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ABSTRACT

The ichthyofauna of the Gulf of Mexico has been fairly well documented as a 

consequence of the extensive fisheries activities and hydrocarbon exploration in these 

waters. However, the diversity and distribution of the deep-sea species remain poorly 

understood. This study examines the vertical distribution of fish species in the Gulf of 

Mexico as well as the changes in taxonomic diversity with depth. Species richness was 

found to decrease exponentially with depth while maximum depths species occupy 

closely correlates with traditional oceanic zone boundaries. The clade Percomorpha was 

found to account for the majority of the taxonomic diversity in the Epipelagic, below 

which the species richness of this clade decreases, as other taxonomic groups account for 

proportionally more of the diversity in the deep-sea. Conservation threats posed to deep- 

sea species also were investigated by examining the vertical and geographic distribution 

of benthic and demersal Rajiformes (skates) and Squaliformes (dogfishes) in the Gulf of 

Mexico. Using geographical coordinates of specimen capture and ArcGIS mapping, 

ranges of 33 Chondrichthyan species were examined and used to determine potential 

threats associated with oil and gas drilling. The results demonstrate the need for a better 

understanding of the biology of deep-sea species in order to accurately assess threats 

posed to poorly known deep-sea inhabitants.
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Chapter 1: Diversity and distribution of the deep-sea ichthyofauna of the 
Gulf of Mexico 

Introduction:

The word “ocean” brings various images to mind: waves of aquamarine water 

gently lapping against white sand beaches while children laugh and play happily in the 

calm shallow waters; or surfers swimming into the open ocean, waiting to ride the large 

cresting waves that come crashing and foaming onto the beach as the scent of brine floats 

in the sea breeze. Immediate images of bright rainbow colored, charismatic reef fish 

swimming around their home of colorful anemones, sponges, and corals rush to the mind 

of any snorkeler, scuba diver, or Finding Nemo watcher. For others, the word brings a 

more fearful image to mind: ice blue water, stretching undisturbed as far as the eye can 

see - an endless blue abyss. Monsters from sailors’ stories lurk unseen beneath the 

surface. An unmistakable grey triangle shatters the calm, desolate, glass-like surface. It 

undoubtedly belongs to a man eater, Jaws, waiting patiently for his next meal to fall into 

his watery world.

Whatever comes to mind, calm, fun, or frightening, the first thoughts of the ocean 

do not typically include the deep sea. It is a realm full of mystery and oddities, 

unrecognized by many people. A black abyss, where little to no light penetrates, is 

teaming with alien-like life. The deep sea and the bizarre creatures that live there remain 

less explored and more poorly understood than the surface of the moon. This is an
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investigation into some of these incredible deep-sea creatures and various aspects of their 

diversity, distribution, and the threats humans pose to them.

The Ocean and the Deep-Sea

The world’s oceans cover 71% of the Earth’s surface (NOAA, 2013), attaining an 

average depth of 3800 m (Nouvian, 2007). With such substantial depths, approximately 

99% of Earth’s potential for housing life is held in the ocean waters, 85% of which is 

contained in the low light or lightless waters of the deep sea (Nouvian, 2007). 

Approximately 68% of Earth’s surface is covered with water deeper than 200 m (Angel, 

1997) while waters deeper than 1000 m still account for 62% of Earth’s total surface 

coverage (Davies et al., 2007). The waters of the deep sea hold more than 100 times the 

collective volume of the rest of the world’s water, making the deep sea one of the largest 

environments in the biosphere (Haedrich, 1997; Nouvian, 2007; Ramirez-Llodra et al., 

2011).

The ocean’s waters are commonly divided into four zones (Fig. 1-1) determined 

by the intensity of light at depth in clear oceanic water along with the relationship to the 

base of the continental land masses (Angel, 1997; McEachran & Fechhelm, 1998; 

Herring, 2002; Robinson et al., 2010; Ramirez-Llodra et al., 2011). The first zone, the 

epipelagic, extends from the surface down to 200 m. Almost all sunlight (~99% ) is 

scattered or absorbed by 150 m, leaving only blue wavelengths to penetrate the deeper 

waters (Robinson, 2004). This makes the epipelagic zone the only part of the ocean 

where photosynthesis can occur (Gallaway et al., 2001). Below the epipelagic zone (220
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m), the deep sea begins, characterized by waters where very little or no light is found 

(Angel, 1997; Gallaway et al., 2001). The mesopelagic zone extends from 200 m to a 

depth of 1000 m and can be broken into the upper mesopelagic zone and the lower 

mesopelagic zone with the dividing line lying at about 600 m -  700 m (Angel, 1997). 

Only trace amounts of light penetrate the mesopelagic waters, resulting in twilight, or 

disphotic, conditions (Angel, 1997; Gallaway et al., 2001). Even in the clearest oceanic 

waters, virtually no light penetrates beyond 1000 m. This creates the aphotic conditions 

of the bathypelagic and abyssal zones (Angel, 1997; Gallway et al, 2001). The 

bathypelagic zone extends from 1000 m -  6000 m and can be broken into the upper 

bathypelagic (1200 m -  2300 m) and the lower bathypelagic (2400 m -  4000 m) zones 

(Robinson, 2004). Below this lies the abyssal plain, which stretches along the ocean’s 

floor at depths greater than 6000 m. Although these distinctions in oceanic zones are well 

agreed upon, variations in continental margins and local bathymetry can result in 

differences in the zonation from place to place (Angel, 1997).

Exhibiting no viable means for primary production through photosynthesis, 

extremely high pressures, and very low temperatures, early scientists believed these deep 

ocean waters to be devoid of life. This hypothesis was disproved in 1872 with the HMS 

Challenger’s four year circumnavigation of the globe (Van Dover, 2007; Robinson, 

2009). During the Challenger Expedition, led by Sir Charles Wyville Thomson, trawls 

scraped the sea floor at depths up to approximately 5 miles (8047 m). Over 4000 new 

species were discovered and described by the expedition, revealing the previously 

unrecognized biodiversity of the deep sea (Van Dover, 2007). Since then, our knowledge
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of the deep sea has only increased, further demonstrating the diversity of the biotic 

communities in this ecosystem.

Deep-sea inhabitants have had to adapt to life in a very extreme environment 

compared to their shallow-dwelling counterparts. As depth increases, temperatures drop 

until they approach freezing, seasonal variability declines, and dissolved oxygen content 

in the water decreases. Likewise, pressure increases 1 atm with each 10 m of depth, 

resulting in pressures exceeding 100 atm in the bathypelagic zone (Haedrich & Merrett, 

1992; Gallaway et al., 2001; Smith & Brown, 2002; Robinson, 2004; Robinson 2009). 

Very little, if any, light extends into the deep sea, making photosynthesis impossible and 

strictly limiting the amount of energy available to organisms (Pequegnat, 1983; Haedrich 

& Merett, 1992; Gallaway et al., 2001; Smith & Brown, 2002; Gartner et al., 2007). At 

1000 m, the biomass available as energy drops to only 5% of that which is found above 

200 m (Gartner et al., 1997).

Some primary production occurs at hydrothermal vents via chemoautotrophic 

organisms. However, the majority of deep-sea inhabitants directly or indirectly rely on 

energy from the epipelagic zone (Pequegnat, 1983; Haedrich & Merrett, 1992; Gartner et 

al., 1997; Smith & Brown, 2002; Gartner et al., 2007). Deep-sea organisms receive 

nutrients from the surface waters via transportation in currents or downwellings. 

Dissolved organic matter from the epipelagic zone also falls to the depths in the form of 

“marine snow,” providing many deep sea organisms with a source of nutrition. Likewise, 

marine and terrestrial plants and animal carcasses sometimes sink to the bottom of the 

ocean where they become food for deep-sea benthic communities. Some deep-sea species
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do not wait for the organic matter to drift down from the epipelagic. Many deep-sea 

species of the meso- and upper bathypelagic zones feed on planktonic organisms found in 

the surface waters where they are more concentrated. In order to avoid predators during 

daylight hours when they are more visible, these species travel to the surface at night to 

search for food, returning to the depths of the mesopelagic zone at dawn (Herring, 2002). 

These daily vertical migrations are known as diel-vertical migrations and make up one of 

the largest migrations in the animal kingdom (Fothergill, 2001). After feeding in the 

epipelagic zone, the migrators carry the food down to the deep-sea, where they then 

excrete their gut contents in the nutrient poor oceanic zone. In this way biomass, nutrients 

and carbon are cycled back into deep-sea environments (Angel, 1997; Haedrich, 1997; 

Herring, 2002; Youngbluth, 2007).

Fish o f the Deep Sea

Despite these extreme environmental conditions associated with deep-sea 

habitats, 10- 15 % of known fish species are found to inhabit these waters (Gartner et al., 

1997) and evolutionary adaptations for living in these conditions have convergently 

evolved in at least 22 orders of fish (Weitzman, 1997). Some of these adaptations include 

reduced metabolisms, ambush predation strategies to reduce swimming distances, and 

increased olfaction and mechanosensory detection to account for low-light conditions 

(Montgomery & Pankhurst, 1997). An estimated 90% of deep-sea inhabitants are also 

able to produce light for communication, mating, foraging, or predator avoidance
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(Robinson, 2004). These are just a few of the adaptations species have evolved for 

inhabiting the extreme environments of the deep-sea.

Observations that some taxonomic groups appear to be more prevalent in certain 

zones has led to various hypotheses about the colonization of the deep-sea. One such 

hypothesis observes the frequent occurrence of Perciformes, a relatively young order of 

teleost fish on the evolutionary time scale, in the epipelagic zone. According to this 

hypothesis, Perciformes colonized the epipelagic zone after being out-competed by older 

taxonomic groups highly specialized to life in the deep-sea (Weitzman, 1997). The 

general observation of Perciformes in the epipelagic leads to the prediction that the 

epipelagic has been colonized more recently than the deep-sea, however no quantitative 

data have been presented to support this conclusion.

Although relatively little is known about these deep-sea inhabitants compared to 

organisms in shallow water communities, researchers have found that the faunal 

assemblages of the deep-sea tend to vary with depth (Haedrich & Merrett, 1992; Angel, 

1997; Haedrich, 1997; Moranta et al., 1998; Smith & Brown, 2002; Fujita et al., 2005; 

Robinson et al., 2010). Studies find a decrease in species diversity with depth but spikes 

in abundance and biomass in the upper bathypelagic zone (~1200 -  2300 m). Demersal 

fish biomass in the Atlantic Ocean was found to be the highest in the mesopelagic (at 600 

m), with decreasing biomass below this depth until 1200 m, where there was a peak in 

biomass before further decreasing again (Haedrich & Merrett, 1992). A similar trend has 

been found in the Mediterranean with the maximum fish biomass found between 1000 m

-  1200 m, followed by decreasing values at increasing depths (Moranta et al., 1998).
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Although pelagic fish have been shown to have a low species richness below 600 m, 

studies have cited increased numbers of pelagic fish species in the upper bathypelagic 

around 1000 -  1100 m (Smith & Brown, 2002). A survey of Monterey Canyon found the 

highest organism abundance of bathypelagic communities in the upper bathypelagic 

between depths of 1500 m -  2000 m (Robinson et al., 2010). Causes for this trend are 

unknown but changes in photosynthetic productivity, light limitation, temperature, 

sediment characteristics, oxygen content, pressure, salinity, and depth have all been 

predicted as factors influencing zonation of deep-sea faunal assemblages (Smith & 

Brown, 2002; Powell & Haedrich, 2003; Fujita et al., 2005). More information is needed 

to reveal any broadly applicable zonation patterns in the faunal assemblages of the deep 

sea.

The Gulf o f Mexico

This study focuses on the deep sea ichthyofauna assemblages (fishes) of the Gulf 

of Mexico. The Gulf of Mexico is a distinct biogeographical region (Pequegnat et al., 

1990; Garner et al., 1987; McEachran & Fechhelm, 1998) bordered by Mexico, Cuba and 

the United States. With 4000 km of coastline and covering 1,138,980 km2, it is the ninth 

largest body of water in the world. The eastern border is formed where the Caribbean Sea 

and the Atlantic Ocean meet, in a line from Key West to Cape Catoche. There are three 

geographical subregions of the Gulf of Mexico (Fig. 1-2). The Eastern subregion extends 

from Florida Bay to Pensicola or Mobile, the western from Pensicola or Mobile to Cape 

Rojo, and the southern from Cape Rojo to Cape Catoche. At its deepest, the Gulf of
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Mexico extends to 3750 m, missing the abyssal zone’s upper boundary by only 250 m 

(McEachran & Fechhelm, 1998; Ross et al., 2010). Average surface temperatures vary 

seasonally, ranging from 18.3 -  29° C, while bathypelagic waters remain a fairly constant 

4.35 ° C (Pequegnat et al., 1990; McEachran & Fechhelm, 1998). Throughout all 

geographic and vertical regions, the benthos is comprised mostly of silty-clay sediment 

(Pequegnat et al., 1990; McEachran & Fechhelm, 1998; Gallaway et al., 2001).

