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Introduction 
 

 As my freshman year at Regis came to a close, I decided to get involved in 

biological research. I have always had an interest in laboratory work for the opportunities 

of exploration and discovery it offers. Furthermore, I saw research as an excellent 

opportunity to put into action what I had learned in class. I wanted to act on my learning, 

and engage with the scientific world beyond my textbooks. Fortunately, a great 

opportunity was presented, and I began conducting research on bioluminescent fish with 

Dr. Ghedotti, a project that grabbed my attention immediately. Through this research and 

all the other laboratory experiences I have had at Regis, I began to see how strongly 

reinforced my science education had become. 

 I place a large emphasis on experience in education because this is the process by 

which we learn anything in life. Our lives are a collection of stories and events that 

coalesce to form our individual characters. We continually take in information and 

occurrences, ways to see the world, to think about issues, and interact with others. The 

passive collection of these experiences is only the first step, however. The synthesis of 

our daily experiences provides each person the knowledge of how to live better, to make 

choices that align with their values, and to more clearly conceive the world as it is. Our 

consciousness is continually developing as we are shaped by the events around us, which 

is very important because this ultimately alters how we choose to engage with the people 

we encounter. 
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 Therefore, I place a very high value on the opportunities that I have in life and 

how I react to them. As a biology student, I value very much the opportunity to engage 

with my learning in the unique setting of the laboratory due to the maturity of scientific 

understanding that research offers. As a citizen concerned about the development of my 

country, I value my ability to talk to my compatriots about their views on education, 

healthcare, and the economy of our country. I may not agree with what I hear, but to 

share in the experience of a healthy debate is a wonderful opportunity as it presents 

mindsets I may have not previously considered and novel ways of synthesizing ideas. 

Encountering the unknown and unfamiliar rarely does not evoke complacency. Rather, 

our experiences challenge us, excite us, and most of all engage us with the reality in 

which we live. 

 After working with Dr. Ghedotti on the evolution of light organs of a 

bioluminescent fish, I decided I wanted to branch out and try my hand at a project I had 

developed myself. The opportunity to do so was made possible to me by the support of 

Dr. Ghedotti as well as an undergraduate research grant offered by Regis. I realized that I 

had all the tools I would need to conduct my own research project, thus I took the 

opportunity and began my study of bioluminescent bacteria that are housed within certain 

species of marine fish. I was interested in the genetics of these bacteria, with a focus on 

the communication genes present in their genomes. While I did not support my 

hypothesis about these communication genes, I was rewarded with the experience of 

learning, developing, and altering laboratory procedures I had learned about in the 
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classroom to answer my own questions. I learned a great deal in these research projects, 

and I greatly value the practical nature of the work I did. 

 Evolution and genetics greatly impact the development of deep-sea fish and 

bacterial bioluminescence. Furthermore, morphology is fundamental to understanding the 

relationship between form and function that is so essential to understanding biology and, 

more specifically, evolution. In my first chapter, I explore the anatomical evolution of 

two bioluminescent organs in the deep-sea fishes Lestrolepis and Lestidium. In my 

second chapter, I explore the evolution of genes associated with bioluminescence in 

bacteria housed by deep-sea fish, specifically looking for quorum quenching genes in 

bacteria from the genera Photobacterium and Aliivibrio. Finally, in my third chapter, I 

reflect on how this body of research has led me to reflect on how learning by experience 

has been such a valuable part of my education here at Regis, and how I see experiential 

learning to be very important to the development of self.
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Chapter 1 – Characterization of Anatomy, Morphology, and Evolution of Lestidiid 

Light Organs 

 

Introduction 

 Bioluminescence is an intriguing biological phenomenon. Essentially, it consists 

of living organisms that are able to produce light and emit it for various purposes. The 

reaction that produces light is a chemical one that transfers energy from a reaction into 

light energy. Animals, bacteria, fungi, and plants across many ecosystems accomplish 

bioluminescence. My interests are in bioluminescent fish. 

 The actual mechanism by which organisms produce light relies on a 

straightforward conversion of energy. An enzyme known as luciferase chemically alters 

its substrate compound, generally referred to as luciferin (Herring 2002). The alteration 

that occurs is an oxidation of the luciferin molecule, which brings it to a higher energy 

state. The energized luciferin then returns to a stable energy level, and the energy that is 

given off in the process is emitted as light (light of a frequency equivalent to the 

difference in energy), thus an organism is able to transform chemical energy into light 

energy (Herring 2002). 

 The luciferases and luciferins of bioluminescent fishes likely evolved multiple 

times independently from a similar precursor system. The luciferase-luciferin system 

likely is a co-opted antioxidant system, which all organisms exposed to oxidative stress 
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must possess in order to withstand harmful free radical compounds. Now, however, the 

enzymes and proteins carry out a variation of the same reaction, yet light is the product, 

rather than mere neutralization of dangerous free radicals (Rees et al., 1998). 

 The emission of light by a marine fish may be conducted endogenously, within 

the tissues of the organisms’ light organ, or exogenously, via formation of symbiotic 

relationships with bioluminescent bacteria that are housed within the fish and emit light 

(Herring, 2002). In the case of endogenous bioluminescence, the tissue conducting the 

bioluminescence may be derived from a multitude of tissues (Haddock et al., 2010). 

Exogenous bioluminescence often relies on diverticula and extensions of the digestive 

tract (e.g., coelom) to house symbiotic bacteria derived from the environment (Wassersug 

& Johnson, 1975). 

 Bioluminescence in deep-sea fish evolves or is maintained for many reasons. 

Light organs and emissions may act to offensively or defensively benefit the luminescent 

species. Light organs may act to lure prey, distract predators, or camouflage the fish, the 

latter constituting the type of bioluminescence focused on henceforth. The selective 

pressure of predator avoidance has led to the bioluminescence phenomenon of 

counterillumination evolving in many groups of mesopelagic fishes (Herring, 2002). Fish 

in this region of the ocean live in a habitat with moderate downwelling sunlight, thus 

giving the region the nickname the “twilight zone.” Here, fish are susceptible to predators 

beneath them, as the weak downwelling sunlight forms a readily visible silhouette. 

Counterillumination eliminates this silhouette by emitting light on the underside (ventral 
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side) of the fish, which allows the fish to obscure its silhouette to any predators 

swimming below (Lawry, 1974; Young & Roper, 1977).  

 Oftentimes, these fish are capable of matching the intensity of their ventral 

bioluminescence with the downwelling sunlight, allowing for better camouflage. 

Photophores (the tissue conducting light-emitting reactions) located above or in front of 

the eyes allow for the current light conditions to be detected and subsequently matched 

by ventral bioluminescent organs (Young & Roper, 1977). Thus, counterillumination 

represents a very complex physiological phenomenon that offers an adaptive advantage 

to those species that produce it. 

 One such group of counterilluminating fishes is the naked barracudinas, which 

belong to the family Lestidiidae that includes the genera Lestrolepis and Lestidium. 

Lestidiid fishes inhabit the mesopelagic zone where ventral counterilluminating 

bioluminescence is especially beneficial. Species belonging to this clade are the subject 

of investigation for this study concerning the morphology and evolution of 

bioluminescent light organs of deep-sea marine fish. 

 Haneda (1958) first reported on the bioluminescence of the naked barracudinas 

(Order Aulopifromes, Family Lestidiidae) five years after the initial description of the 

family (Harry, 1953). The light organs of Lestrolepis sp. and Lestidium prolixum proved 

to be “self-luminous” (i.e., endogenous luminescence and not driven by bacterial 

symbionts), bi-lobed, yellow organs running the ventral length of the fishes (Haneda, 

1958). Furthermore, the light organ in these fishes is covered ventrally by transparent 

muscle tissue (Haneda, 1964). In other species, the transparent muscle tissue functions as 
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a window and lens through which emitted light passes, as it intensifies the dispersal of 

emitted light to ensure maximum efficacy (Herring, 2002). Also, Benthalbella infans 

(Family Scopelarchidae) was identified as possessing a ventral luminescent organ derived 

from skeletal muscle and sharing structural similarities with light organs of the naked 

barracudinas (Johnston & Herring, 1985). Although the presence of the ventral 

bioluminescent organ in Lestrolepis and Lestidium is well documented (Haneda, 1958; 

Haneda, 1964), the organ or tissues from which it was evolutionarily derived remains 

unclear beyond the suggestion by Johnston and Herring (1985) that it is derived from 

skeletal muscle. In addition, Lestrolepis individuals have a distinct dark spot anterior to 

the eye (Harry, 1953) that has yet to be examined anatomically and may be associated 

with bioluminescence. This study seeks to identify the anatomical composition and 

possible origins of both structures.  

 

Methods 

Gross Dissection 

 Specimens used were ethanol-preserved museum specimens (on loan from the 

Field Museum of Natural History, courtesy of W. C. Smith and C. McMahon). I worked 

with M. Ghedotti to perform dissections on the specimens available. Dissections were 

performed by making right ventral incisions just anterior to the anus and cutting 

anteriorly until reaching the isthmus, at which point incisions were made around the 

pelvic girdle so as to avoid damaging the bone structure in this region. While examining 

the coelom of the specimens, the falciform mesentery (the ligament attaching the liver to 
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the body wall) of Lestrolepis and Lestidium specimens had to be removed in order to gain 

visual access to the viscera. The specimens were examined and documented using a Leica 

MZ 12.5 stereomicroscope with an attached Q Imaging MicroPublisher 5.0 RTV 

photodocumentation system. 

