.4. If the email addresses entered match the program checks the

database for that address.

63

1.1.3.5. If the address is found, the account information should be
emailed to that email address. Otherwise the fields are reset
and the user is prompted to re-enter the correct email address.

1.1.4. lostAccountResults.jsp
1.1.4.1. Displays a message to the user regarding status of lost account

request.
1.1.4.2. Links

1.1.4.2.1. login.jsp
1.2. Common Pages (Tiles pages)

1.2.1. footer.jsp
1.2.1.1. Displays the footer information.

1.2.2. header.jsp
1.2.2.1. Displays the header information.
1.2.2.2. Includes

1.2.2.2.1. Message display area.
1.2.2.2.2. Error display area.

1.2.3. layout.jsp
1.2.3.1. Tiles master layout page.
1.2.3.2. Determines the layout/look of the entire web site.

1.2.4. links.jsp
1.2.4.1. Contains links that should be common to all/most pages
1.2.4.2. Some links will only display if the user’s id is to be present as a

session variable.
1.2.4.3. Some links will only display if the user’s id and a food list id are

to be present as session variables.
1.2.4.4. Some links will only display if the user’s id is not to be present

as a session variable
1.2.4.5. Links

1.2.4.5.1. Common Links
1.2.4.5.1.1. contactUs.jsp
1.2.4.5.1.2. privacyPolicy.jsp
1.2.4.5.1.3. LogoutAction

1.2.4.5.2. Variable Links
1.2.4.5.2.1. Require user id session variable to be to be present

1.2.4.5.2.1.1. chooser.jsp
1.2.4.5.2.1.2. logout (Action)

1.2.4.5.2.2. Require user id session variable not to be to be present
1.2.4.5.2.2.1. logon.jsp

1.2.4.5.2.3. Require user id and food list id session variable to be to
be present

1.2.4.5.2.3.1. foodList.jsp
1.2.4.5.2.3.2. mealPlans.jsp
1.2.4.5.2.3.3. shoppingLists.jsp

1.3. Food List Pages
1.3.1. createFoodList.jsp

64

1.3.1.1. Form: CreateFoodListForm
1.3.1.2. Action: CreateFoodListAction
1.3.1.3. Enter the food list name.
1.3.1.4. Enter the food family rotation in days.
1.3.1.5. Enter the food rotation in days.

1.3.2. deleteFoodList.jsp
1.3.2.1. Form: SelectorForm
1.3.2.2. Action: DeleteFoodListAction
1.3.2.3. Select Y/N to give/refuse permission to delete the food list.

1.3.3. foodLists.jsp
1.3.3.1. Form: BlankForm
1.3.3.2. Action FoodListAction
1.3.3.3. Choose a food list action:

1.3.3.3.1. Create Food List
1.3.3.3.2. View/Print Food List
1.3.3.3.3. Modify Food List
1.3.3.3.4. Delete Food List

1.3.4. modifyFoodList.jsp
1.3.4.1. Form: ModifyFoodListForm
1.3.4.2. Action: ModifyFoodListAction
1.3.4.3. Select the box beside the food name to add the food to the food

list.
1.3.4.4. Deselect the box beside the food name to remove the food from

the food list.
1.3.5. selectFoodList.jsp

1.3.5.1. Form: SelectorForm
1.3.5.2. Action: SelectFoodListAction
1.3.5.3. Select a Food List.

1.3.6. viewFoodList.jsp
1.3.6.1. Form: BlankForm
1.3.6.2. Action: ViewFoodListAction
1.3.6.3. Displays the foods in the selected food list.
1.3.6.4. Forwards to

1.3.6.4.1. Back to Food Lists (foodLists.jsp)
1.3.6.4.2. Home (chooser.jsp)

1.4. General Pages
1.4.1. chooser.jsp

1.4.1.1. Form: BlankForm
1.4.1.2. Action: ChooserAction
1.4.1.3. Select an option:

1.4.1.3.1. Food Lists
1.4.1.3.2. Meal Plans
1.4.1.3.3. Shopping Lists

1.4.2. contactUs.jsp
1.4.2.1. Displays the site’s contact information.