Nutrient and water flow are influenced by two major systems: the Mississippi 

River output and the Loop Current (Pequegnat et al., 1990; McEachran & Fechhelm, 

1998; Wei et al., 2012). The Mississippi River contributes 65% of the freshwater input 

into the area as well as 4.1 x 1010 tons of sediment per year, which is deposited on the 

northern slope and shelf (McEachran & Fechhelm, 1998). The deposits from the 

Mississippi River are responsible for carrying organic matter into the Gulf of Mexico 

(Gallaway et al., 2001). Organic matter, plants, pelagic fish and invertebrates as well as 

their larvae are also brought into the Gulf by the Loop Current which flows into the Gulf 

of Mexico from the Caribbean Sea. The current flows through the Yucatan Channel 

(located between the northwestern tip of the Yucatan Peninsula and Cuba) then travels 

north, towards the Mississippi River Delta, bends east towards Florida, and makes a final 

loop south where it exits the Gulf of Mexico into the Atlantic Ocean between Florida’s 

southern tip and Cuba (Gallaway et al., 2001). This current drives the major surface 

circulation of the Gulf and brings warm Caribbean water into the area, affecting species 

distribution throughout the Gulf of Mexico (Gallaway et al., 2001).
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The Gulf of Mexico is of particular interest due to the diverse array of marine 

organisms inhabiting the area. Although the ichthyofauna of the region is somewhat 

poorly known, there has been extensive biological exploration of the region because of its 

proximity to the United States. These began with land based surveys in the mid 1800’s 

focusing on describing the newly discovered species of the Gulf of Mexico. The first 

research vessel, the Blake, was deployed in the Gulf by the United States Coast Survey in 

1872. The Blake, followed by the Albatross ’ and the Fish Hawk’s explorations in the late 

1800’s, focused mainly on the research of shallow benthic environments, reefs, and 

invertebrates, with an emphasis on bivalves (McEachran & Fechhelm, 1998). Beginning 

in the early 1900’s marine laboratories began popping up along the northern coast of the 

Gulf of Mexico, including the Gulf Biological Station in Cameron, Louisiana (1902­

1910), the Marine Laboratory in Loggerhead Key, Dry Tortugas (1904), and the 

Louisiana State University Laboratory on Grande Isle (late 1920’s -  early 1950’s) 

(McEachran & Fechhelm, 1998). At the same time, explorations in the Gulf of Mexico 

were focusing more on the physical aspects of the area, investigating bathymetry, 

oceanography, and hydrology (Moretzsohn et al., 2013). Researchers in marine 

laboratories associated with universities such as the University of Miami, University of 

Texas, and Florida State University continued to study the faunal assemblages of the Gulf 

of Mexico through the mid 1900’s. Many of these researchers contributed to the 

knowledge of the fish fauna of the area. The first investigations into the fauna of the 

deep-sea were commissioned by Texas A&M University. The voyage of Alaminos in the 

1960’s sampled the ichthyofaunal assemblages of the slope and abyssal plains of the Gulf
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of Mexico (McEachran & Fechhem, 1998). The first quantitative macrofaunal sampling 

of the deep-sea communities began in the 1970’s (Wei et al., 2012). In the 1980’s the 

Mineral Management Service commissioned a three year survey of the northern Gulf of 

Mexico benthos. The research contributed to the knowledge of the benthic environment 

and the faunal assemblages of the northern Gulf of Mexico. Commissioned by LGL 

Ecological Research Associate Inc., Texas A&M University supported an exploration 

from 1983-1987. The mission of this exploration was the development of knowledge 

about the deep Gulf of Mexico fauna and its relationship to the environment (Gallaway et 

al., 2001). Both of the former studies were funded in light of the growing off shore oil 

development in the Gulf, lending to greater concerns regarding the lack of understanding 

about the deep sea communities in the area. In the 21st century fewer scientific 

explorations of the fauna have been conducted. Only recently has research in the Gulf of 

Mexico again been substantially conducted. After the Deepwater Horizon oil spill of 

2010 released record amounts of crude oil compounds into the Gulf of Mexico, the 

government increased its willingness to fund scientific explorations in the Gulf to try and 

discover the impacts the oil will have on the environment and the organisms inhabiting 

areas affected by the spill (Moretzsohn et al., 2013).

From this long history of surveys, it has become apparent that the region has a 

relatively rich fauna, with 1,461 recorded species of fishes inhabiting the waters. Of 

these, 66 species are endemic to the Gulf of Mexico (McEachran & Fechhelm, 2005). 

While research on the pelagic midwater fauna below 200 m of the Gulf of Mexico is 

scarce, deep benthic communities are relatively well sampled as a result of the extensive
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oil exploration and drilling in the deep-sea (Ross et al., 2010). Most studies have been 

conducted in the northern and eastern subregions of the Gulf of Mexico, however, in 

these regions the ichthyofauna appears to be relatively homogeneous within depth 

regions (Powell & Haedrich, 2003; Ross et al., 2010). While, some studies cite higher 

abundance in the Mississippi Trough and DeSoto Canyon (Powell & Haedrich, 2003;

Wei et al., 2012), depth appears to be more important than geography in determining the 

distribution of deep-sea faunal assemblages in the Gulf of Mexico (Powell & Haedrich, 

2003; Ross et al., 2010).

Between about 1000 m and 1100 m not only does the light disappear entirely, but 

the temperatures of the Gulf of Mexico drop to 4° C, a potential explanation for the 

change in faunal assemblages noted by many scientists at this depth range (Gallaway et 

al., 2001). In the Mineral Management survey of the deep Gulf of Mexico benthos 

between 1983 and 1985, the fish diversity was found to increase up to 950 m in depth, 

and then declined steadily with depth, drastically dropping below 2300 m. While fish 

species richness decreased, many macrofaunal invertebrates (> 0.5 mm in size) showed 

increasing species richness in the bathypelagic zone (below 1000 m), especially starfish 

and sea cucumbers. Based on the data obtained during this study, Gulf of Mexico faunal 

assemblages were broken into seven discrete intervals: The shelf/slope habitat (150 -  450 

m; upper mesopelagic), the Archibenthal Horizon A zone (475 -  750 m; upper 

mesopelagic into the lower mesopelagic), the Archibenthal Horizon B zone (775 -  950 

m; lower mesopelagic), the Upper Abyssal zone (975 -  2250 m; lower mesopelagic 

through the upper bathypelagic), the Mesoabyssal Horizon C (2275 -  2700 m; upper

11



bathypelagic and lower bathypelagic), Mesoabyssal Horizon D (2725 -  3200 m; lower 

bathypelagic), and the Lower Abyssal zone (3225 -  3850 m; lower bathypelagic) 

(Pequegnat, 1983).

Peaks in the abundance and density of meiofauna (> 0.05 mm in size) and 

megafauna (> 2.5 mm in size) have also been cited in the Gulf of Mexico’s bathypelagic 

zone with a small peak in abundance at 1000 m (Gallaway et al., 2001). The survey also 

found a large peak in density in the upper mesopelagic around 300 m. Similarly, a 

mesopelagic spike was also shown by Powell et al. (2003) where both abundance and 

species richness of demersal Gulf of Mexico fish fauna were found to be greatest between 

315 -  785 m and steadily decrease from there. While these studies seem to find a general 

trend associated with depth, the data are only representative of portions of the Gulf of 

Mexico and do not necessarily show the larger patterns of vertical distribution throughout 

the entire geographic region.

The Scope o f This Study

The purpose of this study is to examine the broader distribution of the deep-sea 

ichthyofauna in the Gulf of Mexico. By compiling previous catch data for species in the 

Gulf of Mexico, this study will examine the geographical and vertical distributions of 

deep-sea species in the region. It is hypothesized that the species richness in the Gulf of 

Mexico will decline with depth, mirroring the documented patterns of density and 

biomass mentioned above. While many species are vertical migrants and the minimum 

depth is variable, species should only be able to travel to a certain depth due to
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environmental constraints (e.g. light, temperature, pressure, etc.). Therefore, the pattern 

of species richness is expected to match the maximum depth ranges of species. The study 

also examines the taxonomic distributions of deep-sea inhabitants of the Gulf of Mexico. 

Following the evolutionary hypothesis that percomorphs are of a younger evolutionary 

development and have been out-competed in the deep-sea by older taxa that have evolved 

to inhabit the harsh conditions at depth, percomorph species richness is expected to be 

higher in the epipelagic and decrease with depth. This study will help to provide a better 

understanding of the poorly understood, yet fairly well documented fish assemblages of 

the deep Gulf of Mexico.

Materials and Methods:

McEachran and Fechhelm’s Fishes o f the Gulf o f Mexico Volumes 1& 2 (1998; 

2005) were used as the primary references for the documented ichthyofauna of the Gulf 

of Mexico. I recorded depth ranges from these volumes for all included 1,461 fish species 

(McEachran & Fechhelm, 1998; 2005) and input these data into a Microsoft Excel 

spreadsheet as integers in meters. Not all species listed are given depth ranges so data 

were augmented by adding depth range data from Fishbase.org (Frose & Pauly, 2013). 

Species known to inhabit coastal inshore areas, brackish waters, and coral reefs were 

assumed to live only in the upper epipelagic zone, unless reported to occur deeper, and 

were treated as having a maximum depth range of 100 m. The depth ranges in 

McEachran and Fechhelm (1998; 2005) for all deep-sea species were double checked 

using Fishbase.org (Frose & Pauly, 2013) by running a search on all species inhabiting
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the meso- and bathypelagic zone. Ranges were obtained from Fishbase.org (Frose & 

Pauly, 2013) for species with no documented ranges in McEachran and Fechhelm (1998; 

2005) when available. Data for many deep-sea species are sparse. For this reason, even 

though the depth ranges of many non-endemic species included in the study are not Gulf 

of Mexico specific, ranges were assumed to be the same throughout each species’ 

geographic range. Many deep-sea inhabitants have been recorded as vertical migrants. 

The depth ranges for these species include the migration ranges so that the minimum 

depth is the absolute minimum depth documented. Species with no known range 

distributions were excluded.

Species richness was examined using minimum and maximum depths for each 

species. Species were assumed to inhabit all areas in between the minimum and 

maximum documented depths. For the purpose of this study, maximum depth was 

determined to be the most important range determinant for the species, assuming that 

most species may migrate to the surface at night or live nearer the surface during earlier 

ontogenetic stages but can only travel to a certain depth before environmental constraints 

will restrict deeper migration. Vertical distribution patterns were determined by 

examining number of species with maximum depths in 100 m intervals from the surface.

Range data were used to determine species richness and taxonomic 

distributions of fish within varying depth intervals. Ranges were broken into four 

different depth intervals and species richness and compositions were compared between 

the four. The four intervals are listed in Table 1-1. For all four depth intervals, species 

were determined to inhabit each interval which fell between their minimum and

14



maximum documented depths of occurrence. If data were missing for either the minimum 

or maximum depths of occurrence for a species (so that the range data were incomplete) 

the species was only said to inhabit the depth interval of the documented depth. Species 

ranges were broken up into 100 m intervals. Species were counted as inhabiting each 100 

m interval between the minimum and maximum depths for their documented range. A 

buffer zone of 20 m was included into each range and only species with ranges falling 

into the interval by over 20 m were included in the depth interval. Total numbers of 

species inhabiting each interval was then summed to find species richness for the given 

interval. These data were then log transformed and plotted on a graph in Microsoft 

Excel. A linear regression was run on the data in PSAW Statistics 18 to test the 

relationship between species richness and depth.

Species richness and taxonomic distributions were examined using the other three 

intervals (Table 1-1). Ranges were broken into 200 m intervals up to 1000 m. Below this 

depth species abundance is known to drop drastically. For this reason, the remaining 

depths were broken only into two ranges: 1000 -  2000 m and 2000+ m. As described for 

the 100 m intervals, a 20 m buffer was included in the 200 m intervals as well. Species 

ranges were also broken into the intervals proposed by Pequegnat (1983) in his survey of 

the Gulf of Mexico benthos: Shelf/ slope (150 - 450 m), Archibenthal Horizon A (475 -  

750 m), Archibenthal Horizon B (775 -  950 m), Upper Abyssal (975 -  2250 m), 

Mesoabyssal Horizon C (2275 -  2700 m) , Mesoabyssal Horizon D (2725 -  3200 m), 

and Lower Abyssal (3225 -  3850 m ). For the purpose of this study the Mesoabyssal 

Horizon C, Mesoabyssal Horizon D and Lower Abyssal zones were combined into the
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Mesoabyssal zone because of the low fish species abundance at these depths (Table 1-1). 

Following the methods of Pequegnat (1983), only species with minimum depth ranges of 

150 m or maximum depth ranges exceeding 220 m were included in the Shelf/slope 

interval, excluding many epipelagic species from these data. A 25 m buffer is already 

included by Pequegnat (1983) between each interval; therefore, no additional buffer was 

included. Finally, ranges were divided into traditional oceanic depth zones: epipelagic (0

-  200 m), upper mesopelagic (200 -  600 m), lower mesopelagic (600 -  1000 m), upper 

bathypelagic (1000 -  2400 m) and lower bathypelagic (2400+ m). A 20 m buffer was 

included in these intervals as mentioned above for the 100 m and 200 m depth intervals.

For example, Bathyuroconger vicinus, has a documented range of 229 m -  1318 

m. For the 100 m intervals, this species was included in all ranges between 200 -  1300 m. 

For the 200 m intervals, B. vicinus was included in all ranges besides the 0-200 m range. 

The species was included in the Shelf/Slope, Archibenthal Horizon A, Archibenthal 

Horizon B, and Upper Abyssal zones for Pequegnat’s intervals and in the upper and 

lower mesopelagic and the upper bathypelagic zones for the traditional oceanic zones.

Taxonomic distributions were determined for these intervals by breaking species 

into monophyletic groups (Table 1-2) using the phylogeny of Near et al. (2012) to 

identify relevant clades. Species in this study are recognized in 24 different clades in the 

Gulf of Mexico. Where possible traditional ordinal level taxa were used, recognizable 

because they end in the suffix “-iformes.” The exceptions are the Chondrichthys and 

Percomorpha. Members of the orders Carchariniformes, Chimeriformes,

Hexanchiformes, Lamniformes, Myliobatiformes, Orectolobiformes, Pristiformes,
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Rajiformes, Squaliformes, and Topediniformes were all included in the clade 

Chondrichthys. The clade Percomorpha includes species from the orders 

Batrachoidiformes, Beloniformes, Cyprinodontiformes, Gasterosteiformes, Lophiiformes, 

Mugiliformes, Perciformes, Pleuronectiformes, Scorpaeniformes, and Tetraodontiformes. 

The use of the Percomorpha follows a more traditional usage (e.g., Nelson, 2006) rather 

than the recent usage of Near et al. (2012) in excluding the Ophidiiformes from the 

Percomopha. Because the Ophidiiformes are the sister clade to the traditional 

Percomorpha (Near et al., 2012), this difference is simply one in naming and not in how 

the basic biological entities (clades) are recognized. Taxonomic uncertainty is greatest 

within the Percomorpha, and these grouping ensure that all clades studies originated by 

approximately 100 million years ago (Near et al., 2012).

Taxonomic distribution patterns were examined by counting the number of 

species from each clade within the various depth intervals. The number of species in each 

clade was totaled for each discrete depth interval. The percentage of species representing 

each clade was calculated by comparing the number of species in each clade at a given 

depth interval to the total number of species occupying that depth interval. Taxonomic 

distribution patterns were compared across the three sets of depth intervals mentioned 

above. Patterns were identified by eye based on graphs generated using Microsoft Excel. 

Patterns were also visualized in a continuous form by graphing the percentage of total 

species in 100 m intervals for all clades that represent at least 15% of the total species 

richness at some depth, with the exception of the chondrichthyan clade.
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Results:

Vertical distributions were examined from 1461 species known to inhabit the 

Gulf of Mexico. The first 100 m of the Gulf of Mexico is the most speciose. Below 100 

m, the species richness decreases exponentially with increasing depths. Linear regression 

of log-transformed data indicate a tight fit of the data to a log-transformed linear decrease 

(Fig 1-3; R2 = 0.968, t = -33.369, p < 0.001).

Trends in maximum depths for species found below the epipelagic zone (>220 m) 

demonstrate an increase in the number of species’ depth maxima from the 300 m (upper 

mesopelagic) until 600 m (the barrier between upper and lower mesopelagic). Below 600 

m, the number of species’ depth maxima in each interval drop until there is a peak at 

1000 m (the boundary between meso-and bathypelagic), 1500 m (the upper 

bathypelagic), and another at 2000 m (the upper bathypelagic). Beyond 2000 m, there are 

less than 10 species with depth maxima in each interval (Fig. 1-4).

The 200 m depth intervals (Fig. 1-5 & 5, Tables 1-3 & 1-4) demonstrate that 

species richness declines substantially after the first 200 m (epipelagic zone) but has a 

more gradual decrease for depths below 200 m (meso- and bathypelagic zone). 

