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LITERATURE REVIEW 

Review of sublethal effects of heavy metals on aquatic fauna 

Human activity is degrading freshwater ecosystems. We rely on freshwater 

ecosystems economically, for providing fisheries, clean water, and flood control (Covich 

et al. 2004). In addition, they are valued for their disproportionate contribution to global 

biodiversity by supporting 9.5% of Earth’s described species despite occupying only 

0.8% of the Earth’s surface (Dudgeon et al. 2006, Strayer & Dudgeon 2010). Despite 

their value, human activity is the main source of degradation by water pollution, habitat 

degradation, invasive species, altered flow regime, climate change, and overfishing 

(Dudgeon et al. 2006). As a result, freshwater species are more prone to extinction than 

other ecosystem types (Ricciardi & Rasmussen 1999) including the loss of 32% of 

amphibian species and 54% of freshwater vertebrate populations (Dudgeon et al. 2006).  

As urbanization increases, freshwater ecosystems are more vulnerable to water 

pollution. Water pollution largely comes from industrial waste runoff that contains 

elevated nutrients, organic compounds, and metals (Dudgeon et al. 2006). Nutrient 

pollution contributes to extreme fluctuating dissolved oxygen in water bodies through 

eutrophication (Davis & Gentley 2000). Other pollutants such as heavy metals and 

organic compounds are endocrine disruptors, causing cellular stress and sometimes death 

in aquatic organisms.  

Metal pollution is strongly related to urbanization (Xian et al. 2007). The most 

common metals are cadmium, chromium, copper, lead, manganese, nickel, and zinc 
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(Beasley & Kneale 2002). Common sources are associated with urban areas and include 

vehicle brakes and engines, building siding, and dry atmospheric deposition (Davis et al. 

2001). The increased amount of impervious surface in urban areas contributes to the high 

metal loads by diverting rainwater across surfaces rather than allowing it to infiltrate into 

the ground. As a result, metals are mobilized and accumulated during rain events and 

subsequently runoff into streams and lakes (Sansalone & Buchberger 1997).  

Aquatic organisms accumulate metals when exposed to contaminated water, food, or 

sediment (Naimo 1995). First they are exposed to it, and then they accumulate metals in 

their tissue, which can lead to cellular stress and death. Fortunately, many aquatic 

animals have a variety of defenses to avoid, eliminate, and detoxify pollutants. If the 

defenses are insufficient the organism dies. If they are sufficient, the associated cost with 

the defenses often results in behavioral and physiological effects (Callow 1991). 

I will review the literature of the sublethal effects in order to explain and predict 

the individual and community effects of sublethal metal pollution. The review will 

include macroinvertebrates, fish, and mussels. I will start by explaining the path of 

toxicity and the defense strategies to reduce toxicity during each step: avoiding 

contamination, reducing body burden, and detoxification as well as mention the cost for 

each defense. In part two, I will explain how these costs contribute to physiological 

effects that reduce individual fitness and can effect community composition.  
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PART 1: Steps of toxicity / defenses 

Avoidance 

Avoidance is a behavioral adaptation to contamination. When exposed to a 

contaminated food, sediment, or water the organism may change its behavior and avoid 

the sources of contamination by physically avoiding the area, decreasing food 

consumption, or decreasing burrowing in the sediment. Once removed from the 

contamination, the organism will resume normal behaviors (Wilding & Maltby 2006). If 

the organism is unable to fully avoid exposure to contaminants, biogeochemical changes 

will likely be induced that impact the organism’s physiological response. 

Mobile organisms avoid concentrated areas by swimming away from high 

concentration areas and spawning in less contaminated areas. For example, Blunthouse 

minnows Pimephales notatus only spawned in areas less concentrated than 33-77g/L of 

copper (Brungs et al.1976). Similarly, Daphnia longspina avoided copper contaminated 

water by staying in chambers with low concentrations. These daphnids exhibited 

avoidance behavior in chambers at concentrations lower than the LC50 (Lopes et al. 

2004).  

Less mobile organisms, such as bivalves, are unable to escape contaminated areas 

avoid contamination by closing their valve, thereby restricting exposure to the more 

protective shell.  While their valves are normally open to filter food particles and oxygen 

from the water column, in the presence of metals, they their valves remain closed for a 

prolonged period of time. The time response for valve closure is within minutes of 

exposure and decreases at higher metal concentrations (Kramer et al. 1989).  Valve 
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closure in the freshwater mussel Corbicula fluminea occurred well below the lethal levels 

at an EC50 of 4g Cu/L (Tran et al. 2003). 

Mobile organisms also decrease food consumption when food is contaminated. 

Feeding rate reduction can be attributed to avoidance when feeding rate increases after 

removal of the contaminant. Both carp Cyprinus carpio (De Boeck et al. 1997) and the 

amphipod Gammarus pulex (Wilding & Maltby 2006) reduced food consumption when 

given food contaminated with Cu and Zn.  

Costs:  

Costs of avoidance vary between mobile and sedentary organisms. For mobile 

organisms, escaping to a less contaminated area does not necessarily have any long-term 

costs unless the movement to other areas depresses foraging. Sedentary animals usually 

have a greater avoidance cost.  Valve closure reduces food consumption (Kramer et al. 

1989). Remaining near the top of sediment by reducing burrowing, makes the organism 

more vulnerable to predators (Bonnard et al. 2009). However, the benefit is that they 

reduce the amount of metal that is bioaccumulated.  

Bioaccumulation 

Bioaccumulation occurs when the rate of the metal taken in by the organism 

exceeds the rate it is eliminated. Metals bioaccumulate in the tissues, exoskeleton, and 

organs (Rainbow 2007). At chronic exposure to metals, sublethal concentrations can end 

up accumulating large amounts of metals in the tissue.  Metals are endocrine disruptors 

and cause cellular stress if in a bioavailable form (Rainbow 2007).  
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Reduce toxic forms of metals   

Invertebrates can prevent metals from entering their tissue by secreting mucus. 

The mucus forms a hard layer on the organism, preventing the metal from accumulating 

on soft tissue. Increased production of mucus occurs under metal exposure in mussels 

(Millington & Walker 1983).  