 

Histological Analysis of Bioluminescent Organ 

 The histological analysis of light organs entailed making very thin sections of the 

specimens of interest. A portion of the tissue was removed, embedded in medium of 

choice (LVN or paraffin in this study), which ultimately allows for these media to replace 

water in the tissue and provide the support necessary to permit thin slicing. The 

specimens were then cut into thin sections using a microtome and placed on microscope 

slides. Then we used stains to identify certain tissue types and organ structures.  

 The histological analysis of portions of Lestrolepis japonica and Lestidiops 

jayakari was conducted by fixing the samples in both low viscosity nitrocellulose (LVN) 

as well as paraffin. I was not a part of the very long LVN specimen preparation, yet I was 

involved in examining the sections. Regardless, in order to prepare the LVN sections, 

specimens were prepared by decalcification for a week (removal of calcium ions from 

bones so that sectioning is made easier), then by dehydration in ethanol (remove water to 

allow for replacement with a hard matrix that supports sectioning). Specimens were then 

infiltrated with nitrocellulose via a series of increasing nitrocellulose concentrations. 

After drying the specimens, they were sectioned on a sledge microtome at 100 µm 

(Humason, 1979). Sections were stained using a Picro-Ponceau S (PP) staining protocol 
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(Humason, 1979), and then mounted on slides with Permount. 

 Paraffin sections were prepared by first dehydrating the specimens in ethanol. The 

specimens were placed in increasing concentrations of ethanol up to 100%, and then 

cleared in xylene (an organic solvent). The specimens were then embedded in paraffin, a 

wax, by immersing the specimens in two subsequent liquid paraffin baths for 8 hours 

each, then situating the specimen in a solid block of paraffin wax. The specimens were 

sectioned at 10 µm using a rotary microtome, and the resulting sections were mounted on 

glass microscope slides. I stained the sections using Masson’s trichrome (MT) stain 

protocol (Sheehan & Hrapchak, 1980; Bancroff & Stevens, 1982). MT allows for the 

differentiation between collagen, which stains blue, and smooth muscle, which remains 

pink. LVN and paraffin slides were examined and photographed with a Leica DM 2500 

compound microscope and a Q Imaging MicroPublisher 5.0 RTV photodocumentation 

system. 

 

Phylogenetic Analysis 

 In addition to the dissection and histological work we completed, M. P. Davis 

participated in our study by providing DNA sequence data and a phylogenetic analysis of 

the species studied to construct a phylogeny, which would eventually be overlaid with the 

anatomical data obtained. For the phylogenetic analysis, 18 species of fish from six 

families (Evermannellidae, Sudidae, Alepisauridae, Anotopteridae, Paralepididae, and 

Lestidiidae) within the order Aulopiformes were compared. An Evermannelid species 

(Odontostomops normalops, a sabertooth fish) functioned as the outgroup in the 
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phylogenetic analysis due to its position among aulopiform fishes (Davis & Feilitz, 

2010). Eight genes were used: one mitochondrial (cytochrome oxidase I, 812 base pairs) 

and seven nuclear genes coding for various proteins (ectodermal-neural cortex 1-like 

gene, 845 bps; glycosyltransferase gene, 727 bps; myosin heavy chain 6 alpha gene, 759 

bps; pleiomorphic adenoma protein-like two-like gene, 852 bps; ptr hypothetical protein, 

765 bps; recombination activating gene 1, 1,452 bps; zic family member protein, 889 

bps). The genes were aligned (process by which multiple genes are aligned to assess 

sequence homology, which allows for elucidation of shared evolutionary origins between 

these genes and ultimately the organisms themselves) using the program MAFFT v6.0 

(Multiple Alignment using Faster Fourier Transform, a multiple sequence alignment 

program for comparison of gene sequences), run using the program’s default parameters. 

A maximum-likelihood analysis was then conducted in order to estimate the most likely 

pattern of genetic evolution for each gene and each category of position within each gene. 

The models of molecular evolution, were selected using jMODELTEST v.2.1 (Posada, 

2008), which assigned the most probable model of evolution for each of the eight 

compared genes (done using Akaike information criteria, a measure of the quality of the 

estimated models). Five maximum likelihood analyses were performed using the program 

GARLI v2.01 (Genetic Algorithm for Rapid Likelihood Inference) to generate the most 

likely phylogenetic tree based on the data in the context of the genetic models of 

evolution (Zwickl, 2006). The three with the highest likelihood scores were used for 

phylogenetic analysis. 
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Study Specimens 

 Specimens were obtained from various museum collections. All were preserved in 

ethanol and catalogued. Those with asterisks succeeding the museum catalogue numbers 

were used to perform histological analyses and gross dissections. The specimens used 

were as follows (catalogue number given, number in parentheses indicates number of 

specimens in lot, location given): Alepisauridae. Alepisaurus ferox MCZ 127309 (1) no 

data. Omosudis loweii: KU 38782 (1) North Atlantic Ocean, 39° 460 N, 67° 320 W. 

MCZ 163183 (1) North Atlantic Ocean, 39° 520 N, 67° 150 W. Anotopteridae. 

Anotopterus pharo: MCZ 148409 (1) no data. MCZ 164375 (1) North Atlantic Ocean, 

39°500N, 67°270W. Evermannellidae. Coccorella atlantica MCZ 73021 (1) North 

Atlantic Ocean, 38° 240 N, 71° 80 W. Evermannella balbo MCZ 52329 (1) North 

Atlantic Ocean, 40° 320 N, 63° 470 W. Odontostomops normalops MCZ 127171 (1) 

North Atlantic Ocean, 8°560N, 46°380W. Lestidiidae. Lestidiops jayakari: FMNH 

117867* (4) South Atlantic Ocean, 12°370S, 11°140E. Lestidiops ringens: SIO 79187 (2) 

South Atlantic Ocean, 12°370S, 11°140E. Lestidium atlanticum: KU 27946 (1) North 

Pacific Ocean. Lestrolepis intermedia: MCZ 91605 (5) North Atlantic Ocean, 35° 580 N, 

74° 460 E. Lestrolepis japonica: FMNH 120671* (19) North Pacific Ocean, Taiwan 

Dong Gang Fish Market. Macroparalepis brevis: MCZ 68502 (1) North Atlantic Ocean, 

23°040N, 45°100W. Paralepididae. Arctozenus risso: MCZ 95211 (1) North Atlantic 

Ocean, 42°470N, 69°580E. Magnisudis atlantica: VIMS 05991 (18) North Atlantic 

Ocean. Paralepis coregonoides: MCZ 158994 (1) North Atlantic Ocean, 39° 550 N, 67° 

250 E. Paralepis cf. brevirostris: FMNH 85322 (9) North Pacific Ocean, 27°070N, 
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138°560E. Sudidae. Sudis hyalina: MCZ 43077 (1) Mediterranean Sea, Strait of Messina. 

 

Results 

Gross Dissection of Coelomic Viscera 

 Gross dissection revealed that the ventral bioluminescent organ is composed of 

hepatopancreatic tissue (combined liver and pancreatic tissue). All species examined 

exhibit a primary hepatopancreatic lobe located anteriorly, which extends to variable 

lengths among different species (Fig. 1. A, B). Among the fish examined outside of the 

family Lestidiidae, the hepatopancreatic tissue extends from the anterior portion 

posteriorly as two lobes dorsal to, and running along the length of, the intestine (Fig. 1. 

A). As for Lestiidid fishes, a similar structure is observed, yet the genus Lestidiops 

demonstrates a third lobe of hepatopancreatic tissue running posteriorly along the 

intestine between the intestine and the ventral body wall (i.e., ventral to the intestine; Fig. 

1. B). 
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Fig. 1. Diagram of major viscera in (A) Macroparalepis atlantica and (B) Lestidiops jayakari, dashed line 
delineates intestine position. (C) 100 µm thin LVN cross section of L. jayakari ventral trunk region, PP. 
Bar = 1 mm. (D) 10 µm thin paraffin cross section of L. jayakari ventral bioluminescent organ and related 
tissues, MT. Red staining regions represent hepatopancreatic blood vessels. Bar = 200 µm. (E) 10 µm thin 
paraffin cross section of central region of D, demonstrating sinuses and related blood vasculature of 
hepatopancreatic tissue, MT. Bar = 20 µm. (F) 10 µm thin paraffin cross section of L. jayakari ventral 
peritoneum showing the pigmented layer with smooth muscle and connective tissue beneath, MT. Bar = 20 
µm. Asterisk, ventral peritoneum; b, bile duct; c.s. C, region of section C; ct, connective tissue; h, 
hepatocyte; int, intestine; m, muscle tissue; p, pancreatic tissue; v, vein; vhp, ventral hepatopancreas; vm, 
ventral mesentery. (Ghedotti, Barton, Simons, & Davis, 2015).  
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The ventral lobe of the hepatopancreas extends to the middle of the coelom (body cavity) 

of L. ringens and to just anterior of the anus in L. jayakari. In Lestidium and Lestrolepis, 

both of which species display ventral bioluminescence, the ventral luminescent organ 

runs in the same position as the ventral lobe of the hepatopancreas, likewise associated 

with a contiguous ventral mesentery (Fig. 2A). However, the bioluminescent organs are 

differentiated from the hepatopancreas, as they are lighter in color (more yellow than 

orange) and are more delicate in structure in comparison to the ventral hepatopancreatic 

strand in other taxa. 
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Fig. 2. The ventral bioluminescent organ in Lestrolepis japonica. (A) Diagram of major viscera in L. 
japonica, dashed line delineates intestine position. (B) 100 µm thin LVN cross section of ventral trunk, PP. 
Bar = 1 mm. (C) 10 µm thin paraffin cross section of the left ventral region of the bioluminescent organ, 
MT. Note sinuses present in central portion. Bar = 200 µm. (D) 10 µm thin paraffin cross section of central 
region of C, MT. This shows the transition from tightly packed cells to loose cells containing granular 
inclusions (likely photophores) surrounded by sinuses (indicative of hepatopancreatic tissue). Bar = 20 µm. 
(E)10 µm thin paraffin cross section of left peritoneal lens demonstrating smooth muscle composition as 
compared to associated connective tissue (collagen), MT. Bar = 20 µm. Arrow head, ventral-most extent of 
pigmented and reflective peritoneum; asterisk, thickened smooth muscle of ventral peritoneum; col, 
collagen; c.s. B, approximate position of section depicted in B; hp, hepatopancreas; int, intestine; vbo, 
ventral bioluminescent organ; m, skeletal muscle. (Ghedotti, Barton, Simons, & Davis, 2015). 
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Ventral Hepatopancreas and Bioluminescent Organ Histology 

 Upon histological analysis of the ventral hepatopancreatic and luminescent 

tissues, a great deal becomes apparent about the structure and morphology of these 

structures. In the non- luminescent species Lestidiops jayakari, the ventral lobes of the 

hepatopancreas extending posteriorly along the intestine are clearly composed of 

hepatocytes, pancreatic cells, and ducts that associate the tissue with the intestine (Fig. 1. 