Percomorpha represents the majority (67%) of the high number of species in the 

epipelagic but the proportion of percomorphs in each depth interval decreases, 

representing only 33% of species in the 200 -  400 m range, 24% in the 400 -  600 m 

range, 17% in the 600 -  800 m range, 14 % for 800 -  1000 m and 1000 -  2000 m ranges, 

and 7% for depths exceeding 2000 m (Fig. 1-6). The species composition is not 

homogenous for all depth intervals and as the number and proportion of percomorphs
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decreases, other clades proportionally increase (Fig. 1-7). For example, Osmeriformes 

and Ophidiiformes represent only 0.5% and 1.8% of the total species composition 

respectively from 0 -  200 m. However, in the depths below 2000 m they represent 17.8% 

and 19.2% of species respectively.

Species richness and taxonomic distributions showed similar trends for 

Pequegnat’s (1983) intervals (Fig. 1-8, Tables 1-5 & 1-6) and for traditional oceanic 

intervals (Fig. 1-9, Tables 1-7 & 1-8). While both zonation patterns show declining 

species richness with depth, Pequegnat’s (1983) intervals don not appear to follow an 

exponential decline, but rather follow a more step-like pattern. The traditional oceanic 

vertical divisions show a similar trend in declining species richness as displayed by 200 

m intervals. In both Pequegnat’s (1983) and the traditional oceanic intervals, 

percomorphs compose a smaller proportion of the species in deeper intervals. For 

Pequegnat’s (1983) intervals, Percomorpha represents 32.72% for Shelf/Slope (150 -  450 

m) then drops to 21.05% for Archibenthal A (475 -  750 m), 13.57 % for Archibenthal B 

(775 -  950 m), 12.25% for Upper Abyssal (975 -  2250 m) and 5.36% for Mesoabyssal 

(2275+ m). The traditional oceanic intervals show Percomorpha declining from 66.7% 

(epipelagic; 0-200 m) to 30.39% (upper mesopelagic; 200-600 m), 15.60% (lower 

mesopelagic; 600-1000 m), 13.04% (upper bathypelagic; 1000-2400 m), and 10.64% 

(lower bathypelagic; 2400+ m). Osmeriformes and Ophidiiformes also show trends 

comparable in the 200 m intervals with values of 0.54% and 1.79% respectively in the 

epipelagic and values of 14.89% and 17.02% respectively in the lower bathypelagic.
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Distribution patterns also show variation for individual clades with depth. 

Percomorpha is highly represented in the first 100 m, however after that, the number of 

percomorphs drops drastically and by 1000 m, there are very few representatives (Fig. 1­

10). Other clades do not show such drastic declines with depth. Stomiiformes have 

proportionally fewer representatives than Percomorpha (Fig. 1-10) but show a much less 

drastic drop in species with depth (Fig. 1-11). Unlike Percomorpha, Stomiiformes show a 

peak in species abundance between 300 -  600 m (upper mesopelagic). This trend is 

mimicked by another clade of vertical migrating fishes, Myctophiformes (Fig. 1-11). 

Myctophiformes similarly show a peak species abundance in the upper mesopelagic 

around 400 -  500 m. However, the Myctophiformes also show a relatively similar species 

abundance between 0 -  400 m before the peak and show a much more drastic drop below 

800 m and are entirely absent from depths below 2000 m.

Osmeriformes and Ophidiiformes have fewer species in the Gulf of Mexico than 

Percomorpha, Stomiiformes, and Myctophiformes, but show different vertical 

distribution patterns (Fig. 1-12). Osmeriformes have fewer species than Ophidiiformes 

between 0 -  400 m but have more species present than the Ophidiiformes between 400 -  

1900 m. However, by 2000 m, both clades show similar declining patterns of number of 

species with depth.

Chondrichthyans show relatively constant values proportionally to other 

examined clades (Fig. 1-6, Table 1-4). Excluding 0 -  200 m, where Chondrichthyans 

show a value of 6.52%, and 2000+ m, where the value drops to 2.74%, Chondrichthyans 

represent between 11.06 and 12.35% of species for all depths between 200 -  2000 m.
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However, the total number of chondrichthyan species in each depth interval is not as 

evenly represented (Fig. 1-13). The maximum number of Chondrichthyan species is 

found between 0 -  100 m, after which there is a steep decline in number species before 

showing another peak in species for 300 -  400 m with steadily decline with greater depth.

Discussion:

Species Richness declines exponentially with depth (Fig. 1-3). This pattern of 

diversity does not support the hypothesis that the species richness will show peaks in the 

upper bathypelagic, mirroring documented patterns of abundance and biomass in 

Montery Canyon’s faunal communities (Robinson et al., 2010), macrofaunal 

communities in the Gulf of Mexico (Gallaway et al., 2001), the demersal fish 

assemblages of the North Atlantic (Haedrich & Merrett, 1992), and fish communities in 

the Mediterranean (Moranta et al., 1998). While no peaks were found in species richness 

in the upper bathypelagic as expected, these results are consistent with documented 

species richness trends in pelagic fish assemblages of the Eastern Pacific (Smith & 

Brown, 2002) and fish communities in the Mediterranean (Moranta et al., 1998). The 

species richness of the Eastern Pacific closely follows the exponential trend shown in this 

study with the exception of finding a maximum between 100 -  200 m instead of the 0 -  

100 m maximum seen in the Gulf of Mexico (Smith & Brown, 2002). The exponential 

trend is not seen in the fish communities of the Mediterranean (Moranta et al., 1989) but 

that is explained by the fact that the sample did not include species richness in the 

epipelagic. Below 200 m (i.e., below the epipelagic) a linear regression line for the
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Mediterranean fish communities well explained the presented species-richness data, very 

similar to the trend seen for the Gulf of Mexico. Alternatively, a study conducted on the 

demersal fish communities in the northern Gulf of Mexico found a maximum species 

richness in the lower mesopelagic between 315 -785 m, below which there was declining 

species richness (Powell & Haedrich, 2003). Some of the difference in results may be due 

this study’s excluded portion of the epipelagic (sampling began at 188 m for the 

shallowest interval). However some of the depth intervals tested in the current study 

exclude the epipelagic, yet the trends for the other depth ranges are consistent with those 

including epipelagic species, further refuting the findings from the demersal fish survey 

of the northern Gulf of Mexico (Powel & Haedrich, 2003). This inconsistency in the data 

could simply be an artifact of the exclusion of pelagic fishes in the previous study. 

Regardless of the differences in depths of maximum species richness, there appears to be 

a general trend in decreasing species richness with increasing depths. This suggests that 

the documented peaks in biomass and density found in the upper bathypelagic zone in 

previous studies are not caused by diversity but rather by abundance and density of the 

species occupying these ranges. Future studies should be conducted examining the 

species composition and biomass as it relates to increasing depths to gain a better 

understanding of what is influencing the peaks in the upper bathypelagic zone.

Maximum depths were also examined because it was determined to be an 

important range determinant for species. While upper limits of many ranges are more 

flexible (due to ontogenic and diel-vertical migrations) the maximum documented depth 

is restricted by environmental factors (pressure, temperature, salinity, etc.) that likely
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prevent the free movement of species into deeper areas. Maximum depths were expected 

to follow a similar trend to species richness; however, this hypothesis was also rejected. 

Instead of declining with depth, the number of species-range maximums increased for 

depths of around 600 m, 1000 m, 1500 m and 2000 m. A previous study conducted by the 

Mineral Management Service found breaks in species assemblages at around 450 m, 750 

m, 950 m, and 2250 m (Pequegnat, 1983). My data, however, fits more closely with 

traditional oceanic zonation breaks compared to the faunal assemblage breaks determined 

by Pequegnat (1983). The increases in maximum depth occur at the upper 

mesopelagic/lower mesopelagic boundary (which falls ~600 - 700 m), the boundary 

between the mesopelagic and bathypelagic zones (at 1000 m) and at two points within the 

upper bathypelagic zone (which extends to 2200 m). Sampling limitations preventing 

accurate estimation of maximum-depth ranges for some species but these results are 

consistent with trends found for pelagic fish of the Atlantic Ocean (Smith & Brown,

2002) which show peaks in the maximum-depth counts between 500 -  700 m, 1000 -  

1100 m, and 1400 -  1500 m. These data suggest that the factors influencing traditional 

oceanic zonation, such as light and relationship to continental land masses, are also 

strongly affecting the vertical distribution of species.

There also appears to be taxonomic variation along the vertical gradient. It has 

been hypothesized that the percomorphs are a relatively young clade that never colonized 

deeper waters due to competition from older clades, more specialized to living in the 

extreme environment of the deep sea. To test this hypothesis, this study examined 

proportions of monophyletic taxonomic groupings at depth intervals. In support of the
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hypothesis, higher proportions of percomorphs were found in shallower waters. Over 

75% of the species found in the epipelagic are representatives of Percomorpha. The 

abundance of percomorph species declines sharply below the epipelagic zone. Opposing 

this trend, Ophidiiformes and Osmeriformes are very poorly represented in the epipelagic 

(making up only 2% and 1% of total species composition of the epipelagic respectively). 

However, both of these groups have proportionally more representatives as depth 

increases, reaching maximum percentages of representative species in the bathypelagic 

zone. These two groups show that there are certain taxonomic clades which have become 

specialized for living in the deep-sea. Percomorpha has relatively few representatives in 

the deeper ocean, supporting the hypothesis that this clade is more specialized to life in 

the epipelagic zone and may also lend support to the hypothesis that percomorphs 

colonized the epipelagic and later moved into deeper waters.

These data also show interesting trends in several other groups, markedly in two 

orders known for their diel-vertical migrations: the Myctophiformes and Stomiiformes 

(Gartner et al., 1987; Sutton & Hopkins, 1996; Hopkins et al., 1998). Myctophiforms 

make up the highest percentage of the species composition in the mesopelagic. Although, 

the percentage of representative species in the epipelagic is markedly lower than that 

found in the mesopelagic, the actual number of species found in the epipelagic is almost 

exactly the same as that found in the mesopelagic. This confirms that most of the 

myctophiforms are migrating to the surface at night. Interestingly, the number of species 

found below the mesopelagic is much lower. This may be due to sampling errors, as 

many myctophiforms had no documented maximum depth. However, this group of fish
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may be primarily found in the mesopelagic with only few, larger individuals found in the 

deeper waters of the bathypelagic zone. More studies are required on these species to 

determine the ranges they may occupy.

Stomiiformes have also been widely suspected of being daily migrators. However, 

the data presented in this study does not fully agree. Like myctophiforms, the majority of 

the Stomiiformes appear to inhabit mesopelagic waters. However, there is a large drop in 

the number of species which have been found in the epipelagic. This suggests that not all 

stomiiform fishes migrate into the epipelagic at night. However, this may be another 

artifact of sampling times not accurately depicting all migrating species. Another 

possibility is that a large number of species of Stomiiformes occupy the lower 

mesopelagic or upper bathypelagic, and only migrate into the upper mesopelagic without 

reaching the epipelagic (Gartner et al., 1987; Sutton & Hopkins, 1996). Further studies 

should be conducted on these species to determine the full extent of their ranges and at 

which ranges migration occur.

There is an interesting trend in Chondrichthyan species richness. Unlike the 

previously mentioned groups, the Chondrichthyans compose a relatively stable percent of 

the ichthyofauna in each depth. Proportionally, the Chondrichthyans show a slight 

decrease in the epipelagic, but their percent composition of the ichthyofauna is constant 

throughout the mesopelagic and into the upper bathypelagic. There are proportionally 

fewer species representing Chondrichthyans in the epipelagic and lower bathypelagic 

zones. However, there may be more representatives at depth (such as large sleeper and 

gulper sharks) which have yet eluded capture in deep-sea surveys because their large size
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makes trawl-net capture rare. There is also a substantial decrease in the number of 

Chondrichthyan species between 100 -  300 m. This is very likely due to a lack of data 

about these species. Many pelagic sharks have documented depth ranges below 100 m. 

This lower species richness may be due to the fact that they are too large to be caught 

using standard sampling methods. More studies should be conducted to determine if 

epipelagic Chondrichthyans occupy deeper ranges than are currently documented. The 

consistent presence of Chondrichthyans throughout the ocean depth zones points to their 

importance in the oceanic ecosystem and suggests that these species may be important 

indicators of the ecosystem’s health.
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Figure 1-1: The vertical zonation of the ocean (from seasky.org). Brown represents the 
continental and oceanic crust while blue shows water. Labels on the crustal landmass 
denote changes in continental slope while labels in the water show oceanic zones and the 
depths associated with them.
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Figure 1-2: Map of the Gulf of Mexico showing prominent bathymetric and geographical 
features. Basemap source: NOAA
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Figure1- 3: Species richness shown by the total number of species found in each depth 
range. Ranges are depicted in 100 m intervals. Number of species represents the total 
number of species documented to inhabit the range. The histogram (Top) depicts total 
species richness at each depth interval. The scatter plot with best fit line (bottom) depicts 
the log transformed number of species, indicating an exponentially declining species 
richness with increasing depth (R2 = 0.968).
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Figure 1-4: The number of species with depth range maxima in each range. Ranges are 
in 100 m intervals. Only species with depth maximums below 220 m are included.
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Figure 1-5: Species richness at 200 m depth intervals except for the last two which are 
larger intervals. The bars denote the total number of species found in each depth interval. 
Pie charts above each bar denote the percent species composition by clade in each depth 
interval.
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Figure 1-6: Taxonomic distribution of the Gulf of Mexico ichthyofauna in 200 m depth 
intervals. Each section of the pie chart represents the percentage of species for each clade 
at each depth interval. Numbers on sections represent the total number of species 
representing the clade in the given depth interval. Numbers of species are only shown for 
species which show prominent trends in vertical distributions. Clade names are in bold in 
the legend for groups which have numerical values shown in the charts.

32



eegatneureo.