65

1.4.2.2. Links
1.4.2.2.1. Requires user id to be present as session variable

1.4.2.2.1.1. chooser.jsp
1.4.2.2.2. Requires user id is not to be present as session variable

1.4.2.2.2.1. login.jsp
1.4.3. privacyPolicy.jsp

1.4.3.1. Displays the site’s privacy policy.
1.4.3.2. Links

1.4.3.2.1. Requires user id to be present as session variable.
1.4.3.2.1.1. chooser.jsp

1.4.3.2.2. Requires user id not to be present as session variable.
1.4.3.2.2.1. login.jsp

1.5. Meal Plan Pages

1.5.1. createMealPlan.jsp
1.5.1.1. Form: CreateMealPlanForm
1.5.1.2. Action: CreateMealPlanAction
1.5.1.3. Enter the start date.
1.5.1.4. Enter the number of days planning meals for.

1.5.2. deleteMealPlan.jsp
1.5.2.1. Form: SelectorForm
1.5.2.2. Action: DeleteMealPlanAction
1.5.2.3. Select Y/N to give/refuse permission to delete the selected meal

plan.
1.5.3. mealPlans.jsp

1.5.3.1. Form: BlankForm
1.5.3.2. Action: MealPlanAction
1.5.3.3. Select a meal plan option:

1.5.3.3.1. Create Meal Plan(s)
1.5.3.3.2. Modify Meal Plan
1.5.3.3.3. View/Print Meal Plan
1.5.3.3.4. Delete Meal Plan
1.5.3.3.5. Change to a different food list.

1.5.4. modifyMealPlan.jsp
1.5.4.1. Form: BlankForm
1.5.4.2. Action: ModifyMealPlanAction
1.5.4.3. Choose an option:

1.5.4.3.1. Add a Meal
1.5.4.3.2. Modify a Meal
1.5.4.3.3. Delete a Meal
1.5.4.3.4. Select a Different Meal Plan
1.5.4.3.5. Back to Home (chooser.jsp)

1.5.5. selectMealPlan.jsp
1.5.5.1. Form: SelectorForm
1.5.5.2. Action: SelectMealPlanAction

66

1.5.5.3. Select a Meal Plan.
1.5.6. selectMultipleMealPlans.jsp

1.5.6.1. Form: SelectMultipleMealPlansForm
1.5.6.2. Action: SelectMultipleMealPlansAction
1.5.6.3. Enter start date.
1.5.6.4. Enter number of days.

1.6. Meal Pages
1.6.1. createMeals.jsp

1.6.1.1. Form: CreateMealsForm
1.6.1.2. Action: CreateMealsAction
1.6.1.3. Select the boxes beside the meals you want to plan.

1.6.2. deleteMeal.jsp
1.6.2.1. Form: SelectorForm
1.6.2.2. Action: DeleteMealAction
1.6.2.3. Select Y/N to give/refuse permission to delete the select meal.

1.6.3. modifyMeals.jsp
1.6.3.1. Form: ModifyMealsForm
1.6.3.2. Action ModifyMealsAction
1.6.3.3. Select the box beside the food name to add the food to the

meal.
1.6.3.4. Deselect the box beside the food name to remove the food from

the meal.
1.6.4. selectMeal.jsp

1.6.4.1. Form: SelectorForm
1.6.4.2. Action: SelectMealAction
1.6.4.3. Select a Meal.

1.7. Shopping List Pages
1.7.1. shoppingLists.jsp

1.7.1.1. Choose an option:
1.7.1.1.1. Create and Print a Shopping List
1.7.1.1.2. Select a different food list
1.7.1.1.3. Back to Home

1.7.2. viewShoppingList.jsp
1.7.2.1. Form: BlankForm
1.7.2.2. Action: ViewShoppingListAction
1.7.2.3. Displays the selected meal plans in shopping list format.
1.7.2.4. Forwards:

1.7.2.4.1. Back to Shopping Lists (shoppingLists.jsp)
1.7.2.4.2. Home (chooser.jsp)

2. Forms
Note: Forms with Validators are ValidatorForms, otherwise they are ActionForms.

2.1. Account Forms
2.1.1. CreateAccountForm

67

2.1.1.1. Action: CreateAccountAction
2.1.1.2. Page: createAccount.jsp
2.1.1.3. Input

2.1.1.3.1. username – the user’s desired username
2.1.1.3.2. password – the user’s desired password
2.1.1.3.3. email address – the user’s email address
2.1.1.3.4. confirm email address – user re-enters email address

2.1.1.4. Validators
2.1.1.4.1. required

2.1.1.4.1.1. username
2.1.1.4.1.2. password

2.1.1.4.2. minlength
2.1.1.4.2.1. username: 5
2.1.1.4.2.2. password: 5

2.1.1.4.3. maxlength
2.1.1.4.3.1. email: 40

2.1.1.4.4. email
2.1.1.4.4.1. email

2.1.1.4.5. custom
2.1.1.4.5.1. email and confirm email must be identical

2.1.2. LoginForm
2.1.2.1. Action: LoginAction
2.1.2.2. Page: login.jsp
2.1.2.3. Input

2.1.2.3.1. username – the user’s username
2.1.2.3.2. password – the user’s password

