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Chapter One: Background 
 

 Just about everyone has played the game rock, paper, scissors.  While this 

childhood game seems simple enough, there are layers of underlying theoretical 

complexity that transform this game into the epitome of game theory: “the study of the 

ways in which strategic interactions among rational players produce outcomes with 

respect to the preferences (or utilities) of those players.” 1 This paper will explain the 

basic concepts of game theory, focusing on the subtleties and refinements of the Nash 

Equilibrium, a specific solution concept, and its application to the housing market 

collapse of 2007.   

 The Nash Equilibrium is named for John Nash who was born in Bluefield, West 

Virginia on June 13, 1928.  Nash received his bachelor’s of science and his master’s 

degrees in mathematics from Carnegie Mellon University, previously Carnegie Tech., 

and received his doctorate from Princeton University. While at Carnegie Mellon, Nash 

took a class on International Economics which led him to write the paper “The 

Bargaining Problem.”2  This idea, coupled with the existing work by mathematicians 

John von Neumann and Oskar Morgenstern, led to his interest in game theory while at 

Princeton.3  At age 21, Nash wrote his dissertation on game theory, discovering a 

                                                
1 Ross, Don. “Game Theory.” Stanford Encyclopedia of Philosophy. 3/10/06. 
http://plato.stanford.edu/entries/game-theory/ 
2 Nash, J.F. (1950). “The Bargaining Problem.” Econometrica 18, 155-162. 
3 Nash, John. “Autobiography.” The Nobel Foundation. 1994 NobelPrize.org 
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universal solution concept for all non-cooperative games4 termed “The Nash 

Equilibrium.”  This prodigious discovery won Nash the Nobel Prize in Economics in 

1994 when he was 66 years old.5  Today the Nash Equilibrium is considered “maybe the 

most important solution concept in game theory,” and is used extensively in economics.6  

A few economic examples that utilize game theory include bargaining, auctioning, the 

utilization and distribution of materials, and other scenarios in which two or more parties 

are in conflict.  Consider the specific example of an entrepreneur deciding to enter a 

monopolistic market.  He must make his decision whether or not to enter this market 

based not only his own reward but also the decisions of his competitor.  If his competitor 

chooses to fight him, then the entrepreneur might actually lose more than he could gain 

by entering the market, thereby deterring him from doing so.  The solution in a scenario 

where one person’s decision is based on another’s is an example of the Nash Equilibrium. 

Game theory is based on the study of rational players interacting.  The classical 

view of a rational player is someone who “maximizes his/her objective functions given 

his/her beliefs about the environment.”7  In essence, this means a player is continuously 

striving to achieve the best possible outcome for himself.  An objective function, also 

known as an utility function in economics, quantitatively describes a rational decision 

maker’s preferences for one outcome over another.  The existence of the utility function 

is based upon the expected utility maximization theorem which claims that for every 

                                                
4 Term to be explained in future chapter.  
5 “John F. Nash, Nobel Prize Winner in Econometric Sciences, at HEC Montreal.”  HEC Montreal 
Headlines. 5/16/05 http://www2.hec.ca/en/headlines/2005/2005015_en.html 
6 Myerson, Roger. Game Theory Analysis of Conflict. pg. 105. Harvard University Press, Mass. 1991. 
7 Eichberger, Jeurgen. Game Theory for Economists. pg. 1. Academic Press, New York. 1993.  
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possible outcome, it is possible to assign utility numbers to that outcome which enables 

the player to pick the outcome with the highest utility number maximizing his utility 

function. According to Roger Myerson, author of Game Theory Analysis of Conflict, “any 

rational decision maker’s behavior should be describable by a utility function . . . and a 

subjective probability function which characterizes his beliefs about all relevant unknown 

factors.”8  Examples of relevant unknown factors include the decisions of the other 

players, the characteristics of those players, and their own personal preferences.   

Some economists believe that a player’s drive to maximize his utility function 

ultimately makes him selfish.  This concept is debated, as there are many examples of 

individuals who choose to act selflessly.  However, some theorize that selfless individuals 

simply place a greater value or utility on the happiness of others, so ultimately, that 

individual is still trying to maximize his own objective function.  However, work by 

Nobel Prize Winner Elinor Ostrom and other economists in the field suggest that people 

are more prone to collective action, placing the needs of the community above their own.  

All sides of the debate must be considered when analyzing any economic situation.  For 

example, in economics, utility is a person’s preference for one outcome over another.  By 

analyzing utility, game theory is trying to place numerical values on human preferences, 

which can prove to be a difficult task.  This is, however, exactly what game theory strives 

to do: to model behavior so that it can be analyzed quantitatively rather than qualitatively.  

In addition to the assumption of a rational player, game theory also assumes the 

player is intelligent which means “he knows everything that we [those educated in game 

                                                
8 Myerson, Roger. Game Theory Analysis of Conflict. pg. 5. Harvard University Press, Mass. 1991. 
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theory] know about the game and he can make any inferences about the situation that we 

can make.”9  In essence, the subtleties of the various types of games are not lost on the 

player, and he can make educated decisions.  An economic example in which the players 

are assumed rational but not intelligent is price theory.  Experts in economic price theory 

assume the players are rational, that they will follow the rules of demand by buying the 

cheaper of products deemed identical.  However, the experts do not assume that the 

consuming public understands the deeper underlying laws of supply and demand and the 

consequences these laws produce on the surrounding markets.  This example shows that 

when certain assumptions regarding rational and intelligent players are not met, the 

scenario, even if it is an economic situation that deals with conflict, cannot be analyzed 

with game theory.   

The assumption of intelligence has serious implications, especially when much in 

economics deals with the general public.  First, we must understand that the underlying 

purpose of game theory is to analyze the game at hand and then use this information to 

predict the path of play for future players and scenarios.  If analysts predict how a 

specific game will unfold, then businesses and public policy makers can use the resulting 

models to help determine the most probable outcome.  However, if these models are 

based upon this assumption of intelligence, this means that the average human being who 

does not understand the rules of game theory might react differently than the model 

predicts.  This would obviously cause problems for those relying on the accuracy of the 

model.  So, when dealing with game theoretic analysis, it is important to remember the 

                                                
9 Myerson, Roger. Game Theory Analysis of Conflict. pg. 4. Harvard University Press, Mass. 1991. 
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assumptions upon which the analysis is based.  Outcomes may stray far from the 

predictions if the assumptions do not hold.  Therefore, game theory has limited 

applicability. 