C, D, E). Furthermore, a pigmented peritoneum completely surrounds the hepatopancreas 

(Fig. 1. F). With the cross-sections examined from Lestrolepis japonica, the ventral 

bioluminescent organ lacks such ducts as seen in L. jayakari, and it is less vascularized 

(indicating less function as a typical hepatopancreas; Fig. 2. C, D). The cells appear to 

possess granular inclusions dorsally (consistent with photophore construction) and 

sinuses between cells are apparent, which may indicate the hepatopancreatic origin of the 

bioluminescent organs (Fig. 2D). Furthermore, the otherwise pigmented peritoneum 

becomes transparent ventral to the luminescent organ, as it lacks melanocytes in this 

region. Between the ventral side of the luminescent organ and the body wall, this 

transparency continues, as the smooth muscle tissue beneath is highly ordered (Fig. 2. D, 

E). 

 

Antorbital Light Organ 

 The antorbital spot (a pigmented spot lying in front of the eye) of Lestrolepis 

japonica appears to be rounded on its anterior and dorsal sides (front and top), with a 
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straight margin that extends on the rear side that extends downward as a pigmented 

border (Fig. 3. A). After histological analysis, the pigmented region of this structure 

appears to form a cup around a group of cells. These cells possess distinct nuclei and 

granular inclusions, which transition to more irregularly shaped cells in the middle of this 

cup-like structure. Posteriorly, this cup contains connective tissue associating the 

structure with the eye (Fig. 3. B, C). This structure is present only in individuals in the 

genus Lestrolepis. No other lestidiid fishes demonstrate such preorbital structures. 
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Fig. 3. Antorbital bioluminescent organ in Lestrolepis japonica. (A) Left lateral view of antorbital light 
organ in an alcohol-preserved specimen. Bar = 1 mm. (B) 10 µm thin longitudinal paraffin section of the 
left antorbital light organ showing pigmented connective tissue surrounding bioluminescent cells, and 
unpigmented closest to the eye. Bar = 200 µm. (C) 10 µm thin longitudinal paraffin section of the left 
antorbital light organ showing compact cells with granular inclusions transitioning into less compact and 
elongate cells. Bar = 20 µm. (Ghedotti, Barton, Simons, & Davis, 2015). 
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Phylogenetic Analysis 

 Additionally, the phylogenetic data compiled by Davis is informed by the 

anatomical and histological data. It can be seen that the bioluminescent species in the 

genera Lestidiops and Lestrolepis form a monophyletic group within the family 

Lestidiidae (Fig. 4).  

 

Fig. 4. Evolutionary relationships between representative alepisauroid fishes based on 8 sequenced gene 
fragments compared using maximum likelihood analysis. Blue lines in the phylogeny indicate the 
evolutionary events (apomorphies) of Lestidium and Lestrolepis. Numbers by nodes indicate results from 
100 bootstrap replicates. Family names are indicated in grey at the nodes. (Ghedotti, Barton, Simons, & 
Davis, 2015). 

Furthermore, it is apparent from information gleaned from gross dissection that the 

hepatopancreatic organ that became coopted into the bioluminescent organ began as an 

extended ventral tissue in Lestidiops spp., then becoming bioluminescent within the 
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Lestidium and Lestrolepis genera (Fig. 4). The evolution of an antorbital light organ in 

the genus Lestrolepis sets these species apart from Lestidium, which lacks such a light 

organ. 

 

Discussion 

 Lestidium and Lestrolepis possess a ventral luminescent organ derived from 

hepatopancreatic tissue. It must be noted that this is the first instance of endogenous 

bioluminescence originating in hepatopancreatic tissue in any vertebrate. The 

luminescent quality of this organ is further supported by the cellular structures, as the 

distinct granular inclusions within the cells comprising the organ have previously been 

described as endogenously luminescent cells in other deep-sea fish species, such as 

Coccorella sp. (Herring, 1977). Furthermore, the histological data provided above allows 

me to clarify that the ventral “lens” described by Haneda (1964) is indeed smooth muscle 

derived from the peritoneum (such lenses are common in bioluminescent species for the 

sake of focusing and enhancing emitted light; Herring, 2002).  

 Lestrolepis possesses an antorbital light organ, which may serve light-matching 

purposes. As downwelling light enters the eye, the photophore adjusts to emit a similar 

intensity of light. By an unknown mechanism, the perception of light intensity in the eye 

is then relayed to the ventral luminescent organ, which then matches and emits the same 

intensity of light. This allows for accurate light matching and effective silhouette 

removal. The antorbital light organ is not observed in other Lestidiid fishes. 

 The phylogenetic data indicates that a ventral hepatopancreatic strand extending 
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posteriorly underneath the intestine evolved first in the common ancestor of Lestidiops, 

Lestidium, and Lestrolepis. Bioluminescence in this hepatopancreatic organ then evolved 

in the common ancestor of Lestidium and Lestrolepis. Finally, Lestrolepis gained the 

antorbital light organ, allowing for variation in the intensity of light emitted from the 

ventral luminescent organ. This may indicate that Lestrolepis has a greater ability to 

move up and down within the water column as compared to Lestidium. 
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Chapter 2 – Analysis of Communication Genes in Bioluminescent Bacterial Species 

Symbiotic with Deep Sea Luminescent Fish 

 

Introduction 

 Marine fish bioluminesce either directly or indirectly: the first method is achieved 

by making endogenous proteins to carry out the light-producing reaction, and the latter is 

achieved by housing bioluminescent bacteria in a light organ. Many bioluminescent fish 

species house such symbiotic bioluminescent bacteria in extensions of their 

gastrointestinal tract, which allow the fishes to partake in predator avoidance and 

communication with potential mates (Dunlap & McFall-Ngai, 1987; Chakrabarty et al., 

2012). My interests currently reside in genetic examination of these symbiotic bacteria, 

especially within the genus Photobacterium, which is present in many fishes, including 

the ponyfishes (Leiognathidae), sweepers (Pempheridae), and glow bellies 

(Acropomatidae; Kaeding et al., 2007; Haddock et al., 2010). Host species direct the 

establishment of pure cultures within their light organs by controlling microenvironments 

(e.g., specific gas and nutrient levels) in which only certain species and certain strains can 

survive (Dunlap & Kita-Tsukamoto, 2006). The availability of bacteria within the host’s 

habitat largely determines which bacteria will live in the light organ as well (Ruby, 1996; 

Dunlap & Kita-Tsukamoto, 2006). 

 These groups of bacterial cells will only begin producing light once a sufficient 
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concentration of cells and signal molecules accumulates within the symbiotic colony, a 

phenomenon known as quorum sensing (QS). During QS, individual cells release 

signaling molecules for bioluminescence as well as other processes, and the desired 

action will occur once a threshold concentration of signaling molecules has been reached 

(Fuqua 1994; Shrout et al., 2011). QS controls processes including production of 

extracellular enzymes, biofilm formation, antibiotic synthesis, and bioluminescence 

(Dunlap & Kita-Tsukamoto, 2006; Roy et al., 2010; Galloway et al., 2011). Within 

Gram-negative bacteria, the group of bacteria to which the bioluminescent species 

belong, the primary QS molecules belong to the class of molecules known as N-Acyl 

homoserine lactones (AHLs), (Dunlap & Kita-Tsukamoto, 2006; Roy et al., 2010; 

LaSarre & Federle, 2013). The activity of AHLs, as they are implicated in bacterial 

pathogenicity, is an intriguing target for QS suppression and for understanding the 

foundations of bacterial communication. Thus, bioluminescent bacteria “turn on” their 

luminescence when the proper molecules are present. 

 Quorum sensing controls the expression of a group of genes called the lux operon, 

which contains the genes for light-emitting reactions. Essentially, all genes in an operon 

will be expressed (protein products produced) simultaneously as long as an initiating 

switch is triggered (e.g., by an AHL molecule). Most species exhibit increased luminosity 

with increased density of bacterial cells, indicating that the lux operon is directly 

controlled by highly concentrated AHLs (Rosson & Nealson, 1981). Indeed, the gene 

luxR codes for an AHL receptor and also acts as the controller of the entirety of lux 
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operon genes, demonstrating the relationship between QS and bioluminescence (Dunlap 

& Kita-Tsukamoto, 2006; Roy et al., 2010; Shrout et al., 2011; LaSarre & Federle, 2013).  