2.1.2.4. Validators
2.1.2.4.1. required

2.1.2.4.1.1. username
2.1.2.4.1.2. password

2.1.3. LostAccountForm
2.1.3.1. Action: LostAccountAction
2.1.3.2. Page: lostAccount.jsp
2.1.3.3. Input

2.1.3.3.1. email – the email address the user entered when they
created their account

2.1.3.3.2. confirm email – user re-enters email address
2.1.3.4. Validators

2.1.3.4.1. required
2.1.3.4.1.1. email
2.1.3.4.1.2. confirm email

2.1.3.4.2. email
2.1.3.4.2.1. email
2.1.3.4.2.2. confirm email

2.1.3.4.3. custom

68

2.1.3.4.3.1. email and confirm email must be identical
2.2. Food List Forms

2.2.1. CreateFoodListForm
2.2.1.1. Action: CreateFoodListAction
2.2.1.2. Page: createFoodList.jsp
2.2.1.3. Input

2.2.1.3.1. famRotation – the food family rotation
2.2.1.3.2. foodRotation – the food rotation
2.2.1.3.3. listName – the user’s desired food list name

2.2.1.4. Validators
2.2.1.4.1. custom

2.2.1.4.1.1. famRotation must be equal to or less than
foodRotation.

2.2.1.4.1.2. listName must not already be in use by this user.
2.2.1.4.2. required

2.2.1.4.2.1. famRotation
2.2.1.4.2.2. foodRotation
2.2.1.4.2.3. listName

2.2.1.4.3. integer
2.2.1.4.3.1. famRotation
2.2.1.4.3.2. foodRotation

2.2.1.4.4. maxlength
2.2.1.4.4.1. famRotation: 2
2.2.1.4.4.2. foodRotation: 2
2.2.1.4.4.3. listName: 12

2.2.2. ModifyFoodListForm
2.2.2.1. Action: ModifyFoodListDispatchAction
2.2.2.2. Page: modifyFoodList.jsp
2.2.2.3. Input

2.2.2.3.1. preSelected – array of the foods already in the user’s food
list

2.2.2.3.2. selected – array of the foods the user wants to be in the
food list

2.2.2.4. Validators
2.3. General Forms

2.3.1. BlankForm
2.3.1.1. This placeholder form is used by Actions that do not require

form data because the Struts framework requires an ActionForm
to be indicated for most Actions.

2.3.1.1.1. ChooserAction
2.3.1.1.2. FoodListAction
2.3.1.1.3. InsertModifiedFoodListAction
2.3.1.1.4. ModifyFoodListPrepareAction
2.3.1.1.5. SelectFoodListPrepareAction
2.3.1.1.6. ViewFoodListPrepareAction

69

2.3.1.1.7. ViewFoodListAction
2.3.1.1.8. MealPlanAction
2.3.1.1.9. CreateMealPlanPrepareAction
2.3.1.1.10. ModifyMealPlanAction
2.3.1.1.11. SelectMealPlanPrepareAction
2.3.1.1.12. ViewMealPlanPrepareAction
2.3.1.1.13. ViewMealPlanAction
2.3.1.1.14. SelectMealPrepareAction
2.3.1.1.15. CreateMealsPrepareAction
2.3.1.1.16. InsertModMealAction
2.3.1.1.17. ModifyMultipleMealsPrepareAction
2.3.1.1.18. ModifySingleMealPrepareAction
2.3.1.1.19. AddMealsPrepareAction

2.3.2. SelectorForm
2.3.2.1. This single field form is used by several actions.

2.3.2.1.1. SelectFoodListAction
2.3.2.1.2. DeleteFoodListAction
2.3.2.1.3. SelectMealPlanAction
2.3.2.1.4. DeleteMealPlanAction
2.3.2.1.5. SelectMealAction
2.3.2.1.6. DeleteMealAction

2.3.2.2. Input
2.3.2.2.1. selected – the selected data.

2.3.2.3. Validators
2.3.2.3.1. required

2.3.2.3.1.1. selected
2.4. Meal Forms

2.4.1. CreateMealsForm
2.4.1.1. Action: CreateMealsAction
2.4.1.2. Page: createMeals.jsp
2.4.1.3. Input

2.4.1.3.1. mealNames – array of the meal names the user may
select.

