
Regis University
ePublications at Regis University

All Regis University Theses

Spring 2015

Man Versus Machine: Can Computers Crack
Cryptography?
Brandon Ward
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

This Thesis - Open Access is brought to you for free and open access by ePublications at Regis University. It has been accepted for inclusion in All Regis
University Theses by an authorized administrator of ePublications at Regis University. For more information, please contact epublications@regis.edu.

Recommended Citation
Ward, Brandon, "Man Versus Machine: Can Computers Crack Cryptography?" (2015). All Regis University Theses. 656.
https://epublications.regis.edu/theses/656

https://epublications.regis.edu?utm_source=epublications.regis.edu%2Ftheses%2F656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/656?utm_source=epublications.regis.edu%2Ftheses%2F656&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
Regis College

Honors Theses

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

Name: Brandon Ward Major: Computer Science & Mathematics

MAN VERSUS MACHINE: CAN COMPUTERS CRACK CRYPTOGRAPHY

Advisor's Name: Dr. James Seibert
--~~~~~~~----------------

Reader's Name: Dr. Dennis Steele
--~~~==~==~----------------

After statting the project with the hopes of developing a program able to crack

substitution ciphers via artificial life concepts, some deeper questions were arrived at. What is

the line between the man and the machine? Can computers ever be capable of sentient thought?

What does it mean for us as a species as we continually develop better ways to compute hard

problems fast? Ultimately, I may not have the answer to these problems, but science might. I

have to conclude that for now cryptography is safe, but will it always be safe? With the advent

of the quantum computing era just over the horizon, the definition of a smart and intelligent

computer is about to change drastically, and achievements in computing such as Deep Blue are

going to become more commonplace than ever.

MAN VERSUS MACHINE: CAN COMPUTERS CRACK CRYPTOGRAPHY?

A thesis submitted to

Regis College

The Honors Program

in partial fulfillment of the requirements

for Graduation with Honors

by

Brandon Ward

May 2015

Thesis Advisor

Thesis Reader

Director, University Honors Program

Thesis written by

Brandon Ward

Accepted by

ii

TABLE OF CONTENTS

PREFACE and ACKNOWLEDGMENTS………………………………………………………………………………iii

I. INTRODUCING PROBLEMS OF OLD WITH THEORIES OF NEW……………………………………1

II. CLASSICAL CRYPTOGRAPHY AND NEW-AGE COMPUTING…………………………………………8

III. A TRADITIONAL GENETIC ALGORITHM……………………………………………………………………17

IV. BALANCING THEORITICAL COMPLEXITY AND COMPUTATIONAL SIMPLICITY………….20

V. MAN VERSUS MACHINE: THE LINE IN THE SAND?..25

BIBILIOGRAPHY……….31

APPENDICES:

A. SOUCRE CODE FROM FIRST GENETIC ALGORITHM………………………………………33

B. SOURCE CODE FROM SECOND GENETIC ALGORITHM………………………………….43

iii

PREFACE and ACKNOWLEDGMENTS

Preface. This thesis is the culmination of my studies for undergraduate degrees in

mathematics and computer science, and ultimately expresses the desire I have to use

both mathematics and computer science to theorize solutions to difficult problems. I

ultimately hope to portray the ever-evolving aspects of these fields, and show how using

them in unison can lead to amazing discoveries.

Acknowledgments. Many people helped and provided encouragement during the

writing of this thesis. My special thanks goes out to Dr. James Seibert – My advisor, he

always pushed me to go for more, to ask deeper questions, and to offer the best

explanations I could; Dr. Dennis Steele – My reader with incredible enthusiasm for the

expanding capabilities of computer science. He sparked me to push what I knew about

artificial life and apply what I learned in an area that interested me; Dr. Tom Howe & Dr.

Tom Bowie – As directors of the Honors program in my time there, they taught me what

it meant to be a lover of learning, and ultimately how to live in such a way that reflects

my love of learning. A special thanks to these professors as well as every other figure I

have had the pleasure of learning from during my time here at Regis. They have left

their marks on me that I hope to keep with me in my upcoming journeys, and wherever

life takes me.

1

INTRODUCING PROBLEMS OF OLD WITH THEORIES OF NEW

 Two courses during my time at Regis contributed to the spark for this thesis.

When I was a sophomore, I took Cryptography, which was all about the math behind

cryptosystems. It covered how to create them, analyze them, and most interesting of

all, how to break them (simple systems at least). The second course was Artificial Life,

which is all about using known patterns of life and stripping them down to their

mechanics and then using those mechanics to solve meaningful problems. The class also

attempted to discover how to make a computer find results to problems that are

seemingly intuitive for humans, yet extremely difficult for computers. My background

as a mathematics and computer science double major suited itself for attempting to

merge the two courses. Why not try to encode the theories of artificial life to make a

machine solve a cryptosystem of old?

 Why artificial life? Artificial life has become a large aspect of computer science,

and it has the ability to solve otherwise incalculable problems by imitating some aspect

of life. These problems are incalculable because there is no easily computable solution

to them, and artificial life allows for a calculable estimation of the solution. The area of

artificial life that I am interested in is the genetic algorithm. This is the idea that a

computer could ‘learn’ a better estimation based on analyzing ‘populations’ of data,

based on genes and the data’s ability to thrive under our defined system of ‘living well’.

It is a new twist on the classic definition of ‘survival of the fittest’. Just as evolution has

2

produced ‘better’ species through the years, by replicating genetics in a mathematical

way I hope to create an estimation of the solution that hones into the actual truth.

 What does the age of ‘smart’ computers mean for cryptography? Cryptography

must continue to evolve, grow, and change. Tracing the history of Cryptography will

give insight to where it is going, and the most insight will be given by the most recent

developments, since the speed at which Cryptography is developing has greatly

increased in the past 50 years. Are our secrets safe? Can our means of protecting our

secrets continue to outpace our means of extracting other’s secrets? There are

indicators out there, and I hope to analyze and explain them in order to also explore the

future of cryptography.

 Lastly, I hope to cover why we care. Computers continually get faster and faster,

so what makes our current cryptosystems safe? Our entire culture of digital secrecy

relies on the survival and also enhancement of cryptography, and hopefully the

mathematicians and computer scientists out there have the answer to keep our digital

secrets safe for centuries.

 For the purposes of this thesis, some background terminology is necessary.

From the cryptography side of things, the plaintext is the original message we are trying

to send. When the message is encrypted to be sent, it is called a ciphertext. Encrypting

and decrypting are done with a key. Generally, in cryptography, it is assumed the third

party who wants to steal the message knows everything about the encrypted message

except the key. That is, they know the method used to encrypt it, and they have free

3

access to the ciphertext, yet the goal of cryptography is that without the key, the

ciphertext is useless to the thief. There are four types of crypto attacks: Ciphertext

only, where the third party only has a copy of the ciphertext, this is the most common

attack, and can take many forms. The most common is the brute force attack, which

essentially means try every possibility until something works; Known plaintext, where

the third party again has the ciphertext, but they also gain access to the corresponding

decrypted plaintext, allowing them to deduce the keys of encryption, further allowing

them to crack future messages with the same key; Chosen plaintext, where the third

party gains access to the encryption machine, and is able to encrypt several strings for

themselves in order to deduce the key; lastly, Chosen ciphertext, where the third party

gains access to the decryption machine, and is able to decrypt several strings for

themselves in order to deduce the key(Trappe & Washington, 2-4). For this thesis, I will

largely focus on ciphertext only, since this is the most common type of attack, and the

main type of attack modern cryptography is geared towards preventing.