 However, it has been proposed that although multiple species control lux operon 

expression with QS AHLs, the evolution of these two processes occurred independently 

(Dunlap & Kita-Tsukamoto, 2006). Both Photobacterium leiognathi and Photobacterium 

phosphoreum indicate no density-dependent luminosity, and indeed they have been 

shown to constitutively express lux genes, such as those coding for luciferase, the enzyme 

that catalyzes the bioluminescent reaction (Katznelson & Ulitzur, 1977; Rosson & 

Nealson, 1981; Dunlap & Kita-Tsukamoto, 2006). Luminescence and quorum sensing 

have separate evolutionary origins and are not necessarily linked processes.  

 The reciprocal process of quorum sensing is quorum quenching (QQ). QQ is the 

mechanism by which QS signals of one species are destroyed by another species, thereby 

preventing other species from flourishing (Dong et al., 2001; Romero et al., 2011; 

Pereiera et al., 2012). By preventing transcription of QS-controlled genes, QQ confers a 

competitive advantage to the species employing it. In the context of symbiotic 

bioluminescent bacteria, QQ may allow for establishment solely of the bacteria using it 

within a fish light organ, as QS reportedly controls genes that give the bioluminescent 

bacterial species Aliivibrio fischeri the ability to colonize fish light organs (Lupp & Ruby, 

2005). Therefore, targeting these QS molecules via QQ may inhibit the colonization of 

certain bacteria within a host species’ light organ. 

 Quorum quenching thus may have evolved in bioluminescent bacteria, as it would 

allow for suppression of unwanted species within a light organ. Weiland-Bräuer et al. 
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(2014) have identified a QQ gene within an unidentified Photobacterium species that was 

grown from the surface of a species of seaweed. Photobacterium leiognathi is a 

bacterium that often resides within fish light organs, symbiotically producing light for the 

host species. I hypothesize that symbiotic strains of P. leiognathi will contain QQ genes 

such as those identified by Weiland-Bräuer et al. (2014), as these would allow P. 

leiognathi to suppress the activity and perhaps the colonization of other bacterial species 

within host light organs. Secondly, the generation of DNA sequence data will allow me to 

test the relationships among Photobacterium symbionts depicted in Wada et al. (2006). 

This analysis used questionable phylogenetic methods, making this an opportunity to test 

their hypothesis of substantial host specificity in Photobacterium.   

 

Methods 

Bacterial Strain Specimens 

 The specimens used in my analysis were one strain of Aliivibrio fischeri and one 

strain of Photobacterium leiognathi. I attempted to culture P. leiognathi from ponyfish 

specimens (Leiognathus sp.) purchased at a Vietnamese fish market in southwest Denver, 

CO. However, this was unsuccessful, likely because the fish had previously been frozen. 

Next, I tried to amplify various bacterial genes from these ponyfish specimens, including 

Photobacterium LuxA and 16S RNA, which yielded no substantial amplification of these 

genes. Additionally, I attempted to culture the non-symbiotic P. phosphoreum from the 

surface of these ponyfish specimens, as described by Ast and Dunlap (2005). This 

process, whereby I placed the specimen in a sterile tray, covered it with artificial 
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seawater, and allowed it to incubate at 6° C for six days, produced no luminous colonies 

of Photobacterium. Thus, I turned to purchasing a P. leiognathi culture from ATCC 

(American Type Culture Collection). I purchased the P. leiognathi ATCC 25587 (isolated 

by Boisvert et al., 1967), which is a strain isolated from an unidentified leiognathid fish 

(i.e., a ponyfish) light organ. A. fischeri was purchased from the company Carolina 

Biological. 

 All specimens were grown on low-salinity water (LSW) agarose plates. Per liter, 

LSW contains 10 g tryptone, 5 g yeast extract, 15 g agarose, 700 mL artificial seawater 

(Instant Ocean) and 300 mL deionized water. Both P. leiognathi and A. fischeri were 

subcultured from their original states (freeze dried and slant, respectively) in LSW broth, 

then plated after suspension. Cultures were grown at 25°C in darkness. In order to 

maintain viable colonies, subcultures were conducted every four days, and glycerol 

stocks were prepared for freezing –70°C. For glycerol stock preparation, LSW broth 

cultures were grown overnight. 1 mL of each culture was added to 0.25 mL 50% 

glycerol, vortexed, and stored in a –70°C freezer. 

 

DNA Extraction 

 Single colonies from both Photobacterium leiognathi and Aliivibrio fischeri 

subcultures were picked and subcultured to establish monocultures. These monocultures 

served as the strains from which DNA was extracted. DNA extraction was conducted 

using a QIAGEN DNeasy Blood and Tissue DNA extraction kit. First, a large streak of 

cells was collected and suspended in 75 microliters (µL) LSW broth in an Epi tube using 
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a sterile loop from each of the prepared monocultures. After centrifugation, the pellet, 

which contained the bacterial cells, was isolated and suspended in 20 µL proteinase K 

(lyses the cells so DNA can be accessed) and 180 µL of ATL buffer (destroys nuclease 

activity and aids in cell lysis). The suspension was then incubated at 56°C for 6 hours. 

Next, 200 µL AL buffer (contains guanidine salts, which facilitate binding of DNA to the 

column and acts as a detergent to further break down cellular membranes) and 200 µL 

EtOH were added and vortexed. The solution was then pipetted onto the spin column 

provided (this will ultimately allow for the differential elution of cellular components – 

cell membrane, proteins, etc. – and DNA). After centrifugation, the flow-through was 

discarded, and the column was washed with 200 µL AW1 (contains guanidine to 

facilitate breakdown and passage of protein through the column). This step was repeated 

using AW2 (a tris-based ethanol wash that removes salts from the column). Lastly, 200 

µL AE buffer (elution buffer that allows for passage of DNA through the column) was 

added and the column centrifuged. The eluted solution contained purified sample DNA, 

and this was stored at – 40°C. 

 

Gene Amplification 

 DNA sequences Photobacterium leiognathi LuxA (abbreviated PLluxA), 

Aliivibrio fischeri LuxA (AFluxA), Photobacterium sp. quorum quenching protein No. 

34a (QQ 34a, see Weiland-Bräuer et al., 2014), and 16S RNA (16S, a subunit of bacterial 

ribosomes, acts as control amplification sequence) for were amplified using standard 

polymerase chain reaction (PCR) protocol and the following primers. The primer 
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sequences are as follows: PLluxA-F (5’CATGATTTGGGCGAAAACCT-3’), PLluxA-R 

(5’-GAACCGTTTGCTTCAAAACC-3’, Wada et al., 2006); AFluxA-F (5’-

GGTACCATGAAGTTTGGAAATATTTG-3’), AFluxA-R (5’-

GGATCCTTTAGGTCCTTTTAAGAAAG-3’, Tehrani et al., 2012); QQ 34a-F (5’-

GAATCGCTTCAATGATTCAGGCAGGTTAT-3’), QQ34a-R (5’-

GAATTCTTAATTAAGATCCACCAC-3’, Weiland-Bräuer et al., 2014); 16S-F (5’-

AGAGTTTGATCCTGGCTCAG-3’), 16S-R (5’-ACGGCTACCTTGTTACGACTT-3’, 

IDT ReadyMade™ Primers). 

 For each polymerase chain reaction, four amplifications were run for both DNA 

extracts. Using illustra PuReTaq Ready-To-Go PCR Beads (used as these produced better 

yields of amplification products than preparing master mixes in the laboratory), I added 5 

µL of genomic DNA (Photobacterium leiognathi or Aliivibrio fischeri), 2.5 µL of each 

primer (forward and reverse for the gene of interest), and 15 µL sterile, deionized water. 

After mixing, the reactions were run using a thermocycler with the following parameters: 

95°C for 1 min (denaturation), 49°C (primer annealing), and 72°C (extension), which was 

repeated 30 times and preceded by a 5 min primary denaturing stage and a 10 min final 

extension stage (same temperatures as cyclic denaturation and extension used). Each 

reaction was run in triplicate. The PCR products were then analyzed using gel 

electrophoresis. To the agarose gels (50 mL TBE with 0.875 g agarose) I added 5 µL of 

Bullseye DNA Safe Stain, which allowed better visualization of bands. Samples were 

mixed with 2 µL loading dye prior to loading. Each well was loaded with 20 µL sample, 

and 5 µL of Bullseye 100 bp ladder was loaded as well (ladder band base pair lengths: 
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1500, 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100). Gels were run for 1 hour at 100 

V and imaged on a UV light using an iPhone 5. 

 

Gene Sequencing 

 Samples were sent out for Sanger sequencing at Functional Biosciences in 

Milwaukee, WI. In preparation for sequencing, each of the desired genes was amplified 

from genomic DNA using PCR. Photobacterium leiognathi was sequenced for P. 

leiognathi LuxA, QQ No. 34a, and 16S RNA, while Aliivibro fischeri was sequenced for 

A. fischeri LuxA, P. leiognathi LuxA, and 16S RNA. All sequencing reactions were run 

only with the forward primer and yielded clean data except QQ No. 34a. 

 

Sequence Analysis 

 DNA sequence data was compared from 32 new and published bacterial gene 

sequences from two genera (Aliivibrio and Photobacterium) within the family 

Vibrionaceae (Wada et al., 2006). Aliivibrio fischeri functioned as the outgroup in the 

analysis. Two genes were used: 16S ribosomal RNA (1,481 bps) and the gene coding for 

LuxA protein (10,820 bps). Therefore, a total of 12,301 base pairs were used for each 

species. The genes were aligned (process by which multiple genes are aligned to assess 

sequence homology, which allows for elucidation of shared evolutionary origins between 

these genes and ultimately the organisms themselves) using the program MAFFT v7.2 

(Multiple Alignment using Faster Fourier Transform, a multiple sequence alignment 

program for comparison of gene sequences), run using the program’s default parameters. 
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A maximum-likelihood analysis was then conducted in order to estimate the most likely 

pattern of genetic evolution for each gene and each category of position within each gene. 