2.4.1.3.2. selected – array of the meal names the user selected.
2.4.2. ModifyMealsForm

2.4.2.1. Action: ModifyMealsDispatchAction
2.4.2.2. Page: modifyMeals.jsp
2.4.2.3. Input

2.4.2.3.1. preSelected – array of the foods already in the user’s food
list

2.4.2.3.2. selected – array of the foods the user wants to be in the
food list

2.5. Meal Plan Forms
2.5.1. CreateMealPlanForm

2.5.1.1. Action: CreateMealPlanAction

70

2.5.1.2. Page: createMealPlan.jsp
2.5.1.3. Input

2.5.1.3.1. startDate – the first date to create meals for.
2.5.1.3.2. days – the number of days the user wants to plan meals

for.
2.5.1.3.3. dates – array of the dates the meals will be created for.

2.5.1.4. Validators
2.5.1.4.1. custom

2.5.1.4.1.1. Returns an error if a meal plan for startDate is already
in the database for this food list.

2.5.1.4.1.2. Returns an error if a meal plan for any of the other
dates requested is already in the database.

2.5.1.4.2. required
2.5.1.4.2.1. startDate
2.5.1.4.2.2. days

2.5.1.4.3. integer
2.5.1.4.3.1. days

2.5.1.4.4. date
2.5.1.4.4.1. startDate: strict date pattern MM-dd-yyyy

2.5.1.4.5. range
2.5.1.4.5.1. days: min 1, max 7

2.5.2. SelectMultipleMealPlansForm
2.5.2.1. Action: SelectMultipleMealPlansAction
2.5.2.2. Page: selectMultipleMealPlans
2.5.2.3. Input

2.5.2.3.1. startId – the meal plan id of the selected starting date
2.5.2.3.2. days – the number of days the user wants to view meal

plans for.
2.5.2.3.3. mealPlans – array of MealPlanDTOs containg data about

the meal plans that are to be viewed.
2.5.2.4. Validators

2.5.2.4.1. custom
2.5.2.4.1.1. There must be at least one meal plan in the given date

range.
2.5.2.4.2. required

2.5.2.4.2.1. startId
2.5.2.4.2.2. days

2.5.2.4.3. integer
2.5.2.4.3.1. days

2.5.2.4.4. range
2.5.2.4.4.1. days: min 1, max 7

2.6. Shopping List Forms
2.6.1. None needed.

71

Note: Some Actions exist only logically in the struts-config file, not as physical
java class files. These actions will be denoted with a *.
3. Actions

3.1. Account Actions
3.1.1. CreateAccountAction

3.1.1.1. Form: CreateAccoutForm
3.1.1.2. Page: createAccount.jsp
3.1.1.3. Adds a new user account to the database.
3.1.1.4. ActionForward: chooser

3.1.2. LoginAction
3.1.2.1. Form: LoginForm
3.1.2.2. Page: login.jsp
3.1.2.3. ActionForward: chooser

3.1.3. LogoutAction
3.1.3.1. Form: None
3.1.3.2. Page: None
3.1.3.3. Invalidates the session, which removes from memory all

variables stored in the session.
3.1.3.4. ActionForward: login

3.1.4. LostAccountAction
3.1.4.1. Form: LostAccountForm
3.1.4.2. Page: lostAccount.jsp
3.1.4.3. Gets the user’s email address for display.
3.1.4.4. Future versions will email the user’s account information to the

user’s email address.
3.1.4.5. ActionForward: lostAccountResults

3.2. FoodList Actions
3.2.1. CreateFoodListAction

3.2.1.1. Form: CreateFoodListForm
3.2.1.2. Page: createFoodList.jsp
3.2.1.3. Adds a new food list to the database.
3.2.1.4. ActionForward: modifyFoodListPrepare

3.2.2. DeleteFoodListAction
3.2.2.1. Form: SelectorForm
3.2.2.2. Page: deleteFoodList.jsp
3.2.2.3. Deletes a food list from the database.
3.2.2.4. ActionForward: foodLists

3.2.3. FoodListAction*
3.2.3.1. Form: BlankForm
3.2.3.2. Page: foodLists.jsp
3.2.3.3. Allows user to click a button to forward to a food list option.

3.2.4. InsertModifiedFoodListAction
3.2.4.1. Form: BlankForm
3.2.4.2. Adds selected foods to the food list.
3.2.4.3. Removes any unwanted existing foods from the food list.