A second strategy is to store the metal in a non-toxic form. Vertebrates and 

invertebrates detoxify the metal by the producing metallothioneins (MT), a protein that 

binds to metals such as copper, cadmium, zinc, silver, and mercury. MTs expression 

varies interspecifically and intraspecifically as a function of concentration (Amiard et al. 

2006).  

Costs:  

Both the production of MTs and mucus cost energy. Secretion used approximately 

20% of the mollusk energy budget (Callow 1991). Production of MTs on the other hand 

seemed to be less costly using just 5% of the daphnids energy budget (Barber et al. 1990). 

These methods of reducing intake of toxic form of metals are energetically costly and 

likely have fitness consequences (Part II). The reward for these tactics is the reduction of 

cellular stress.  

Oxidative stress 

Oxidative stress is the bimolecular damage that occurs when the formation of 

reactive oxygen species (ROS) exceeds antioxidant defenses. The damage can lead to 

cancer and death if oxidative stress persists (Halliwell and Gutteridge 2007). Heavy 

metals induce oxidative stress by the formation of ROS via the Fenton reaction or Haber-
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Weiss reaction (Halliwell and Gutteridge 2007). Transition metals can produce a free 

radical OH when it reacts with H2O2.  Indicators of oxidative stress include formation of 

malondialdehyde (MDA) formation and lipid peroxides (Valvanidis et al. 2006).  

Oxidative Stress Prevention 

Antioxidants and enzymes detoxify ROS. They can also be used as biomarkers of 

oxidative stress. Indication of ROS formation is the activity of antioxidant enzymes 

including catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GPx), 

total glutathione (GSH) and superoxide dismutase (SOD). These biomarkers indicate that 

there is ROS formation, which leads to oxidative stress if the antioxidant defenses are 

insufficient.  Indicators of oxidative stress include formation of malondialdehyde (MDA) 

and lipid peroxides (Valvanidis et al. 2006).  

A comparison study of two species tolerance to the same concentration of Cu and Zn 

highlights the importance of the detoxification mechanisms in toxicity. The mussel 

Mytilus galloprovincialis exhibited higher MDA than the oyster Crassostrea angulata 

indicating that the mussels were more sensitive to Cu and Zn contamination and were 

experiencing oxidative stress.  Oysters had higher activity of antioxidant enzymes 

resulting in lower MDA production. Thus, oysters were better at reducing oxidative 

damage by producing more enzymes and antioxidants than the mollusk. The oysters even 

had a greater concentration of Cu and Zn content in their tissues (Funes et al. 2006). 

Thus, the oyster diverted energy toward antioxidant defenses, which decreased the 

amount of oxidative stress.  
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Iron lead to oxidative stress in fish studies. A five-week study on the African catfish 

Clarias gariepinus revealed that an elevated iron diet promoted oxidative stress. This was 

indicated by depleted vitamin E and an increase in both MDA and lipid peroxidation. The 

oxidative stress did not result in death but it did reduce growth (Baker et al. 1997).  The 

reduced growth is likely the consequence of the energy cost of the detoxifying enzymatic 

activity.  

Part II – Sublethal Effects  

Energy Costs 

The energy costs associated with secretion of mucus and detoxification divert energy 

from reproduction and growth. This metabolic cost is used in scope for growth (SFG) 

equation, which measures how much energy is available for future growth in terms of 

both physical growth of the organism and reproduction. SFG is a measurement of how 

much energy is taken in (food) to how much is used (respiration and excretion). The 

difference equals the available energy that can be used for reproduction and growth 

(Widdows and Salkeld 1993).  

The metabolic cost of detoxification is revealed by increased respiration rates in the 

clam Ruditapes decussatus when exposed to 10 μg/L of copper. Due to the respiration 

rates, the measured SFG was depressed, suggesting that growth and reproduction may 

decrease as well.  In the same clam, a higher body burden decreases SFG even after 

accumulation slows (Sobral and Widdows 1997). Therefore, metals can contribute to 

energy costs even after the exposure is reduced because the organism is still detoxifying 

the metal that has already accumulated.  
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Most studies only measure SFG, but a study on Daphnia magna looked at both the 

growth and reproduction components of SFG. There was a high correlation between the 

two measurements (Smolders et al. 2005). This supports the metabolic cost theory in that 

there is likely a physiological effect as a result of the metabolic cost of the stress imposed 

by pollutants.  

Sublethal Endpoints 

Reductions in growth rate, reproduction, and activity are sublethal endpoints that 

result from the energy costs of defenses.  As the SFG theory suggests, exposure to 

pollutants will require maintenance to detoxify and there will be less energy available for 

growth and reproduction. Furthermore, feeding reduction associated with avoidance 

behavior can decrease the input of energy, thereby reducing SFG even more noticeably. 

Thus, due to the allocation of energy toward detoxification and behavioral effects, growth 

and reproduction decrease during sublethal exposures to metals.   

Reproduction is a direct measure of fitness, while growth is strongly related to fitness 

for many animals including amphibians (Jung & Jagoe 1995), fish (Rosenthal and 

Alderice 1976), and odonates (Sokolovska et al. 2000). Growth is associated with finding 

a mate, reproduction, and predation in odonates (Sokolovska et al. 2000). Therefore, 

exposure to sublethal levels of pollution can still decrease an organism’s fitness.  

Metals decrease hatchability, reproduction, and growth at sublethal levels in fish 

(Woltering 1983). The most sensitive response to metals varies by the species which is 

exhibited in a review of the most sensitive responses. Of the 43 fish species examined, 

44% of the species most sensitive response was growth, 11.6% of the species most 
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sensitive response was hatchability and 30.2% of species was reproduction (Woltering 

1983). Not only do species vary in their response, but individuals within a species can 

have varying responses to metals as well. Two or more physiological responses occurred 

at the same LOEC (lowest observed effect concentration) for five of the studied species. 

This suggests that individual responses vary as well. Furthermore, mortality and a 

physiological effect occurred in 12 species at the same LOEC (Woltering 1983). Thus, 

fish responses to metals and their associated fitness costs vary both inter- and 

intraspecifically.  