 The majority of the definitions necessary to describe game theory come from 

Eichberger’s Game Theory for Economists (unless specifically stated otherwise).  First, 

we need the tools to describe and analyze the games and their characteristics.  A basic 

game can be represented in three main forms.  The first and most explicit is called the 

extensive form in which all the necessary information about the game is shared.  This 

includes the sequence of moves, most often illustrated by a game tree, also called a 

decision tree.  For example, consider the game of rock, paper, scissors.  The first player 

has the option of playing any of these three moves.  This is illustrated by the original 

node, or possible game situation as seen by a dot in the game tree; the original node is 

called the root node.10 The three branches represent each possible action, or move from 

node to node.  Player two then also can choose three varying actions from the current 

existing node arrived at by player one.  Obviously, while playing the real game, the 

players make their decisions simultaneously, and in most game-theoretic analyses, we 

assume simultaneous decision making.  However, the game tree below appears as if the 

decisions are made sequentially, which we know is not the case for this particular game.  

Yet, the game tree allows us to see every possible combination of decisions that can be 

made by all players.  Below is the game tree for the game rock, paper, scissors.  

 

                                                
10 Myerson, Roger. Game Theory Analysis of Conflict. pg. 38. Harvard University Press, Mass. 1991. 
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Figure 1: Game Tree for one round of Rock, Paper, Scissors 

.  

Not only does the game tree show the various sequences of possible actions and 

nodes, but it also shows the possible payoff function for each outcome or terminal node, 

the final node where the game ends and no further actions take place.  Note that every 

node is either a terminal node, a chance node, or a decision node.  A chance node is 

“where the next branch in the path of play would be determined by some random 

mechanism, according to the probabilities that are shown on the branches that follow the 

chance node.”11 There are no chance nodes in the game of rock paper scissors, but 

imagine a game where if a player draws a red card and then he has to draw another card, 

but if he draws a black card he does not.  This is an example of a chance node because 

                                                
11 Myerson, Roger. Game Theory Analysis of Conflict. pg. 39. Harvard University Press, Mass. 1991. 



 
 

7 

the next action in the path of play is decided by a random mechanism as opposed to a 

decision made by a player.    

Decision nodes, on the other hand, represent decisions made by the players as to 

the next action in the path of player.  For example, returning to the rock, paper, scissors 

example, each player decides which symbol to play, so each node in this game tree is a 

decision node, except for the final terminal nodes.  Let it be clear that not all nodes 

illustrate decision opportunities for both players.  Some nodes, deemed decision nodes of 

a player may represent a decision which can only be made by one specific player.  An 

example of this can be seen on the game tree at node 1.  This node is a decision node for 

player one only, while node 2 is a decision node for player two only.  By differentiating 

between the two, one can analyze sequences of moves more accurately.   

The payoff function associates each terminal node with a vector of real numbers 

representing the gains or losses assumed by each player at that terminal node.  For 

example, if player one chooses to play “rock,” which sends her from node 1 to node 2, 

and then player two chooses to play “scissors” which moves him from node 2 to terminal 

node 3, the appropriate payoff function is then (1, -1), where player one wins one point 

and player two loses one point.  Through the use of a game tree, all the possible “stages 

of the interaction, the conditions under which the player has to move, the information a 

[player] holds at different stages, and the motivation of the [player]”12 is apparent, which 

is required for a game in the extended form.  The information a player holds at different 

stages of the game is called an information set, or the set of nodes that are 

                                                
12 Eichberger, Jeurgen. Game Theory for Economists. pg. 2 Academic Press, New York. 1993. 
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indistinguishable.  For example, node 2 and node 4 are in the same information set 

because player two would not be able to distinguish between the two nodes if he were 

unaware of player one’s previous move.   

The next common form for representing games is the strategic form or normal 

form which is far sparser that the original extended form.  In the strategic form, only 

possible strategies, the set of players, and payoff functions are provided.   The most 

common way to present this information is with a payoff matrix. 

                  Figure 2: Payoff Matrix for Rock, Paper, Scissors 

  Player Two 

Player 
One 

  Rock Paper Scissors 
Rock  (0,0) (-1,1) (1,-1) 
Paper (1,-1) (0,0) (-1,1) 
Scissors (-1,1) (1,-1) (0,0) 

 

In this form, much of the information regarding the sequence of moves is left out, 

emphasizing a focus on strategy as opposed to the game’s dynamic structure of sequential 

moves.  While the moves of rock, paper, scissors do happen simultaneously in real life, 

the game tree from the extensive form shows there is still a sequence of moves that can 

occur, and this information is left out of the strategic form.  Because of this, the players 

are forced to analyze only the information given to them, i.e., the payoff functions and 

the appropriate strategies that will result in the most favorable payoff.   

 Within these two main games forms, there are many other types of games, each 

with varying characteristics.  First, there are games with complete information where 

every aspect, including the number of players, the set of all nodes, the set of all actions, 

all information sets, and all payoffs, is considered “common knowledge,” meaning that 
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all of the players are fully informed of every aspect, and all the players are aware that the 

other players are also fully informed.  This contrasts with a game with incomplete 

information where at least one element of the game is unknown.  It is also possible for 

players to have private information, meaning some information is not common 

knowledge amongst all of the players.13  There are also games with perfect information in 

which each player is informed of all previous moves made by all players.  This is in 

contrast to games with imperfect information in which there is a level of uncertainty 

concerning previous moves.  Perfect versus imperfect information is deemed a “structural 

property,” or in other words a style of play.  Complete versus incomplete information is 

an “informational characteristic” of the game displaying how much initial information is 

known by the players and has nothing to do with the style of play.   