72

3.2.4.4. ActionForward: foodLists
3.2.5. ModifyFoodListDispatchAction

3.2.5.1. Form: ModifyFoodListForm
3.2.5.2. Page: modifyFoodList.jsp
3.2.5.3. Gets user selections and sets them for use by

insertModifiedFoodListAction.
3.2.5.4. ActionForward: insertModifiedFoodList

3.2.6. ModifyFoodListPrepareAction
3.2.6.1. Form: BlankForm
3.2.6.2. Sets up the data required by ModifyFoodListForm for use in

ModifyFoodListAction.
3.2.6.3. ActionForward: modifyFoodList

3.2.7. SelectFoodListAction
3.2.7.1. Form: SelectorForm
3.2.7.2. Page: selectFoodList.jsp
3.2.7.3. Adds the id of the user selected food list to the session.
3.2.7.4. ActionForward: determined by source of the request.

3.2.8. SelectFoodListPrepareAction
3.2.8.1. Form: BlankForm
3.2.8.2. Sets up the data required by SelectorForm for use in

SelectFoodListAction.
3.2.8.3. ActionForward: selectFoodList

3.2.9. ViewFoodListPrepareAction
3.2.9.1. Form: BlankForm
3.2.9.2. Sets up the data required by ViewFoodListAction.
3.2.9.3. ActionForward: viewFoodList

3.2.10. ViewFoodListAction*
3.2.10.1.Form: BlankForm
3.2.10.2.Page: viewFoodList.jsp
3.2.10.3.Allows user to click a button to forward to an option.

3.3. General Actions
3.3.1. ChooserAction*

3.3.1.1. Form: BlankForm
3.3.1.2. Page: chooser.jsp
3.3.1.3. Allows a user to click an option button to forward to that option.

3.4. Meal Actions
3.4.1. AddMealsPrepareAction

3.4.1.1. Form: BlankForm
3.4.1.2. Sets up the data required by CreateMealsForm for use by

CreateMealsAction.
3.4.1.3. ActionForward: createMeals

3.4.2. CreateMealsAction
3.4.2.1. Form: CreateMealsForm
3.4.2.2. Page: createMeals.jsp
3.4.2.3. Adds one or more meals to the database.

73

3.4.2.4. ActionForward: modifyMultipleMealsPrepare
3.4.3. CreateMealsPrepareAction

3.4.3.1. Form: BlankForm
3.4.3.2. Sets up the data required by CreateMealsForm for use by

CreateMealsAction.
3.4.3.3. ActionForward: createMeals

3.4.4. DeleteMealAction
3.4.4.1. Form: SelectorForm
3.4.4.2. Page: deleteMeal.jsp
3.4.4.3. Deletes the selected meal from the database.
3.4.4.4. ActionForward: modifyMealPlan

3.4.5. InsertModMealAction
3.4.5.1. Form: BlankForm
3.4.5.2. Adds foods to the selected meal.
3.4.5.3. Removes any unwanted existing foods from the selected meal.
3.4.5.4. ActionForward: Determined by the source of the modifyMeals

request.
3.4.6. ModifyMealsDispatchAction

3.4.6.1. Form: ModifyMealsForm
3.4.6.2. Page: modifyMeals.jsp
3.4.6.3. Gets user selections and sets them for use by

InsertModMealAction.
3.4.6.4. ActionForward: insertModMealAction

3.4.7. ModifyMultipleMealsPrepareAction
3.4.7.1. Form: BlankForm
3.4.7.2. Sets up data required by ModifyMealsForm for use by

ModifyMealsAction.
3.4.7.3. ActionForward: modifyMeals

3.4.8. ModifySingleMealPrepareAction
3.4.8.1. Form: BlankForm
3.4.8.2. Sets up data required by ModifyMealsForm for use by

ModifyMealsAction.
3.4.8.3. ActionForward: modifyMeals

3.4.9. SelectMealAction
3.4.9.1. Form: SelectorForm
3.4.9.2. Page: selectMeal.jsp
3.4.9.3. Gets user input to select a meal.
3.4.9.4. Adds data about the selected meal to the session.
3.4.9.5. ActionForward: Determined by the source of the selectMeal

request.
3.4.10. SelectMealPrepareAction

3.4.10.1.Form: BlankForm
3.4.10.2.Sets up the data required by SelectorForm for use by