Sublethal effects below LC50 are visible during long-term studies. For example, 

growth reduction did not occur for the Asiatic clam Corbicula sp.) until day 20 in a 30 

day exposure to 0.5mg/L of zinc  (Belanger et al. 1986). Long-term studies on 

invertebrates also resulted in physiological effects. Sublethal levels of heavy metals 

decreased growth in the caddisfly larvae Hydropsyche betteni (Balch et al. 2000), in the 

chironomid Chironomus tetans (Wentsel et al. 1977), and the daphnid Daphnia 

longispina (Lopes et al. 2006). In shorter 96-h aluminum exposure growth reduction for 

the amphibian Hyla cinerea only occurred at concentrations near the LC50. Exposure to 

aluminum also induced slower swimming speeds likely due to reduced body size. As a 

result the tadpoles are more susceptible to predation. (Jung & Jagoe 1995).   

 The sublethal effect of hypoactivity may also be related to energy costs of 

detoxificiation. Copper at 1.85ug/L decreased odonate (Aeshna sitchensis) and tadpole 

(Lithobates sylvaticus) activity (Hayden et al. 2015). Hypoactivity also decreased in 
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mussels, fish, and amphibians and has predatory-prey interaction effects (Millington & 

Walker 1983; Atchison & Sandheinrich 1987; Jung & Jagoe 1995).  

Community Effects: 

Intraspecific variation can affect the genetic variability of populations. Even at 

sublethal levels individuals and populations can become less fit due to physiological costs 

of metals (Callow 1991). Since depressed growth is a common sublethal effect and makes 

individuals more susceptible to predation, organisms that start off bigger may be favored, 

as was the case for a population of Daphnia longispina. In addition, the variation in body 

length was less pronounced for historically stressed populations (Lopes et al. 2006). For 

constantly stressed populations, the genetic diversity can decrease as the resistant or 

bigger organisms are favored.  

Due to the interspecific variation in responses to metal pollution, some species are 

more vulnerable to metals. Both sublethal and lethal metal pollution can favor the more 

resistant species and can effect community composition and potentially biodiversity. 

However, no clear models have demonstrated that these changes to abundance and local 

extirpation ultimately lead to loss of species over regional scales (Callow 1991).  

Conclusion:  

Freshwater animals have many defenses preventing lethal toxicity to metals. They can 

avoid contamination, detoxify with stress proteins, antioxidant enzymes, and 

metallothioneins. However, these defenses can depress the energy for reproduction, 

growth, and maintenance. Thus metals can still affect the organism’s fitness even at 

sublethal levels. As literature expands to study the biomarkers of enzymatic activity, 
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tissue accumulation, scope for energy, and behavioral and physiological endpoints, 

sublethal effects are being more comprehensively understood. The inter- and intraspecific 

variation in organismic response to metal contamination indicate that sublethal effects 

could significantly influence community composition especially in human-dominated 

ecosystems.  
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Sublethal toxicity in Urban-Dwelling Damselflies 

INTRODUCTION 

Freshwater ecosystems contribute disproportionately to global biodiversity by 

supporting 9.5% of Earth’s described species despite occupying only 0.8% of the Earth’s 

surface (Dudgeon et al. 2006, Strayer & Dudgeon 2010). Furthermore, freshwater species 

are more prone to extinction as compared to other ecosystem types (Ricciardi & 

Rasmussen, 1999). These enhanced extinction rates result primarily from human 

activities in the upstream watersheds that concentrate pollutants and increase the speed at 

which rainfall is conveyed off the landscape (Paul & Meyer 2001).  

Watershed urbanization in particular leads to predictable shifts in the hydrologic, 

thermal, and chemical regimes of receiving waters that often extirpate sensitive aquatic 

organisms (Paul and Meyer 2001, Allan 2004, Walsh et al. 2005). On the other hand, the 

creation of aquatic ecosystems in urban environments (e.g. stormwater ponds, drinking 

water reservoirs, or other water features) also provides habitat for freshwater organisms 

that can promote freshwater biodiversity across urban landscapes (Goertzen & Suhling, 

2012; Hassel, 2014). However, even when organisms can survive in these newly 

constructed urban waterbodies, the pollutants that concentrate in the water and sediment 

frequently accumulate in the tissues of the resident organisms and interfere with chemical 

processes (Stephanson et al. 2012; Hassel 2014). At low levels, organisms can detoxify 

the pollutants, but the maintenance requires an energy cost. Thus, while biodiversity 

might be maintained at the landscape scale, ecosystem functionality at the local scale may 
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be impaired due to sublethal toxic effects of concentrated pollutants. (e.g. lower growth 

rates and reproductive rates).  

In urban areas, increased amounts of impervious surface divert rain water across 

surfaces rather than allowing it to infiltrate into the ground. As a result, rain water from 

urban storm events flows across roads and parking lots, mobilizing and accumulating 

heavy metals, nutrients, and other pollutants in the process. After the first flush of a rain 

event, many metals (e.g. cadmium, copper, and zinc) exceed permissible concentrations 

allowed by EPA standards (Sansalone 1997). For example, copper (Cu), a common 

discharged priority pollutant (Beasley & Kneale 2002), was 2-18 times greater than the 

EPA standards after rain events (Sansalone 1997). Vehicle brakes, building siding, and 

dry atmospheric deposition are the greatest contributors to Cu pollution (Davis et al., 

2001). Urban ponds are often explicitly constructed to sequester these pollutants so that 

they are not allowed to reach receiving streams (Wu et al., 1996; Hassel, 2014). After 

storm events, metal sequestration can increase 2-10 times in urban ponds (Wu et al., 

1996).  

EPA sets a water quality criteria (WQC) for any pollutant to protect 95% of 

freshwater genera from lethal losses (i.e. death). For example, for lethal losses due to 

copper, the final acute value of 4.67 μg/L was derived by evaluating 29 toxicity tests that 

experimentally measure the critical lethal accumulation (LC50) for a total of 6 

invertebrates species and 10 fish species (EPA).  This suite of organisms represents a 

minute fraction of the total number of freshwater organisms that often live freshwaters. 