 When it comes to artificial life, this falls into a category of Evolutionary

Computation. Evolutionary Computation is the idea that a “system was to evolve a

population of candidate solutions to a given problem, using operators inspired by

natural genetic variation and natural selection” (Mitchell ,2). What this means for the

genetic algorithm is that our population is the set of all possible solutions to the

ciphertext. The gene is pure data, and in this case, the gene is a one to one mapping of

the alphabet that will allow for the reversal of a substitution cipher. Just as in nature,

4

the concepts of Darwinism are prevalent, meaning survival of the fittest; the genetic

algorithm needs to replicate this by allowing the strongest members to survive. When

the ‘creatures’ we are studying are pure data though, what defines them as strong? The

gene that decrypts the ciphertext to the most understandable message then should be

considered the strongest. Its genetic content will be used as a parent for the next child,

and the goal is to create better and better decryptions until we are left with a plain

English decryption. Some important terms to remember are: genes are the basic unit

within the genetic algorithm, and the unit upon which we operate, evaluate, and use;

fitness is the defined measure of how ‘healthy’ a given gene is, meaning how closely it

comes to being the solution; fitness function is the formula that computes fitness using

the data provided by the gene in order to create the meaningful measure of success per

gene (Goldberg, 60-2). The crux of a genetic algorithm is the fitness function. The more

complex the problem, the more important a well-crafted fitness function becomes. The

fitness function is the measurement of success, and without a strong fitness function

the chances of inconclusive results is higher.

To take a simple example, say we are trying to solve the largest value of x2 for

binary strings 5 digits long. Since we are trying to solve x2, a logical choice for a fitness

function is 𝑓(𝑥) = 𝑥2, where in 5 digit binary strings 𝑥2 = (𝑥4 ∗ 24 + 𝑥3 ∗ 23 +

𝑥2 ∗ 22 + 𝑥1 ∗ 21 + 𝑥0 ∗ 20)2 and 𝑥𝑖 = 0|1. We know that the highest value will be

11111; the trick is making the computer realize that too. The specific version of genetic

algorithms that I thought best for my problem is the hill climbing algorithm. For

5

illustration on how this works on this particular problem, we will start with the gene as a

random binary string, say 00100. To find the next best solution to our problem, we

randomly change 1 bit of our gene, and test if it is better. If the 𝑥2 position is randomly

changed, our gene would be 00000 which has a fitness of 0 as opposed to 00100 which

has a fitness of 16. The new gene is lower, so we ignore it, and try again. This time, if

we change the 𝑥4bit, the result would be 10100 which has a fitness of 400. This is

better, and so it becomes the new gene and the process repeats. Eventually, the

genetic algorithm will produce the ‘victor’ with the gene pattern of 11111 with a fitness

of 961, the highest possible value of 𝑓(𝑥) = 𝑥2 for 5 digit binary strings. Using this

formula, I want to modify it to crack an encoded message without knowing anything

about the plaintext or original message.

 Beyond just the mathematics of this problem, in order to obtain any form of

results, any fitness function I use needs to be based in language. It needs to capture key

information about the problem I am trying to solve. How can I turn a garbled scramble

of letters back into that highly classified plain-text message with unknown secrets? The

heart of the problem is not new. Essentially, we need to teach the computer how to

learn. By giving it a string of letters that mean nothing to it, and trying to extract a

meaningful language, it feels like the computer needs to be alive. The computer will

learn what combination of letters makes sense, and what combinations leave the letters

just as un-decipherable as before. Is this not the same thing our bodies do while we live

our day to day lives? We decrypt our surroundings, and in our minds we piece them

6

together in the way that makes the most sense based on past experiences, current

surroundings, and our interpretation of the situation. We are constantly learning, which

is what a genetic algorithm hopes to replicate.

 When does using a genetic algorithm to solve problems make sense? There are

several conditions that experts have agreed are important to satisfy before proceeding.

“Many researchers share the intuitions that if the space to be searched is large, is

known not to be perfectly smooth and unimodal, or is not well understood, or if the

fitness function is noisy, and if the task does not require a global optimum to be

found” (Mitchell, 155-6).

The search space of a substitution cipher is 26! (26 factorial), which is incredibly large;

slight changes in the alphabetical mapping will provide greatly varying fitness values,

which will ensure that the fitness graph is not smooth, not unimodal for optimal fitness;

lastly, even though the global optimum could be the true decryption, this is not

guaranteed, so relying on the randomness of the genetic algorithm will allow us to

remain open to all the ‘healthy’ solutions and will hopefully find the decryption.

 Essentially, the point where this genetic algorithm meets the substitution cipher

is the starting point of a smart brute-force attack on this cryptosystem. The genetic

algorithm will start by allowing all possible solutions, and then through the fitness

functions, will rapidly rule out weaker, clearly incorrect, solutions. The genetic

algorithm will build an understanding of the ciphertext in order to construct the most

logical plaintext.

7

 I want to apply my knowledge and programming skills to build a mobile

application on top of the Android framework. This app will apply various aspects of

cryptology, coding theory, and artificial life. I will design the application to use a genetic

algorithm to attempt to break a simple substitution cipher. In the end, even though I

may or may not have a working substitution cipher decoding app, I hope to learn a little

more about why such a problem is so complex and difficult, and what it means about

the relationships between humans and computers.

8

CLASSICAL CRYPTOGRAPHY AND NEW-AGE COMPUTING

 Cryptography has had many different applications throughout history. It started

out as encoded hand-written messages passed between friends and colleagues,

including the ancient Roman legions, but in today’s age, it has evolved to the cutting

edge of digital privacy. Every secret stored on a computer, is protected by some means

of cryptography. The standard parties when discussing cryptography are the two parties

trying to communicate, Alice and Bob, along with the third party trying to intercept the

message, Eve. Throughout the years, the problem has remained the same, that is, Alice

needs to get a message to Bob, and for simplicity’s sake we will say they do not want

Eve to be able to read the message. The way this is achieved is by Alice encrypting the

message, sending the encryption over open communication channels, then when Bob

receives this, he decrypts it and is able to understand Alice’s intents. Eve is also able to

get ahold of the encryption, but the theory is that she does not have the key, and

therefore cannot read the message.

 The problem has evolved because this figurative ‘Eve’ has continually grown

smarter. Modern day mathematics and computing power, have made the

cryptosystems of the ancients mere child’s play. The ‘secureness’ of modern

cryptography relies on the fact that a computer could not ‘brute force’, or try every

possible combination, in order to crack a secret message within any ‘reasonable’

amount of time. Therefore, as computers get faster and we develop better algorithms,

9

we must also increase the complexity of our cryptosystems to outpace our own

technological advances.

Cryptography is not a new science, even though the invention of computers has

caused this field to explode. Some of the first true applications of Cryptography go all

the way back to the Romans. Specifically, the cryptosystem to make a note of is the

Caesar Cipher. It was a simple shift cipher, that can be classified as a substitution

cipher, and it was as simple as shifting the alphabet by a certain number, wrapping back

to the beginning if the end is reached (Trappe & Washington, 12 – 13). If the algorithm

was to shift by 3 places, an ‘a’ became a ‘d’, a ‘y’ became a ‘b’, a ‘z’ became a ‘c’ and so

on (Trappe & Washington, 13). Obviously, with today’s modern knowledge and

computing power, this is a very trivial substitution cipher, but it is still a formal birth of

cryptography.

 Because this cryptosystem is, compared to modern cryptosystems, trivial, it is

feasible to hope to develop a brute force attack for it. As will be explained, with modern

cryptography a brute force attack could take centuries to produce an answer. The best

examples of modern cryptography come in the form of RSA and AES cryptography.

These two cryptosystems serve to illustrate the two main applications for cryptography,

public key cryptography (RSA) and symmetric key cryptography (AES). Together they

paint a complete cryptographic system, because the standard practice is to use public

key cryptography to securely transmit small amounts of data, such as a symmetric key,

and for symmetric key cryptography to do the heavy lifting for secure communication

10

with large amounts of data (Trappe & Washington, 4-6). What makes these

cryptosystems so secure, and also infeasible to attempt a brute force attack upon will

briefly be explained before proceeding.

 RSA is a public key cryptosystem. What this means is that there is a public

encryption key that everyone is given access to, but only the receiver of the messages

has the decryption key (Trappe & Washington, 164). A key-space is assigned to RSA of

some very large number 𝑛, with 𝑛 = 𝑝 ∗ 𝑞 where 𝑝 and 𝑞 are both very large primes.

The concept of RSA is that messages are encrypted with an encryption exponent, 𝑒,

which is made in such a way that the greatest common divisor of this encryption

exponent and (𝑝 − 1)(𝑞 − 1) is 1 i.e. gcd(𝑒, (𝑝 − 1)(𝑞 − 1)) = 1(Trappe &

Washington, 165). Even though someone looking to break this cryptosystem will know

the public key, which is the encryption exponent e, and that it must be related to p and

q in the above mentioned way, this is a frightfully challenging problem to solve, because

factoring two very large prime numbers is an enormous computational undertaking. It

is such an expensive computation that if the primes are large enough, this cryptosystem

could easily take many millennia to crack.