SelectMealAction.
3.4.10.3.ActionForward: selectMeal

74

3.5. Meal Plan Actions
3.5.1. CreateMealPlanAction

3.5.1.1. Form: CreateMealPlanForm
3.5.1.2. Page: createMealPlan.jsp
3.5.1.3. Adds one or more meal plans to the database.
3.5.1.4. ActionForward: createMealsPrepare

3.5.2. CreateMealPlanPrepareAction
3.5.2.1. Form: BlankForm
3.5.2.2. Sets up the data required by CreateMealPlanForm for use by

CreateMealPlanAction.
3.5.2.3. ActionForward: createMealPlan

3.5.3. DeleteMealPlanAction
3.5.3.1. Form: SelectorForm
3.5.3.2. Page: deleteMealPlan.jsp
3.5.3.3. Deletes the selected meal plan from the database.
3.5.3.4. ActionForward: mealPlans

3.5.4. MealPlanAction*
3.5.4.1. Form: BlankForm
3.5.4.2. Page: mealPlans.jsp
3.5.4.3. Allows user to click a button to forward to a meal plan option.

3.5.5. SelectMealPlanAction
3.5.5.1. Form: SelectorForm
3.5.5.2. Page: selectMealPlan.jsp
3.5.5.3. Gets user input to select a meal plan.
3.5.5.4. Adds data about the selected meal plan to the session.
3.5.5.5. ActionForward: Determined by the source of the selectMealPlan

request.
3.5.6. SelectMealPlanPrepareAction

3.5.6.1. Form: BlankForm
3.5.6.2. Sets up the data required by SelectorForm for use by

SelectMealPlanAction.
3.5.6.3. ActionForward: selectMealPlan

3.5.7. SelectMultipleMealPlansAction
3.5.7.1. Form: SelectMultipleMealPlansForm
3.5.7.2. Page: selectMultipleMealPlans.jsp
3.5.7.3. Gets user input to select a date range.
3.5.7.4. Gets data about meal plans for future use.
3.5.7.5. ActionForward: Determined by the source of the

selectMultipleMealPlans request.
3.5.8. SelectMultipleMealPlansPrepareAction

3.5.8.1. Form: BlankForm
3.5.8.2. Sets up the data required by SelectMultipleMealPlansForm for

use by SelectMultipleMealPlansAction.
3.5.8.3. ActionForward: SelectMultipleMealPlansAction

3.5.9. ViewMealPlanAction*

75

3.5.9.1. Form: BlankForm
3.5.9.2. Page: viewMealPlan.jsp
3.5.9.3. Allows user to click a button to forward to an option.

3.5.10. ViewMealPlanPrepareAction
3.5.10.1.Form: BlankForm
3.5.10.2.Sets up the data required by ViewMealPlanAction.
3.5.10.3.ActionForward: viewMealPlan

3.6. Shopping List Actions
3.6.1. ShoppingListAction*

3.6.1.1. Form: BlankForm
3.6.1.2. Page: shoppingLists.jsp
3.6.1.3. Allows user to click a button to forward to a shopping list option.

3.6.2. ViewShoppingListAction*
3.6.2.1. Form: BlankForm
3.6.2.2. Page: viewShoppingList.jsp
3.6.2.3. Allows user to click a button to forward to an option.

3.6.3. ViewShoppingListPrepareAction
3.6.3.1. Form: BlankForm
3.6.3.2. Sets up the data required for display by viewShoppingList.jsp.
3.6.3.3. ActionForward: viewShoppingList

4. Utility Classes

4.1. Tokens
4.1.1. Holds all internal constants such as forward names, and

query/update names
4.2. SqlMapConfig

4.2.1. Sets up the datasource and iBATIS framework
4.3. SqlHelper

4.3.1. Methods for creating, retrieving, updating, and deleting database
information. (CRUD methods)

4.4. SelectorForm
4.4.1. A general purpose ActionForm for use when there is only one value

to be passed to an action.

Other Specifications for Rotation Diet Project
1. iBATIS Framework.

1.1. Uses the SqlMapConfig and SqlHelper utility classes to expedite
database traffic.

1.2. Uses java data transfer objects (DTOs) to securely transfer data.
1.3. Allows the constant parts of queries and updates to be stored in the web

application, so that everything is in one place. This is much more efficient
and reduces the server overhead.