The models of molecular evolution were selected using jMODELTEST v.2.1 (Posada, 

2008), which assigned the most probable model of evolution for each of the eight 

compared genes (done using Akaike information criteria, essentially a measure of the 

quality of the estimated models; HKY+G, GTR+G were the models of evolution used for 

the LuxA gene and 16S RNA gene, respectively). The program GARLI v2.01 (Genetic 

Algorithm for Rapid Likelihood Inference) was then used to generate the most likely 

phylogenetic tree based on the maximum likelihood data in the context of the genetic 

models of evolution (Zwickl, 2006). The most likely phylogenetic tree was then depicted 

and manipulated using FigTree v1.4.  

  

Results 

LuxA Analysis 

 Amplification data indicates that both the P. leiognathi and A. fischeri strains 

analyzed possess copies of LuxA (Fig. 5. B, F; 1200 and 1000 bp, respectively). The P. 

leiognathi LuxA primer set did yield an amplification product when combined with A. 

fischeri DNA, thus this was sequenced (Fig. 5. E; 750 bp).  
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                        A                            B               C            D            E              F               G 

 
Fig. 5. PCR amplification products for Photobacterium leiognathi and Aliivibrio fischeri genes of interest. 
From left to right, lanes are as follows: (A) 100 bp ladder, (B) P. leiognathi LuxA, (C) P. leiognathi QQ 
No. 34a, (D) P. leiognathi 16S RNA, (E) A. fischeri P. leiognathi LuxA, (F) A. fischeri LuxA, and (G) A. 
fischeri 16S RNA. 
 
 
Quorum Quenching Analysis 

 Upon gene amplification and sequencing, it was demonstrated that P. leiognathi 

ATCC 25587 does not possess the quorum quenching gene of interest, QQ No. 34a. 

While some gels did present very faint bands of the expected size (~600 bp), none 

demonstrated sufficient amplification (Fig. 5. C indicates a band of about 100 bp in size, 

likely a dimerization of primers). Furthermore, sequencing of crude PCR products 

amplified with the QQ primer set did not indicate any valid sequence for a quenching 

gene. 

 

Phylogenetic Analysis 

 The strain of P. leiognathi examined in this study, ATCC 25587, is nested within 

a group of P. leiognathi strains known to be symbiotic with fishes from the family 
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Leiognathidae (Fig. 6.). Specifically, it resides within a clade of bacteria specific to the 

ponyfish species Leiognathus rivulatus and Leiognathus nuchalis, both from Japan, as 

well as Leiognathus equulus and Leiognathus leuciscus, both from the Phillippines. 

Furthermore, the P. leiognathi strains known to be symbiotic with Siphamia versicolor, a 

species found off the shores of Japan, form a monophyletic group. P. leiognathi strains 

symbiotic with Japanese Acropoma japonicum do not form a monophyletic group, and 

are thus found in clades containing Cocorella sp. strains gathered from the seafloor.  

 

Fig. 6. Evolutionary relationships between bioluminescent marine bacteria based on sequence data of 2 
sequenced gene fragments and sequence data from Wada et al. (2006) compared using maximum likelihood 
analyses. Each taxa represents a Photobacterium strain indicated by its host fish species. 
 

Discussion 

 The initial hypothesis of this study, that QQ genes would be present in in P. 

leiognathi, must be rejected based on the sequence data. Due to time and financial 
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restrictions, only one species of symbiotic P. leiognathi was analyzed in this study, while 

many more strains exist and should be examined in the future to definitively determine 

the presence or absence of the tested QQ gene. 

 Phylogenetic analysis allowed us to verify the P. leiognathi strain obtained from 

the culture collection and examined in this study. Thus, we are able to support that P. 

leiognathi ATCC 25587 is likely a symbiotic strain obtained from a leiognathid fish. This 

is important in that it allows this strain of Photobacterium to be properly aligned with 

other symbiotic bacteria where the evolution of bacterial strains can be shown to evolve 

in a host-dependent manner. While QQ was not shown to be present in the strains 

examined herein, the formation of clades with high specificity for a particular species or 

genus of fish indicates that similar strains of the Photobacterium genus may possess 

characteristics that contribute to this specificity. If QQ does indeed allow for the 

inhibition of growth of competing strains of bacteria, this or a similar mechanism may be 

found within other strains of P. leiognathi upon further research. 

 Also, the phylogeny created in this study supports the specificity between 

Photobacterium strains and host species for Siphamia and leiognathid symbionts as Wada 

et al. (2006) had indicated. Acropomatid symbionts are separated with some strains in 

groups with en vivo Photobacterium species or leiognathid symbionts. Lastly, the group 

of leiognathid symbionts indicates large sequence divergence due to the long branch for 

their clade in the above phylogeny, supporting greater specialization within this clade of 

Photobacterium symbionts. 
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Chapter 3 – Experiential Learning: The History, Importance, and Practicality of 

Learning by Doing 

 

  In conducting all of the above research, research about which I am very 

passionate and driven, I did have one question in mind: what is the purpose? What do 

histology, morphology, anatomy, and phylogenies matter? As a biologist, these questions 

came to me as sacrilege, but they came to me nonetheless as I try to understand my place 

in this world and to what our actions ultimately amount. Looking back at my four years 

of education at Regis, I realize I have arrived at a much different place than I began as a 

freshman. My passion for certain things, such as biology, has not faded, yet I feel as 

though the scope of my view has grown. I understand this increased comprehension 

comes along with maturity, yet I do not enjoy that I know more. I enjoy that I am 

beginning to see beyond myself and take in the full importance of other people and 

places. I have begun to relish in my experiences in this world, as this is how I relate to all. 

My career at Regis has been a microcosm of this realization, and the research experiences 

I have detailed above are just a sample of the many ways in which I have started to look 

beyond my thoughts and desires to the wide empirical world around me. 

 Learning by experience, then, has been an integral aspect of my college education 

so far. I often find myself immersed in books during my learning, and of course, a 

complete education requires that one study the canon of work completed in a field in 

order to understand the accomplishments and advances made by previous academics. 
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Furthermore, the student should seek a full understanding of the basis of any concept, for 

without this knowledge progression is impossible. However, in order for the student to 

make any substance of lectures and readings, one must engage the world at large. What 

happens once the student steps out of the lecture hall? Armed with knowledge, the 

student makes nothing of these efforts at understanding if he or she does not deliberately 

go into the world and actively apply what has been bestowed upon him or her.  

 My fascination with understanding just what our experience in the world amounts 

to began my sophomore year of high school, during which I read Henry David Thoreau’s 

Walden, where he states in reference to university students, “I mean that they should not 

play life, or study it merely, while the community supports them at this expensive game, 

but earnestly live it from beginning to end. How could youths better learn to live than by 

at once trying the experiment of living?” (Thoreau, 1854, p. 45). I found Thoreau’s 

assertion entirely fascinating. I began to consider his appellation for students to 

“earnestly live it,” to make good on their education. We receive a great deal of book 

knowledge, of information that anybody can store in his or her head. Even the advice or 

stories I hear from other people about their lives, outside of the academic setting, falls 

into this category. We constantly take in information; the input is incessant when you 

think about it. But what Thoreau wanted to convey is that this information must be acted 

upon. Life is not lived by thinking about living, but one must attempt the experiment of 

living immediately. 
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Experiential Learning Defined and Applied 

 As my education progressed, I began to think about the importance of experiential 

learning. This seemed to embody this existential mindset of Thoreau’s in a way that made 

the education I was given seem worthwhile. Simply put, experiential learning is 

“…learning by doing” (Day, 2012). There are numerous models of experiential learning 

that will be dealt with later, but the basic idea is that experiential learning is not 

“…passive learning in which students listen to lectures, read books, or watch video 

documentaries, and are then asked to repeat what they have heard, read or seen”, but 

rather it is “Active learning…in which students learn from field examples, data analyses, 

case studies or problems…” (Day, 2012, p. 5). The intriguing aspect of experiential 

learning is the action it requires of the student. This “active learning” requires action 

rather than passivity, which resonates with how I believe learning can become reinforced 

in one’s mind. While lectures and readings may be seen as passive, I believe that the 

entire learning process can be made active. As long as the student remains engaged in the 

subject matter, which may mean debating or conversing with a peer on the topic, then the 

student is engaging in the active learning to which Day refers.  

 Furthering the philosophical understanding of experiential learning, John 

Newman in The Idea of a University offers another kinetic definition of learning. “It is 

not the mere addition to our knowledge that is illumination,” Newman posits, “…But the 

locomotion, the movement onwards, of that mental centre, to which both what we know, 

and what we are learning, the accumulating mass of our acquirements, gravitates” 

(Newman, 1996, p. 98).  Newman calls upon two very important concepts involved in the 
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human act of learning. First, he reemphasizes the commonality in both Thoreau’s and 

Day’s observations of learning that it ought to involve a sort of motion, or “movement 

onward” of one’s understanding. When stagnation or passivity becomes the status quo, 

“mere addition” to one’s knowledge is the only result. This is no good, for the student 

does not reach any deeper understanding, and the experience remains superficial such 

that the learning will not culminate into anything substantial. Secondly, Newman begins 

to define precisely that which the inquisitive being is working to alter or improve in the 

first place: “that mental centre.” In the process of learning, which may even be broadly 

understood as the process of life, the human being strives to adapt his or her 

consciousness, ever refining and ever clarifying that grasp of oneself and the world. It is 

not “our knowledge” that we seek to improve through edification, for this is only one 

aspect of this mental centre. It is my purpose in this chapter to comment on whether 

broadening one’s outlook on the world can allow for a comprehension that offers us a 

satisfaction with our mental centre, whether that be in the school setting, community 

setting, or simply in interacting with other people.  