Furthermore, EPA’s focus on toxicity tests (i.e. lethality) to establish the WQC fails to 
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account for sublethal effects. For example, many metals that accumulate in urban ponds 

have been shown to depress growth rates, impair enzyme activity, and lower reproductive 

rates (Beasley 2002). Pollutants also cause behavioral changes that influence predator-

prey interactions (Hayden et al., 2014). Finally, EPA’s standard methods does not test 

whether diet is a significant route for accumulation of toxic substances in organisms, 

since food is not routinely administered in tests and if it is, it is required to be below 

standard metal concentrations (EPA 2002).  Because of these shortcomings, EPA’s WQC 

for most pollutants do not necessarily measure the full range of processes important for 

maintaining ecosystem integrity. 

One order of aquatic organisms that the EPA does not typically include in its 

development of WQC is Odonata, the dragonflies (suborder Anisoptera) and damselflies 

(suborder Zygoptera). Apart from their aesthetic value, odonates are an important group 

to urban ponds as a top predator of invertebrates and prey for fish and amphibians. 

(Simaika & Samways  2008).  Even though the development of urban ponds has been 

shown to improve odonate biodiversity (Goertzen & Suhling 2013), lethal and sublethal 

effects of urban pollutants on odonates have received much less attention.  

 Odonates typically do not experience lethal losses until copper concentrations 

reached several orders of magnitude above the WQC for copper (0.145 µM) (Tollett et al. 

2009). However, there have been no studies on the physiological endpoints from copper 

on odonates and the few metal studies have been combined with pollutants or high pH. 

For instance, aluminum and pH decreased respiratory activity for Libellula julia, but the 

independent effect of aluminum was not tested (Rockwood et al. 1990). Another odonate 
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study sampled several different polluted ponds to find out which pollutants were 

associated with growth. Growth was correlated mostly to pesticides, rather than metals. 

However, the ponds had a higher concentration of pesticides than metals (Van Praet et al. 

2014). Both sublethal endpoints of decreased respiration and growth negatively affect 

fitness (Sokolovska et al. 2000). By understanding the isolated effects of metals on these 

endpoints we can better understand the impacts metals have on odonate fitness.  

 The magnitude of sublethal effects often depends on the route of exposure.   The 

route of exposure effects the location of metal accumulation (Hare 1992). For most 

insects, aqueous metal exposure accumulates on the exoskeleton, while dietary exposure 

accumulates internally (Hare 1992). This location may contribute to whether the metal 

contributes to oxidative stress and lethal or sublethal effects. The combined dietary and 

aqueous exposure can also interact to create a greater sublethal effect. For example, the 

combined exposure to zinc in leaves and in water decreased feeding rate of Gammarus 

pulex to a greater magnitude than the addition of their isolated effects (Wilding & Maltby 

2006).  Furthermore, in a real pond, organisms upon which odonates prey would also 

have accumulated metal concentrations that could potentially biomagnify in the predator 

(Timmermans et al. 1989). To my knowledge, no studies have assessed the effect of 

sublethal concentrations or the interaction of water and food concentration of copper in 

odonate populations. 

Thus, in this study, I asked: “Do sublethal doses of copper in the ambient water 

and food source cause physiological changes that alter growth rate in odonates?”  To 

answer this question, I (a) determine whether sublethal concentrations of copper, both in 
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ambient water and in prey, decrease the growth rate of the damselfly; (b) assess whether 

there is a synergistic effect of the combination of elevated copper in both prey and 

ambient water on odonate growth rate; and (c) assess the degree to which copper 

bioaccumulates in the bodies of resident odonates. I hypothesized that copper in the 

surrounding water and in prey will decrease the growth rate of odonate larva 

synergistically such that growth rates will be more depressed than would be predicted 

from adding the effects of ambient water and food source alone.  
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MATERIALS AND METHODS 

Pilot study 

We conducted a pilot study to assess the sublethal copper concentration range for 

Ischnura sp. (Odonata: Coenagrionidae) larvae and their prey, Daphnia magna. This 

range was then used to choose the concentration for growing D. magna to be used as the 

contaminated food treatment in the main study and to pick the sublethal copper 

concentration for the aqueous exposure treatment.  We also analyzed Cu body burden in 

damselfly tissue using atomic absorption spectrometry (AAS) to determine the copper 

concentration that was both sublethal and that would cause bioaccumulation. This 

concentration was used as the aqueous copper exposure treatment. Damselflies were 

exposed to 4 copper concentrations that ranged from 2.5g Cu /L to 2500g/L for seven 

days. We tested 6 copper concentrations  (1.5g- 250g/L) on D. magna during a 96-h 

exposure.  

15 individual damselflies were collected on December 11, 2015 at Lowell Ponds 

State Wildlife Area, Denver CO (39°47’36” N, 105.2’5.8”W) in the littoral zone. Larvae 

were collected using benthic grab samples with a 500-µm D-net.  Larvae were then 

transferred to the lab and remained in the collected pond water with an aerator for 24 

hours to acclimate to room temperature.  

After a 24-h acclimation, larvae were randomly assigned to treatment. Treatments 

consisted of five concentrations of copper: 0, 2.5, 25, 250, and 2500 g/L.  We used a log 

scale range of copper concentrations that was one order of magnitude greater than 



18 

reported lethal concentration for odonates Pachydiplax longipennis (Tollett et al. 2009) 

and one order of magnitude less than the LC50 for D. magna  (EPA 2007). 

There were three larvae per treatment.  Each larva was contained in its own 16-oz. 

plastic cup that contained 150 mL of the respective copper concentration added to 

reconstituted hard water (FETAX, Table 1). The concentrations were made from a 5mg/L 

Cu stock solution prepared by dissolving 0.00197 g of copper sulfate pentahydrate 

CuSO4 ·5 H2O into 100 mL of dechlorinated water. During the experiment, larvae were 

fed three D. magna every other day and survival was determined by gentle prodding.  