The only issue with RSA is that when the message is converted to a number,

𝑚 < 𝑛 must be true since this entire computation is being reduced 𝑚𝑜𝑑(𝑛). And if

𝑚 > 𝑛, then the message must be broken down into smaller blocks until the first

condition is satisfied. And it is because of reasons such as this that public key

cryptography is primarily reserved for exchanging both extremely short messages, such

11

as a username and password, or a private key for symmetric key cryptography for larger

messages.

 AES, or Advanced Encryption Standard, is a symmetric key cryptosystem. A

symmetric key cryptosystem is one where both the encryption and decryption keys are

known by both parties, or at the very least the encryption key is shared between parties

and the decryption key can be easily computed from the encryption key (Trappe &

Washington, 4). The algorithm is comprised of four basic steps that are repeated

anywhere from 10 to 14 times in any one encryption (Trappe & Washington, 152). By

taking the message in its binary form, it is easy to arbitrarily break up the message into

8-bit or 1 byte segments. To begin the encryption, the message is put into 4 by 4

matrices, 1 byte at a time. Each of the four steps is specifically catered to enhance the

encryption by specifically making various aspects of decrypting it more difficult without

the key. The first step is the byte-sub transformation, and via a built in random 16 by 16

matrix called the S-box, each byte of the message is directly substituted with another

byte using the built in lookup table. This step is non-linear, making linear cryptanalysis

attacks less successful (Trappe & Washington, 152-55). The next step is the shift-row

transformation, where the rows of the matrix are shifted cyclically to the left, by offsets

equal to the row number minus one. The next step is the mix-column transformation,

which is achieved by multiplying the current 4 by 4 matrix by a built in matrix. Both the

shift-row and mix-column transformations serve to diffuse the bits of the encryption

over the repeated rounds (Trappe & Washington, 152-56). The final step is the add-

12

round-key step, where the round key is exclusively ‘or’-ed with the matrix of bytes and

each round key is derived from the original key(Trappe & Washington, 152-57). By

doing this, AES effectively encrypts the message with as many keys as there are rounds,

in addition to the added steps that make the encryption non-linear and diffused to make

patterns more difficult to recognize in any given encryption.

AES is built for large amounts of data to be transmitted quickly, which is why it is

not very computationally difficult, and in fact, all of the operations are computationally

inexpensive assuming that the original encryption key is known. This is because all four

operations used to encrypt the message have simple mathematical inverses. Each

round key, by the properties of the exclusive or logic, is its own inverse, so by exclusively

‘or’-ing the matrix with the round key returns the starting point for that operation. The

mix-column can be undone because the original built in matrix is invertible, so

multiplying by the inverse reverses that step with ease. To undo the shift-row

encryption, just shift to the right by the same offsets used in the encryption. Lastly, to

undo the byte-sub, there is an inverse-byte-sub lookup table that will return the original

matrix and thus the message, after we have done this the same number of times as the

encryption (Trappe & Washington, 158). The reason such a computationally easy

cryptosystem can still be used as a secure cryptosystem is because at a minimum the

data is being taken in 128 bit chunks, which means it is encrypting several letters at a

time. Furthermore, the encryption key is being applied multiple times in order to make

sure there are no patterns in the final encryption.

13

 The fact that RSA depends on a very hard mathematical computation, the

factoring of 2 large primes, and AES having an enormous key-space void of patterns are

the kinds of theories currently keeps our modern cryptosystems safe from attacks.

However, now that there is an understanding of the basis of Cryptography, it is

important to point out the advancements happening in the field that could potentially

render modern cryptography obsolete. Today’s computing power is growing at an ever

increasing rate, which continues to improve brute force attacks against some of our

current cryptographic standards. That being said, the current cryptosystems are still

very secure against all current computation methods because increasing the key size

effectively increases the amount of possible keys, and thus adds more necessary

computation. Increasing the key size by one number consequently increases the

number of possible keys by factors of 10. Even with this method available to us, it is still

possible that RSA and AES will be obsolete in the future when several hard problems

pertaining to computation ability are solved.

One of the methods of computation that could threaten current cryptosystems is

quantum computing. Quantum computing is a particularly exciting prospect for modern

computing. To describe a quantum computing system, we need to look at the current

notion of parallelism in classical computing systems.

“Classically, the time it takes to do certain computations can be decreased by

using parallel processors. To achieve an exponential decrease in time requires

an exponential increase in the number of processors, and hence an exponential

14

increase in the amount of physical space needed. However, in quantum systems

the amount of parallelism increases exponentially with the size of the system.

Thus an exponential increase in parallelism requires only a linear increase in the

amount of physical space needed. This effect is called quantum parallelism”

(Rieffel & Polak, 301).

This parallelism would spell the doom of just about every single modern cryptosystem.

Parallelism to this extent means that the computer could try every single combination of

keys all at once so to brute force a cryptosystem such as RSA, it would only take as long

as trying one combination.

 While it might sound like Quantum Computing is this great computational

notion, it is not without its problems. In fact, the whole challenge of Quantum

Computing is quite a large one. “While a quantum system can perform massive parallel

computation, access to the results is restricted. Accessing the results is equivalent to

making a measurement, which disturbs the quantum state” (Rieffel & Polak, 301). So

basically, reading the results also causes the results to be destroyed. But there is

another catch that still needs to be solved. When reading the data from the quantum

state, “we can only read the result of one parallel thread, and because measurement is

probabilistic, we cannot even choose which one we get” (Rieffel & Polak, 301). It is safe

to say that, even though the notion of Quantum Computing is an altogether powerful

and terrifying thought to cryptography, it is still a few hard problems away from existing.

15

However, if a Quantum Computing device is successfully built, this will also bring

about the new era of cryptography. Many of the old standards will be rendered

obsolete, and the focus will have to shift towards a handful of cryptosystems that are

still secure to such a powerful computing device. The most obvious system is Quantum

Cryptography. The basis of Quantum Cryptography is using photons to send keys. The

reason Quantum Cryptography is secure, is because “if someone tries to spy on the

process and intercept the photons en route, [we] will notice too many discrepancies and

conclude the line of communication is insecure”(Mone, 13). These photons are used to

transmit keys, and not messages, however, the aspect that makes this so secure is that if

someone begins to intercept the key, they start changing it as they read it. Quantum

Cryptography is such that no one except the intended party can read the transmitted

photons, otherwise the intended party is almost instantly aware that someone is trying

to crack their cryptosystem. If all else were to fail, Quantum Cryptography would still

provide a means of secure communications if all other systems were insecure.

Yet, this is not the case, as there are other cryptosystems that could withstand

an attack by a quantum computer. One such system is the Lattice-Based Cryptosystem.

Lattice Cryptography is based off the concept that it is very difficult to solve the shortest

vector problem on very large lattices. A lattice is a set of linearly independent vectors

that are used to compute a linear transformation (Buchmann, 108). The reason this

system is so effective, is because it has traits similar to afore mentioned systems. It is

efficient to compute the original transformation, which in this scenario, is our

16

encryption machine. However, it is extremely difficult to decrypt without knowing the

key used for the decryption machine. The reason for this is that it is based on the SVP

problem, or shortest vector problem which tackles finding the basis of the vector used

for the transformation, knowing that any given lattice has infinitely many possible bases

(Buchmann, 108-9),(Trappe & Washington, 376-7). The reason this appears to be such a

promising successor and natural progression of public key cryptography is due to the

“conjectured intractability of lattice problems, like approximating the shortest lattice

vector (SVP), even in the quantum-era; additionally, because of their computational

efficiency, lattice-based signature schemes seem to be one of the most promising

replacements for current constructions” (Buchmann, 105). Ultimately, even the best

algorithms designed to crack this encryption system can only produce approximations of

the decryption machine, and so even though a quantum computer could surely produce

approximation after approximation rapidly, they would be of little use. As I have been

working on my own program designed to crack substitution ciphers, I have discovered

first hand that an approximate solution will still most likely leave you with complete

gibberish. If there is no algorithm that provides an absolute solution, then it is

irrelevant as to how fast you are able to produce solutions. This is why lattice based

crypto can survive the quantum computing era, whenever that day arrives.