 The majority of the discourse on experiential learning has occurred within the 

field of behavioral psychology, a field largely concerned with explaining how we learn. 

The main players who initially explained experiential learning are Kurt Lewin, John 

Dewey, Jean Piaget, and David Kolb. Kolb offers a synthesis of the work done by Lewin, 

Dewey, and Piaget, claiming experiential learning is, “…A holistic, integrative 

perspective on learning that combines experience, perception, cognition, and behavior” 

(Kolb, 1984, p. 21). Kolb’s emphasis on the holistic aspects of a learning process founded 
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on experience and reflection on that experience embodies experiential learning. Kolb 

further develops the holistic nature of experiential processes in his claim that learning 

“…involves the integrated functioning of the total organisms” (Kolb, 1984, p. 16). The 

entire human organism engages in the learning process, for learning takes place in the 

context of one’s environment. In biology, students are taught that evolution of species 

occurs when species interact with their environment. In the same way, Kolb argues that 

learning is an adaptive process that must engage the entire human organism. Examination 

of the three learning models provided by Lewin, Dewey, and Piaget will further inform 

this stance.  

 Lewin’s model focuses on feedback mechanisms in learning that allow for 

advancements in understanding. Lewin’s model stresses the balance between observation 

and action, and these two feed into each other, as can be seen in Fig. 7. In the learning 

process as defined by Lewin, a student is subjected to a concrete experience, which is 

followed by observations and reflections  

 

Fig. 7. The Lewinian model of experiential learning (figure from Kolb, 1984, p. 21, Fig. 2.1). 
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on that experience. Next, the student will take the observations and reflections to 

formulate abstract concepts about the original concrete experience. These hypotheses 

lead to testing these concepts in new situations and contexts, ultimately yielding new 

concrete experiences. The cycle then repeats, and the student begins to understand the 

relations of a set of phenomena within a given set of contexts. Importantly, Lewin places 

emphasis on “…Here and now concrete experiences” that “…Yield subjective personal 

meaning” (Kolb, 1984, p. 21). Lewin strives to situate the student, and the student’s 

meaning, in the learning process. Rote memorization and superficial understanding of 

topics do not interest Lewin. Rather, his model indicates that the student’s thinking is 

directly linked to the cycle of events connected to the observations and experiences of the 

student’s life. In other words, a person does not merely possess thoughts distinct from the 

phenomena surrounding him or her, but rather those thoughts are a part of and a 

contributing factor to the comprehension of those phenomena.  

 Dewey provides a model that stresses the transformative effects of experience on 

the student’s purposefulness. Akin to Lewin, Dewey’s model demonstrates “…How 

learning transforms the impulses, feelings, and desire of concrete experiences into higher-

order purposeful action” (Kolb, 1984, p. 22). Thus, the student begins with impulses, 

curiosities, and experiences in observing phenomena around him or her. These are all 

great for an inquisitive novice, but eventually he or she wants to bring learning to 

fruition, to transform that raw material into some “purposeful action.” Looking back to 

Newman and his discussion of the “locomotion…of that mental centre” in order to truly 

learn, one immediately notices the parallels with Dewey’s model of learning. As seen in 
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the diagram of Dewey’s model (Fig. 8), the learning process is one of forward movement, 

but still retaining the cyclic analysis characteristic of the Lewinian model. Advancement 

in this cyclic-progressive mode is founded on deriving a purpose from original impulses 

founded in nascent observations and curiosity.  

 

 

Fig. 8. Dewey’s model of experiential learning (Kolb, 1984, p. 23, Fig. 2.2.). 

 

 Finally, the learning model posited by Piaget emphasizes the adaptation of the 

student to synthesize ideas. The four processes of Piaget’s model are experience and 

concept, reflection and action (Kolb, 1984). His model resembles the Lewinian model, as 

experiences lead to concepts (derived via reflection) that lead to action, and eventually to 

the broader goal of adult thought. Once again we see the acquisition of purposefulness or 

meaning as the goal of the entire learning endeavor. This has been an important driving 

factor in my interest in experiential learning, as I always felt disturbed by the emphasis 

on grades and tangible achievements in the education system I experienced. I believe that 

in school, and in life, the data, impulses, and observations one has should not be 
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primarily reworked to yield some material end goal, but rather to give the subject a 

greater meaning and a broadened perspective.  

 Therefore, learning ought to be envisioned as a process rather than an outcome. 

Learning is a continual process that never ceases. Learning, rather than existing as a fixed 

event in time, is a process that constantly adapts. One can therefore view ideas as Kolb 

does, as mutable events that are continually reformed in one’s daily life. The dialectic 

tension between experience and concepts, between the concrete and abstract, is that 

locomotive force of a mental centre. The experiential model presents learning as a 

process of tension, of trial and error that ultimately leads to a progression for the subject, 

and this progression should provide the student, at the very least, a meaningful purpose 

for engagements with the world.  

 

Experiential Learning Applied 

 In order to give the Lewinian model a concrete context, I look back on my own 

research and learning in the laboratory. My interest and concern with experiential 

learning was very much initiated with my own engagements with variable learning 

process. The Regis Biology Department offered me multiple opportunities to get involved 

with exciting research projects in which I knew I had to become involved. While I 

learned a wealth of information in my biology courses and the laboratories helped place 

this knowledge into a context of greater understanding, I longed to find that “freedom and 

unity of… researching” to which Simões et al. refer (2015, p. 131). I aimed to put my 
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hands on new and tangible research projects and to make observations that had not before 

been made.  

 I thus began conducting research under M. Ghedotti’s guidance. The study we 

conducted is previously outlined in Chapter 1, a study concerned with elucidating the 

structure, anatomy, and evolution of bioluminescent organs of the naked barracudinas. 

Needless to say, this was not a topic I had been studying my first two years of college. 

What I had learned about was cell structure, basic anatomy, basic development, staining, 

and evolution. All of these principles that I had learned in the classroom finally had a 

space to grow, a place for me to enact them and see how they operated in the world of 

science. Application of these ideas allowed for them to coalesce in my understanding.  

 I saw how these fish that live in a region of the ocean where downwelling light 

casts the shadows of their bodies to predators below have adapted literal lights on the 

bottom of their bodies in order to counteract these shadows. What a case of adaptation! 

Furthermore, I came to see how these fish had evolved such light structures, as proposed 

by the phylogeny in Figure 9. In this phylogeny produced by M. Davis and combined 

with the data collected by M. Ghedotti and myself, the process of evolution is readily 

apparent. Examining the family Lestidiidae, the uniquely derived characteristics that are 

present is first the development of ventral hepatopancreatic tissue along the anterior 

intestine (toward the head), then along the entire intestine, which was finally coopted to 

become bioluminescent tissue in Lestidium sp. and Lestrolepis spp. I give this example 

not to focus on the intricacies of the evolution of this group of fish, but rather to focus on 

the applications of evolution it represents. Indeed, this was experiential learning in action.  
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Fig. 9. Phylogeny of Lestidiid fishes and representative alepisauroid fishes. (Ghedotti, Barton, Simons, & 
Davis, 2015). 
 
 
 
 The next step in my experiential learning comes from my progression onto the 

research that is outlined in Chapter 2. First, however, I must return to the research I 

conducted with M. Ghedotti. Our original hypothesis with the naked barracudinas was 

that they were coopting gut diverticula, or elongated sacs extending off the beginning of 

the digestive tract and continuing along the length of the ventral side of the fish. Such 

diverticula formations have been observed in fish of the genus Coccorella (Wassersug & 

Johnson, 1976). However, this hypothesis had to be revisited once the histology of the 

Lestidiid fishes was thoroughly examined (see Chapter 1). Nevertheless, I became quite 

intrigued with those fish that do harbor luminescent bacteria in their gut diverticula, such 
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as the ponyfish. I began to wonder how colonies establish in these fish, as they are often 

pure colonies comprised of one species of bacteria.  

 With this curiosity derived from my first-hand observations of phenomena, I 

looked back at the literature. My reflection on the communication among bacteria led me 

to discover the processes of quorum sensing and quorum quenching (see Introduction of 

Chapter 2). In essence, I had moved from the “concrete experience” of the Lewinian 

model toward the “observation and reflection phase” (see Fig. 7). If only one species was 

forming a colony in each fish, such as in ponyfishes, did that mean some tactic was being 

used to prevent other species from establishing colonies? Were the quorum sensing 

processes that allow bioluminescent bacteria to luminesce as a cohesive unit being 

inhibited by other species attempting to do the same, in an effort at winning “colonization 

rights” in marine-fish light organs? These questions filled my head, and I was led to 

hypothesize that perhaps quorum quenching, a process by which bacteria inhibit the 

molecular signaling between competing bacterial species (e.g., signaling for light 

production), was occurring in the bacteria commonly colonizing fish light organs. This 

represented Lewin’s “formation of abstract concepts and generalizations” stage. Finally, I 

began to research this subject, finding that perhaps these bacteria do not possess quorum 

quenching genes (see Results in Chapter 2). This “testing of concepts” phase is the final 

step in Lewin’s cycle, and in the broader experiential learning cycle. Lewin’s model of 

learning closely parallels the scientific process, which essentially consists of the 

observation-hypothesis-experimentation cycle I worked through in the laboratory. 
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Experiential Learning Provides the Basis for University Research 

 Returning to my original questions, concerning why I conducted undergraduate 

research for three years, I began to wonder where the concept of research in the 

university began. The conception of the research university as it is known today began 

with the 19th century German universities, which placed great importance on experiential 

learning. While German professors of the 1800s did not understand experiential learning 

as has been described above, they did understand the importance of observation, 

experimentation, and empiricism that led to the progress of the sciences seen at the turn 

of the 19th century and into contemporary times. Many of the foundations for 

incorporating research into learning institutions propel my own conception of experiential 

learning, and they deserve attention. 