Table 1: FETAX solution (ASTM 2000; reconstituted hard water) 

All salts were weighed and dissolved in 1 L of MiliQ water.  (pH ~ 7.6-7.9) 

Hardness = 84.4 mg/L of CaCO3 

Sodium chloride,  NaCl 625 mg 

Sodium bicarbonate, 

NaHCO3 96 mg 

Potassium chloride, KCl 30 mg 

Calcium chloride, CaCl2 15 mg 

Calcium sulfate CaSO4, 15 mg 

Magnesium sulfate, MgSO4 75 mg 

 

After one week of incubation, we froze the larvae in individual glass vials for 

later tissue analysis. After 1 month, we rinsed with MilliQ water and blotted with a 

KimWipe ® . The larvae were then weighed on an analytical balance. We first tared the 

glass beaker with a test tube then added the larva to the test-tube. In this pilot study, we 

converted wet weights to dry weights using reported odonate average dry: wet ratio of 

10% (Tollett et al. 2009). Then we measured the mean concentration of copper from 

tissue digestates using AAS (EPA, 1994).  
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 During the pilot study, we assessed the lethal copper concentrations for the 

odonate prey, D. magna. The D. magna were exposed to seven copper concentrations: 0, 

1.25, 2.5, 12.5, 25, 125, and 250g/L. The same 5 mg Cu/L stock solution was used to 

make the six copper solutions. Five D. magna were placed into a test-tube that contained 

25 mL of the respective Cu-solution. During the 72-hour exposure, the D. magna were 

not fed and survival was determined every 24 hours.  

From the results of the pilot study we choose to expose the damselflies and their 

prey, D. magna, to different concentrations, due to their different tolerances. We used the 

highest sublethal concentration for the damselfly, 2500 g/L and chose 15 g Cu/L for 

the D. magna exposure because it was just under the concentration that killed all the 

daphnids.  

Experimental Design 

A total of 28 larvae were used in the subsequent 10-day experiment after the pilot 

study. To test for the possible interaction of Cu-contaminated food and ambient water, we 

used a 2x2 factorial design, with 4 component groups and 7 larvae in each group. Half of 

the 28 larvae were exposed to 2500g/Cu water and half in 0 g/L. In each water 

treatment, 7 were fed D. magna grown in 15 g/L Cu and the other 7 were fed the control 

D. magna (Figure 1).  
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Figure 1: Diagram of factorial design. There are 7 larvae per group, for a total of 

28 larvae. Two groups are exposed to copper water (2.5mg/L) and two in control 

water. One group in the control water and one group in the copper water are fed 

D. magna grown in 15g Cu/L. The other two groups are fed the D. magna grown 

in control water.  

 

Each culture was maintained in a polyethylene container that contained four L of 

reconstituted hard water (FETAX solution, Table 1), one dosed with 15 g/L Cu and the 

other left undosed. The D. magna were grown in their respective concentrations 10 days 

prior to the experiment where they remained throughout the experiment. Each day, the 

cultures were fed 5 mL of an algae solution made by grinding an equal volume mixture of 

algae, yeast, and white flour with a mortal and pestle. 5 g of the composite food mixture 

was dissolved in 1 L of MilliQ water and stirred for 24 hours with a stirring plate. The 

resulting solution was then covered with Parafilm and cooled in a refrigerator for an 
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additional 24 hours to settle out particles.  The decantate from the settled solution was 

used to feed the D. magna cultures.  

Damselfly Incubation  

60 damselfly larvae were collected at Lowell Ponds, in Denver CO on February 18, 

2016. Larvae were collected using benthic grab samples with a 500-µm D-net.  Larvae 

were then transferred to the lab and remained in the collected pond water for 24 hours to 

acclimate to room temperature. Larvae around 15 mm of the most common species, 

Ischnura sp., were separated to a different container and used in the experiment.  

Initial weight of each larva was taken before commencing the experiment. 

However, while the excess water was removed from the weighing boat, the body was not 

blotted contributing to an overestimation of initial weights.  Consequently, we used the 

wet weight on day 2 as the initial weight of the larvae. Each weighed larva was randomly 

placed in pre-numbered 16-oz. plastic cups that each contained 150 mL FETAX solution. 

A 1 g/L Cu stock solution was prepared by dissolving 0.197 g of copper sulfate 

pentahydrate CuSO4 5H2O into 50mL of MilliQ water. 375L of stock solution was 

pipetted into 150 mL of FETAX solution to make the 2500 g/L Cu solution in the 

treatment cups. At the commencement of the experiment, each larva was provided with 

three D. magna individuals for food.    

 An additional 10 damselfly larvae from the benthic grab were used to estimate a 

log-log regression that predicts dry weight from wet weight.  Wet weight was measured 

for all larvae by placing them on a weighing boat, blotting them dry with a KimWipe ®, 
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and weighing them on an analytical balance. Dry weight was measured for the same 

larvae after drying them for 48 hours @ 65 ºC in a drying oven.  

Physiological Endpoints  

During the 10-day incubation, molting and survival of damselflies were checked 

daily. Survival was determined by the larva exhibiting motion in response to prodding. 

Dead D. magna were removed from container and dead damselflies were immediately 

weighed and then frozen. Every other day, larvae were weighed and fed with additional 

D. magna so that the total live D. magna was three in the container. Starting on day 7, the 

number of supplemented D. magna was recorded on the additional feedings.  On day 5 

the water for all treatments was changed. At the end of the experiment, we took final wet 

weights and then froze all larvae. We analyzed growth rate by the change in dry weight 

over time with the equation: 

Growth = ln(final dry weight/ initial dry weight)/number of days 

Cu body burden  

To assess Cu body burden we digested the tissue and then performed AAS. The 

frozen larvae were thawed and rinsed with Milli-Q water and then transferred to a 23 mL 

acid-washed test tube. To ensure that the tissue would be completely digested, we pressed 

each body to the bottom of the test tube with a stirring rod, which was rinsed 3 times with 