70

60

50

40

30

20

10

0

80
Aulopiformes
Chondrichthyans
Gadiformes
Myctophiformes
Ophidiiformes
Osmeriformes
Percomorpha
Stomiiformes

0 00 0t"  OS3 3
Depth (m)

Figure 1-7: Percentage of the total species richness attributed to each clade. Clades are 
only included if percentage exceeds 15% for at least one depth, with the exception of 
Chondrichthyans.
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Figure 1-8: Species richness at Pequegnat’s (1983) depth intervals. The bars denote the 
total number of species found in each depth interval. Pie charts above each bar denote the 
percent species composition by clade in each depth interval
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Figure 1-9: Species richness at traditional oceanic depth intervals. The Epipelagic 
extends from 0 -  200 m, the Upper Mesopelagic from 200 -  600 m, the Lower 
Mesopelagic from 600 -  1000 m, the Upper Bathypelagic from 1000 -  2400 m and the 
Lower Bathypelagic from 2400 m to the bottom of the Gulf. The bars denote the total 
number of species found in each depth interval. Pie charts above each bar denote the 
percent species composition by clade in each depth interval
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Figure 1-10: Number of species of Stomiiformes (beige line) and Percomorphs (orange 
line) at 100 m intervals, showing vertical distribution of each clade.
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Figure 1-11: Number of species of Stomiiformes (beige line) and Myctophiformes (blue 
line) at 100 m intervals, showing vertical distribution of each clade.
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Figure 1-12: Number of species of Ophidiformes (purple line) and Osmeriiformes (blue 
line) at 100 m intervals, showing vertical distribution of each clade.
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Figure 1-13: Number of species of Chondrichthyan at 100 m intervals, showing vertical 
distribution
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Table 1-1: Depth intervals species ranges were broken into for species richness and 
taxonomic distribution studies

Depth Interval Intervals Included
Buffer

Included
100 m intervals Every 100 m from 0 -  3900 m 20 m

200 m intervals 
(up to 1000 m)

0 -  200 m 
200 -  400 m 
400 -  600 m 
600 -  800 m 
800 -  1000m 
1000 -  2000m 
2000 + m

20 m

Shelf / Slope: 150 -  450 m

Archibenthal A: 475 -  750 m

Pequegnat’s (1983) Intervals Archibenthal B: 

Upper Abyssal : 

Mesoabyssal :

775 -  950 m 

975 -  2250 m 

2275 m +

No extra 
included

Epipelagic: 0 -  200 m

Upper
Mesopelagic: 200 -  600 m

Traditional Oceanic Zones
Lower
Mesopelagic:

Upper
Bathypelagic:

Lower
Bathypelagic:

600 -  1000 m 

1000 -  2400m 

2400 m +

20 m
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Table 1-2: Cladistic breakdown of ichthyofauna in the Gulf of Mexico used for 
examination of taxonomic distribution with respect to depth. Clades were determined 
using Near et al (2012).

Clade Common Name Orders Included
Acipenseriformes Sturgeons and Acipenseriformes

Paddlefishes
Albuliformes Bonefishes Albuliformes
Angulliformes Eels Anguliformes
Atheriniformes Silversides Ateleopodiformes
Aulopiformes Lizzardfishes Aulopiformes
Beryciformes Toadfishes Beryciformes
Chondrichthyans Cartilaginous Fishes Carcharhiniformes Orectolobiformes

(sharks, skates, and Chimeriformes Pristiformes
rays) Hexanchiformes Rajiformes

Lamniformes Squaliformes
Myliobatiformes Torpediniformes

Clupeiformes Sardines Clupeiformes
Elopiformes Tarpons and Elopiformes

Ladyfishes
Gadiformes Cods Gadiformes
Lampiridiformes Lamprids Lampiridiformes
Myctophiformes Lanternfishes Myctophiformes
Myxniformes Hagfishes Myxniformes
Notacanthiformes Spiny eels Notacanthiformes
Ophidiiformes Cusk eels Ophidiiformes
Osmeriformes Smelts Osmeriformes
Percomorpha Spiny-rayed Batrachoidiformes Mugiliformes

fishes Beloniformes Perciformes
Cyprinodontiformes Pleuronectiformes
Gasterosteiformes Scorpaeniformes
Lophiiformes Tetraodontiformes

Petromyzontiformes Lampreys Petromyzontiformes
Polymixiiformes Beardfishes Polymixiiformes
Semionotiformes Holosteans Semionotiformes
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Siluriformes Catfishes Siluriformes
Stephanoberyciformes Ridgeheads Stephanoberyciformes
Stomiiformes Dragonfishes Stomiiformes
Zeiformes Dories Zeiformes
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Table 1-3: Cladistic breakdown of species richness for 200 m depth intervals

Clade 0 - 200 m 200 - 400 m 400 - 600 m 600 - 800 m 800 - 1000 m 1000 - 2000 m 2000 + m
Acipenseriformes 1 0 0 0 0 0 0
Albuliformes 1 0 0 0 0 0 0
Angulliformes 65 34 29 20 18 14 3
Ateleopodiformes 1 1 2 1 0 0 0
Atheriniformes 7 0 0 0 0 0 0
Aulopiformes 25 27 24 17 18 15 8
Beryciformes 14 8 10 4 4 2 1
Chondrichthyans 73 52 48 37 30 22 2
Clupeiformes 26 0 0 0 0 0 0
Elopiformes 2 0 0 0 0 0 0
Gadiformes 13 19 26 30 24 23 7
Lampiridiformes 2 3 2 1 1 0 0
Myctophiformes 48 50 51 47 25 12 0
Myxniformes 0 1 2 2 1 1 0
Notacanthiformes 1 1 3 5 6 5 2
Ophidiiformes 20 15 12 11 10 15 14
Osmeriformes 6 11 14 12 16 19 13
Percomorpha 747 151 96 50 33 27 5
Petromyzontiformes 1 0 0 0 0 0 0
Polymixiiformes 2 2 2 1 0 0 0
Semionotiformes 3 0 0 0 0 0 0
Siluriformes 3 0 0 0 0 0 0
Stephanoberyciformes 2 4 7 7 11 8 7
Stomiiformes 53 65 69 55 44 36 11
Zeiformes 4 7 4 2 2 0

Total 1120 451 401 302 243 199 73



Table 1-4: Percentage of total species richness for each 200 m depth interval accounted for by each clade

Clade 0 - 200 m % 200 - 400 m % 400 - 600 m % 600 - 800 m % 800 - 1000 m % 1000 - 2000 m % 2000 + m %
Acipenseriformes 0.09 0.00 0.00 0.00 0.00 0.00 0.00
Albuliformes 0.09 0.00 0.00 0.00 0.00 0.00 0.00
Angulliformes 5.80 7.54 7.23 6.62 7.41 7.04 4.11
Ateleopodiformes 0.09 0.22 0.50 0.33 0.00 0.00 0.00
Atheriniformes 0.63 0.00 0.00 0.00 0.00 0.00 0.00
Aulopiformes 2.23 5.99 5.99 5.63 7.41 7.54 10.96
Beryciformes 1.25 1.77 2.49 1.32 1.65 1.01 1.37
Chondrichthyans 6.52 11.53 11.97 12.25 12.35 11.06 2.74
Clupeiformes 2.32 0.00 0.00 0.00 0.00 0.00 0.00
Elopiformes 0.18 0.00 0.00 0.00 0.00 0.00 0.00
Gadiformes 1.16 4.21 6.48 9.93 9.88 11.56 9.59
Lampiridiformes 0.18 0.67 0.50 0.33 0.41 0.00 0.00
Myctophiformes 4.29 11.09 12.72 15.56 10.29 6.03 0.00
Myxniformes 0.00 0.22 0.50 0.66 0.41 0.50 0.00
Notacanthiformes 0.09 0.22 0.75 1.66 2.47 2.51 2.74
Ophidiiformes 1.79 3.33 2.99 3.64 4.12 7.54 19.18
Osmeriformes 0.54 2.44 3.49 3.97 6.58 9.55 17.81
Percomorpha 66.70 33.48 23.94 16.56 13.58 13.57 6.85
Petromyzontiformes 0.09 0.00 0.00 0.00 0.00 0.00 0.00
Polymixiiformes 0.18 0.44 0.50 0.33 0.00 0.00 0.00
Semionotiformes 0.27 0.00 0.00 0.00 0.00 0.00 0.00
Siluriformes 0.27 0.00 0.00 0.00 0.00 0.00 0.00
Stephanoberyciformes 0.18 0.89 1.75 2.32 4.53 4.02 9.59
Stomiiformes 4.73 14.41 17.21 18.21 18.11 18.09 15.07
Zeiformes 0.36 1.55 1.00 0.66 0.82 0.00 0.00



Table 1-5: Cladistic breakdown of species richness for Pequegnat’s depth intervals

Clade
Shelf/ slope (150­

450)
Archibenthal 

Zone A (475-750)
Archibenthal 

Zone B (775-950)
Upper Abyssal 

(975-2250)
Mesoabyssal
(2275-3850)

Acipenseriformes 0 0 0
Albuliformes 0 0 0 0 0
Angulliformes 39 25 17 17 3
Ateleopodiformes 2 2 0 0 0
Atheriniformes 0 0 0 0 0
Aulopiformes 29 24 21 20 6
Beryciformes 9 10 4 4 1
Chondrichthyans 55 51 30 25 1
Clupeiformes 0 0 0 0 0
Elopiformes 0 0 0 0 0
Gadiformes 25 32 28 27 5
Lampiridiformes 3 2 1 1 0
Myctophiformes 51 49 29 16 0
Myxniformes 2 2 2 1 0
Notacanthiformes 2 5 6 6 2
Ophidiiformes 16 14 10 19 11
Osmeriformes 11 14 15 27 9
Percomorpha 159 84 35 31 3
Petromyzontiformes 0 0 0 0 0
Polymixiiformes 2 2 0 0 0
Semionotiformes 0 0 0 0 0
Siluriformes 0 0 0 0 0
Stephanoberyciformes 6 8 11 15 5
Stomiiformes 68 70 47 44 10
Zeiformes 7 5 2 0 0

Total 486 399 258 253 56



Table 1-6: Percentage of total species richness for Pequegnat’s depth intervals accounted for by each clade

Clade Shelf/ slope Archibenthal Zone Archibenthal Zone B Upper Abyssal (975- Mesoabyssal (2275-
(150-450) % A (475-750) % (775-950) % 2250) % 3850) %

Acipenseriformes 0.00 0.00 0.00 0.00 0.00
Albuliformes 0.00 0.00 0.00 0.00 0.00
Angulliformes 8.02 6.27 6.59 6.72 5.36
Ateleopodiformes 0.41 0.50 0.00 0.00 0.00
Atheriniformes 0.00 0.00 0.00 0.00 0.00
Aulopiformes 5.97 6.02 8.14 7.91 10.71
Beryciformes 1.85 2.51 1.55 1.58 1.79
Chondrichthyans 11.32 12.78 11.63 9.88 1.79
Clupeiformes 0.00 0.00 0.00 0.00 0.00
Elopiformes 0.00 0.00 0.00 0.00 0.00
Gadiformes 5.14 8.02 10.85 10.67 8.93
Lampiridiformes 0.62 0.50 0.39 0.40 0.00
Myctophiformes 10.49 12.28 11.24 6.32 0.00
Myxniformes 0.41 0.50 0.78 0.40 0.00
Notacanthiformes 0.41 1.25 2.33 2.37 3.57
Ophidiiformes 3.29 3.51 3.88 7.51 19.64
Osmeriformes 2.26 3.51 5.81 10.67 16.07
Percomorpha 32.72 21.05 13.57 12.25 5.36
Petromyzontiformes 0.00 0.00 0.00 0.00 0.00
Polymixiiformes 0.41 0.50 0.00 0.00 0.00
Semionotiformes 0.00 0.00 0.00 0.00 0.00
Siluriformes 0.00 0.00 0.00 0.00 0.00
Stephanoberyciformes 1.23 2.01 4.26 5.93 8.93
Stomiiformes 13.99 17.54 18.22 17.39 17.86
Zeiformes 1.44 1.25 0.78 0.00 0.00



Table 1-7: Cladistic breakdown of species richness for traditional oceanic zones

Clade Epipelagic Upper Mesopelagic Lower Mesopelagic Upper Bathypelagic Lower Bathypelagic
Acipenseriformes 1 0 0 0 0
Albuliformes 1 0 0 0 0
Angulliformes 65 40 21 15 2
Ateleopodiformes 1 2 1 0 0
Atheriniformes 7 0 0 0 0
Aulopiformes 25 30 22 15 6
Beryciformes 14 11 4 2 1
Chondrichthyans 73 59 37 20 1
Clupeiformes 26 0 0 0 0
Elopiformes 2 0 0 0 0
Gadiformes 13 28 31 24 4
Lampiridiformes 2 3 1 0 0
Myctophiformes 48 52 49 13 0
Myxniformes 0 2 2 1 0
Notacanthiformes 1 3 6 5 1
Ophidiiformes 20 17 13 19 8
Osmeriformes 6 15 16 22 7
Percomorpha 747 155 51 27 5
Petromyzontiformes 1 0 0 0 0
Polymixiiformes 2 2 1 0 0
Semionotiformes 3 0 0 0 0
Siluriformes 3 0 0 0 0
Stephanoberyciformes 2 9 11 8 4
Stomiiformes 53 75 59 36 8
Zeiformes 4 7 2 0 0

Total 1120 510 327 207 47



Table 1-8: Percentage of total species richness for traditional oceanic zones accounted for by each clade

Clade % Epipelagic % Upper Mesopelagic % Lower Mesopelagic % Upper Bathypelagic % Lower Bathypelagic
Acipenseriformes 0.09 0.00 0.00 0.00 0.00
Albuliformes 0.09 0.00 0.00 0.00 0.00
Angulliformes 5.80 7.84 6.42 7.25 4.26
Ateleopodiformes 0.09 0.39 0.31 0.00 0.00
Atheriniformes 0.63 0.00 0.00 0.00 0.00
Aulopiformes 2.23 5.88 6.73 7.25 12.77
Beryciformes 1.25 2.16 1.22 0.97 2.13
Chondrichthyans 6.52 453.85 11.31 9.66 2.13
Clupeiformes 2.32 0.00 0.00 0.00 0.00
Elopiformes 0.18 0.00 0.00 0.00 0.00
Gadiformes 1.16 155.56 9.48 11.59 8.51
Lampiridiformes 0.18 0.59 0.31 0.00 0.00
Myctophiformes 4.29 216.67 14.98 6.28 0.00
Myxniformes 0.00 0.39 0.61 0.48 0.00
Notacanthiformes 0.09 0.59 1.83 2.42 2.13
Ophidiiformes 1.79 3.33 3.98 9.18 17.02
Osmeriformes 0.54 2.94 4.89 10.63 14.89
Percomorpha 66.70 30.39 15.60 13.04 10.64
Petromyzontiformes 0.09 0.00 0.00 0.00 0.00
Polymixiiformes 0.18 0.39 0.31 0.00 0.00
Semionotiformes 0.27 0.00 0.00 0.00 0.00
Siluriformes 0.27 0.00 0.00 0.00 0.00
Stephanoberyciformes 0.18 1.76 3.36 3.86 8.51
Stomiiformes 4.73 14.71 18.04 17.39 17.02
Zeiformes 0.36 1.37 0.61 0.00 0.00
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C hapter 2: Conservation of the deep-sea: a look at deep-sea Chondrichthyans 
and the threats posed to them in the G ulf of Mexico 

Introduction

There is no area of the ocean that is unaffected by human activity, including even 

the farthest reaches of the deep-sea (Ramirez-Llodra et al., 2011). Although conservation 

efforts have been successful in some marine ecosystems, almost all of these have focused 

on the protection of coastal ecosystems and near-surface waters. Unfortunately the lack 

of conservation attention to the deep-sea does not mean that the ecosystems are 

unaffected by or safe from anthropogenic disturbance.