2. Java Package descriptions
2.1. com.hward.rotationdiet.account

76

2.1.1. Provides classes for creating, retrieving, updating, and deleting user
account data. (database crud actions)

2.2. com.hward.rotationdiet.dto
2.2.1. Provides the Data Transfer Objects (DTOs) used by the iBATIS

framework.
2.3. com.hward.rotationdiet.foodlist

2.3.1. Provides classes for creating, retrieving, updating, and deleting user
food list data. (database crud actions)

2.4. com.hward.rotationdiet.meal
2.4.1. Provides classes for creating, retrieving, updating, and deleting user

meal data. (database crud actions)
2.5. com.hward.rotationdiet.mealplan

2.5.1. Provides classes for creating, retrieving, updating, and deleting user
meal plan data. (database crud actions)

2.6. com.hward.rotationdiet.shoppinglist
2.6.1. Provides classes for retrieving a user’s shopping list data. (database

crud actions)
2.7. com.hward.rotationdiet.util

2.7.1. Provides utility classes for the rotation diet application.
2.8. com.hward.util.ibatis

2.8.1. Provides utility classes for implementing the iBATIS framework.

77

Appendix E: Struts Application Flowchart

78

79

80

81

82

Appendix F: Final User Interview

1 How well did the rotation diet project website meet your expectations overall?

a. It mostly met them, but I wasn’t able to test it thoroughly because of a

server problem.

b. Once I understood not to use the back button on my browser, I found the

website very helpful. It made menu planning much easier and having the

food families so easily available was very handy.

c. I was pleased with how it turned out, although there are still some bugs.

2 Did you find the website easy to use? Why?

a. Yes. The layout was logical.

b. Yes, because it was understandable to me, a person who is barely

computer literate.

c. Yes, especially once the buttons on the food list and meal plan screens

were fixed up so you could go backwards and forwards without messing

things up.

3 Do you think that the site would be easy for others to use? Why?

a. Yes. It is simple to use.

b. Yes, because it was easy for me to use.

c. Mostly. I think it might be harder for someone who hasn’t been on a

rotation diet very long to figure out. I think it needs more instructions.

4 Would you continue to use the web site to create your meal plans if the

website remained available? Why?

a. Yes, because I don’t have to track the rotation manually.

b. Yes, because it makes the meal planning much easier.

c. Yes, because it is much easier than doing meal plans manually.

5 Was there anything that you expected to be included on the website that was

not?

a. No.

83

b. Being able to change the amounts of food that needs to be bought right on

the shopping list and then print it.

c. Yes, I was hoping to have more instructions on the screen to tell how to do

things.

6 Was there anything that you would like to see included on the website in the

future?

a. I would like to see recommended serving size and basic nutrition

information such as fat and carbohydrate content for each food.

b. A user guide to explain how to use the program.

c. I had a number of minor crashes where I didn’t lose any information but

had to log back in to get back to where I had been working.

d. It would be nice to be able to change the amounts of food on the shopping

list on the screen instead of having to do it after printing.

7 Comments

a. I have set up rotation meal plans at the same time manually for three

people with different allergies. It was a nightmare. This program even with

a few bugs still needing to be worked out was a breeze.

84

Appendix G: Use Cases

Use Cases
1. Create Account (username/password combination)

1.1. Enter unique Username
1.2. Enter Password
1.3. Enter Email address
1.4. Confirm Email address (re-enter)
1.5. Insert new account into database

2. Login to Account
2.1. Enter Username
2.2. Enter Password
2.3. Validate username/password combination

3. Logout of Account
3.1. Enter Email address

4. Create Food List
4.1. Enter Food Rotation in Days
4.2. Enter Food Family Rotation in Days
4.3. Insert empty Food List into database for current user
4.4. Modify Food List

5. Select Food List
5.1. Select one existing Food List belonging to current user

6. Modify Food List
6.1. Select Food List
6.2. Add desired Foods to Food List
6.3. Remove undesired Foods From Food List

7. Delete Food List
7.1. Select Food List
7.2. Delete from database:

7.2.1. Meal Items (Foods) associated with selected Food List
7.2.2. Meals associated with selected Food List
7.2.3. Meal Plans associated with selected Food List
7.2.4. Food List Items associated with selected Food List
7.2.5. Selected Food List

8. View/Print Food List
8.1. Select Food List
8.2. Display selected Food List

9. Create Meal Plan
9.1. Select Food List
9.2. Enter Start Date
9.3. Enter Number of Days Planning
9.4. Create Meals
9.5. Modify Multiple Meals