MilliQ water between each larva. 100 L of the 1g/L Cu stock solution (as CuSO4·5H2O)  

was pipetted into three test tubes to act as a positive control and three test tubes without 

any Cu acted as negative controls. Ten D. magna grown in the 15 µg/L Cu solution were 

added to a test tube to examine the concentration of the prey.  We pipetted 2 mL of trace 
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metal grade nitric acid to each tube, capped them and heated them for 12 hours in a 

constant 75 degree Celsius water bath. The water level in the bath was 2 cm higher than 

the acid level in test tube to ensure sufficient reflux. After 12 hours, we quantitatively 

transferred each of the digestates to its own acid-washed 50-mL centrifuge tube and 

diluted to 15 mL total volume with MilliQ water. We then quantitated copper in the 

resulting solutions using flame AAS on a Perkin-Elmer AAnalyst 100 instrument 

(detection limit 0.0770 g Cu/g dry wt.). The total body burden of copper in each 

individual was determined by: Concentration* 0.015L/(dry weight) 

Statistical Analysis 

Statistical analysis of responses (feeding rate, growth rate, molting, body burden, 

and mortality) involved linear models: analysis of variance (ANOVA), generalized linear 

models, and multiple linear regression as appropriate to compare the effects of copper-

treated water and copper-treated food and their interactions. All models were run in the 

statistical package R version (R Core Team 2014).  
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RESULTS 

Pilot Study  

All damselflies in all treatments survived the 7-day exposure. The copper 

concentration in the tissue generally increased as the exposure concentration increased, 

but the trend was not significant (p=0.18, Figure 2). Daphnia magna were less tolerant 

than the damselflies. After 24 hours, individual D. magna had died in all treatments. At 

48 hours, all five D. magna were dead in the highest copper-concentrations: 25, 150, and 

250g/L (Table 2).  

 

  
Figure 2: Average larval body burden (g Cu/g dry wt) +/- SD with 5 copper 

concentration exposures (n=3 per treatment). Body burdens varied greatly within 

each sample.  
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Table 2: Percent survival of D. magna 

exposed to a series of Cu concentrations. 

Cu conc. 

(μg/L) 
24-h 48-h 72-h 

250 20 0 0 

125 0 0 0 

25 40 0 0 

12.5 60 20 0 

2.5 20 0 0 

1.5 80 40 0 

0 100 40 0 

 

 

Main Experiment  

 

Interaction between Copper Food and Copper Water Treatments 

 I compared two-way ANOVA models with and without an interaction term and 

found that adding an interaction term did not significantly improve model fit for the 

effects: molting (deviance reduction = 0.30718); mortality (deviance reduction =1.4336e-

9); growth (p=0.97); feeding rate p=0.62) body burden (p=0.4). Therefore, the results 

described below are for the additive two-way ANOVA model without the interaction 

term.  

Initial Weight 

 Initial dry weight was not significantly different between treatment groups 

(Figure 4, p=0.104). Day 2 wet weights were used as the initial weights due to inaccurate 

weighing on first day.  Average initial dry weight was 1.7 mg. The larvae wet weights are 

related to dry weights with the equation:  

ln(dry weight) = 0.7855*ln(wet-weight) – 1.5739 (p<0.001, Figure 3).  
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Figure 3: Log-log relationship between wet weight and dry weight for damselflies 

p<0.001). n=11.  

 
Figure 4: Initial weight is not significantly different between treatment groups 

(p=0.104). Plotted is the mean dry weight (+/- SE), back-transformed from log-

transformation. Control is larvae and prey both grown in 0 g Cu/L water. 

Treatment groups are larvae exposed to 2.5mg Cu/L water (Water +), larvae fed 

with D. manga grown in 15 g Cu/L water (Food +) and larvae exposed to both 

the water and fed with the copper D. magna (Water+, Food+).  
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Lethal effects  

Although mortality did not significantly differ among the treatment groups 

(p=0.95), mortality was only observed in the copper water. 36% of the larvae exposed to 

copper water died. Mortality started on day 8 and did not differ between food treatment 

groups. A total of five larvae died, three were in the copper food x water and two in the 

control food x copper water.  

Sublethal Effects 

Feeding rates  

Copper water significantly decreased feeding (p<0.0001) while copper food had 

no significant effect on food consumption (p=0.41, Figure 5). Results are from the last 

four days. Average consumption for the control was 93% (5.58 out of 6 D. magna 

offered) and was 31% for larvae in the copper water (1.88 out of 6 D. magna offered ). D. 

magna always died within 24 hours of being placed in the 2.5 Cu mg/L water.  However, 

in the days before feeding was recorded (days 1-6) most larvae were consumed in all 

treatments.  
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Figure 5: Copper water inhibits feeding in larvae (p<0.001). Plotted is the average 

number of D. magna consumed per larvae during the last 4 days (+/- SE).  

 

Molting Effects   

The copper diet and copper water had opposite effects on molting: copper water 

inhibited molting (p=0.0211), while the copper food promoted molting (p=0.0211, Figure 

6). On average, 26.7% of the control larvae molted (95% CI 6.76-64.72%). The copper 

water decreased this to an average of 1.85% (95% CI 0.11-23.78%). The copper food 

increased the percent molting to 85.57% (46.26-98.29%). The effects of copper in the 

food and water cancelled each other out and the copper food and water treatment molted 

by the same percent as the control.  
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Figure 6: Copper water exposure inhibited molting, while copper food treatment 

promoted molting (p=0.0211). Plotted is the average probability of molting (+/- 1 

SE) given their treatment (n=7). Control is larvae and prey both grown in 0g 

Cu/L water. Treatment groups are exposure to 2.5mg Cu/L water (Water +), 

larvae fed with D. manga grown in 15 g Cu/L water (Food +) and larvae 

exposed to both the water and given the D. magna in copper (Water+, Food+). 

 

Larval Growth   

The copper food increased growth (p=0.025, Figure 7) and was the only 

significant influencer on growth. Larval growth during the 10-day exposure varied both 

within treatments and across treatments.  Average growth rate in the control was 0.002 

1/day (95%CI: -.004 to .008 /day). The average larvae exposed to copper water and 

control food did not grow, and lost weight with average growth at -0.000078 1/day 
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(95%CI -0.0065 to 0.00634). The additive effect of copper food and water was a growth 

of 0.0173/day (95% CI 0.0109 to 0.0257g/day).  