17

A TRADITIONAL GENETIC ALGORITHM

 I have chosen to attack a substitution cipher because it has properties that are

suited to a genetic algorithm. The first is that substitution ciphers are one to one,

meaning one letter is ‘substituted’ for another, and there are no overlaps. Modern

cryptosystems rely on block ciphering, meaning they operate on groups of letters at

once, so any letter will not have a consistent representation as another letter.

Substitution ciphers have many known ‘smart’ attacks that I am able to use as well, and

the knowledge of frequency analysis, which is classified as a ‘smart’ attack on a

substitution cipher, has helped me create the fitness function I will need for the genetic

algorithm.

 The task of breaking a substitution cipher with a genetic algorithm is an

extremely complex dilemma, and the first way of approaching it did not work. Initially, I

wanted to build a solution that was completely based on the theories of genetic

algorithms, where randomness, and true randomness at that, should produce the best

possible answer with the correct fitness function. Both fortunately for those who use

applied cryptography and unfortunately for me, cryptography is built to have “maximal

security against passive attacks” (Damgard, 445). What this means precisely is that

using a true random algorithm, even while directing that randomness, the chances of

decrypting the encryption are extremely slim.

18

 In fact, I was experiencing this exact issue. I had created a genetic algorithm that

could successfully operate on encrypted strings, however, the results of ‘decryption’

were just as encrypted as the original message. My initial method of approach was to

create a gene of 2-letter ‘swaps’. What my gene looked like was something like this:

…(a,b),(c,d),(e,f)…, and it functioned by reading the gene from left to right, initially

interchanging a’s with b’s, then c’s with d’s, and finally e’s with f’s. It would do this for

each cycle within the gene. The letters in the cycles were completely random, so in

theory, the gene could have contained …(a,f)…(f,a)..., which means that it would first

switch the a’s to f’s, then back to a’s. I also did not set the length of the gene to

anything specific, and I arbitrarily chose a gene of 50 cycles. I did this to ensure that

hopefully I was including all the letters of the alphabet in my decryption, because I was

not guaranteeing that each letter would even be represented.

 I had built my fitness function in such a way that it would count the occurrences

of letters in the decryption, and then compare that to the actual frequency counts for

English letters. By doing this, I had hoped that the letters would fall into their respective

frequency counts, and that I would be left with a correct decryption. This is another

area in which the randomness hurt me instead of helped me. The way the gene mating

process worked was to take two genes at random and splice them at a random length.

So, if I were going to mate the gene (a,b),(c,d),(e,f),(g,h) with the gene

(j,k),(l,m),(n,o),(p,q) at position 2, the resulting genes would be(a,b),(c,d),(n,o),(p,q) and

(j,k),(l,m),(e,f),(g,h), effectively giving me two brand new combinations to try. The

19

theory behind this is similar to Darwinism, in that mating the healthy genes together is

going to create an even healthier child, yet ‘healthy’ in this population seemed to be

unobtainable. Sometimes, when the healthiest genes were ‘mated’, the slightest

change in the gene could take a gene from an 80% match back down to a 40% match,

and thus I was no better off than how I had started. Essentially, I was flipping a coin

with 403,291,461,126,605,635,584,000,000 (26 factorial) sides, and hoping to call it

correctly. It is easy to see why this is a largely futile approach. As a result, I decided to

completely re-work the problem.

 Even though ultimately this solution did not work out, I learned quite a bit from

this initial attempt. Firstly, I learned that a pure genetic algorithm, in all of its random

glory, is not quite suited to find a single solution that is deemed the correct one.

Secondly I learned that it is still possible, even though difficult, to teach the computer to

recognize patterns and attribute them to specific English patterns. The largest downfall

of this attempt is that the fitness function did not encompass enough data to paint an

entire picture. With this fitness function only relying on the frequiences of individual

letters, and a handful of the most common digraphs and trigraphs (2 and 3 letter

patterns) in the English language, I could not hope to find any sense of communication

in my garbled decryptions. I returned to the drawing board, and decided it was time to

scale up the search.

20

BALANCING THEORITCAL COMPLEXITY AND COMPUTATIONAL SIMPLICITY

 Coming to this decision meant I needed a fresh start, and so to make a complete

fresh start, I abandoned a computer application entirely, and decided to rebuild this

program as an Android app. Deciding to move to a mobile platform meant several other

things about how I approached the problem needed to change. I needed to reduce the

randomness, and therefore reduce the amount of computation, which is important to

be aware of when moving into mobile development. The highest quality mobile device

will only have 3GB of memory, whereas you’d be hard pressed to find a computer with

less than 8GB of memory. Memory equals computing power, and so a streamlined

algorithm is necessary if this program is to run on a smartphone.

 As a result of this, the biggest change I made is the structure of the gene.

Instead of having an unspecified length with unrestricted cycles, I have a gene that

contains 26 cycles, in the form (a, _), (b,_) (c,_)… where the first part of the cycle will

contain each letter of the alphabet only once. To ensure that algorithm is working with

the whole alphabet, the blanks will be filled with another set of the alphabet, in any

order. By definition, the fact that it is a set of the alphabet means that each letter only

occurs once. Doing this means that each letter occurs once at the start of a cycle, and

once at the end of a cycle.

 I adapted a fitness function from python code that James Lyons had written to

crack simple substitution ciphers to Java, which was necessary since Android

21

applications are all Java based, and that was not without its fair share of changes. For

starters, Java simply could not handle the magnitude of the numbers inherently, so I had

to make some modifications to scale it down and prevent overflow errors within the

computation. I also gathered a text file with every possible quadragram from James

Lyons, however, I had to cut that down too since the size of the file was simply too large

to be included in an Android application. To combat this, I simply cut out quadragrams

with extremely low frequencies and told the computer to assume a frequency of 1 if the

quadragram was not found. In hindsight, Android may have been a poor choice to

attempt this with simply due to memory and processing power constraints, yet none-

the-less I carried forward because there are still things to be learned from a failing

attempt.

The premise of this new genetic algorithm is that of a hill climbing algorithm.

This means that I am not trying to swallow the entire pie all at once. Instead, I am

looking for one tiny change that even slightly improves the result, from which it

continues to climb. The calculation of the fitness has also changed. I am now using a

text file that contains every single quadragram in the English language, along with an

associated relative frequency of that quadragram. The actual fitness of a particular

decryption is: 𝐹(𝑥) = ∑ 𝐿𝑜𝑔10(
𝑄𝑖

𝑄̅
)

𝑛

𝑖=0
. The fitness is the sum of the logarithm of the

frequency divided by the average of all the frequencies. The purpose of this fitness

function is to allow quadragrams such as ‘tion’ with a frequency score in the hundreds

22

of thousands to be strongly weighted over quadragrams like ‘axcq’, which only has a

frequency score of 1. In fact, if a decryption was filled with many quadragrams with low

relative frequency scores,
𝑄𝑖

𝑄̅
 will be less than 1, and the logarithm of anything less than

1 is negative, so bad quadragrams will detract from the fitness score instead of boosting

them up, which is exactly what is necessary.

 The algorithm that is described above should work; however, I never achieved

any meaningful results with it on the Android platform. The entire premise of it is to

feed the computer enough information about the English language along with a formula

to judge the information it receives so that it can guess how to turn a given string of

encoded letters back into plain English. As far as complexity goes, when I passed in an

encrypted string of over 200 characters, the resulting decryption took over 10 minutes

to process. The biggest reason that it took so long was because I was running it on an

Android smartphone, with limited memory, which meant limited processing power.

Every few seconds, the log of information notifying me on the status of my app would

note that it was freeing up memory, along with how long the process took. Over 25% of

the app’s runtime was dedicated to keeping enough memory freed to even run. It is

quite possible that a desktop app would perform much better, since computers easily

have four times the amount of resources a smartphone has, or it is also possible that a

computer also would have returned gibberish over and over. But, I am not taking this as

a failure. In the many hours spent trying to fit the pieces of the algorithm together, I

continually found myself asking ‘But how will the computer know?!’ as I would work out

23

what I was trying to do in plain English, but of course, plain English means nothing to a

computer.