Specific Conservation Threats

Pollution

Pollution is a substantial threat that impacts almost all marine ecosystems and 

organisms worldwide. Although routine dumping of certain waste materials by ships at 

sea was banned in 1972, over 636,000 tons of litter is dumped into the oceans by vessels 

annually, and an estimated 6.4 million tons of trash enters the ocean due to direct 

dumping or as unintentional waste each year (Ramirez-Llodra et al., 2011). A bottom 

survey of the northern Gulf of Mexico found multiple types of trash at all sampled 

depths, including the farthest reaches of the bathyal zone (Fig. 2-1). Once in the marine 

environment, trash causes mortalities to a range of aquatic organisms through 

suffocation, strangulation, and entanglement. Trash also becomes ingested by many 

marine organisms, which can be toxic to the organism and may result in death (Ramirez-

52



Llodra et al., 2011; Moore, 2011). Other pollutants, such as chemical waste and discarded 

pharmaceuticals make their way into marine environments as well and can disturb 

physiological processes or result in mortalities among marine organisms (Robinson,

2009; Moore, 2011; Ramirez- Llodra et al., 2011).

Ocean Acidification

Increasing amounts of carbon dioxide in marine environments is another cause for 

concern. As carbon dioxide levels in the ocean rise, the water becomes more acidic as the 

carbon dioxide reacts with water in the carbonate buffer system, producing bicarbonate 

ion and the hydrogen ions that are the basis of acidity (a process known as ocean 

acidification). The acidification compromises the ability of calcifying organisms (e.g. 

corals and crustaceans) to produce calcium carbonate hard body parts, reducing their 

abundance in marine ecosystems (Davies et al., 2007; Robinson, 2009; Ramirez-Llodra et 

al., 2011). It was modeled that the production of important planktonic calcifying 

organisms may decrease by as much as a 50% compared to their numbers in pre­

industrial times within the next 250 years. Many of these calcifying organisms are 

important to marine food webs and their decline has the potential to impact the entire 

ecosystem (Davies et al., 2007). Furthermore, high concentrations of carbon dioxide in 

and the resultant acidosis have been shown to have toxic effects on organisms (Davies et 

al., 2007; Ramirez-Llodra et al., 2011). Sessile infauna and epifauna (immobile 

organisms buried in the bottom and sitting on the bottom of the ocean floor) have been 

shown to suffer from respiratory stress and even death due to acidosis. Although mobile 

species are able to avoid areas of high carbon dioxide concentration and acidification, 

fish swimming through carbon dioxide plumes have exhibited a loss of consciousness
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from the increased concentrations. Long-term exposure can cause hypercapnia, an 

increase in the body’s acidity. This is a physiological stressor and, over time, has 

detrimental effects to the health of the organisms (Robinson, 2009).

Climate Change

Climate change, itself in part traceable to increased carbon dioxide levels, is 

another marine stressor. Ocean temperatures are predicted to rise 1.4° - 5.8° C in the next 

100 years (Ramirez-Llodra et al., 2011). The warming of surface temperatures will 

inhibit the circulation and vertical mixing of cold, nutrient-rich water from the deep 

ocean which is required for photosynthesis in the epipelagic zone and may cause a 

redistribution of plankton away from warm tropical waters (Davies et al., 2007;

Robinson, 2009; Ramirez-Llodra et al., 2011). Because deep-sea organisms rely upon the 

productivity of epipelagic photosynthetic and planktonic organisms, the primary 

producers whose energy productivity eventually is exported to the deep-sea, warming 

ocean temperatures will also impact the life there (Davies et al., 2007; Robinson, 2009; 

Ramirez-Llodra et al., 2011). The warming may even extend into the deep waters 

themselves. The inhabitants of the deep-sea have evolved in an environment far more 

stable than the environments near the surface (Devine et al., 2006; Robinson, 2009). 

Temperature changes in the deep sea will have unknown consequences but will likely 

alter physiological processes such as growth and reproductive rates (Davies et al., 2007).

Fishing

While pollution, ocean acidification, and climate change are of concern to deep- 

sea communities worldwide, the two most imminent threats in the Gulf of Mexico are
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fishing and oil and gas drilling. Fishing has always been integral to the life of the people 

inhabiting land near the Gulf of Mexico. Although historically not a major threat to the 

deep ocean, over time fishing gear has improved and allowed fishermen to exploit deeper 

and deeper areas of the Gulf of Mexico (Davies et al., 2007; Grace et al., 2010; Ramirez- 

Llodra et al., 2011). Today, deep-water fishing is a large industry in the United States, 

both for recreation and consumption. In 2008, commercial fishing in the Gulf of Mexico 

had a total catch of 1.27 billion pounds of fish and a total of 3.2 million recreational 

fishermen took a total of 24 million fishing trips in the area (NOAA, 2010a). Deep-water 

fishing only accounted for ~6.5% of total worldwide fisheries captures in 2002, a landing 

worth $70 -  80 billion (USD), yet both shallow water and deep-sea fisheries have 

significant impacts on marine ecosystems. While deep-sea fishes are not yet a frequent 

target of fisheries, depletion of shallow water stocks may necessitate a switch to deeper 

dwelling species as targets.

Examples of this have already been seen in several deep water species, such as 

orange roughy (Hoplostethus atlanticus, known as red slimehead before it was widely 

marketed as a food fish) which quickly became a fishery target after discovery of large- 

scale spawning grounds in New Zealand in the 1980’s. Extensive gear (heavy duty 

benthic trawling nets which must be towed several thousand meters below and at least 

1000 m behind the fishing vessel) is needed to harvest the fish compared to shallower 

dwelling species. Regardless of the increased effort required, orange roughy became a 

valuable fishery in New Zealand, Australia, and Nambia (Stevens, 2003). The orange 

roughy was originally estimated to have a lifespan of 20-30 years. However, as more 

became known about its habits and biology, it became apparent that orange roughy can
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live over 100 years and often do not reproduce until they are in their twenties. By this 

time fisheries had already overexploited the slow growing, deep-sea population.

Biologists predict the recovery of the populations to be very slow, yet orange roughy 

remains one of the most valuable commercial fisheries in New Zealand (Jensen, 1997; 

Stevens, 2003; Monterey Bay Aquarium, 2013).

The grenadier fishery also exemplifies this same increasing use of deep-water 

species. Formerly discarded as unwanted by fishermen when caught incidentally, the 

grenadiers (deep-water fishes also known as rattails in the family Macrouridae) are now 

targeted by fisheries. Due to reduced population sizes and increased fishing regulations of 

inshore species, fisherman began catching the unregulated grenadiers off the west coast 

of the United States. Little is known of the biology of these fish apart from the fact that 

they are slow-growing and, therefore likely long lived and later reproducing like the 

orange roughy (Jensen, 1997; Abbott, 2006). Not only are grenadiers generally 

considered to be a less preferable tasting fish, but they also have an overall lower product 

yield (only 22-26% sellable meat per fish) compared to many other commercially 

targeted fish (Abbott, 2006). As humans overfish the meatier and more productive per 

individual fishes (e.g. groupers, bonito, tuna), fishermen are forced to catch less 

productive, less desirable fish like the grenadier. Globally, fishing depths have increased 

since the 1950’s and improved technology has allowed fisheries to target deep-dwelling, 

long-lived species like the orange rougy and grenadiers (Grace et al., 2010). Both the 

orange roughy and grenadiers are currently listed as fish to avoid by the Monterey Bay 

Aquarium’s Seafood Watch (Monterey Bay Aquarium, 2013), further demonstrating the
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risk of exploitation of deep-sea species. If overfishing in the epipelagic continues, more 

deep sea species may soon be at risk of exploitation.

Fishing also threatens species not directly targeted by commercial fisheries.

Trawls are deployed for catching targeted species in the Gulf of Mexico, including, 

among other organisms, rock shrimp, royal red shrimp, and calico scallops. The royal red 

shrimp industry has the potential to be extremely detrimental to the deep sea 

environment. With a range between 180 -  730 m, the royal red shrimp overlaps with 

many species in the mesopelagic (Stiles et al., 2007). Trawling not only captures non­

targeted species (bycatch) but also damages the benthic habitat as the net is dragged 

along the substrate, which can reduce biodiversity (Bianchi et al., 2010; Ramirez-Llodra 

et al., 2011). Damage to populations and environments in the deep sea are of particular 

concern. The species inhabiting the deep-sea have not evolved in a rapidly variable 

environment like those species in the epipelagic and are therefore not as adapted to 

dealing with environmental changes. In general, deep-sea species also tend to have a 

slower growth rate, reach reproductive maturity at a later age, and live longer than 

shallow species (Devine et al., 2006; Ramirez-Llodra et al., 2011). These traits make the 

deep sea inhabitants more susceptible to over exploitation. For some deep-sea fisheries, 

depletion of harvested populations has already been shown by reductions in catch rates. 

Deep-sea species in the Northwestern Atlantic, including the roundnose grenadier 

(Coryphaenoides rupestris), onion-eye grenadier (Macrourus berglax), blue hake 

(Antimora rostrata), spiny eel (Notacanthus chemnitzi), and the spinytail skate 

(Bathyraja spinicauda) experienced substantial population loses in a 17-year period due 

to fishery and bycatch mortalities. Because of the population declines, all five species are
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now categorized as critically endangered in the region according to the IUCN (Devine et 

al., 2006; Davies et al., 2007).

Oil and Gas Drilling

The Gulf of Mexico has a high incidence of hydrocarbons in its underlying 

geological formation, including very large petroleum reserves (Pequegnat et al., 1990; 

Gallaway et al., 2001). This has led to extensive hydrocarbon exploitation in the Gulf of 

Mexico, and along with it, another source of concern for the deep-sea environment. 

Deep-sea hydrocarbon exploitation began in the Gulf of Mexico in 1979. By 1992 there 

were 6 producing wells, 17 by 1997, and 118 by 2006 (Davies et al., 2007). The Gulf of 

Mexico has been on the forefront of deep-sea hydrocarbon drilling, and is the site of the 

first exploratory wells drilled into the lower bathyal zone at 3000 m deep (Davies et al., 

2007; Robinson, 2009).

Drilling in the Gulf of Mexico is a very important industry, supplying about 25% 

of the United States’ natural gas and around 18% of its oil (Franks, 2000). There are 

currently 110 active petroleum and gas platforms in the northern Gulf of Mexico (IHS, 

2013). The drilling platforms do provide hard structure for marine organisms to use as 

habitat to which they can directly attach or use for shelter, acting as fish aggregation 

devices (Franks, 2000). While many fish use the platform structure as an artificial habitat, 

living near the oil and gas wells can be harmful to the health of marine organisms. Rigs 

release oil, gas, and toxic drilling fluids into the surrounding water during drilling and 

extraction (Robinson, 2009). Hydrocarbons and metals (especially silver, barium, 

cadmium, mercury, lead, and zinc) can be detected up to 200 m away from wells 

(Peterson et al., 1996). Corals growing near rigs suffer greater than 30% polyp mortality,
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a substantially higher rate than corals living elsewhere (Davies et al., 2007). Elevated 

organic carbon levels and anoxic conditions as well as more patchy distributions of 

benthic communities have also been found surrounding wells in the Gulf of Mexico 

(Ramirez-Llodra et al., 2011). Discharged hydrocarbons can be incorporated into food 

chains after absorption or consumption by primary consumers and may persist in 

sediments, chronically exposing organisms to the toxic chemicals (Peterson et al., 2012). 

Prolonged exposure to toxic hydrocarbons can lead to bioaccumulation in the tissues of 

the organisms which can lower growth, reproduction, and survival rates (Ramirez-Llodra 

et al., 2011; Fodrie & Heck, 2011).

While studies of bioaccumulation of crude oil components have been conducted 

on epipelagic organisms after oil spills, the information on deep-sea communities related 

to hydrocarbon exposure is limited. With such a high incidence of drilling in the deep 

Gulf of Mexico, it is important to assess the effects hydrocarbons have on the organisms 

living in areas where drilling byproducts are prevalent or oil spills are of concern.

Studies have shown that other pollutants (e.g. DDT and PCB) are correlated with fish 

diseases such as fin rot (Peterson et al., 1996). Studies on salmon exposed to oil after the 

Exon Valdez oil spill suffered from bioaccumulation of pollutants, altered migration 

routes, and diverted spawning grounds (Wertheimer et al., 2000). Epipelagic species have 

been known to suffer from depleted populations after oil spills as well, making 

extirpations and local extinctions another concern (Chakrabarty et al., 2012). During his 

survey of the deep sea benthic communities, Pequegnat (1983) warns of the devastation 

that could occur in bathypelagic zones in the event of a deep sea blow out. He also notes 

that without further information on the effects of bioaccumulation of crude-oil
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components in this environment, it is difficult to assess the extent of damage that could 

be done to the ecosystem.

The Deepwater Horizon Spill

The concern for the health of deep-sea environments under exposure to crude oil 

components and other pollutants became obvious on April 20th, 2010 when a deep-sea oil 

well being drilled by BP experienced a blowout at the well head. The spill was not 

stopped until September 19th, 2010. Over the 84 day period, 5 million barrels of crude oil, 

amounting to over 200 million gallons, were released into the ocean (Fodrie & Heck, 

2011). This spill was novel in several ways. First, this is the largest accidental oil spill 

ever to occur (Ramirez- Llodra et al., 2011). This is also the deepest oil spill yet known to 

have occurred, releasing oil into the environment around 1500 m deep, at the top of the 

bathyal zone (Chakrabarty et al., 2012). Finally, the Deepwater Horizon oil spill is the 

first to be extensively treated with chemical dispersants (Ramirez-Llodra et al., 2011). 

Over 2 million gallons of dispersants were added to the spill (Chakrabart et al., 2012). 

Dispersants are used to emulsify the oil, breaking it into tiny droplets that are “dispersed” 

in the water column. These tiny drops are too small to float up to the surface, thereby 

reducing the oil slick on the water’s surface and potentially reducing the direct effects in 

the epipelagic. The emulsified hydrocarbons are then supposed to be degraded by 

bacteria capable of metabolizing the chemicals (NOAA, 2010b). However, after the 

dispersants alter the chemistry of the hydrocarbons, the oil more readily enters larger 

organisms, causing a risk of toxicity and bioaccumulation (Upton, 2011).

Because dispersants were used on the spill (combined with the effects of turbulent 

mixing of emulsified oil particles at the well head) only half of the oil released during the
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blowout rose to the surface (Fodrie & Heck, 2011). Large amounts of oil remains 

emulsified at depth and there is a large mid-water hydrocarbon plume found around the 

well at 1100 m and several others found between 800 m and 1200 m (Fodrie & Heck, 

2011; Peterson et al., 2012). The plume at 1100 m represents more than double the 

amount of hydrocarbons released by the natural seeps in the Gulf of Mexico (~10 million 

gallons per year) and has, as of yet, shown no evidence of substantial biodegradation 

(Gallaway et al., 2001; Ramirez-Llodra et al., 2011). Because extensive efforts by BP 

removed surface oil, the majority of the spill’s impact has occurred below the ocean’s 

surface (Fodrie & Heck, 2011; Chakrabarty et al., 2012) yet the effects on the deep sea 

communities remains unknown.