 In order to fully describe game theory, we must also understand strategies.  A 

strategy “is a complete plan for playing the game.  In this context, ‘complete’ means that 

for any contingency the plan must specify what the player would do.”14  The first type of 

strategy is a pure strategy which describes a unique action that will be taken if a specific 

information set is reached.  A pure strategy combination is a list of pure strategies for all 

of the individuals in the game at that specific information set.  Now compare a pure 

strategy to a mixed strategy in which “a player chooses a random device for selecting 

which pure strategy to play.”15  Basically, the player is assigning a probability 

distribution to the pure strategy at a given information set so the player can make an 
                                                
13 Myerson, Roger. Game Theory Analysis of Conflict. Pg.64. Harvard University Press, Mass. 1991. 
14 Eichberger, Jeurgen. Game Theory for Economists. pg. 17 Academic Press, New York. 1993. 
15 Eichberger, Jeurgen. Game Theory for Economists. pg. 20 Academic Press, New York. 1993. 
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educated guess about which strategy to play depending on the probability.  This is 

necessary when information regarding the previous player’s moves is unavailable, in 

other words a game with imperfect information.  If the player cannot distinguish his 

current node, he cannot choose which strategy would result in the best outcome, so he 

assigns a probability distribution to the pure strategies and uses that to make his decision.  

For example, in rock, paper, scissors, if player two cannot distinguish his current node, he 

could utilize a previously determined probability distribution assigned to the original 

actions of player one to help him determine his location.  So, assume player one has 

historically played rock 65% of the time.  This prompts player two to utilize this 

information to make an educated guess about his node location, and in turn play paper, as 

he is 65% certain that he will win with this strategy.     

The third type of strategy is a behavior strategy in which the player randomly 

chooses which strategy to use at each information set.  Unlike mixed strategies, a 

probability function is not assigned to the individual decision nodes but instead 

probabilities are assigned to the terminal nodes.  Returning to the example of rock, paper, 

scissors, if no previously determined probability distribution existed as was the case in 

the mixed strategies example, he could instead guess his location randomly.  This 

inherently places a uniform probability distribution at his final destination, or terminal 

node, as there will be a certain probability he will end there.  For example, if no previous 

data is collected about player one’s typical moves, player two guesses randomly that 

player one played scissors.  This means, player two will play rock, which creates a 

resulting 1/3 probability that he is indeed at that resulting terminal node.  Due to the lack 
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of historical data, the player switched from a utilization of mixed strategies to a uniform 

probability distribution placed upon the terminal nodes.  

 Understanding the Nash Equilibrium requires an understanding of cooperative 

versus noncooperative game theory.  Cooperative game theory deals with groups of 

players who may share joint outcomes.  Noncooperative games theory focuses instead on 

the strategies that the individual players will choose.  We will focus mainly on 

noncooperative game theory as that is the basis for the Nash Equilibrium.   

 Understanding game equilibrium requires a discussion of solutions to games.  

Each solution is dependant upon which strategies are played, and there are many ways to 

go about choosing which particular pure strategy a player should play.  One of these is to 

determine a player’s maximin value.  This means choosing the least “worst” outcome that 

could befall the player, in other words “cutting one’s losses.”  Consider the following 

payoff matrix.   

Figure 3: Example Payoff Matrix 

  Player Two 
   C D 

Player 
One 

A 4,0 -2,1 
B 2,0 1,2 

  

Player one has the choice to play either strategy A or strategy B.  Strategy A has the 

potential for the maximum payoff of 4 units; however, it also has the potential for the 

minimum payoff of -2 units.  So, in order to remain safe and lose the least amount 

possible, player one will choose strategy B.  Then, regardless of player two’s strategy 

choice, player one will earn at least one unit.  This guarantees player one a minimal 
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payoff level or the maximin value, also termed the security level.  What is unique about 

this type of decision making is that it does not require the knowledge of the opponent’s 

payoff.  The player can make his own decision by simply picking his own best worst-case 

scenario.   

 Players may also decide which strategy to use depending on the opponent’s 

decision.  The player uses rational beliefs about the opponent’s strategy to make his own.  

Obviously, this method does not prompt immediate action, as each player is dependent 

upon the opponent’s decision.  The game also requires that all of the payoff functions are 

common knowledge.  Such a strategy combination that both optimizes the payoffs and is 

consistent with rational expectations concerning an opponent’s strategy is termed an 

equilibrium of a game.  Let’s revisit the example payoff matrix.   

Figure 4: Example Payoff Matrix 

  Player Two 
   C D 

Player 
One 

A 4,0 -2,1 
B 2,0 1,2 

 

If player one plays strategy B first, then player two should play strategy D since his 

resulting outcome would be 2.  If he had chosen strategy C, his outcome would have been 

0.  If player two chooses strategy D first, then player one should play strategy B resulting 

in 2.  If she had chosen strategy A, her resulting outcome would have been 0.  So the 

equilibrium of this particular game is (B, D) because neither player has an incentive to 

deviate from this outcome.  There can be more than one equilibrium per game, but in this 

example, (B, D) is the only equilibrium.   
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In order to demonstrate that this particular game has only one equilibrium (B, D), 

let’s test to see if outcome (A, C) is an equilibrium.  Assume the game begins by player 

two choosing strategy C.  In response, player one will choose strategy A, as that decision 

yields the maximum payout of 4 for her as opposed to only receiving 2 by choosing 

strategy B.  At this point we see the “equilibrium” holds in one direction, but let’s look at 

the other direction.  If player one had chosen A originally, then player two would play 

strategy D, as that yields the maximum payout of 1 for him as opposed to only receiving 

0 by choosing strategy C.  So, because player two has an incentive to deviate from (A, C) 

by playing strategy D instead, (A, C) is not an equilibrium.  We can test that the two 

remaining outcomes are not equilibriums in a similar manner.   

The diagram below is a visual representation of the game with arrows.   