 While running tests on the application, the ultimate realization that I needed

more computing power to truly test this application led to a proof of concept desktop

application to test the validity of the algorithm. I stripped the heart of the computation

out of the Android application and reduced it to the only necessary process. From

there, I indefinitely iterated through the algorithm on one encryption continually

comparing it to the known decryption in order to verify any progress as it happened.

After several hours of searching for potential decryptions, I was able to get results. It

was rather interesting to see that the decryption would fluctuate. Sometimes, the

decryption would match the ‘m’, ‘e’, and ‘a’ correctly, while other times it would match

the ‘t’, ‘h’, and ‘e’. This is somewhat to be expected, because just like with the first

attempt, and slight changes in the key can greatly affect the results. At the same time, it

continually was able to match subsets of the most common English languages, even

though the first attempt never achieved any consistency on this scale. All in all, this was

a mini success! The fact that I was able to teach the computer how to pick out popular

letters in the English language using complete randomness is astounding. Suddenly, the

size of my quarter from the first example has shrunk.

 While I am not completely satisfied with my solution, I did still produce results.

The main reason that the proof of concept was able to achieve this measure of success

is because it has more computing power, and more time than an Android app is

24

allowed. When working with a mobile phone, if something does not happen near

instantaneously the user almost immediately becomes bored. To make matters worse,

the runtime environment of Android will try to stop the app from running if any

calculation takes more than a few seconds, deeming the app as unresponsive.

Therefore, returning to the desktop seemed like the correct move because I had more

computational power, and I could leave the algorithm searching for a solution over night

without any system process trying to halt the search.

25

MAN VERSUS MACHINE: THE LINE IN THE SAND?

 I set out on a mission to solve substitution ciphers with my phone, but what I

discovered instead was something completely different. I have no absolute solution to

substitution ciphers to show other than what I can guess at while looking at a

substitution cipher in the newspaper. But that in itself is an important realization.

When I see ‘QSTHWLQSVV’ with the clue ‘bouncy and orange’ in the newspaper, my

logical guess for the word is ‘BASKETBALL’, but that is not guessed from the jumble of

letters alone, that is guessed from the clue, and then when I match the letters of

basketball to the letters of the cipher, I can be sure that my guess is sound and

therefore correct because the letters match up. The computer does not have this

luxury. A computer only knows what is ‘bouncy and orange’ if we explicitly tell it so, so

if a computer was fed the same cipher string, the only thing is has to go off of is the

statistics of the language itself.

 Ultimately, we as humans possess something that computers do not. We have a

self, an ‘I’, the ability to go back into our memories that are truly ours and pull thoughts

and ideas that enrich the current calculation our minds are making (Gelernter, 7). This is

the exact downfall of a computer trying to crack a substitution cipher. It has no memory

that we do not give it. It cannot evoke phrases and context unless we have explicitly

told it to use those memories in the given calculation. Human minds do not work like

that. Our minds wander on their own, and we associate every thought we have with

26

thoughts from our past. This is the key difference between intelligence and artificial

intelligence. At best, computers can only ‘fake’ at these complex human thoughts, and

to do complex calculations requires a lot of processing power, which is something that I

think my android smartphone was unable to deliver (Gelernter, 11). I had set out to

solve a substitution cipher, but instead I learned nuances to what a machine can do, and

what it cannot.

Separating it in this fashion illustrates the difference between the human mind

and the digital mind we call a computer. The computer only has the computations it has

been told to go off of, and in my particular case, I told it relative frequencies for every

quadragram as well as a formula to compute how good the English was at the end of the

decryption. The human mind is able to make connections between the clue and the

ciphered text. Even without any knowledge of cryptography or letter frequencies, we

can cut our guess down to a handful of words just by knowing ‘bouncy and orange’.

Furthermore, we have some idea of what are allowable words. Since my genetic

algorithm only knows ‘English’ in four-letter chunks and the frequencies associated with

those chunks, it is going to return things that are not words.

Returning to the initial criteria of when to use a genetic algorithm, the very last

rule specified that genetic algorithms were best suited when a ‘global optimum’ does

not need to be found. The one downfall to attempting this algorithm on a smartphone

is that the processing power hinders countermeasures to the fact that we are seeking a

global optimum, because there is but one key that will turn the cipher text back into

27

plain English. The way to counter-act this is to encase the entire body of the genetic

algorithm in an infinite while loop. Doing this would make the computer re-calculate

the key from infinitely many starting points, which would make our key end up at

infinitely many local maximums. Computationally speaking, this is an intense, time-

consuming operation which does not fit well with an Android application, where users

expect the operation to be nearly instantaneous. If the genetic algorithm were looping

indefinitely, we can assume that one of those local maximums is also the absolute

maximum which would be the key to our substitution cipher.

If I were to test this theory in full, it would depend on processing power, and to

get the answer in a meaningful amount of time would rely on parallel processing. The

same theories that I speculate will change modern cryptography would also enhance my

own solution to crack a substitution cipher with a genetic algorithm. If a quantum

computer type machine existed, then I could take any given cipher, and instantaneously

gather every local maximum that the fitness function will produce on the cipher, and

from there it would be a matter of sorting the maximums to find the absolute maximum

which should be the expected decryption.

There are still flaws with this approach though, since the fitness function relies

entirely on the encoded message to follow the statistical frequencies of the English

language, such as expecting ‘e’ to be the most common letter, ‘the’ to be the most

common trigraph, and ‘tion’ to be the most common quadragram. Since the program is

actively scoring combinations of letters, it can compensate for slight statistical deviation,

28

but if the message was all about ‘zebras’, the chances of this type of statistical attack

working are slim, since ‘z’ is not very high up in any letter frequency counts.

Overall, this is an immensely complex problem, and the ability for a computer to

solve it efficiently will come down to parallel computing, whether it is done in the

traditional and modern state, or if one day there are quantum computers capable of

perfect parallel computation. When a human looks at a substitution cipher with a clue,

many different areas of our brain come together to create the most logical answer, so in

a similar way the computer needs many processing threads to solve a hard problem fast

(Gelernter, 11). The human mind will rely on past experiences and memories of what

fits the criteria, the computer will only have its numbers. I think that finding all the local

maximums of a substitution cipher is much more computationally intensive for a

computer than it is for a human to reach into their memories for possible solutions, and

that is the beauty of the problem. Artificial life was and still is about studying natural

life patterns and finding ways to effectively implement them into a computational

machine.

The current state of cryptography is in good hands. There is some incredible

math behind it all, and I would argue that modern cryptosystems play off the notion

that there are some things that are easy for a human mind to do that are difficult for a

computer to replicate or ‘fake’. All of today’s modern cryptosystems rely on being

based off of computationally intensive problems, problems that, without some un-

invented super-computer will remain unsolved problems. Cryptography has the job of

29

protecting our secrets, digital or otherwise, and computer science has elevated

cryptography to a level that before was only dreamed of. We have come a long way

from the original Caesar cipher and slightly more complex substitution cipher. I think

that our understanding of cryptography will continue to outpace our ability to compute

solutions, simply because of that line between organic thought and machine processing.

Therefore, I think that our digital secrets, for better or for worse, are safe for centuries

to come.

The substitution cipher defeated my Android app. Yet it is simple enough to be

included in newspaper puzzles, and assigned to undergrad’s as homework (without a

genetic algorithm). Because machines grow more intelligent as computing power rises,

it is easy to see how a smartphone, even though it is powerful in its own right, is not

‘intelligent’ enough to run an attack on even simple substitution ciphers. To make

matters more complicated, modern cryptosystems are specifically designed to eliminate

the possibility of any fitness functions to rate decryptions. I struggled creating an

adequate fitness function on a system that has been around longer than the formal

science of cryptography, knowing that fitness functions exist. The issue was finding the

right combination of various theories for measuring substitution ciphers. Undergrads

use pure frequency analysis, yet the gap when moving this to the computer is that we

have the English skills to fill in the blanks when the frequency analysis fails. Computers

do not. Merging the finesse of the human brain and the raw computational power of

computers has been the issue since the inception of computers. Computers will

30

continue to gain more power, and we will continue to find better ways to mimic the

finesse that is the human mind and translate it to code. There is a line in the sand, there

have been many lines in the sand, and we continue to cross it.