Unfortunately there is little information on how the chemicals in crude oil and oil 

treated with dispersants will react in the high pressure environment of the deep sea, 

making it very difficult to predict the movement, persistence, or chemical transformation 

of the oil in the environment. There have already been novel transformations of the crude 

oil witnessed by scientists that have yet to be seen by previous oil spills. Transformation 

of the chemical components of the oil raises the concern of chemicals’ altered toxicities 

and prevalence in the environment (Schrope, 2011). There is potential for this oil to move 

into the surrounding waters in the Gulf and Atlantic and over time it may affect more 

than just the organisms inhabiting areas near the well head (Schrope, 2010). One year 

after the spill, deposits of transformed oil were found on the Gulf of Mexico sea bed as 

far as 130 kilometers away from the well head. The movement of other crude-oil 

components is unknown, especially given the novelty of the Deepwater Horizon spill 

(Scrope, 2011). It is particularly important to assess the impact of hydrocarbon exposure
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to deep sea communities which may be more susceptible to change in their normally 

more stable environments.

Chondrichthyans (Sharks, Skates, Rays, and Chimeras)

Larger-bodied, longer-lived organisms have a great potential to be affected by 

fishing and chronic exposure to toxins due to their tendency to mature later in life and 

produce fewer offspring. Many deep-sea organisms display these traits but 

chondrichthyan species are of particular interest and concern. Chondrichthyans are a 

group of cartilaginous fishes which include sharks, skates, rays and chimaeras. Many 

chondrichthyans have poorly understood life histories, but those that have been 

extensively studied display K-selected life history traits. They are longer-lived, have 

slower growth rates, reach sexual maturity later in life, and lay relatively few, large eggs 

or give birth to few, large offspring (Holden, 1974; Wood et al., 1979; Walker, 1998; 

Walker & Hislop, 1998; Baum & Myers, 2004). Chondrichthyans have also been 

reported to have low natural mortality rates (Holden, 1973). These traits make 

chondrichthyans especially susceptible to fishing and likely make them susceptible to 

bioaccumulations of toxins over their long life spans as well.

Sharks have been historically targeted by fisheries (Holden, 1974) and remain 

targets for consumption of liver, fins, skin, meat and cartilage to this day (Walker, 1998). 

Shark populations worldwide declined substantially between 1950 and 1990 (Walker & 

Hislop, 1998), attributed to their being targeted by fisheries which have been increasing 

catches since the 1920’s (Walker, 1998). Shark landings more than tripled worldwide 

between 1960 and 1997. While there have been numerous restrictions and regulations put 

in place on shark fishing, there was only a 7.5% decline in total shark landings between
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1997 and 2010 (Worm et al., 2013). Between 1980 and 1990 alone, the Mexican and US 

shark catches increased three fold (Bonfil, 1997) and today there is still a large shark 

fishery in the Mexican waters of the Gulf of Mexico (Walker, 1998). While restrictions 

have been placed on fishing gear and allotted catches to protect sharks in United States 

waters, no regulations exist in Mexican waters (Bonfil, 1997). Shark fisheries averaged 

3.5% of total catches in the southern Gulf of Mexico between 1977 and 1992 

(substantially larger than the world average of 0.7%; Bonfil, 1997). In addition, the 

majority of shark catches are due to bycatch from other fisheries, which do not get 

reported in total shark landings and therefore cannot be used to regulate shark 

populations (Walker & Hislop, 1998; Worm et al., 2013).

Sharks are not the only chondrichthyans at risk from fisheries exploitation.

Skates, flattened fish which live on the bottom of the ocean and are similar in appearance 

to a sting ray, have also been targeted by fisheries and are commonly caught as bycatch 

in bottom trawls (Walker & Hislop, 1998). Skates are currently one of the most 

threatened groups of all marine species, many of which have suffered little noticed 

declines due to fisheries exploitation until well after the populations have been 

substantially depleted (Stevens et al., 2000; Devine et al., 2006).

Because of their life-history traits, chondrichthyans are unable to endure the same 

level of harvest as shallow-water shellfish and teleost fishes can. Like other fishes, 

fecundity of chondrichthyan species increases with size (Holden, 1973), putting the 

population at even greater risk when larger individuals are preferentially captured by 

fisheries. Commercial landings are reported for shark and skate fisheries. However, 

bycatch for these species are often not catalogued (Walker, 1998; Stevens et al., 2000;

63



Worm et al., 2013). An estimation of the total mortalities (including both from reported 

landings and estimates of unreported bycatch) suggests that in the year 2000, total shark 

catches weighed over 1,638,000 tons and of those, 1,445,000 tons resulted in mortalities. 

The study estimated that the 88% mortality of sharks was equivalent to around 

69,471,000 individual mortalities (Worm et al., 2013).

Many species of chondrichthyans inhabiting the deep Gulf of Mexico and are at 

risk of overexploitation from fisheries (Fig. 2-2). In the year 2000, there was a total 

landing of 5004 tons of deep water sharks reported to the United Nations Food and 

Agricultural Organization. Although accounting for less than 2% of the reported landings 

for the year (Worm et al., 2013) this shows that deep-sea species are at risk of 

exploitation. Extinction has already been a cause for concern in many skate species 

because of overexploitation through direct fishing and bycatch (Stevens et al., 2000) and 

other chondrichthyans may be at a similar risk considering their similar life histories.

These deep-sea species are also at risk from the deep water hydrocarbon 

extraction. The life-history traits of chondrichthyans put these species at substantially 

greater risk from chronic exposure to hydrocarbons in the environments (Peterson et al., 

1996). The effect of crude oil exposure has been studied in several species of epipelagic 

bony fish. While teleosts have been said to have the ability to metabolize polycyclic 

aromatic hydrocarbons (PAHs), a major toxic compound of oil, (Metabolism of PAH by 

teleost, 2010) detrimental effects have still been shown in teleost species exposed to 

crude oil. Salmon embryos exposed to low amounts of aqueous hydrocarbons after the 

Exon Valdez oil spill showed substantial uptake of the chemicals resulting in reduced 

larval growth and survival rates, delayed effects of growth in juveniles, and straying from
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normal migration routes as adults (Wertheimer et al., 2000). Similarly, in a lab setting all 

zebrafish embryos exposed to oil mixed with dispersants in the levels expected to be 

present after the Deepwater Horizon oil spill showed developmental defects such as fatal 

heart deformities (Schrope, 2011). Despite the studies on these model organisms, the 

effects of crude oil contamination on most fish is unknown and is very poorly understood 

for deep-dwelling species, including chondrichthyan species.

The effects of deep-water toxin exposure may be greater in deep-water 

chondrichthyans that are at a higher risk for chronic exposure due to long life history 

traits and reproductive strategies. Unlike many other marine organisms which spend 

larval stages in the epipelagic, chondrichthyans do not undergo ontogenetic migrations 

into surface waters. Either few, large egg cases (known as mermaid’s purses) are 

deposited on sediment and remain in the deep-sea until they hatch, or a few, large young 

are born alive at depth, where they remain for the duration of their life, putting many 

species at risk for exposure from the mid-water plumes found after the Deepwater 

Horizon oil spill. Furthermore, there has been no demonstration of metabolic pathways 

for PAHs in chondrichthyans, potentially increasing the exposure effects of crude oil 

components. More research is necessary to assess how extensive the threat of exposure to 

toxic crude oil and dispersant or drilling chemicals poses to these organisms.

Chondrichthyans in the Gulf of Mexico may be at a high risk of exposure to toxic 

chemicals released into the water during the Deepwater Horizon oil spill. There are 7 

endemic species of chondrichthyans in the Gulf of Mexico that have been shown to have 

overlapping ranges with the spill site (Chakrabarty et al., 2012). Endemic species are at 

increased risk of extinction and should be monitored for population declines in light of
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threats. The location of dispersed oil below the surface is poorly known (Chakarbarty et 

al., 2012) but reports of affected species occurring throughout the water column 

(Schrope, 2011) suggest that the Deepwater Horizon oil spill is impacting all depth 

ranges from the surface to the well head. Chondrichthyans are present in relatively 

constant proportions throughout all depth ranges in the Gulf of Mexico (Fig. 2-2). The 

constant prevalence of this group of fish means that they likely play an important role 

throughout the marine ecosystem and also means that there may be unreported species 

living in ranges contaminated by the blowout.

Chondrichthyans represent important apex predators whose life traits put them at 

an increased risk of exploitation and chronic exposure to toxic chemicals. The recent 

Deepwater Horizon blowout has illuminated the damage that can be caused by future 

drilling accidents in the Gulf of Mexico. With such high incidents of oil and gas drilling 

in the northern Gulf of Mexico, it has become increasingly important to assess potential 

threats to species, such as chondrichthyans, at risk of exploitation, extirpations or 

extinctions before another devastating accident occurs. Unfortunately, little is known 

about chondrichthyan behaviors. This includes both geographic and vertical ranges which 

may increase the risk of extinction and extirpations in the Gulf of Mexico due to deep-sea 

drilling. This study focuses on the distribution of two orders of chondrychthyans that 

tend to inhabit the deep sea: Rajiformes and Squaliformes. By examining previously 

documented catch locations for these chondrichthyans. I hope to better identify the 

threats presented by extensive drilling in the northern Gulf of Mexico.
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M aterials and M ethods:

Chondrichthyan distribution patterns were investigated using two orders of the 

clade: Rajiformes and Squaliformes. These orders were chosen because of the relatively 

large number of species representing each order in the Gulf of Mexico, the large 

proportion of individuals cited as having a depth range below the epipelagic zone 

(McEachran & Fechhelm, 1998), and the tendency for all Rajiformes and some 

Squaliformes to be benthic or demersal (on the bottom or associated closely with the 

bottom). I included all rajiforms in the study because of their known benthic behavior but 

I only included the squaliforms identified as benthic or demersal (McEachran & 

Fechhelm, 1998; Castro, 2011). Individual catch data were acquired for benthic and 

demersal species of these two orders using the Global Biodiversity Information Facility’s 

web database which is connected to collections from numerous natural history museums 

and universities (GBIF.org, 2012). Records from Cuba, Mexico, and the United States 

were included in the search but out of those, only records with latitude and longitude 

points located within the Gulf of Mexico were used for the purpose of this study. Latitude 

and longitude points were input into ArcGIS version 10 (ESRI, 2011) mapping software 

and overlaid on a map of the Gulf of Mexico and its bathymetry. Because benthic and 

demersal fish are closely associated with the seabed, catch location, as documented by 

the records accessed through GBIF.org (2012), was used to determine the depth of 

occurrence. A depth range was determined for each catch record by determining which 

two bathymetry lines a catch record’s geographical coordinates fell between on the map. 

Depth contours were shown in intervals of 10 m for 0 -  100 m, 100 m for 100 -  1000 m 

and 500 m for intervals of 1000 -  3500 m (Fig. 2-3).
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Each catch record from the GBIF database (GBIF.org, 2012) was associated with 

a depth range using bathymetry contours in ArcGIS. These data were used to determine a 

minimum and maximum depth, the depth range, and the average depth for each species. 

Minimum and maximum depths, as well as depth ranges were compared to depths 

documented in McEachran and Fechhelm (1998) and on fishbase.org (Froese & Pauly, 

2013). Geographic ranges were also referenced against active gas and oil drilling leases, 

documented platforms, and projected oil movement from the Deepwater Horizon oil spill.

Results:

There are 25 species of Rajiformes from 11 genera documented as inhabiting the 

Gulf of Mexico. Distribution patterns were investigated for all Rajiformes. Squaliformes 

have 21 species from 10 genera documented to inhabit the Gulf of Mexico. Of these, 8 

are documented as benthic or demersal species and were included in the study. O f the 

species studied, four (three Rajiformes and one Squaliform) had no records of occurrence 

in the database accessed through GBIF.org (2012). ArcGIS mapping expanded the depth 

ranges of 21 of the 32 species compared to previously documented depth ranges (Fig 2-4; 

Table 2-1). Vertical ranges according to ArcGIS mapping were larger than documented 

ranges for 19 of the 25 rajiforms (76%) and for and 2 of the 8 squaliforms (25%). The 

vertical ranges of three rajiforms were reduced compared to otherwise documented 

ranges. Four squaliforms exhibited a decrease in the vertical range compared to both 

documented depth ranges while one (Squalus mitsukurii) had an increased range 

compared to McEachran & Fecchelm (1998), but a decreased range compared to the 

range documented by Fishbase.org (Froese & Pauly, 2013). Of the species demonstrating 

expansions in vertical range, 17 were due to increases in both the minimum and
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maximum depths, 1 was due to increase only in minimum depth, and 5 were due to 

increases only in maximum depths compared to previously documented depth ranges.

ArcGIS mapping demonstrates the variation in species vertical and geographic 

distribution patterns. Rajella fuliginea has a relatively even distribution throughout the 

Gulf of Mexico within the meso- and bathypelagic, displaying a shallower distribution in 

the southern portion of its range (Fig. 2-5). Anacanthobatis folirostris likewise has a 

vertical distribution primarily in the mesopelagic zone but has more records of 

occurrence in the northern Gulf of Mexico than in the south (Fig. 2-6). Dipturus oregoni 

has only four records of occurrence in the Gulf of Mexico, three of which are located in 

the northeastern and one of which is located in the southwestern Gulf. All records are 

found below the epipelagic zone (Fig. 2-7). Raja texana has both a wide geographic and 

vertical distribution. The majority of the records are located in the epipelagic zone in the 

northern and southern Gulf of Mexico but some records suggest occurrences within the 

meso- and bathypelagic zones as well (Fig. 2-8). Similarly, most records for Dipturus 

olseni are located within the epipelagic zone. However, several records show distribution 

within the meso- and bathypelagic zones as well. D. olseni is relatively evenly distributed 

around the Gulf of Mexico, with the exception of the farthest eastern borders surrounding 

the Yucatan Peninsula and the coast of Florida (Fig. 2-9). Conversly, Fenestraja plutonia 

is found only in a very narrow vertical range between the meso-and bathypelagic zones 

with a single record of occurrence within the epipelagic zone. F. plutonia is only 

recorded to occur in the eastern Gulf of Mexico near Florida (Fig. 2-10). Similar to R. 

texana, Leucoraja lentiginosa is distributed widely within the Gulf of Mexico. While 

represented throughout the vertical zones and geographic regions of the Gulf, L.
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lentiginosa has a majority of its records in the upper mesopelagic and is more densely 

represented in the northeastern Gulf of Mexico, where the species has a higher 

occurrence in the epipelagic (Fig. 2-11). Rajellapurpuriventralis similarly shows a wide 

distribution, with occurrences in the epi-, meso-, and bathypelagic. The records shown 

indicate distribution in the northern Gulf of Mexico extending into the southwestern Gulf 

(Fig. 2-12).