 The idea that research should be conducted in the university setting stems from 

the 19th century German concept of wissenschaft, or “pure science.” Wissenschaft was 

understood in universities as science for the sake of science, not for the sake of a 

professorship, the state, or a company (Nyhart, 1995). In his argument stating 19th 

century American medical students frequently traveled to Germany seeking further 

educations in the universities there, Bonner recognizes that these students met in “…The 

disinterested pursuit of truth” (Bonner, 1987, p. 2). The ethos of wissenschaft achieved a 

scientific process that focused on the education of the student, if not merely for the sake 

of piquing his or her curiosity. Indeed, both Bonner and Nyhart in their discussions of the 

19th century German research universities emphasize the disinterested and laboratory-

based approaches to teaching the life sciences, which effectively awoke the imagination 
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of the student (Nyhart, 1995). Or, as Bonner states, these approaches to learning initiated 

an “…Exciting sense of studying on the frontier of … discovery” due to the complete 

devotion of the laboratory approach to the spirit of science (Bonner, 1987, p. 16). The 

spirit embodied by the German style is a truly scientific one, for it is founded in constant 

questioning and pursuit of empirical knowledge that is centered within the professor- or 

student-scientist. It is at the interface between the individual and natural phenomena that 

science progresses, thus allowing for the further maturation of the student’s 

understanding. 

 The German approach (emphasis on laboratory work, empiricism, etc.) arguably 

arose with the transition from traditional academies toward technical institutes, as the 

focus shifted from mere transmission of knowledge toward the holistic and personal 

advancement of knowledge (Clark, 2008, p. 437). In essence, this transformation is what 

is known as the move from a traditional university (the ‘academy’) toward the 

Humboldtian model (the ‘research university’), the latter emphasizing “…the principles 

of freedom and unity of teaching and researching” (Simões et al., 2015, p. 131). This 

marks a move toward a more holistic approach in education, creating an academic 

environment focused not only on transmitting knowledge, but also on research 

(progression of knowledge) and the cultivation of a moral self with a core set of values 

(there exists a parallel between this ideology and the Jesuit teaching of cura personalis). 

An idealistic revamping of the university was under way at this institutional transition 

point 
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 More specifically, this change can be traced to the creation of the Humboldtian 

model of the university. The Humboldtian model, named after Wilhelm von Humboldt, 

stressed the concepts of wissenschaft, academic freedom, reason, and logic. With the 

construction of the University of Berlin in 1810, the first university styled after the 

Humboldtian model, higher education took a turn away from the dogmatic academies 

toward a learning institution where empiricism, questioning, and academic freedom were 

priorities (Anderson, 2004). While the instructor’s role remained an authoritative one, the 

Humboldtian university focused on unity between teaching and research (Anderson, 

2004). The hierarchical system of the university had been abandoned to an extent, 

replaced by a format where instructors became highly involved in research that both 

informed what they taught their students, and provided an opportunity for the students to 

practically implement their learning. Students were taught a disinterested brand of 

science that held no teleological high ground. Any and every idea was subjected to 

empirical data, logical reasoning, and questioning by professors and students alike.  

 Additionally, the Humboldtian model puts a large emphasis on the idea of 

bildung, or “education contrasted with training” (Simões et al., 2015, p. 131). That is, 

bildung represents education beyond simple conveyance of knowledge, instead seeking to 

transmit moral and cultural knowledge (Simões et al., 2015). Bildung was to be taught 

with a dynamic education process, which the German universities sought to achieve by 

combining lecture material with research and learning laboratory experiences (especially 

in the natural sciences). Indeed, Nyhart expands on this definition by stating bildung is 

the “development of self to its highest potential” (Nyhart, 1995, p. 14). Nyhart’s 
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understanding of learning development as a maturation of the self’s “highest potential” is 

not far removed from Newman’s conception of illumination being a movement toward a 

“mental centre,” for both of these loci represent an anchoring point to which our efforts in 

education are centered. In cultivating our “mental centres” or “highest potentials” we 

strive toward the goal of education: a better understanding of the world around us by 

examining and contemplating the phenomena that fill it. The “mental centre” of one’s 

being represents that potential to understand and sincerely engage with that which 

surrounds him or her. 

 The process of transferring knowledge in an experiential manner has its 

foundations in the German ideals of education, namely wissenschaft, bildung, and the 

Humboldtian model. In pushing for freedom in teaching and researching, students began 

to experience the transmission of knowledge at a practical level. The care for the entirety 

of the student’s learning process hearkens back to Kolb’s assertion that experiential 

learning “…involves the integrated functioning of the total organism” (Kolb, 1984). The 

aspects the behavioral psychologists focus on certainly are similar to the facets of 

learning the Humboldtian model strove to emphasize. Both seek a sort of attention to the 

entirety of a person, what I can best describe using the Jesuit conception of cura 

personalis, or care for the whole person. The German universities focus on teaching the 

students the canon of knowledge relevant to the field of study with which the student 

engages, but the inclusion of research adds a counterpoint from which the student can test 

these ideas and survey them further in the world at large. Experiential learning is simply a 

microcosm of this very same ideal. The student experiences and perceives, then engages 
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cognitively with the data, and initiates behavior based on the prior cyclical steps. 

Essentially, both concepts of learning, the German research university model and the 

experiential model, are one in the same: they place emphasis on the propulsion of 

intellect through the means of fortifying a priori knowledge with empirically gathered a 

posteriori knowledge. 

 Throughout this discussion, the concept of what truly constitutes learning has 

remained at the center. The foundations of learning are indeed the foundations of our 

civilization and our daily lives. The human race continually learns, through every 

experience of each day, even if it does not leave a lasting impact. As a scientist, I have 

always seen the importance of continually questioning phenomena I observe in the living 

organisms, inanimate structures, and communities of people that surround me. In a sense, 

the shift toward the Humboldtian university and the creation of the research university 

parallels this line of thinking quite closely. The shift toward the Humboldtian research 

university solidified the status of professors and students as a unified group engaged in 

the common search for truth (Anderson, 2010). The search for truth will never yield 

absolute truth, and this is the source of my own curiosity. I see the quest for 

understanding as a continually evolving one that resembles the evolution of species. 

There is no correct course of evolution or final teleological goal toward which evolving 

organisms tend. Rather, the evolution of my learning, as with organisms, is often 

influenced by chance and outside factors that the subject cannot control. In learning and 

living, these factors are experiences. There exists no map to find the best ones; there is 

only a fluid journey without a known destination. Forever there will exist a search, during 
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which the student, the professor, the person learns, learns a new way to behold the ebb 

and flow of existence. The promise of an answer does not drive one to research; rather, 

the certainty of more questions to be asked will forever pique the student’s and the 

scholar’s curiosity.
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Conclusion 

  

 As I look back on my journey through Regis and reflect on the progression of my 

learning and maturation, two important Jesuit principles strike me as crucial elements to 

my development. The first is cura personalis, or care for the whole person. Care for the 

whole person entails spiritual, educational, and moral development, and I believe my 

emphasis on experience coincides well with cura personalis. By taking hold of each 

opportunity that presents itself, I am able to explore the world of science, the world of 

thoughts, and most importantly the world of the people around me. In communicating 

and learning from others, I am able to formulate my own ideas and reevaluate them 

constantly. In fact, I am nothing without the people with whom I form relationships, as 

they give me a foundation in this world upon which I may grow. In all, I am able to care 

for my whole person and become a well-rounded individual when I engage with the 

experiences of which I have the opportunity to be a part. 

 Secondly, magis is a very important Jesuit value that means much to me and 

informs my attempts to become a better student and a better person. Magis is difficult to 

define, but it directly translates as “more” from Latin. The Jesuits, however, use it to 

discuss for what we live. Do we live for ourselves, for small, selfish reasons, or do we 

live for something more? In the final Honors seminar, Magis and the Search for 

Meaning, my classmates and I contemplated what we live for and how we do that in great 
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depth. While my answers to these questions are not definitive and continually evolve, one 

important takeaway for me is that we can learn about our answers to these questions 

through the experience of life. Some prominent figures covered in the seminar were 

Father Gregory Boyle, who learned his meaning through working with gang members in 

Los Angeles, Viktor Frankl who found meaning while suffering through the 

concentration camps of Nazi Germany, and Andre Dubus who meditated extensively on 

life’s purpose after becoming wheelchair-bound midway through his life. More generally, 

these people learned what the meaning of life was to them during these events that 

challenged them wholly to consider what it is they live for, or what the magis means in 

their lives. Therefore, it is the challenging of oneself to face adversity or enter 

uncomfortable situations that I find to be very important in my life. I am only a 22-year-

old college student who does not know much, but I am excited with the prospect of 

encountering new experiences that will teach me about the complex world of people, 

places, and phenomena around me.



 53 

REFERENCES 

Anderson, R. D. (2004). European Universities from the Enlightenment to 1914. Oxford 

Scholarship Online. 

Anderson, R. D. (2010). The 'Idea of a University Today. History and Politics, 210-216. 