Figure 5: Diagram of Equilibrium 

 

 So, the only true equilibrium (B, D) can be seen in the above diagram by the double 

arrows between the two strategies.  Regardless if player one had originally chosen 

strategy B or player two had originally chosen strategy D, the opponent’s decision 

outcome would have been the same.  That is how we know the strategy combination     
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(B, D) is an equilibrium, as the players get locked into those double arrows and have no 

incentive to choose otherwise.  Outcomes involving strategy C for example, are not an 

equilibrium because the players have an incentive to deviate, which is represented by the 

arrows moving them elsewhere. There are games in existence in which there is no 

equilibrium when dealing with only pure strategies, and this is when mixed strategies 

become crucial.  There is a theorem by von Neumann which states “A game with finitely 

many strategies has an equilibrium in mixed strategies,”16 meaning that any game can 

have an equilibrium if the pure strategies are modified into mixed strategies.   

 Another method to finding equilibriums is through dominant strategies.  This 

concept is best understood through an example.  Consider the following payoff matrix.  

Figure 6: Example Payoff Matrix 

  Player Two 
   C D 

Player 
One 

A 1,0 0,1 
B 2,0 1,2 

 

If player one plays strategy A, then it would be in player two’s best interest to play 

strategy D.  If player one plays strategy B, then it would still be in player two’s best 

interest to again play strategy D.  By the same token, if player two plays strategy C, it is 

in player one’s best interest to play strategy B.  If player two plays strategy D, again it is 

in player one’s best interest to play strategy B.  With this in mind, player one should 

choose to automatically play strategy B while player two should automatically choose to 

play strategy D.  This is because strategy D dominates strategy C, meaning every value in 

                                                
16 Von Neumann, J. (1928) Zur Theories der Gesellchaftsspiele. Mathematische Annalen 100, 295-320.  
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strategy D is larger than its corresponding value in strategy C for player two.  With the 

same logic, strategy B dominates strategy A.  This is another way to determine which 

strategy to employ.  It can be said with some confidence that a player will always choose 

to play a dominant strategy while no player willingly chooses to play a dominated 

strategy.  This results from the initial game theory assumption that players make rational 

decisions and are always trying to maximize their potential outcomes.   

 One interesting flaw in using dominant strategies can be seen in an analysis of the 

Prisoner’s Dilemma, one of the most notorious games used in game theory.  Both the 

Prisoner’s Dilemma game and the Battle of the Sexes game, which will be discussed in 

detail in a later chapter, are taken and modified from Luce and Raiffa’s work Games and 

Decisions from 1957.  In the Prisoner’s Dilemma, two convicts are being held separately 

for a crime one of them committed.  The guard, in an effort to make the criminals 

confess, strikes the same deal with both convicts.  They can either choose to not confess 

(N) or confess (C), and the payoff matrix in Figure 6 shows the number of years either 

added to or subtracted from the sentence.  Remember, positive outcomes are always 

represented by a positive number.  For example, if prisoner one chooses to confess and 

player two chooses to not confess, player one will have three years subtracted from his 

sentence (a positive outcome, so it is represented by a positive number) while player two 

will have an additional year added to his sentence.  Below is the complete payoff matrix 

for the prisoner’s dilemma.  
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Figure 7: Payoff Matrix for Prisoner’s Dilemma 

  Prisoner Two 
   N C 

Prisoner 
One 

N 1,1 -1,3 
C 3,-1 0,0 

 

It is obvious that the dominant strategy combination is (C, C), meaning player one 

confesses and player two confesses.  However, this equilibrium is in fact not optimal, as 

the strategy combination (N, N) would actually be more beneficial for both prisoners.  

This shows that in some cases rational behavior does not always lead to the optimal 

outcome.  We now have a solid understanding of basic game theory and can begin an in 

depth look into the Nash Equilibrium specifically.   
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Chapter Two: The Nash Equilibrium 

 To begin our discussion of the Nash Equilibrium, a solution where no one has an 

incentive to deviate, let’s first look at the following example: The Battle of the Sexes.  In 

this game, a wife and husband are trying to decide what they will do for their evening 

entertainment.  The wife prefers to go to the ballet, while the husband prefers to go to a 

football game.  However, instead of going separate ways, both would prefer to spend the 

evening together than to spend it apart.  Below is the payoff matrix for the game.  

Figure 8: Payoff Matrix for Battle of the Sexes 

  Husband 
   F B 

Wife 
F 1,2 0,0 
B .5, .5 2,1 

 

First, notice that there is no dominant strategy for either the wife or the husband. 

We can see this by comparing all of a player’s strategies to one another.  For the wife, 

going to the football game will give her either a 1 or 0 payoff while going to the ballet 

will give her either a .5 or a 2 payoff.  Since 1 is greater than .5 (the payoffs when the 

husband chooses to go to the football game), we begin by assuming that going to the 

football game is the dominant strategy for the wife.  For this to hold true, the wife’s 

payoff for going to the football game must also be greater than the payoff for going to the 

ballet when the husband chooses to go to the ballet.  However, we can see than this is not 

the case, as 0 is not greater than 2.  This means our assumption is false and going to the 
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football game is not a dominant strategy for the wife.  In a similar manner, we can check 

that none of the other strategies are dominant for either the wife or the husband. 

Also, notice that if both the wife and the husband reached their solutions by 

determining their maximin value, the wife would be going to the ballet earning at 

minimum .5 while the husband would go to the football game as his maximin value is 

also .5.  This method of choosing a strategy by the players’ maximin value results in the 

couple choosing a solution that is not optimal (.5, .5), when both (1, 2) and (2, 1) would 

be more beneficial outcomes for both the wife and husband.  Instead, the couple should 

determine their solution by reacting to the other spouse’s decision.  This is, in essence, 

the Nash Equilibrium: “A strategy combination in which each player plays a best 

response to the opponent’s behavior.”17  In this example, there are two Nash Equilibria, 

(F, F), meaning the husband chooses to go the football game and his wife follows him, or 

(B, B) meaning the wife chooses to go to the ballet and her husband follows her.   

 One problematic characteristic of the Nash Equilibrium is that at times it may 

cause dominated strategies to be played.  Consider the following example.  