31

Bibliography

Anthes, Gary. "French-Team Invents Faster Code Breaking Algorithm." Communications

of the ACM 57.1 (2014): 21-23. Print.

Buchmann, Johannes, et al. "Post-Quantum Cryptography: Lattice Signatures."

Computing 85.1/2 (2009): 105-125. Business Source Complete. Web. 16 Nov.

2014.

Damgard, Ivan. "Towards Practical Public Key Systems Secure Against Chosen Ciphertext

Attacks." Advances in Cryptology (1992): 445-55. Print.

Gelernter, David. "How hard is chess?." Time 19 May 1997: 72. Academic Search

Premier. Web. 1 Mar. 2015.

Goldberg, David E. Genetic Algorithms in Search, Optimization, and Machine Learning.

Crawfordsville: Addison Wesley Longman, 1989. Print.

Landau, Susan. "Designing Cryptography for the New Century." Communications of the

ACM 43.5 (2000): 115-120. Print.

Lyons, James. "Cryptanalysis of the Simple Substitution Cipher." Practical Graphy. 1 Jan.

2012. Web. 27 Mar. 2015.

Mitchell, Melanie. An introduction to genetic algorithms. Cambridge, Mass.: MIT Press,

1998-1996. Print.

Mone, Gregory. "Future-Proof Encryption." Communications of the ACM 56.11 (2013):

12-14. Print.

Rieffel, Eleanor, and Wolfgang Polak. "An Introduction to Quantum Computing for Non-

32

physicists." ACM Computing Surveys 32.3 (2000): 300-35. Print.

Trappe, Wade, and Lawrence C. Washington. Introduction to cryptography: with coding

theory. 2nd ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2006. Print.

Appendix A: SOURCE CODE FROM FIRST GENETIC AL-
GORITHM

This class, PopulationManager, is the main Java class responsible
for the calculation of the original genetic algorithm. The gene is
based on the original concept of letter pairs used to swap letters
within the decryption. New genes are produced by splicing two
parent genes and merging the halves from the two different genes.

import domain . ∗ ;
import java . u t i l . ∗ ;

/∗∗
∗
∗ @author BrandonWard
∗/

public class PopulationManager {

public Populat ion c a l c u l a t e (Populat ion
populat ion) {

//This i s the main method and t h i s c on t r o l s
the

// subsequent method c a l l s per c a l c u l a t i o n
populat ion = ca l cu la t eMutat i ons (

populat ion) ;
populat ion = ca l cu l a t eF i tne s sAve rage (

populat ion) ;
populat ion = ca lcu lateMat ingPoo l (

populat ion) ;
populat ion = c a l c u l a t e P a i r i n g (populat ion

) ;
populat ion = c a l c u l a t e C r o s s o v e r (

populat ion) ;
return populat ion ;

}

private Populat ion ca l cu la t eMutat i ons (
Populat ion populat ion) {

I t e r a t o r i t e r = populat ion . getGenes () .

33

i t e r a t o r () ;
Random mValue = new Random() ;
Random randomC = new Random() ;
int randomChar ;
int m;
while (i t e r . hasNext ()) {

Gene gene = (Gene) i t e r . next () ;
char [] [] g eneStr ing = gene . getGene ()

;
for (int i = 0 ; i < gene . g e t S i z e () ;

i++) {
for (int j = 0 ; j < 2 ; j++) {

m = mValue . next Int (10000) ;
i f (m == 50) {

randomChar = randomC .
next Int (26) + 97 ;

geneSt r ing [i] [j] = (char
) randomChar ;

}
}

}
}
return populat ion ;

}

private Populat ion ca l cu l a t eF i tne s sAve rage (
Populat ion populat ion) {
double f i tne s sAvg = 0 ;
double i = 0 ;
S t r ing c iphe r = populat ion . getCipherText

() ;
I t e r a t o r i t e r = populat ion . getGenes () .

i t e r a t o r () ;
while (i t e r . hasNext ()) {

Gene gene = (Gene) i t e r . next () ;
gene . se tDecrypt ion (decode (gene ,

c iphe r)) ;
double f i t n e s s =

ca l cu l a t eGeneF i tne s s (gene) ;
gene . s e t F i t n e s s (f i t n e s s) ;
f i tne s sAvg += f i t n e s s ∗ gene .

getCount () ;
i += gene . getCount () ;

34

}
f i tne s sAvg = f i tne s sAvg / i ;
populat ion . setFi tnessAvg (f i tne s sAvg) ;
return populat ion ;

}

private Populat ion ca lcu lateMat ingPoo l (
Populat ion populat ion) {

List<Gene> sortGene = new LinkedList<
Gene>() ;

sortGene = populat ion . getGenes () ;
C o l l e c t i o n s . s o r t (sortGene , new

Comparator<Gene>() {
@Override
public int compare (f ina l Gene gene1 ,

f ina l Gene gene2) {
return compareTo (gene1 .

g e t F i t n e s s () , gene2 . g e t F i t n e s s
()) ;

}

private int compareTo (double
f i t n e s s 1 , double f i t n e s s 2) {
return java . lang . Double . compare (

f i t n e s s 1 , f i t n e s s 2) ;
}

}) ;
populat ion . setGenes (sortGene) ;
L i s t<Gene> genes = new LinkedList<Gene

>() ;
I t e r a t o r <Gene> i t e r = populat ion .

getGenes () . i t e r a t o r () ;
int i = 0 ;
while (i t e r . hasNext () && i < 100) {

Gene gene = i t e r . next () ;
//System . out . p r i n t l n (gene . g e tF i t n e s s

()) ;
genes . add (gene) ;
i ++;

}
populat ion . setGenes (genes) ;
return populat ion ;

}

35

private Populat ion c a l c u l a t e P a i r i n g (
Populat ion populat ion) {

List<Gene> a l lGenes = populat ion .
getGenes () ;

L i s t<Pair ing> p a i r i n g s = new LinkedLis t
() ;

int s i z e = a l lGenes . s i z e () / 2 ;
// crea t e the pa i r i n g s o f genes
for (int i = 0 ; i < s i z e ; i++) {

Pai r ing p = new Pai r ing () ;
p . setGeneA (a l lGenes . get (i)) ;
p . setGeneB (a l lGenes . get (i + s i z e)) ;
i f (! (p . getGeneA () . equa l s (p . getGeneB

()))) {
p a i r i n g s . add (p) ;

}//end i f the pa i r i n g s do not have
i d e n t i c a l genes

}//end f o r i n t i < s i z e
populat ion . s e t P a i r i n g s (p a i r i n g s) ;
return populat ion ;

}

private Populat ion c a l c u l a t e C r o s s o v e r (
Populat ion populat ion) {

Random lValue = new Random() ;
I t e r a t o r i t e r = populat ion . g e t P a i r i n g s ()

. i t e r a t o r () ;
L i s t<Gene> genes = populat ion . getGenes ()

;
int s i z e = populat ion . getGenes () . get (0) .

g e t S i z e () ;
while (i t e r . hasNext ()) {

Pai r ing pa i r = (Pa i r ing) i t e r . next ()
;

char [] [] geneA = pa i r . getGeneA () .
getGene () ;

char [] [] geneB = pa i r . getGeneB () .
getGene () ;

int l = lValue . next Int (s i z e − 1) +
1 ;

char [] [] geneC = new char [s i z e] [2] ;
char [] [] geneD = new char [s i z e] [2] ;

36

for (int i = 0 ; i < s i z e ; i++) {
i f (i < l) {

geneC [i] = geneA [i] ;
geneD [i] = geneB [i] ;

} else {
geneC [i] = geneB [i] ;
geneD [i] = geneA [i] ;

}
}
Gene g1 = new Gene (s i z e) ;
g1 . setGene (geneC) ;
Gene g2 = new Gene (s i z e) ;
g2 . setGene (geneD) ;
i f (genes . conta in s (g1)) {

Gene thisGene = genes . get (genes .
indexOf (g1)) ;

thisGene . setCount (thisGene .
getCount () + 1) ;

} else {
g1 . setCount (l) ;
g1 . se tDecrypt ion (decode (g1 ,

populat ion . getCipherText ())) ;
g1 . s e t F i t n e s s (

ca l cu l a t eGeneF i tne s s (g1)) ;
genes . add (g1) ;