 

 
Figure 7: Copper food increases average larval growth (+/- 1 SE).  Growth is 

measured by change in larval dry weight (mg) over a 10-day trial. Larvae 

exposure to 2.5 mg Cu/L (Water+) has a negative average growth, but growth was 

only a significant effect for larvae fed the copper treated D. magna, grown in 15 

g Cu/L (Food +, p=0.025).  
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between growth rate and copper body burden was negative but only marginally 

significant (Figure 9, p=0.15).  

 

 
Figure 8. Larvae accumulated copper in body from copper water, whereas larvae 

had a lower average body burden when given copper food. However, detection 

limit is 770g Cu/g dry wt (red line).  Log transformed average body burden (+/- 

1 SE) is plotted from the copper concentrations of whole-body samples of larvae 

in each treatment (n=7).  
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Figure 9: After accounting for initial mass, copper body burden depresses growth 

(p=0.16). The correlation between copper body burden and growth rate is plotted 

with the added variable of mass.    
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DISCUSSION:  

Aqueous exposure to Cu inhibited molting and increased body burden of copper 

in Ischnura sp. (Odonata: Coenagrionidae). Although these changes did not result in 

significantly different growth rates, those larvae exposed to aqueous Cu tended not to 

grow and in some cases lost weight during the experiment. These changes are likely a 

result of feeding inhibition either due to behavioral changes in Ischnura sp. larvae or 

immobilization of D. magna prey in the aqueous Cu treatment. Contrary to our 

predictions, exposure to prey grown in Cu-treated water did not significantly change the 

body burden of Cu in the damselfly larvae. Instead we observed significantly higher 

growth rates and molting likely as a result of higher prey consumption in the Cu-treated 

prey exposure. Together the effects of Cu exposure in the prey and ambient water were 

additive rather than interactive. 

Damselflies accumulated high levels of copper to an average body burden of 2770 

g/g dry weight, after being exposed to 2.5 mg Cu/L in water. Average concentration was 

2770 g/L for copper water and the larvae in the control were under the detection limit. 

This rate of accumulation is similar to the dragonfly larva, Pachydiplax longipennis, 

which accumulated approximately 3000 g Cu/g dry weight after a 7-day exposure to 

2.86 mg Cu/L.  The control average body burden was 33.95 g Cu/g (Tollett et al. 2009). 

Thus, odonates readily accumulate copper.  

Exposure to aqueous copper suppressed development by inhibiting molting. Aqueous 

exposure did not significantly depress growth. However, the damselflies in the copper 
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water did tend to exhibit negative growth rates on average. Furthermore, copper body 

burden depressed growth, but trend was marginally significant. Copper accumulation 

depresses growth in a variety of freshwater organisms, including many species of fish 

(Woltering 1983) and invertebrates (Beasley & Kneele 2002). Molting is a less studied 

endpoint, but copper decreased molting frequency in tiger shrimp, Penaeus monodon, at a 

concentration of 0.90 mg/L (Chen & Lin 2001).  

Pesticides have also been shown to inhibit development (growth and molting) in 

odonates. Odonate growth decreased with pesticides: dichlorvos (Van Praet et al. 2014) 

and chlorpyrifos (Janseens and Stoks, 2013). The pesticide, chlorpyrifos, accelerated 

metamorphosis in the damselfly, Enallagma cyathigerum, when given ample amounts of 

food. However, when food was limited the exposure to the pollutant decelerated 

development. The authors attributed the deceleration as an indicator of the energy cost of 

detoxification  (Janseens & Stoks 2013). Accelerated growth also depresses energy 

reserves in odonates (Stoks et al. 2006a). Thus, there might not be enough energy 

available for growth when an organism is deprived of food and exposed to a pollutant. In 

our study, the combination of both reducing prey availability and diverting energy from 

growth to detoxification likely interacted to cause depressed growth and development in 

Ischnura sp.  

Exposure to the copper via the prey we used in the experiment, D. magna, had 

opposite effects on the larvae. Dietary exposure to Cu seemed to promote growth and 

molting two obviously related endpoints. All damselflies that molted had positive growth 

in the experiment. Prior to molting, damselflies decrease feeding and feeding increases 



35 

immediately after molting (Corbet 1980).  In our study, the mass dropped one to two days 

prior to molting and increased after molting. Thus, in our experiment growth was likely 

higher as a result of the different feeding rate during the intermolt rather than a negative 

effect from accumulating copper from the D. magna. The copper food did not affect body 

burden.  All of the damselflies were under the detection limit in the control water and for 

all the larvae exposed to the copper water the body burden was not greater for larvae 

given copper treated food than larvae given control food. The copper treated D. magna 

was also under the detection limit. The D. magna were grown in a low concentration to 

ensure survival. This level could be insufficient to be accumulated in odonates.    

The two different concentrations to which the prey and the damselfly larvae were 

exposed (D. magna grown in 15 g/L, Ischnura sp. exposed to 2.5 mg/L) could have led 

to the different responses we observed in the experiment since the energy costs vary for 

the two exposure routes. Aqueous exposure killed the D. magna, reducing the prey 

availability. Thus, feeding rates were lower and less energy was available to molt, 

eliminating the chance to remove the pollutant by molting. Metamorphosis was 

accelerated by chlorpyrifos when given ample food, but decreased under low food 

(Janseens & Stoks 2013). This suggests that responses to pollutants vary depending on 

the amount of energy available. Odonates accumulate metals in the exoskeleton (Hare 

1992). Thus, molting could be a defense to remove the copper, but due to the energy cost 

in the aqueous Cu exposure, larvae did not have enough energy available to molt. One of 

the two damselflies that molted in the aqueous Cu treatment died within the same day of 
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molting. This suggests that the larvae in the copper water did not have enough energy to 

molt as result of decreased prey availability.  

Feeding inhibition and growth reduction, led to lethal effects in the 2.5 mg/L 

exposure. Mortality for the dragonfly, P. longipennis, occurred at lower concentrations 

than those we observed in this experiment 150g/L (Tollett et al. 2009). This 

concentration is unlikely to be in any ponds in the field, but can exist in mining ponds 

(EPA 2015). Thus, damselflies are tolerant to copper. Lethal effects only occurred after 

day 8 at the high concentrations we used in this experiment. Similarly, feeding also 

decreased from day 7 to day 8 with few larvae eating at all after day 8.  