Similar distribution patterns are apparent for the squaliforms investigated. Squalus 

cubensis has the largest number of records in the Gulf of Mexico out of the squaliforms 

investigated. Geographically and vertically, S. cubensis appears to have a wide range, 

distributed throughout the Gulf of Mexico from the epipelagic down through the 

bathypelagic. The majority of S. cubensis records are shown in the upper mesopelagic 

near the boundary between the epi- and mesopelagic zones (which lies at 200 m). Other 

squaliform distribution patterns are less explicit given the small number of records in the 

Gulf of Mexico. Deaniaprofundorum has only four records, all of which are located in 

the northeastern Gulf of Mexico near Louisiana. D. profundorum's vertical distribution is 

in the mesopelagic and the upper bathypelagic (Fig. 2-14). Etmopterus gracilipinis has 

similarly few records in the Gulf of Mexico. Four are located in the meso- and 

bathypelagic waters of the northeastern Gulf very near Louisiana while a single record is 

displayed in the epipelagic, near-shore waters further east (Fig. 2-15).

These distribution patterns can be compared to locations of oil and gas extraction 

in order to determine potential threats posed to each species by drilling in the Gulf of 

Mexico. The records of oil and gas platforms in the Gulf of Mexico as of 2013 show a 

large, densely packed aggregation of platforms in the northern Gulf from the western
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boundary of the Texas coastline around to the area of the Mississippi River Delta (Fig. 2­

16). This includes all platforms listed in the Bureau of Ocean Energy Management’s 

database and depicts more platforms that are currently extracting oil (only 118 rigs are 

drilling in the Gulf of Mexico as of March 2013 while over 4,000 platforms are depicted 

on the map). Most platforms are located in inshore, epipelagic waters. However several 

occur at mesopelagic and bathypelagic depths. The Bureau of Ocean Energy 

Management’s database for drilling leases as of March 2013 shows a larger number of 

leased plots within the meso- and bathypelagic zones and a reduced occurrence of drilling 

within the epipelagic (Fig. 2-17). The Deepwater Horizon well which blew out in 2010 

fell within this range of densely packed bathypelagic drilling. The oil from the blowout is 

expected to travel into the northeastern Gulf of Mexico, radiating outward from the 

location of the blowout (Fig. 2-18).

Discussion:

Using ArcGIS mapping to determine species ranges, 21 of the 32 demersal 

chondrichthyan species (from the Orders Rajiformes and Squaliformes) showed increased 

vertical ranges compared to previously documented ranges (McEachran & Fechhelm, 

1998; Froese & Pauly, 2013; Fig. 2-4). Of species which showed vertical range 

decreases, compared to documented ranges, only one species had more than six records 

used for range determination. The range decreases are, therefore, most likely due to low 

sample sizes and not indicative of a decrease in the realized niche compared to 

documented depth ranges. Range increases however, may indicate that the species is 

found in a larger vertical range than previously determined by other sampling methods. If
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there are errors in the geographical coordinates for specimen records or if  the 

documented demersal species were traveling upwards in the water column at the time of 

capture at the given location, the depth of occurrence based on ArcGIS mapping may be 

inaccurate. However, assuming that all demersal species were on or near the bottom at 

the time of capture and assuming that the coordinates are accurate for the location of 

capture, the methodology used in this study may provide a more accurate vertical range 

depiction of poorly studied benthic or demersal species than the other examined 

resources.

Based on the vertical and geographic distribution patterns in conjunction with 

population sizes and endemism, different levels of risk can be assessed for species. 

Exposure to hydrocarbons is of particular interest in this study and the distribution 

patterns found using ArcGIS mapping can be used to determine the potential risk to 

different species due to hydrocarbon drilling in the Gulf of Mexico.

The rajiforms of the Gulf of Mexico show four major patterns of vertical 

distribution. Rajella fuliginea (Fig. 2-5) displays a distribution pattern mostly below the 

epipelagic, with most points in the lower mesopelagic and upper bathypelagic. Several 

points occur in the epipelagic in the southern part of the range. This species shows a 

range expansion and has previously only been documented to occupy the mesopelagic. R. 

fuliginea is distributed fairly evenly around the entire Gulf of Mexico and no records 

show occupancy of the area immediately affected by the Deepwater Horizon spill. This 

species is also not endemic to the Gulf of Mexico, suggesting that R. fuliginea is not 

likely at great risk of extinction or large-scale extirpation from the Gulf of Mexico from
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exposure to hydrocarbons, especially so given the described increase in recognized 

vertical rage.

Anacanthobatis folirostris (Fig. 2-6) shows a similar distribution pattern but is 

found almost exclusively below the epipelagic. Most points of occurrence fall within the 

mesopelagic and a single record shows occurrence in the epipelagic. This record may be 

an outlier or data error that does not represent the true species range, but without 

additional information to suggest error, it is treated as a valid record. Based on these data, 

A. folirostris shows an increased recognized depth range both shallower and deeper 

compared to previous documentation. This species is endemic to the Gulf of Mexico and 

most of the capture records are located in the northern Gulf of Mexico. A previous study 

using similar methodology involving mapping of database data (some of which came 

from GBIF records, as in this study), estimates that 78.95% of A. folirostris’s range 

overlaps with the Deepwater Horizon oil spill (Chakrabarty et al., 2012). High number of 

specimen records for this species indicates that A. folirostris has a large population size. 

However, due to the high degree of overlap with the Deepwater Horizon spill and a 

majority of records documenting the range in the mesopelagic, A. folirostris is likely at a 

high risk of exposure to the toxic chemicals trapped at depth from the spill, especially 

from mid-water plumes in the area. The very rare (or possibly inaccurate) occurrence in 

the epipelagic also indicates that A. folirostris has few or no shallow-water populations 

that would be away from the mid-water plumes in the meso- and bathypelagic. Thus, this 

species is at higher risk of dispersed hydrocarbon exposure. This species may be at high 

risk of extinction given its endemism and range overlap with the recent deep-water spill.
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Similarly, Dipturus oregoni (Fig. 2-7) is exclusively located in the meso- and 

bathypelagic zones. There is a slight range increase compared to documented ranges for 

this species. The increase may be due to the limitations in the bathymetric maps used for 

the bathypelagic. Contours for the bathypelagic were only given in 500 m increments, 

giving a large range of possible depths for data points located between two contours 

which may be the source of range expansion in this case. D. oregoni is endemic to the 

Gulf of Mexico, yet only four records were found for the species, indicating that the 

species has a very small and poorly sampled range, a very small population size, or both. 

An estimated 80% of D. oregonfs range overlaps the Deepwater Horizon oil spill 

(Chakrabarty et al., 2012). As mentioned for Anacanthobatis folirostris, the mid-water 

plumes present a threat to D. oregoni. This high overlap of a small range and a possibly 

small population size suggest high risk of extinction from exposure to chemicals released 

by the spill. A. folirostris and D. oregoni should both be considered to be candidate 

species for U.S. or international protection given the current threats after the Deepwater 

Horizon oil spill and the potential threats that may present themselves in the event of 

another deep-water spill in the northern Gulf of Mexico.

In contrast with the ranges of Rajella fuliginea, Anacanthobatis folirostris, and 

Dipturus oregoni, Raja texana (Fig. 2-8) is almost exclusively found in the epipelagic. 

However, three records indicate that R. texana also occurs less frequently below this 

range, extending into the bathypelagic. Two separate records note occurrence of R. 

texana at the bottom of the Gulf of Mexico. These two records document the same 

latitude and longitude and were caught separately in two different years. This suggests 

that R. texana has a substantially larger depth range than previously documented. This
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endemic species has a large number of records, suggesting a large population size. Only 

11% of R. texana’s range overlaps with the Deepwater Horizon oil spill (Chakrabarty et 

al., 2012). Although traditionally at a higher risk of extinction due to endemism, the large 

range, both vertically and geographically, and the likely large population size as 

determined by the high incidence of catch records, demonstrates that R. texana is not at 

significant risk of extinction from the Deepwater Horizon oil spill. However, R  texana 

shows a high incidence of occurrence in the northern Gulf of Mexico, overlapping with 

common areas of hydrocarbon extraction (Figs. 2-16 and 2-17). While not facing an 

immediate threat from the Deepwater Horizon oil spill, R. texana may be at an increased 

risk in the event of future spills in the area. Given the endemism of the species in the Gulf 

of Mexico, precautionary regulations should be considered for this species.

Dipturus olseni (Fig. 2-9), also endemic to the Gulf of Mexico, shows a mostly 

epipelagic vertical distribution with few records indicating occurrence in the meso- and 

bathypelagic zones. This species is estimated to have a range overlap of 28.57% with the 

Deepwater Horizon oil spill (Chakrabaty et al., 2012). However, this species has fewer 

catch records than Raja texana, suggesting that D. olseni has a smaller population. 

Furthermore, around half of the catch records are found in the northern Gulf of Mexico, 

overlapping with the area of active drilling. Given the endemism in the Gulf of Mexico, 

smaller population size, and larger range overlap with oil and gas drilling, this species is 

likely at a higher risk of population declines or extinction due to exposure to chemicals 

from hydrocarbon extraction. Raja eglanteria (Appendix I), also displays this distribution 

pattern and has the majority of its records in the northeastern Gulf of Mexico,
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overlapping with drilling activity. Although not endemic to the Gulf of Mexico, the 

species is vulnerable to local extirpation from hydrocarbon exposure.

Very narrow vertical ranges are shown for some species, a pattern that is 

especially evident for Fenestrajaplutonia (Fig. 2-10). Almost all catch records fall in a 

narrow range in the mesopelagic of the northeastern Gulf of Mexico, with a few records 

spilling into the upper bathypelagic and a single record occurring in the epipelagic. 

Previously documented ranges for F. plutonia do not show occurrence in the epipelagic. 

F. plutonia is not endemic to the Gulf of Mexico and is found away from the prominent 

drilling sites in the Gulf of Mexico. Narrow ranges are commonly associated with lower 

adaptability and therefore indicate higher vulnerability to exploitation and other 

disruptions. However, given F. plutonia does not show substantial overlap with 

hydrocarbon extraction, the species is not likely at considerable risk from exposure to 

crude oil components. This species should be watched for other threats (e.g. bottom 

trawling) given its narrow range. Because of its narrow range, monitoring of possible 

effects of oil and other chemicals from the Deepwater Horizon spill on F. plutonia 

populations may be valuable for indicating the spread of spill chemicals and their effects.

Wide ranges are exhibited by several species including Leucoraja lentiginosa 

(Fig. 2-11) and Rajellapurpuriventrals (Fig. 2-12). L. lentiginosa occupies the epi-, 

meso-, and bathypelagic zones of the Gulf of Mexico, a large expansion of recognized 

vertical range in comparison to previously documented vertical ranges for the species. L. 

lentiginosa is also widely distributed throughout the Gulf of Mexico and has a large 

number of specimen records, which is likely indicative of a large population size. 

Although L. lentiginosa is endemic and has a 52.94% range overlap with the Deepwater
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Horizon oil spill (Chakrabarty et al., 2012), there is a reduced likelihood of the species 

becoming extinct from hydrocarbon exposure because of the large range, both vertically 

and geographically. However, a large proportion of catch records of this species in the 

northern Gulf of Mexico, overlap with offshore oil and gas extraction. This may put the 

northern populations of this species at risk from chemical exposure during drilling and in 

the event of future oil spills.

Rajellapurpuriventralis also occupies all three vertical zones in the Gulf of 

Mexico but is not endemic to the area. I found shallower records than the depth range 

documented in McEachran and Fechhelm (1998). However, no minimum depth is 

documented by Fishbase.org (Froese & Pauly, 2013). This indicates a poorly known 

range for the species and suggests that the use of ArcGIS mapping provide a more 

accurate depth range for the species than indicated in previous documentation. The sparse 

records in the Gulf of Mexico indicate that R. purpuriventralis likely has a small 

population in the Gulf of Mexico and is therefore at an increased risk of extirpation. Over 

50% of the records for the Gulf of Mexico overlap with the regions of oil and gas drilling, 

further suggesting risk to this species in the Gulf of Mexico from hydrocarbon extraction.

Vertical distribution patterns were also examined for squaliforms; however less 

data on habitat preferences (i.e. benthic, demersal, or pelagic) are available for this group 

of chondrichthyans. For this reason, fewer species were surveyed, and of those surveyed, 

few had many documented catch records in the Gulf of Mexico. Despite these data 

limitations, similar trends in vertical distributions were apparent and ArcGIS mapping 

similarly determined increased ranges compared to documented ranges for some species. 

Squalus cubensis (Fig. 2-13) has the largest number of documented specimens of the
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squaliforms surveyed. S. cubensis has a range mostly localized to the upper mesopelagic 

with several documented captures extending into the epi- and bathypelagic zones. 

Previously documented ranges do not include occurrence in the bathypelagic. The range 

also extends into the northern Gulf of Mexico where most Gulf of Mexico oil extraction 

occurs. This may put S. cubensis at risk. However, the species is not endemic to the area, 

has a large range outside the Gulf of Mexico, and may have large population sizes as 

indicated by the relatively large number of specimen records. Relative to S. cubensis, 

Deaniaprofundorum (Fig. 2-14) and Etmopterus gracilispinis (Fig. 2-15) are likely at 

increased risk due to hydrocarbon extraction within their ranges. Both species have very 

few specimen records in the Gulf of Mexico (five and four records respectively), 

indicating that the species likely has small population sizes in the area. Furthermore, the 

catch records have a very narrow distribution and are almost all located in the area of 

drilling in the northern Gulf of Mexico (Figs. 2-16 and 2-17) and very near the range of 

oil spilled by the Deepwater Horizon spill (Fig. 2-18). Both species may be vulnerable to 

extirpation.

The large proportion of species which showed an expansion in recognized depth 

range through use of ArcGIS mapping highlights the lack of data available for these 

species and demonstrates the necessity for more studies to determine more accurate 

ranges of chondrichthyans. Accurate ranges must be identified in order to accurately 

assess conservation threats posed to these species. Given the possibility of expanded 

ranges shown here, some species may be at risk from other sources (e.g. oil spills, 

chemical dumping, trawling, and fishing) that were not previously considered to be 

threats.
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These patterns are not unique for chondrichthyans and the threats explained here 

also apply to other deep-sea species. ArcGIS mapping methodology can be used to 

determine ranges of other benthic and demersal fauna and to assess geographically 

identifiable threats to populations of these species. Threat assessment is very important in 

measuring a population or ecosystem’s health and its ability to rebound from human 

disturbance. While healthy populations may be able to rebound from population decrease 

resulting from stressors such as toxin exposure or overfishing, the potential to rebound 

decreases as stress on the population increases. Populations, especially chondrichthyans 

and other long lived deep-sea species, are at increased risk of extirpation or extinction 

when experiencing multiple stressors (such as a combination of overfishing and exposure 

to the chemicals released during hydrocarbon extraction). For these species, close 

population monitoring is pertinent. In light of the Deepwater Horizon oil spill, regulations 

should be put in place to regulate threats (i.e. fishing and trawling) to these species in an 

effort to alleviate the potential for multiple stressors reducing population health. Endemic 

species are of particular concern given their localized range and increased risk of 

extinction after local population decline.

Importance also should be put on monitoring these species due to their potential 

as indicator species. As apex predators, chondrichthyans may show signs of toxic 

accumulation not seen in smaller, shorter-lived species. Through chronic exposure and 

bioaccumulation of toxins from the organisms they feed upon, chondrichthyans may 

show symptoms related to crude oil exposure that are not seen in the epipelagic species 

lower in the food chain that have previously been studied (Wertheimer et al., 2000; 

Schrope, 2011). Symptoms from bioaccumulation are of particular interest given the
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possibility that they may present themselves in humans if the species caught 

commercially are exposed to hydrocarbons from drilling in the Gulf of Mexico. 