}
i f (genes . conta in s (g2)) {

Gene thisGene = genes . get (genes .
indexOf (g2)) ;

thisGene . setCount (thisGene .
getCount () + 1) ;

} else {
g2 . setCount (l) ;
g2 . se tDecrypt ion (decode (g2 ,

populat ion . getCipherText ())) ;
g2 . s e t F i t n e s s (

ca l cu l a t eGeneF i tne s s (g2)) ;
genes . add (g2) ;

}

}
List<Gene> sortGene = new LinkedList<

Gene>() ;

37

sortGene = genes ;
C o l l e c t i o n s . s o r t (sortGene , new

Comparator<Gene>() {
@Override
public int compare (f ina l Gene gene1 ,

f ina l Gene gene2) {
return (compareTo (gene2 .

g e t F i t n e s s () , gene1 . g e t F i t n e s s
())) ;

}

private int compareTo (double
f i t n e s s 1 , double f i t n e s s 2) {
return java . lang . Double . compare (

f i t n e s s 1 , f i t n e s s 2) ;
}

}) ;
populat ion . setGenes (sortGene) ;
return populat ion ;

}
private St r ing [] e n g l i s h L e t t e r s = {”a” , ”b” ,

”c” , ”d” , ”e” , ” f ” , ”g” , ”h” , ” i ” , ” j ” , ”
k” , ” l ” , ”m” , ”n” , ”o” , ”p” , ”q” , ” r ” , ” s ”
, ” t ” , ”u” , ”v” , ”w” , ”u” , ”x” , ”y” , ”z” ,
” th” , ”he” , ”an” , ” in ” , ” er ” , ”on” , ” re ” ,
”ed” , ”nd” , ”ha” , ” at ” , ”en” , ” es ” , ” o f ” ,
”nt” , ” ea” , ” t i ” , ” to ” , ” i o ” , ” l e ” , ” i s ” ,
”ou” , ” ar ” , ” as ” , ”de” , ” r t ” , ”ve” , ” the ” ,

”and” , ” tha” , ” ent ” , ” ion ” , ” t i o ” , ” f o r ” ,
”nde” , ”has” , ”nce” , ” t i s ” , ” o f t ” , ”men” ,
” ing ” , ” edt ” , ” sth ” , ” s s ” , ” ee ” , ” t t ” , ”

f f ” , ” l l ” , ”mm” , ”oo” } ;
private f ina l double [] e n g l i s h F r e q u e n c i e s =
{ . 082 , . 015 , . 028 , . 043 , . 127 , . 022 , . 020 ,

. 061 , . 070 , . 002 , . 008 , . 040 , . 024 , . 067 ,

. 075 , . 019 , . 001 , . 060 , . 063 , . 091 , . 028 ,

. 010 , . 023 , . 001 , . 020 , . 001 , /∗ end
s i n g l e l e t t e r count ∗/
6 . 5 , 6 . 2 5 , 6 , 5 . 7 5 , 5 . 5 , 5 . 2 5 , 5 , 4 . 7 5 , 4 . 5 , 4 . 2 5 , 4 , 3 . 7 5 , 3 . 5 , 3 . 2 5 , 3 , 2 . 7 5 , 2 . 5 , 2 . 2 5 , 2 , 1 . 7 5 , 1 . 5 , 1 . 2 5 , 1 , . 7 5 , . 5 , . 2 5 ,
/∗ end digraph l e t t e r count ∗/

8 , 7 . 5 , 7 , 6 . 5 , 6 , 5 . 5 , 5 , 4 . 5 , 4 , 3 . 5 , 3 , 2 . 5 , 2 , 1 . 5 , 1 , . 5 ,
/∗ end t r i g r a ph l e t t e r count ∗/

38

2 . 3 3 , 2 , 1 . 6 6 , 1 . 3 3 , 1 , . 6 6 , . 3 3 /∗ end doub le
l e t t e r count ”∗/ } ;

private double [] tempFreq = new double [
e n g l i s h L e t t e r s . l ength] ;

public St r ing decode (Gene gene , S t r ing
c iphe r) {
char [] c ipherChars = c iphe r . toCharArray

() ;
char [] [] geneCycle = gene . getGene () ;
for (int i = gene . g e t S i z e () − 1 ; i >= 0 ;

i−−) {
for (int k = 0 ; k < c ipherChars .

l ength ; k++) {
i f (c ipherChars [k] == geneCycle [

i] [0]) {
c ipherChars [k] = geneCycle [i

] [1] ;
} else i f (c ipherChars [k] ==

geneCycle [i] [1]) {
c ipherChars [k] = geneCycle [i

] [0] ;
}

}

}
St r ing pla inText = ”” ;
for (int l = 0 ; l < c ipherChars . l ength ;

l++) {
pla inText += cipherChars [l] ;

}
return pla inText ;

}

public double ca l cu l a t eGeneF i tne s s (Gene gene
) {
double [] l e t t e rCount =

c a l c u l a t e F r e q u e n c i e s (gene .
getDecrypt ion ()) ;

double f i t n e s s = 0 ;
for (int i = 0 ; i < 26 ; i++) {

f i t n e s s += le t t e rCount [i] ∗

39

ge tEng l i shFrequenc i e s () [i] ;
}
return f i t n e s s ;

}

private double [] c a l c u l a t e F r e q u e n c i e s (S t r ing
pla inText) {
char [] p l a i n = pla inText . toCharArray () ;
for (int i = 0 ; i < e n g l i s h L e t t e r s .

l ength ; i++) {
double sCount = 0 ;
double diCount = 0 ;
double tr iCount = 0 ;
double doCount = 0 ;
int m = i + 26 ;
int n = i + 52 ;
int o = i + 68 ;
for (int j = 0 ; j < p l a i n . l ength ; j

++) {
i f (i < 26) {

St r ing c iphe r = St r ing .
copyValueOf (p la in , i , 1) ;

i f (c iphe r . equa l s (
e n g l i s h L e t t e r s [i])) {

sCount++;
}

}
i f (m >= 26 && m < 52) {

St r ing c iphe r = St r ing .
copyValueOf (p la in , m, 2) ;

i f (c iphe r . equa l s (
e n g l i s h L e t t e r s [m])) {

diCount++;
}

}
i f (n >= 52 && n < 68) {

St r ing c iphe r = St r ing .
copyValueOf (p la in , n , 3) ;

i f (c iphe r . equa l s (
e n g l i s h L e t t e r s [n])) {

tr iCount++;
}

40

}
i f (o >= 68 && o <

e n g l i s h L e t t e r s . l ength) {
St r ing c iphe r = St r ing .

copyValueOf (p la in , o , 2) ;
i f (c iphe r . equa l s (

e n g l i s h L e t t e r s [o])) {
doCount++;

}
}

}
i f (i < 26) {

tempFreq [i] = sCount ;
}
i f (m >= 26 && m < 52) {

tempFreq [m] = diCount ;
}
i f (n >= 52 && n < 68) {

tempFreq [n] = tr iCount ;
}
i f (o >= 68 && o < e n g l i s h L e t t e r s .

l ength) {
tempFreq [o] = doCount ;

}
}
return tempFreq ;

}

public Gene c a l c u l a t e S t r o n g e s t (Populat ion
populat ion) {

I t e r a t o r i t e r = populat ion . getGenes () .
i t e r a t o r () ;

Gene f i t t e s t G e n e = new Gene (populat ion .
getGenes () . get (0) . g e t S i z e ()) ;

double b e s t F i t n e s s = 0 ;
while (i t e r . hasNext ()) {

Gene gene = (Gene) i t e r . next () ;
i f (gene . g e t F i t n e s s () > b e s t F i t n e s s)

{
f i t t e s t G e n e = gene ;
b e s t F i t n e s s = gene . g e t F i t n e s s () ;

}

41

}
return f i t t e s t G e n e ;

}

/∗∗
∗ @return the eng l i s hFre quenc i e s
∗/

public double [] g e tEng l i shFrequenc i e s () {
return e n g l i s h F r e q u e n c i e s ;