Figure 9: Example Payoff Matrix 

  Player 2 
  D E F 

Player 1 
A 1,1 0,1 0,1 
B 0,0 0,1 1,0 
C 1,0 0,0 1,0 

 

                                                
17 Eichberger, Jeurgen. Game Theory for Economists. pg. 84 Academic Press, New York. 1993. 
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It is clear that (A, D) is the only Nash Equilibrium of the game.  However, when we use 

the dominant strategies method revisited in the previous wife/husband example we see 

that for player 1, strategy C dominates strategies A and B, while for player 2, strategy E 

dominates strategies D and F.  This means the resulting solution, or final outcome, is (C, 

E), or (0, 0), which is obviously not the optimal solution of (A, D) or (1, 1).   

 One of the benefits of the Nash Equilibrium is that it is widely applicable to a 

large set of games.  The Nash Equilibrium is a generalization of dominant strategy 

equilibrium.  This means that any dominant strategy solution is a Nash Equilibrium, but 

not every Nash Equilibrium is a dominant strategy solution.  This relationship makes the 

Nash Equilibrium widely applicable because many games do not have a dominant 

strategy, but they do have a Nash Equilibrium.  However, some games exist that still do 

not have a Nash Equilibrium at all, such as rock, paper, scissors.  If we return to the 

game’s payoff matrix, we see that there is no equilibrium in pure strategies, as at every 

solution, one of the players has an incentive to deviate to another solution for an 

increased payoff.   

Figure 10: Payoff Matrix for Rock, Paper, Scissors 

  Player Two 

Player 
One 

  Rock Paper Scissors 
Rock (0,0) (-1,1) (1,-1) 
Paper (1,-1) (0,0) (-1,1) 
Scissors (-1,1) (1,-1) (0,0) 

 

A theorem exists that states the properties required for a game to have at least one Nash 

Equilibrium: 1) “the strategy set of each [player] is a nonempty compact and convex 

subset of Euclidean space” and 2) “the payoff function is a continuous function that is 
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quasi-concave in a player’s own strategy.”18  For a more mathematical discussion of this 

theorem, please reference Eichberger.  Also, while I have demonstrated a concrete 

example of a convex set below, an example of a compact set is difficult to demonstrate 

without the necessary mathematical tools; please reference Stephen Abbott’s 

Understanding Analysis pg. 84 for a clearer understanding of this concept.   

 As demonstrated earlier, the game rock, paper, scissors does not have a Nash 

Equilibrium.  This is because the game has a finite number of pure strategies and “games 

with finite pure strategy sets lack convexity of strategy sets and quasi-concavity of payoff 

functions,”19 which is necessary for Nash Equilibrium (see previous paragraph).  To 

demonstrate how a set can lack convexity, consider the economic example of a consumer 

deciding which type of fruit to buy.  The consumer has a son who only likes grapefruit 

and a daughter who only likes tangerines, and the consumer must choose only one fruit.  

However, the grocery store is only selling tangelos, a hybrid fruit which is 50% grapefruit 

50% tangerine, on this particular day.  Ideally, the consumer wants to mix her children’s 

preferences.  But she is now stuck because she is locked in to either buying grapefruit or 

tangerines, or in other words the set of fruit which includes only grapefruit and tangerines 

lacks convexity.  If instead the set of fruit included grapefruit, tangerines, and every 

possible combination of the two fruits, then the set would be convex.   

When the pure strategies are converted to mixed strategies, these games do satisfy 

the conditions necessary.  Remember von Neumann’s theorem “A game with finitely 

                                                
18 Eichberger, Jeurgen. Game Theory for Economists. pg. 90 Academic Press, New York. 1993. 
19 Eichberger, Jeurgen. Game Theory for Economists. pg. 94 Academic Press, New York. 1993. 
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many strategies has an equilibrium in mixed strategies” presented in Chapter One.  Now 

that we know that a game with mixed strategies satisfies all the necessary criteria for the 

existence of a Nash Equilibrium, the theorem becomes much more powerful and 

applicable.  Now, we can generalize the original theorem dealing with the existence of 

Nash Equilibrium even further.  A theorem by Irving Glicksberg states that any game that 

is a compact subset of a Euclidean space and has a continuous payoff function has at least 

one Nash Equilibrium in mixed strategies.20  This means as long as mixed strategies are 

considered instead of pure strategies, the subsets no longer have to be convex, and the 

payoff functions do not have to be quasi-concave.  So, in using mixed strategies instead 

of pure strategies, we do not have to fulfill as many of the requirements of the original 

theorem in order to reach a Nash Equilibrium.  The less stringent requirements make a 

Nash Equilibrium must easier to find.   

 

 

 

 

 

 

 

 

                                                
20 Glicksberg, I., (1952). “A further generalization of Kakutani’s fixed point theorem”. Proceedings of the 
American Mathematical Society 3, 170-174.  
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Chapter Three: Incomplete Information 

 One of the major assumptions of the Nash Equilibrium is that complete 

information is available.  Remembering back from Chapter One, games with complete 

information exist when every aspect, including the number of players, the set of all 

nodes, the set of all actions, all information sets, and all payoffs, is considered “common 

knowledge,” meaning that all of the players are fully informed of every aspect, and all the 

players are aware that the other players are also fully informed.  This complete 

information includes the type of players.  A player’s type is composed of private 

information that only that specific player has access to, and this access begins at the very 

beginning of a game before any initial moves are planned.  The complete payoff matrix is 

necessary for the players to make any sort of decision and hence critical to finding a Nash 

Equilibrium.  Otherwise, the players would be blindly guessing or making assumptions as 

to which decision will produce the best outcome.   

` For example, reconsider a slightly revised version of the husband and wife 

example from Chapter 2.  Now, the wife can choose to either go to the ballet, or go see a 

movie, and she values each activity equally.  If she were to decide which activity the 

couple would do that evening, she would want to pick the solution that provided the 

greatest utility for both partners, meaning the combination that both she and her husband 

prefer most.  However, if she does not know her husband’s payoff for either activity, the 

wife is stuck and can only hope that a blind guess will yield the ideal solution.  If she 

decides the couple will go to the ballet that night, yet the husband’s value of going to the 
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ballet is actually (-3) while the value of going to the movie is 1, the solution is not ideal.  