10. Modify Meal Plan

85

10.1. Select Meal Plan
10.2. Choose an action:

10.2.1. Add a Meal to meal plan
10.2.1.1. Create Meals
10.2.1.2. Modify Multiple Meals

10.2.2. Modify Meal
10.2.2.1. Select Meal
10.2.2.2. Modify Single Meal

10.2.3. Delete Meal
10.2.3.1. Select Meal
10.2.3.2. Delete from database:

10.2.3.2.1. Meal items (foods) belonging to selected Meal
10.2.3.2.2. Selected Meal

11. Select Meal Plan
11.1. Select one existing meal plan belonging to current user

12. View/Print Meal Plan
12.1. Select Start Date
12.2. Select Number of Days
12.3. Display Meal Plan(s)

13. Delete Meal Plan
13.1. Select Meal Plan
13.2. Delete from database:

13.2.1. Meal Items (foods) associated with selected Meal Plan
13.2.2. Meals associated with selected Meal Plan
13.2.3. Selected Meal Plan

14. Create Meals
14.1. Enter meal names
14.2. Insert empty Meal(s) into database

15. Modify Single Meal
15.1. Add desired foods to selected Meal
15.2. Remove undesired foods from selected Meal

16. Modify Multiple Meals
16.1. For each Meal:

16.1.1. Add desired foods to Meal
16.1.2. Remove undesired foods from Meal

17. Select Meal
17.1. Select one existing meal belonging to the selected meal plan

18. View/Print Shopping List
18.1. Select Start Date
18.2. Select Number of Days
18.3. Display Shopping List

86

Appendix H: Glossary

Account Allows the user to securely access and store their

personalized food lists, rotation schedule, etc. without
worries of another user accidentally (or maliciously)
modifying information.

Datasource A source of data for an application. Commonly some
form of database, but may be an xml or text file, etc.

Design Pattern A standardized programming template that has been
shown to be a successful solution in specific instances.

Entity Relationship
Diagram (ERD)

A diagram that shows the relationships between
database tables.

Food Refers to a specific food, such as apples or fish, not food
in general.

Food Family Refers to the biological family of a specific food. For
example, apples belong to the Rose family, and
tomatoes to the Nightshade family.

Food List A list of all the foods that a particular person can eat.

Framework A collection of design patterns and best practices that
forms a generic application template and is designed
with a specific function in mind. For example, the Struts
framework is designed to form the underpinnings for
Java web applications.

iBATIS Framework A framework that decouples SQL code from Java
applications, improving the extensibility and service life
of the application.

Integrated
Development
Environment (IDE)

Computer software designed to make building computer
software faster, easier, and more efficient.

Java A popular object-oriented programming language.

Java Database
Connectivity (JDBC)

Standardized Java classes designed to allow Java
applications to connect to and interact with databases.

Java Class The main components of a Java program.

Java Server Page
(JSP)

Text documents that can be translated into working Java
servlets by a servlet runner application.

Java Servlet Runner A computer program that powers Java web applications.

Login A user’s unique Username and password combination

87

Meal Plan Planned meals created for a specific date, using a
rotation schedule.

Model/View/Controller
(MVC)

A design pattern that helps decouple (keep separate) the
main components of an n-tier system. This can make a
system more extensible so it is useful longer.

Normalization The process of optimizing database tables.

Resin A Java servlet runner created by Caucho Technology,
Inc.

Rotation Diet A diet for patients with severe food allergies, designed to
prevent them from becoming allergic to the foods they
are not already allergic to.

Rotation Schedule Schedule that determines when a particular food may be
eaten, such as 3/5 day or 4/8 day.
The numbers in the schedule refer to the number of days
between any day a particular food or food family is eaten
and the next day the food/food family may be eaten.
Example: on a 4/7 day rotation schedule, if the patient
eats apples on Monday, another food from the Rose
family may be eaten on Saturday (four days between),
but apples may not be eaten again until the next
Tuesday (7 days between)

Shopping List List of foods needed for the selected meal plans.

Structured Query
Language (SQL)

A programming language used to interact with
databases.

Struts Framework A framework based on the MVC design pattern.

Tomcat A Java servlet runner created by the Apache Software
Foundation.

UML Unified Modeling Language

XML Extensible Markup Language

88

Appendix I: Views Sample

Figure 2: Login Screen

Figure 3: Create Meal Plans Screen

89

Figure 4: Choosing the Meals to be Created for the Meal Plans

Figure 5: Selecting Foods for a Meal

90

Figure 6: View of a Completed Meal Plan

91

Figure 7: Shopping List for the Meal Plan Shown in Figure 6

	Development Of A Personal Diet Plan Database Application For Persons With Severe Food Allergies
	Recommended Citation

	Microsoft Word - 42BAF83A-638C-20CFD0.doc