Ast, J., & Dunlap, P. V. (2005). Phylogenetic resolution and habitat specificity of 

members of the Photobacterium phosphoreum species group. Env Micro, 7, 1641-

1654. 

Bancroff J., & Stevens A. (1982). Theory and practice of histological techniques, 2nd ed. 

New York: Churchill-Livingston. 

Boisvert, H., Chatelain, R., & Bassot, J. M. (1967). Study on a Photobacterium isolated 

from the light organ of the Leiognathidae fish. Ann Inst Pasteur, 112, 521-525. 

Bonner, T. N. (1987). American Doctors and German Universities: A Chapter in 

Intellectual Relations, 1870-1914. Lincoln: University of Nebraska Press.  

Chakrabarty, P., Davis, M. P., Smith, W. L., Berquist, R., Gledhill, K. M., Frank, L. R., 

& Sparks, J. S. (2011). Evolution of the light organ system in ponyfishes (Teleostei: 

Leiognathidae). J Morphol, 272, 704-721. 

Clark, W. (2008). Academic charisma and the origins of the research university. 

Chicago: University of Chicago Press. 

Davis, M. P., & Fielitz C. (2010). Estimating divergence times of lizard fishes and their 

allies (Euteleostei: Aulopiformes) and the timing of deep-sea adaptations. Mol 

Phylogenet Evol, 57, 1194–1208. 



 54 

Day, T. (2012). Undergraduate teaching and learning in physical geography. Progress in 

Physical Geography, 36, 305-332.  

Dong, Y. H., Wang, L. H., Xu, J. L., Zhang, H. B., Zhang, X. F., & Zhang, L. H. (2001). 

Quenching quorum-sensing dependent bacterial infection by an N-acyl homoserine 

lactonase. Nature, 411, 813-817. 

Dunlap, P. V., & Kita-Tsukamoto, K. (2006). The Prokaryotes: Luminous Bacteria. 

Dworkin, M., & Falkow, S. (Eds.). Berlin: Springer.  

Dunlap, P. V., & McFall-Ngai, M. J. (1987). Initiation and Control of the Bioluminescent 

Symbiosis between Photobacterium and the Leiognathid Fish. Ann NY Acad Sci, 

269-283.  

Fuqua, W. C., Winans, S. C., & Greenberg, E. P. (1994). Quorum sensing in bacteria: the 

LuxR LuxI family of cell density-responsive transcriptional regulators. J Bacteriol, 

176, 269–275. 

Galloway, W. R, Hodgkinson, J. T., Bowden, S.D., Welch, M., & Spring, D. R. (2011). 

Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL 

and AI-2 quorum sensing pathways. Chem Rev, 111, 28–67. 

Ghedotti, M. J., Barton, R. B., Simons, A.M., & Davis, M. P. (2014). The first report of 

luminescent liver tissue in fishes: evolution and structure of bioluminescent organs 

in the deep-sea naked barracudinas (Aulopiformes: Lestidiidae). J Morphol, 276, 

310-318. 

Haddock, S. H. D, Moline, M. A., Case, J. F. (2010). Bioluminescence in the sea. Annu Rev Mar 

Sci, 2, 443–493. 



 55 

Haneda, Y. (1958). Preliminary report on a luminous fish of the family Paralepididae. Sci 

Rep Yokosuka City Mus, 3, 31–35. 

Haneda, Y. (1964). Further report on the luminous fish of the family Paralepididae. Sci 

Rep Yokosuka City Mus, 10, 1–7. 

Harry, R. R. (1953). Studies on the bathypelagic fishes of the Paralepididae. 1. Survey of the 

Genera. Pac Sci, 7, 219–249.  

Herring, P. J. (1977). Bioluminescence in an evermanellid fish. J Zool London, 181, 297–

307. 

Herring, P. J. (2002). The Biology of the Deep Ocean. Oxford: Oxford University Press. 

Humason, G. L. (1979). Animal Tissue Techniques, 4th ed. San Francisco: W. H. 

Freeman and Company. 

Johnston, I. A., & Herring, P. J. (1985). The transformation of muscle into 

bioluminescent tissue in the fish Bentalbella infans Zagmayer. Proc R Soc Lond B, 

225, 213–218. 

Kaeding, A. J., Ast, J. C., Pearce, M. M., Urbanczyk, H., Kimura, S., Endo H, … , 

Dunlap, P. V. (2007). Phylogenetic diversity and cosymbiosis in the bioluminescent 

symbioses of “Photobacetrium mandapamensis”. App Env Microbio, 73, 3173-

3182. 

Katznelson, R., & Ulitzur, S. (1977). Control of luciferase synthesis in a newly 

isolatedstrain of Photobacterium leiognathi. Arch Microbiol, 115, 347–351. 

Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and 

development. New York: Pearson Education. 



 56 

LaSarre, B., Federle, M. J. (2013). Exploiting Quorum Sensing To Confuse Bacterial 

Pathogens. Microbiol Molec Bio Rev, 77, 73-111. 

Lawry, J. W. (1974). Lantern fish compare downwelling light and bioluminescence. 

Nature, 247, 155–157. 

Lupp, C., & Ruby, E. G. (2005). Vibrio fischeri Uses Two Quorum-Sensing Systems for 

the Regulation of Early and Late Colonization Factors. J Bacteriol, 187, 3620-3629. 

Nyhart, L. K. (1995). Biology Takes Form: Animal Morphology and the German 

Universities, 1800-1900. Chicago: The University of Chicago Press.  

Newman, J. H., & Turner, F. M. (1996). The idea of a university. New York: Yale 

University Press. 

Pereiera, C. S., Santos, A. J., Bejerano-Sagie, M., Correia, P. B., Marques, J. C., & 

Xavier, K. B. (2012). Phosphoenolpyruvate phosphotransferase system regulates 

detection and processing of the quorum sensing signal autoinducer. Molecular 

Microbiology, 84, 93-104.  

Posada, D. (2008). jModelTest: Phylogenetic model averaging. Mol Biol Evol, 25, 1253–

1256. 

Rees, J. F., De Wergifosse, B., Noiset, O., Dubuisson, M., & Janssens, B. (1998). The 

origins of marine bioluminescence: turning oxygen defense mechanisms into deep-

sea communication tools. J Exp Biol, 201, 1211–1221. 

Romero, M., Martin-Cuadrado, A. B., Roca-Rivada, A., Cabello, A. M., & Otero, A. 

(2011). Quorum quenching in cultivable bacteria from dense marine coastal 

microbial communities. FEMS Microbiol Ecol, 75, 205-217. 



 57 

Rosson, R. A., & Nealson, K. H. (1981). Autoinduction of bacterial bioluminescence in a 

carbon limited chemostat. Arch Microbiol, 129, 299-304. 

Roy, V., Fernandes, R., Tsao, C. Y., & Bentley, W. E. (2010). Cross Species Quorum 

Quenching Using a Native AI-2 Processing Enzyme. ACS Chem Biol, 5, 223-232. 

Ruby, E. G. (1996). Lessons from a cooperative bacterial-animal association: The Vibrio 

fischeri Euprymna scolopes light organ symbiosis. Ann Rev Microbiol 50, 591–624. 

Sheehan, D., Hrapchak, B. (1980). Theory and practice of histotechnology, 2nd ed. Ohio: 

Battelle Press. 

Shrout, J. D., Tolker-Nielsen, T., Givskov, M., & Parsek, M. R. (2011). The contribution 

of cell-cell signaling and motility to bacterial biofilm formation. Materials Res Soc, 

36, 367-373.  

Simões, A., Diogo, M. P., & Gavroglu, K. (2015). Sciences in the Universities of Europe, 

Nineteenth and Twentieth Centuries. Boston Studies in the History and Philosophy 

of Science, 309, 1-390.  

Tehrani GA, Mirzaamadi S, Bandehpour M, & Kazemi B. (2012). Coexpression of luxA 

and luxB genes of Vibrio fischeri in NIH3T3 mammalian cells and evaluation of its 

bioluminescence activities. Luminescence, 29, 13-19. 

Thoreau, H. D. (1854). Walden. New York: Spark Publications. 

 

 

 

 



 58 

Wada, M., Kamiya, A., Uchiyama, N., Yoshizawa, S., Kita-Tsukamoto, K., Ikejima, K., 

…  Kogure, K. (2006). LuxA gene of light organ symbionts of the bioluminescent 

fish Acropoma japonicum (Acropomatidae) and Siphamia versicolor (Apogonidae) 

forms a lineage closely related to that of Photobacterium leiognathi ssp. 

mandapamensis. Microbiol Lett, 260, 186-192. 

Wassersug, R. J., & Johnson, R. K. (1976). A remarkable pyloric caecum in the 

evermannellin genus Coccorella with notes on gut structure and function in 

alepisauroid fishes (Pisces, Myctophiformes). J Zool London, 179, 273–289. 

Weiland-Bräuer, N., Pinnow, N., & Schmitz, R.A. (2014). Novel reporter for 

identification of interference with AHL and autoinducer-2 quorum sensing. Appl 

Environ Microbiol 2014 Dec 19. pii: AEM.03290-14. [Epub ahead of print]. 

Young, E. Y., & Roper, C. F. E. (1977). Intensity of bioluminescence during 

countershading in living midwater animals. Fishery Bull 75, 239–252. 

Zwickl, D. J. (2006). Genetic algorithm approaches for the phylogenetic analysis of large 

biological sequence datasets under the maximum likelihood criterion. Unpublished 

Ph.D. Thesis, University of Texas, Austin. 


	Bioluminescent Fish, Bacteria, and Experiential Learning
	Recommended Citation

	Microsoft Word - 4_18_16_For_Print.docx