The wife should have chosen the movie, but because she did not know the husband’s 

payoff information, she was not able to make the best decision.  In essence, “since 

players can no longer predict what would be a best response for the other players, they 

cannot determine what constitutes optimal behavior for themselves.”21   

 The problem of incomplete information actually occurs quite frequently in the 

real world.  Oftentimes it is up to managers to make difficult decisions with incomplete 

information and suffer the consequences.  The missing payoff information is deduced 

from other known information and the probabilities of outcomes based upon historical 

data, but often the final decision comes down to a matter of instinct.  One solution to the 

problem of incomplete information was proposed by J.C. Harsanyi in the late 1960’s, in 

which games with incomplete information are transformed into games with imperfect 

information.  The player facing incomplete information is seen as being uncertain of the 

type of player he will face as opposed to uncertainty about the payoff function.  This 

assumes that certain types of players, who begin the game with differing private 

information, will behave in certain ways, producing different payoff functions.  Next, “an 

artificial player, called nature, chooses according to some probability distribution the 

particular type of [opponent] that will play the game.”22 So the player can assume that the 

player he faces is a certain kind of player based on the probability distribution.  The move 

of nature is unknown, so in this manner, the problem of incomplete information is 

                                                
21 Eichberger, Jeurgen. Game Theory for Economists. pg. 125 Academic Press, New York. 1993. 
22 Eichberger, Jeurgen. Game Theory for Economists. pg. 125 Academic Press, New York. 1993. 
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transformed into imperfect information because the player does not know the previous 

move of nature.  The Harsanyi solution of transforming games with incomplete 

information into games with imperfect information is based on some assumptions.  First, 

all players are assumed to know all possible types of players they are facing, they just do 

not know which ones.  Also, the probability distribution that is connected to each player 

type is also known.  After nature chooses the type of each player, the individual player 

learns his personal type and what the probability distribution is and therefore has some 

insight about the types of the other players. 

 An example of this solution concept can be seen again with the husband and wife 

example.  Initially the wife does not know which mood her husband is in, whether he 

feels like watching a movie or going to the ballet.  In the same way, the husband is also 

ignorant of the wife’s preferences.  But the wife does know that her husband can be in 

either one of two moods.  Assume there is a 60% probability that the husband is in the 

mood to watch a movie, meaning that his payoff to watch a movie would be higher than 

that to see the ballet.  Then assume there is a 40% probability that he is in the mood to 

see the ballet which would result in exactly the opposite payoff.  So, we now imagine that 

“nature” chooses which mood the husband is in based upon the specific probability 

distribution.  The wife then decides to go to the movie based upon her own player type 

and the probability distribution of the player type of her husband.   

 This leads to the most well known solution concept, the Bayes-Nash Equilibrium, 

which is a refinement to the Nash Equilibria that overcomes the assumption of complete 

information.  It is based upon Bayesian Decision Theory, which ties back to the earlier 
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discussion of players using utility functions or “decision functions” to decide which 

action produces the optimal outcome.  In typical cases utilizing Bayesian Decision 

Theory, some element of information about the surrounding environment or the players is 

unknown, and this information is necessary for the players to choose the ideal action.  

This information is given in terms of signals.  Many players begin a game uninformed of 

their own player type, so one important signal would inform a player of his own personal 

player type.  The Bayes-Nash Equilibrium says that, in essence, each player forms 

contingency responses for each possible type of opponent and the respective Bayesian 

decision function.   

Let’s return to the husband and wife example.  First, the wife learns her player 

type, the private information she has before the game begins including her preferences 

and beliefs about the environment.  Then, she receives a signal from her husband; he 

came home from work raving about the new Band of Brothers Ballet and how badly he 

wanted to see it.  The wife knows that typically her husband has a probability distribution 

of wanting to watch a movie 60% of the time and see the ballet 40% of the time, so 

traditionally she guesses that her husband wants to go to the movies.  Yet, after receiving 

this signal, the wife has an inclination that the husband actually would prefer seeing the 

new ballet instead.  These signal-contingent plans of action are a best response to the 

other player’s decision functions.  The key is that the Nash Equilibrium can be applied to 

these decision functions rather than a single strategy combination.   
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Chapter Four: Nash Equilibrium Refinements with Sequentiality 

 We know that there can be many different Nash Equilibria per game, and so a 

refinement centered on the sequence of moves was discovered which eliminates some of 

the less-than-ideal Nash Equilibriums.  In order to analyze a game’s sequence of moves, a 

process called backward induction is used.  Backward induction works by looking at the 

last possible decision node (not terminal node) after which the chosen action will end the 

game.  At this decision node, the player decides which action results in the best final 

outcome.  Then, that decision node is transformed into a terminal node, and it is labeled 

with the payoff function from the previously chosen action.  After repeating this process 

a finite number of times, the root node will be reached.   

 Consider the example revised from one given in Eichberger’s Game Theory for 

Economists.  This economic example analyzes the behavior between two firms.  One is a 

large, well-situated firm that is a monopoly.  This second firm is a small firm deciding 

whether or not to enter this monopolistic market.  The second firm, called Firm Small, 

can decided to either enter (e) or not enter (ne) the market, and the first firm, called Firm 

Big, can choose to either accommodate (a) Firm Small or fight (f) Firm Small.  Below is 

both the extensive and strategic form of the game. 
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Figure 11: Game Tree for Market Entry Example 

 

Figure 12: Payoff Matrix for Market Entry Example 

 

 

 

Notice that the Nash Equilibria are (e, a) and (ne, f) as neither player has any incentive to 

change from those outcomes.  At first glance, it may appear that (ne, a) is also an 

equilibrium, but consider that outcome from Firm Small’s perspective.  Firm Small 

would have an incentive to switch from “not entry” which has a payoff of 0 to “entry” 

which has a payoff of 2, meaning that the solution (ne, a) is not a Nash Equilibrium.  

Now, returning to equilibria (e, a) and (ne, f), both appear to be equally ideal 

outcomes in terms of best response strategies.  However, after analyzing the sequentiality 

of moves, we will be able to show that one equilibrium is more realistic than the other.  