}
}

42

Appendix B: SOURCE CODE FROM SECOND GENETIC
ALGORITHM

This is the second attempt at the genetic algorithm, and this
attempt returned more fruitful results even if it was still not the
completely correct answer. This class was in charge of loading the
text file containing the quadragrams with their frequencies, loading
the Map of quadragrams with their scores, and then finally itera-
tively computing the genetic algorithm, but this time it used the hill
climbing technique to slowly work its way to the correct answer.

import android . content . Context ;
import android . u t i l . Log ;

import java . i o . BufferedReader ;
import java . i o . IOException ;
import java . i o . InputStream ;
import java . i o . InputStreamReader ;
import java . math . BigDecimal ;
import java . math . RoundingMode ;
import java . u t i l . ArrayList ;
import java . u t i l . C o l l e c t i o n s ;
import java . u t i l . HashMap ;
import java . u t i l . I t e r a t o r ;
import java . u t i l . L i s t ;
import java . u t i l .Map;
import java . u t i l . Random ;

import r e g i s h o n o r s t h e s i s . brandonward .
c r y p t o g e n e t i c a l g o r i t h m t h e s i s .R;

import r e g i s h o n o r s t h e s i s . brandonward .
c r y p t o g e n e t i c a l g o r i t h m t h e s i s . domain . Quadragram
;

/∗∗
∗ Created by BrandonWard on 1/29/2015.
∗/

public class DecryptionManagerQuadragram
implements IDecryptionMgr {

43

private List<Quadragram> quadragrams ;
private Map<Integer , Double>

quadragrams scored ;
private Context context ;
private List<Character> parentKey ;
private double parentScore ;
private St r ing encrypt ion ;
private double maxScore = −99e9 ;
private List<Character> maxKey ;
private double notFoundScore = 0 ;

public DecryptionManagerQuadragram (Context
context) {
this . context = context ;
i n i t () ;

}

private void i n i t () {
quadragrams = new ArrayList<Quadragram

>() ;
quadragrams scored = new HashMap<Integer

, Double>() ;
LoadFi le (R. raw . engl ishquadgrams) ;

}

private void LoadFile (int r e s I d) {
// The InputStream opens the re source Id

and sends i t to the b u f f e r
InputStream i s = context . getResources () .

openRawResource (r e s I d) ;
BufferedReader br = new BufferedReader (

new InputStreamReader (i s)) ;
S t r ing readLine = null ;

try {
// While the BufferedReader readLine

i s not n u l l
while ((readLine = br . readLine ()) !=

null) {
readLine = readLine . toUpperCase

() ;
S t r ing [] r e s u l t = readLine . s p l i t

(” ”) ;

44

int s co r e = I n t e g e r . pa r s e In t (
r e s u l t [1]) ;

Quadragram quadragram = new
Quadragram (r e s u l t [0] , s c o r e) ;

quadragrams . add (quadragram) ;
//Log . d (”TEXT” , readLine) ;

}
// Close the InputStream and

BufferedReader
i s . c l o s e () ;
br . c l o s e () ;

} catch (IOException e) {
e . pr intStackTrace () ;

}
s c o r e i n i t () ;

}

@Override
public St r ing decrypt (S t r ing encrypt ion) {

encrypt ion = encrypt ion . toUpperCase () ;
char [] temp = encrypt ion . toCharArray () ;
char [] midTemp = new char [temp . l ength] ;
int j = 0 ;
for (int i = 0 ; i < temp . l ength ; i++) {

i f (temp [i] >= ’A ’ && temp [i] <= ’Z ’
) {

midTemp [j] = temp [i] ;
j++;

}
}
char [] endTemp = new char [j] ;
for (int k = 0 ; k < j ; k++) {

endTemp [k] = midTemp [k] ;
}
encrypt ion = St r ing . copyValueOf (endTemp)

;
this . encrypt ion = encrypt ion ;
L i s t<Character> parentKey = new

ArrayList<Character >(26) ; //Generate
parentKey and s h u f f l e i t b e f o r e
s e t t i n g i t to the c l a s s

45

for (int i = ’A ’ ; i <= ’Z ’ ; i++) {
parentKey . add ((char) i) ;

}
this . parentKey = parentKey ;
S t r ing dec iphered ;
int i t e r a t i o n s = 0 ;
Random r = new Random() ;
while (i t e r a t i o n s < 50) {//This method

i s no longe r the p i e ce t ha t bogs down
the system en t i r e l y , t h a t l a r g e l y
happens in s c o r e i n i t ()

C o l l e c t i o n s . s h u f f l e (this . parentKey) ;
dec iphered = dec ipher (this . parentKey

) ;
parentScore = sco r e (dec iphered) ;
i f (parentScore > maxScore) {

maxScore = parentScore ;
maxKey = this . parentKey ;

}
int count ;
for (count = 0 ; count < 1000 ; count

++) {
List<Character> chi ldKey = this .

parentKey ;
int a = (r . next Int (26)) ;
int b = (r . next Int (26)) ;
Character swap ;
swap = chi ldKey . get (a) ;
chi ldKey . s e t (a , chi ldKey . get (b))

;
chi ldKey . s e t (b , swap) ;
S t r ing ch i ldDec ipher = dec ipher (

chi ldKey) ;
double c h i l d S c o r e = sco r e (

ch i ldDec ipher) ;
i f (c h i l d S c o r e > parentScore) {

this . parentKey = chi ldKey ;
parentScore = c h i l d S c o r e ;
count = 0 ;
i f (parentScore > maxScore)
{

maxKey = this . parentKey ;
maxScore = parentScore ;

46

Log . i (” I t e r a t i o n ” +
i t e r a t i o n s , ”maxScore
Inc r e s ed ” + maxScore) ;

}
}

}
i t e r a t i o n s ++;

}
Log . i (” F ina l Score ” , ”= ”+maxScore) ;
return dec ipher (maxKey) ;

}

private St r ing dec ipher (Li s t<Character> key)
{
char [] toDecrypt = encrypt ion .

toCharArray () ;
for (int i = 0 ; i < toDecrypt . l ength ; i

++) {
i f (toDecrypt [i] >= ’A ’ && toDecrypt

[i] <= ’Z ’) {
toDecrypt [i] = key . get ((

toDecrypt [i] − ’A ’)) ;
}

}
return St r ing . copyValueOf (toDecrypt) ;

}

private double s co r e (S t r ing dec iphered) {
double s co r e = 0 ;
char [] decipherChar = dec iphered .

toCharArray () ;
for (int i = 0 ; i < dec iphered . l ength ()
− 3 ; i++) {

St r ing s t r i n g = St r ing . copyValueOf (
decipherChar , i , 4) ;

i f (quadragrams scored . containsKey (
s t r i n g . hashCode ())) {

s co r e += quadragrams scored . get (
s t r i n g . hashCode ()) ;

} else {
s co r e += notFoundScore ;

}
}

47

return s co r e ;
}

private void s c o r e i n i t () {
notFoundScore = Math . log10

(0 .0000000000000001) ;
I t e r a t o r <Quadragram> quadragramIterator

= quadragrams . i t e r a t o r () ;
BigDecimal t o t a l = BigDecimal .ZERO;
while (quadragramIterator . hasNext ()) {

Quadragram quadragram =
quadragramIterator . next () ;

t o t a l = t o t a l . add (BigDecimal . valueOf
(quadragram . getCount ())) ;

}
// t o t a l = t o t a l . d i v i d e (BigDecimal .

va lueOf (quadragrams . s i z e ()) , 10 ,
RoundingMode .HALF UP) ;

quadragramIterator = quadragrams .
i t e r a t o r () ;

while (quadragramIterator . hasNext ()) {
Quadragram quadragram =

quadragramIterator . next () ;
BigDecimal d i v i s i o n = BigDecimal .

valueOf (quadragram . getCount ()) ;
d i v i s i o n = d i v i s i o n . d i v id e (to ta l ,

15 , RoundingMode .HALF UP) ;
double value = d i v i s i o n . doubleValue

() ;
va lue = Math . log10 (value) ;
i f (! (va lue > 0)) {

value = notFoundScore ;
}
quadragrams scored . put (quadragram .

toS t r i ng () . hashCode () , va lue) ;
}

}
}

48

	Regis University
	ePublications at Regis University
	Spring 2015

	Man Versus Machine: Can Computers Crack Cryptography?
	Brandon Ward
	Recommended Citation

	Pages from WardBrandon_2