As the lethal effects were not immediate, they are not likely directly caused by the 

pollutant. Rather, death resulted from starvation caused by unavailable food (mechanism 

1) or due to the energy cost of detoxification (mechanism 2). In both cases this would 

result in less available energy for growth and molting as well as activity such as feeding. 

The ultimate result in both cases is metabolic arrest and death. 

In order to determine the mechanism that contributed to the depressed feeding and 

molting in odonates, I recommend a future study that uses a prey species more tolerant of 

copper exposure, thereby reducing the confounding variable of food availability in this 

study. The midge, Chironomus tentans, can survive at a much higher copper 

concentration than D. magna with an LC50 of 977g/L (Gauss et al. 1985).  

This study reveals that copper decreases development and reduces feeding from prey 

of daphnids at 2.5 mg/L. The feeding inhibition is either caused by aqueous Cu killing 

prey and reducing prey availability or aqueous Cu increasing the copper body burden and 
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decreasing feeding rate independent of prey availability. In the event that feeding 

inhibition was simply because less food is available, my study highlights that even highly 

tolerant species can be indirectly affected by pollution if the pollutant kills their more 

vulnerable prey. Feeding is reduced with fewer prey, and the odonates will depress 

growth and molting. This delayed development can have life-long fitness effects even 

after metamorphosis (Metcalfe & Monaghan 2001). If feeding inhibition is caused by the 

higher copper body burden rather than the available food, then sublethal effects of 

reduced feeding can cause growth reduction and decelerated molting, effects that can 

ultimately cascade to death.  

Both mechanisms of feeding inhibition have impacts on the freshwater community. 

Contaminants either kill their prey or induce a behavioral response of feeding inhibition. 

By killing their prey, competition will increase and species with a generalized diet will be 

favored. If the metal induced the behavioral response of feeding inhibition then more 

resistant species will be favored under frequent contamination exposure.  
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REFLECTION 

 

The Regis mission “how ought we to live?” embraces the scientific inquiry by being 

posed as a question. Ever since honors freshman seminar I have heard “start with the 

evidence” to draw the conclusion from it, rather than start with a conclusion and find 

evidence to support it. The mission is to discover rather than to prove. This allows us to 

grow and change our answer with each new experience and piece of information. By 

studying the sublethal effects of copper on odonates I was able to provide information on 

effects contaminants have on freshwater ecosystems. Sublethal effects of feeding 

inhibition and delayed molting helps address how ought we to live with regard to the 

management of freshwater ecosystems. I also learned the importance of constant 

questioning and re-evaluation throughout the entire scientific process. From this, I 

improved part of my study and also learned how to improve it in the future.  

The purpose of the pilot study was to ensure that I was using sublethal concentrations. 

However, during the pilot I also was able to test my methods and improve them for the 

main experiment. I adjusted my weighing procedures by switching to a light weighing 

boat, which allowed the scale to measure the larval mass accurately.  I also changed the 

feed for Daphnia magna after first culture died. Thus, a good experiment often requires 

several smaller scale experiments to assess and improve the methods.  

Another important step in scientific method is to record other observations than the 

ones I’m testing. Without recording the feeding rate every day, I was unable to determine 

whether feeding rate was decreasing as the exposure continued. I remember the larvae 
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eating more in the beginning of the study, but without recording the values I am unable to 

run any statistical analysis to determine if it did occur. Since feeding rate effects growth, 

it could be a confounding variable. Therefore, preparation also involves identifying any 

potential confounding variables to be recorded during the experiment. Then, a more 

accurate conclusion can be drawn.  

I learned the importance of re-evaluation when I was finishing up the final discussion.  

I noticed that the control larvae had unusually high copper body burdens. As I was 

running out of time, I was tempted to just finish my discussion and mention that it was 

odd without understanding what the result means. However, re-evaluating my methods 

and discussing the methods I used, how the machine works, and the best procedure in 

analyzing the samples with a chemist, I was able to fully understand my data. I realized 

that the calibration curve was inaccurate because all my standard solutions were above 

the sample concentrations. When I repeated the AA with improved standard 

concentrations, my calibration curve resulted in plausible results. This changed my 

conclusions as all the control water larvae all under the detection limit. Thus, if I hadn’t 

gone back to figure out the cause of the erroneous result, my conclusion would be 

inaccurate.  

In essence, you can’t go through the motions of science. It demands time to 

understand each step in the procedure and all potential variables. Prior knowledge is 

important but also going back and evaluating each step after the data is beneficial because 

I was able to fix one of the problems in the data and now have a better idea on a 

procedure for a future study. In order to ensure that the conclusion is accurate instead of 
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the result of a procedure error, understanding the methods prior to the experiment and re-

evaluation after the experiment is required. In other words, slowing down to completely 

understand what I was doing and why ultimately determined the quality of the end result.  

My thesis contributes to understanding sublethal metal pollution. Damselflies are 

very tolerant to metal pollution but were affected by sublethal effects of decreased 

molting and feeding. Therefore, even tolerant species are vulnerable to metal pollution 

because the contaminant can kill their prey and decrease prey availability or cause a 

behavior effect of feeding inhibition, which can lead to starvation. The EPA monitors for 

freshwater toxicity by creating a criteria to prevent lethal losses. However, sublethal 

concentrations can eventually lead to death. Therefore, sublethal effects should be 

included in the criteria in order to assess the freshwater ecosystem.  

Freshwater ecosystems provide a variety of services to humans. As new knowledge of 

ecosystem services and our integration in freshwater ecosystems is provided, so should 

our treatment of them. Aldo Leopold argued that we need to evolve our ethics to include 

biotic community and to judge an action “right when it tends to preserve the integrity, 

stability and beauty of the biotic community. It is wrong when it tends otherwise” 

(Leopold 1949).  In order to promote the integrity and stability of ecosystems, re-

evaluation of management policy is needed as new information of pollution effects is 

provided. Thus, science and the constant inquiry of “how ought we to live?” can help us 

understand what we are doing and why which allows us to improve and grow, becoming 

better members of our biotic community.  
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