First, notice that the equilibrium (ne, f) can be viewed as a threat by Firm Big to keep 

Firm Small out of the market.  However, if Firm Small deemed this threat to be non-

  Firm Big 
   a f 

Firm 
Small 

e 2,2 -2,-2 
ne 0,4 0,4 



 
 

28 

credible and choose to enter the market regardless, Firm Big would have to uphold the 

threat and fight Firm Small, resulting in a non-optimal solution.  By analyzing the 

sequentiality of moves, we can predict that equilibrium (e, a) is indeed more favorable 

than (ne, f). We can now use backward induction to definitely show this.  First, we look 

at the last decision node from which the resulting action ends the game: node B (decision 

node for Firm Big).  Here, Firm Big can choose to either accommodate or fight Firm 

Small, and from the payoff matrix, we can see that accommodate Firm Small is the best 

decision for Firm Big.  Then, according to the process of backward induction, we 

transform decision node B into a terminal node with payoff (2, 2). Let’s analyze the new 

extensive form.  

Figure 13: Extensive Form for Revised Market Entry Example 

 

So now, the game consists of one decision to be made by Firm Small: either not enter 

with a payoff of (0, 4) or enter with a payoff of (2, 2).  Judging from these two payoff 

functions, the optimal outcome for Firm Small is to enter the market, resulting in the final 

outcome of (e, a) which was the favorable Nash Equilibrium which was predicted by 

analyzing the sequentiality of moves. 
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 Backward Induction can only be applied to games with perfect information and 

finite extensive form.  In 1965, R. Selten suggested a way to generalize the concept of 

backward induction to general games in extensive form using subgame perfect 

equilibrium.  First, a perfect equilibrium means that the probabilities associated with 

every pure strategy are strictly positive, meaning greater than but not equal to zero.  Also, 

the general rules of a Nash Equilibrium hold: that every strategy is a best response to an 

opponent’s strategy.23  A subgame is a part of an extensive form game tree that “must 

start at an information set with a single node and must contain all information sets that 

follow the initial node.”24  For an example of a subgame, consider the previous game tree 

in Figure 11, which has been copied below.  

Figure 11: Game Tree for Market Entry Example 

 

                                                
23 Myerson, Roger. Game Theory Analysis of Conflict. Pg. 216. Harvard University Press, Mass. 1991. 
24 Eichberger, Jeurgen. Game Theory for Economists. pg. 157 Academic Press, New York. 1993. 
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There are two subgames in this example.  One subgame begins at the decision node B 

and includes both terminal nodes that follow.  The second subgame begins at decision 

node S and contains all three terminal nodes that follow.  Through this example, one can 

see that every game will have at least one subgame, since the one subgame can represent 

the entire game as a whole.  Now, compare this to another example seen below.   

Figure 14: Example of only 1 Subgame 

 

In this example, player S makes a decision, and then player B reacts.  This example, 

which does not include any of the strategy nor payoff information for simplicity’s sake, 

only has one subgame which is the entire game itself.  We can see this when we try to 

find smaller subgames at either decision node B1 or B2.  A subgame beginning at either 

of these nodes would not include the other B decision node, so the information set for 

player B would not be complete, which is necessary for a subgame.  Because of this, the 

only subgame is the entire game.   

When putting all the terms together, a subgame perfect equilibrium is a behavior 

strategy combination where the response of each player is a behavior strategy that is the 

best response to other player’s behavior strategies.  Using subgames lets us split a normal 

game apart, seeing if we can diminish the number of typical Nash equilibria by keeping 
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only those that are still perfect equilibria when applied to a smaller subsection of the 

game.  Since some games have numerous Nash Equilibria, analyzing only the perfect 

equilibria can be a much more effective use of time and resources.  Because subgame 

analysis does not require the use of terminal nodes, this procedure can be used on infinite 

games, unlike backward induction which requires a terminal node from which to begin 

the procedure.    

While the Nash Equilibrium refinement of subgame perfect equilibrium does 

work for games with imperfect information, there is another refinement that is more 

effective for this particular type of game.  This refinement is called a perfect Bayesian 

Equilibrium which is “a behavior strategy combination together with a belief system such 

that behavior strategies are equilibrium strategies at each information set given the 

beliefs, and beliefs are consistent with equilibrium strategies.”25  In order to understand 

this definition, we must first understand the concept of beliefs.  Technically, a belief is a 

probability distribution set over the nodes of a particular information set.  When we 

translate this technical definition into common terms, a belief is the degree of certainty a 

player has about the validity of information given views on the surrounding environment, 

historical data, and other relevant information.  For instance, when analyzing a game in 

which a consumer who recently immigrated from Mexico decides to shop either at a 

Mexican market or a typical grocery store, we can use the Mexican immigrant’s beliefs 

and preferences concerning Mexican food and culture to make an educated guess as to 

the immigrant’s decision.  A player’s beliefs can be affected by many variables, including 

                                                
25 Eichberger, Jeurgen. Game Theory for Economists. pg. 167 Academic Press, New York. 1993. 
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environmental variables26 which are details such as a player’s height and weight that are 

typically omitted from a game as they are considered “non-game theoretic” details.  

However, these details may have an affect upon a person’s beliefs.   

In addition to beliefs, another concept which affects the probability of a specific 

equilibrium or strategy is the focal point effect, discovered by T.C. Schelling in 1960.  

This theorem claims that there are certain aspects in a player’s life that may focus his 

attention on a particular equilibrium.  Then, the player will begin to expect this 

equilibrium and because of this expectation, the player will ultimately fulfill it.  In 

essence, the focal point effect creates a self-fulfilling prophecy.  There are many aspects 

of a player’s life that may lead to the focal point effect, and one of these aspects is 

culture.  Cultural norms are “rules that a society uses to determine focal equilibria.”27  

For example, when a consumer is choosing to purchase either a used Volvo Wagon or a 

Hearse, the typical consumer, due to the inherent connotation of death that our culture 

places upon a hearse, would choose the Volvo, even if the Hearse were cheaper, newer, 

and got better gas mileage.  