Chondrichthyan population declines should not only be monitored to assess overall 

biodiversity and ecosystem health (Robinson, 2009) but also for the potential to 

illuminate the health of the ecosystem after toxic chemical exposure. In essence, 

chondrichthyans may act as a canary in a coal mine- illuminating threats posed to other 

organisms (including humans) before their effects are more catastrophic.

Indicator species may prove important given the recent increase in deep-sea 

hydrocarbon extraction which has unknown effects on the deep-sea communities or the 

chemical released from the wells at such high pressure. Both past and present well 

locations (Fig. 2-16) pose environmental threats to the area. Post drilling surveys have 

demonstrated poor benthic habitat surrounding wells. Furthermore, oil-based mud 

deposited during the process may persist for 5 or more years while benthic damage 

caused by anchoring may remain for more than 14 years (Continental Shelf Associates, 

Inc., 2006).

The shift of platform locations from predominantly in the epipelagic (Fig. 2-16) to 

the majority of current leases being within the meso- and bathypelagic (Fig. 2-17) 

highlights the increasing threats the deep-sea ecosystems. Oil and gas extraction is 

moving into deeper territories and exposing poorly studied deep-sea organisms to new 

threats. The effects are further uncertain because we have no knowledge of the behavior 

and biological effects of crude oil at such high pressures. Without a deeper understanding 

of the deep-sea environments and the organisms therein, we cannot effectively conserve 

them.
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Conclusion:

I have become increasingly aware of the need for a deeper understanding of the 

deep-sea ichthyofauna and the deep-sea environment. There is surprisingly little 

information about the biology and life history traits of most deep-sea species. With such 

sparse information, it is very difficult to accurately assess the types and severity of 

conservation threats which may be posed to these specialized organisms.

Hydrocarbon extraction in the Gulf of Mexico makes this lack of knowledge a 

particularly large problem. Scientists examining the aftermath of the Deewater Horizon 

oil spill have no idea how the oil released will be altered by the high pressures of the deep 

sea, where the oil remains after emulsification by dispersants, and if it is even being 

naturally degraded. The extent of habitat destruction caused by the blowout (as well as 

the more regular drilling activities in the Gulf of Mexico) is unknown, leaving little 

information to assess conservation threats to the area. This issue is compounded by the 

fact that so little is known about the biology, life history, and distribution of many deep- 

sea species. With such large gaps in our knowledge of both the threats and the organisms 

themselves, species and habitats cannot effectively be protected through conservational 

efforts. The work I did in my thesis attempts to classify threats posed to a specific subset 

of deep-sea organisms by deep-sea drilling in the Gulf of Mexico. However, many other 

poorly studied species are likely in jeopardy, and may suffer population reduction, 

extirpation, and/or extinction as a result of the current problems they face. Without 

knowing exactly how oil released during the drilling process and well-head blowouts are 

impacting the environment, we cannot accurately determine which species are most 

affected and cannot therefore work on protecting them.
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I focus on oil and gas drilling as a major threat in my thesis because of the high 

incidence of drilling in the northern Gulf of Mexico. However, this is not the only area in 

the world where deep-sea species are being put at risk by deep-sea hydrocarbon 

extraction, and oil and gas drilling is by no means the only threat that affects marine 

organisms. There are numerous threats that are as detrimental, if  not more threatening 

and have likewise unknown consequences. The deep-sea has commonly been exploited 

both as a place to dump pollutants (trash, toxic waste, etc.) and as a place of resource 

acquisition (hydrocarbons, minerals, etc.) when these activities have been questioned or 

curtailed in nearshore coastal ecosystems (Rarmirez-Llodra et al., 2011). The philosophy 

of “out of sight, out of mind” seems to be applied quite literally to the deep sea as many 

less ethical practices are easily continued in the depths of the oceans where damage can 

slip by unnoticed for quite some time. We cannot continue to exploit the ocean just 

because the immediate consequences of our actions are not as visible as they would be in 

a terrestrial ecosystem. I believe we must start acting under the precautionary principle to 

protect these fragile and valuable deep-sea ecosystems, working to prevent exploitation 

before it happens rather than trying to put a band-aid over the gaping wounds we create in 

the environment.

Humanity has already severely damaged marine ecosystems, causing extinction of 

some species, such as the Caribbean monk seal, and endangering countless others.

Coastal marine ecosystems, like the extremely important mangrove habitats, have been 

destroyed for shrimp farming and hotel construction. Whereas coral reefs have been 

devastated by pollution, eutrophication, bottom trawling and direct physical damage. It is 

heart wrenching for me to hear of the destruction caused to oceanic ecosystems I find so
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beautiful and to the marine organisms that enchant me. Before this intellectual journey 

into the deep-sea, I was unaware that these miraculous, alien-like, poorly-understood 

organisms were already threatened by mankind. It seems unconscionable to me that we 

have so substantially damaged the deep-sea environment before we have taken the time 

to realize the full extent of the wonder that nature has presented to us.

Despite the tragedy of destruction in the deep-sea, I remain hopeful. Our planet 

has proven time and time again that when left to its own devices, repairs can be made. If 

we act now to end the dumping of pollutants into the ocean, look for sustainable fishing 

options, and search for clean energy sources, the ecosystem likely will be able to rebound 

from the damage that has been caused. This hope is what fuels my desire to continue my 

explorations of the ocean and after my work on this thesis, of the deep-sea. I firmly 

believe that knowledge is the key to putting an end to the destruction. Only through 

knowledge can we discover the true extent of the damage caused and the organisms 

harmed and then act to correct it. I realize that change will be slow, but I hope that by 

researching organisms and illuminating threats posed to these species, policies can be 

made which will protect these organisms that I find so fascinating.

It is with this goal in mind that I continue with my research on the deep-sea. 

While I end here with the work specifically on the geographic and depth distribution of 

the deep-sea ichthyofauna of the Gulf of Mexico and the conservation threats presented 

in this geographical region, I will move on to researching the biology of deep-sea fish in 

a Master’s program, with the intention of uncovering some of the many questions left 

unanswered about these incredible fish. I hope that this new journey will lead me down
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the road of conservation once again, even if that is expressed through sharing my 

research with others.

I firmly believe education is the most effective mode of conservation at our 

disposal. Only when people are made aware of the wrongs in the world can they act to 

change them. The more I learn about the ocean, the more beauty I find. I hope that by 

sharing my enthusiasm about the ocean with others they will also learn to appreciate the 

beauty in the creatures and habitats that lie beneath the waves, and through this 

appreciation, can join me in the journey of trying to protect the seas. But only by sharing 

my knowledge and educating the public can I even begin to redeem the world, “all of it, 

just as it is” (Dillard, 1999).
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Figure 2-1: Litter occurrence in the Mississippi Trough in the Gulf of Mexico (Ramirez- 
Llodra et al., 2011: Fig. 3). Trawls were dominated by plastic, aluminum cans, discarded 
fishing gear and wood in trawls from 74 of the tested sites (n = 34).
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Figure 2-2: Chondrichthyan species richness along 100 m intervals in the Gulf of 
Mexico. Red bars denote the total number of chondrychthyan species at each depth 
interval. Pie charts below the X axis show the fish species composition at each respective 
depth interval. Blue-gray shading shows traditional oceanic zonation of the Epipelagic, 
Mesopelagic, and Bathypelagic. Dashed lines show boundaries between upper/lower 
oceanic zones and enclose pie charts that demonstrate the taxonomic composition for 
each respective zone.
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Figure 2-3: Bathymetry of the Gulf of Mexico. Highlighted blue lines show the 200 m 
contour (closer to shore) and the 1000 m contour (farther from shore). Lightest grey 
contours represent 0 -  100 m depths in 10 m intervals, medium grey contours represent 
200 -  100 m depths in 100 m intervals, and darkest grey contours represent 1000 -  3500 
m depths in 500 m intervals. Scale shown in kilometers.
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Figure 2-4: Range comparisons between maximum depths obtained using the ArcGIS 
mapping methodology and those (A) documented in McEachran & Fecchelm (1998) and 
(B) Fishbase.org (2013). Red line shows a 1:1 ratio for the depths. Blue X ’s denote 
chondrichthyan species. Data points that fall above the 1:1 line show general increases in 
maximum depths from the documented sources using ArcGIS mapping
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Figure 2-5: Distribution of Rajella fuliginea in the Gulf of Mexico. Same scale as shown 
in Fig. 2-3.
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Figure 2-6: Distribution of Anacanthobatis folirostris in the Gulf of Mexico. Same scale 
as shown in Fig. 2-3.
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Figure 2-7: Distribution of Dipturus oregoni in the Gulf of Mexico. Same scale as shown 
in Fig. 2-3.
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Figure 2-8: Distribution map of Raja texana in the Gulf of Mexico. Same scale as shown 
in Fig. 2-3.
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Figure 2-9: Distribution of Dipturus olseni in the Gulf of Mexico. Same scale as shown 
in Fig. 2-3.
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Figure 2-10: Distribution of Fenestrajaplutonia in the Gulf of Mexico. Same scale as 
shown in Fig. 2-3.
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Figure 2-11: Distribution of Leucoraja lentiginosa in the Gulf of Mexico. Same scale as 
shown in Fig. 2-3.
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Figure 2-12: Distribution of Rajella purpuriventralis in the Gulf of Mexico. Same scale 
as shown in Fig. 2-3.
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Figure 2-13: Distribution of Squalus cubensis in the Gulf of Mexico. Same scale as 
shown in Fig. 2-3.
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Figure 2-14: Distribution of Deaniaprofundorum in the Gulf of Mexico. Same scale as 
shown in Fig. 2-3.
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Figure 2-15: Distribution of Etmopterus gracilispinis in the Gulf of Mexico. Same scale 
as shown in Fig. 2-3.
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Figure 2-16: Location of oil and gas platforms in the Gulf of Mexico as of March 2013. 
Data provided by Bureau of Ocean Energy Management. All platforms in the BOEM’s 
database are included in the map, active and inactive platforms. Same scale as shown in 
Fig. 2-3.
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Figure 2-17: Active oil and gas drilling leases in the Gulf of Mexico as of March 2013. 
Information provided by Bureau of Ocean Energy Management. Same scale as shown in 
Fig. 2-3.
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Figure 2-18: Surface area and deepwater areas affected by the oil from the Deep Water 
Horizon oil spill. Orange diamond indicates the location of the Horizon well. Same scale 
as shown in Fig. 2-3. Basemap source: ESRI
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Table 2-1: Comparisons of species ranges from documented sources (McEachran & Fecchelm, 1998; Fishbase.org, 2013) to 
those determined using GBIF specimen record catch locations overlaid on a bathymetric map in ArcGIS. Purple highlights 
denote a decrease in the mapped depth when compared to both documented depths while red highlights indicate depth 
increases compared to both documented depths. Blanks occur when there is no data available.

McEachran & 
Fecchelm (1998)

Fishbase.org (2013) ArcM apping Data

Species Min max Range min m ax Range min m ax Range average # o f 
records

Centroscymnus cryptacanthus 400 1164 764 400 1200 800 700 900 200 775 2

Deania profundorum 275 1785 1510 205 1800 1595 300 1500 1200 608.33 6
Etmopterus bigelowi 110 1000 890 163 1000 837 200 900 700 506.67 45

Etmopterus gracilispinis 100 1000 900 70 1000 930 10 1500 1490 730.71 7
Etmopterus schultzi 348 732 384 200 1000 800
Scymnodon squamulosus 550 1450 900 0 2200 2200 500 900 400 766 .67 3
Squalus cubensis 60 380 320 60 400 340 50 2500 2450 452.27 91
Squalus mitsukurii 330 394 64 29 600 571 300 800 500 550 2

Rhinobatos lentiginosus 0 18 18 0 30 30 0 1000 1000 42.84 58
Anacanthobatis folirostris 300 512 212 425 472 47 60 1500 1440 432.5 114

Anacanthobatis longirostris 520 1052 532 530 1052 522 10 1500 1490 877.5 4
Breviraja colesi 220 415 195 366 522 156

Breviraja spinosa 366 671 305 323 675 352 20 1000 980 555 .45 12

Curiraja poeyi 355 870 515 385 870 485 500 700 200 600 1
Curiraja rugosa 366 915 549 366 1007 641 20 3000 2980 730.98 33

Dactylobatus armatus 338 685 347 300 900 600 0
Dactylobatus clarki 366 915 549 475 1000 525 400 2000 1600 720 .59 22
Dipturus bullisi 183 549 366 200 600 400 100 700 600 407.41 14



Dipturus garricki 275 476 201 275 476 201 200 500 300 400 5
Dipturus olseni 55 384 329 91 238 147 20 1500 1480 178.59 71

Dipturus oregoni 475 1079 604 369 468 99 300 1500 1200 687.5 4
Dipturus teevani 320 732 412 320 940 620 5 700 695 436.59 24

Fenestraja ishiyamai 503 950 447 400 1000 600 900 1000 100 950 3
Fenestraja plutonia 293 1024 731 290 750 460 70 1500 1430 551.71 56
Fenestraja sinusmexicanus 59 1096 1037 311 311 0

Leucoraja garmani 66 366 300 55 530 475 10 700 690 262 .35 45
Leucoraja lentiginosa 53 588 535 53 457 404 30 3500 3470 335.57 56

Pseudoraja fischeri 412 576 164 412 412 0 300 800 500 393.75 8
Raja ackleyi 32 384 352 45 45 40 60 20 50 3

Raja eglanteria 0 119 119 0 0 500 500 74.731 53
Raja texana 15 110 95 183 183 0 3500 3500 98.756 94
Rajella fuliginea 731 1280 549 732 824 92 30 3000 2970 954.16 40

Rajella purpuriventralis 732 2010 1278 922 0 3000 3000 1317.2 16
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APPENDIX I

Distribution maps of all Rajiformes and Squaliformes examined in this study in 
alphabetical order. The genera Centroscymnus, Deania, Etmopterus, Scymnodon, and 
Squalus belong to the order Squaliformes. All other included taxa are in Rajiformes.

Anacanthobatis longirostris Centroscymnus cryptacanthus

Breviraja colesi Curiraja poeyi
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Curiraja rugosa

Dactylobatus armatus

Dactylobatus clarki

Dipturus bullisi

Dipturus garricki

Dipturus olseni
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Dipturus oregoni

Etmopterus bigelowi

Etmopterus gracilispinis

Fenestraja ishiyamai
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Fenestraja plutonia Leucoraja lentiginosa

Fenestraja sinusmexicanus Pseudoraja fischeri

Leucoraja garmani Raja ackleyi
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Raja eglanteria Rajella purpuriventralis

Raja texana Rhinobatos lentiginosus

Rajella fuliginea Scymnodon squamulosus
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Squalus cubensis Squalus mitsukurii
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