Other aspects of life that may induce the focal point effect include preplay 

communication.  An example of this can be seen in the husband and wife example from 

Chapter 3.  The signal that the wife received from the husband regarding his preference to 

see the new Band of Brother’s ballet over a movie makes the wife focus on the 

equilibrium of the couple attending the ballet together.  Also, in examples of game 

                                                
26 Myerson, Roger. Game Theory Analysis of Conflict. Pg. 107. Harvard University Press, Mass. 1991. 
27 Myerson, Roger. Game Theory Analysis of Conflict. Pg. 113. Harvard University Press, Mass. 1991. 
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communication which will be discussed more in depth in a later chapter, often there is a 

focal arbitrator who publically suggests a specific equilibrium to the players causing 

them to focus on it.  In our world, this is known as marketing.  For example, when a 

customer is deciding which brand of shampoo to buy, the typical American consumer is 

influenced by commercials and advertisements that she has seen on television, in 

magazines, or other forms of media.  The advertisements and commercials are focal 

arbitrators that influence a player’s decisions by causing them to focus on that specific 

product.  Other aspects that might invoke the focal point effect include welfare properties 

such as equity and efficiency.  Many people would choose a certain outcome over 

another if they feel it is a “fair” solution for the majority.  Also, when dealing with 

repeated games, often an equilibrium that is composed of simplistic or stationary 

strategies is preferred.  This can be easily seen in the real world, as people are creatures 

of habit.  If two maximal outcomes exist, people will choose the outcome that is either 

the easiest to reach or is the most familiar. 

All of these factors that influence the focal point effect including welfare 

properties, cultural norms, and preplay communication show that “game theory cannot 

provide a complete theory of human behavior without complementary theories from other 

disciplines.”28  This statement does not in any way suggest that game theory is any less 

meaningful in our analysis of human behavior; on the contrary, game theory is still an 

extremely important component of this analysis.  It is just not the only approach that 

should be considered.  We must remember this when dealing with not only game theory 

                                                
28 Myerson, Roger. Game Theory Analysis of Conflict. Pg. 114. Harvard University Press, Mass. 1991. 
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but any discipline that seeks to model human behavior.  Connecting back to the selfish 

player discussion from Chapter One, this fact may explain why economists such as Elinor 

Ostrom assert that certain aspects of game theory do not explain the entirety of human 

behavior.  If one is analyzing conflict with only a game theoretic mindset, then it does 

seem reasonable that players are inherently selfish and try to maximize their utility 

functions.  However, when these scenarios are analyzed with other approaches as well as 

game theory in mind, cultural norms and other beliefs trigger the focal point effect.  This 

causes the players to perhaps value community advancement over personal gain. 

Returning to the previous discussion of beliefs in connection to the Perfect 

Bayesian Equilibrium refinement, if a player’s beliefs allow him to assign a probability to 

each node then, “he could determine the expected payoff of any behavior strategy 

combination, conditional on having reached this information set.”29  There exists one 

major assumption concerning the system of beliefs that is applied to each information set; 

the system of beliefs is common knowledge, meaning all players have the same beliefs 

and every player knows the other players hold the same beliefs.   

We now have an understanding of three different refinements of the Nash 

Equilibrium: backward induction, subgame perfect equilibrium, and Perfect Bayesian 

Equilibrium.  We will now analyze a well-known example from economics that 

illustrates the Perfect Bayesian Equilibrium.  The following modified example is based 

on one from Eichberger’s Game Theory for Economists. The original “market for 

lemons” concept was introduced in 1970 by G. Alkerloff in his article in the Quarterly 

                                                
29 Eichberger, Jeurgen. Game Theory for Economists. pg. 165 Academic Press, New York. 1993. 
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Journal of Economics.  The market for lemons example can be easily illustrated by the 

consumer market for used cars.  Typically, when a consumer shops for a used car, he 

does not know for certain whether or not the car is of high or low quality.  So, there is a 

certain probability that the specific car in question is of either high or low quality.  Now, 

the seller always knows the quality of the vehicle, while the consumer does not.  This is 

an example of asymmetric information.  

There are two types of scenarios that can occur.  In the first scenario, the 

consumer is faced with two different sellers who are offering cars for different prices.  In 

this scenario, the consumer, given his belief system, will choose the more expensive car, 

as he assumes that the more expensive car is the one of higher quality while the less 

expensive car is the one of lower quality.  However, when analyzing the game before all 

decisions are made, the seller of the lower quality car knows that if the prices are 

differentiated, the consumer will chose the more expensive car, thus giving the poor 

quality seller an incentive to match his price to that of the high quality seller.  This leads 

us to scenario two in which both cars are offered at the same price.  If the price was that 

of the low quality car, the consumer would recognize this and not accept the offer as he 

assumes that he would be receiving a low quality car.  The consumer is making this 

assumption because a seller with a high quality car would not be willing to sell at such a 

low price, as the seller knows he could sell at a higher price in another market.  If the 

price was that of the high quality car, the consumer will accept the offer assuming that 

this should be the high quality car.  However, since both high quality and low quality cars 

are sold at the same price, the only way the buyer will act on this assumption is if the 
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majority of used cars are of high quality.  This demonstrates that there is a perfect 

Bayesian Equilibrium of both sellers pricing their cars at the high quality price if the 

average quality of cars is at a high enough level.  If it is not, then no cars will be traded.   

This version of the market for used cars varies slightly from that in real life where 

often the consumer assumes the quality of the car is simply average and therefore is only 

willing to pay the price for an average car as opposed to the price for a very high quality 

used car.  This makes selling a very high quality used car in this market illogical, as the 

price offered to the seller will not be high enough to make selling the car worthwhile.  

This drives the high quality cars out of the used car market, and the average quality of 

used cars for sale drops as a result.  As one can see, the asymmetric information between 

the uninformed buyer and the all-knowing seller causes the market to collapse, as 

eventually all of the cars with even a hint of quality will be driven from the market.  The 

problem of asymmetric information is a common thread that helps explain market 

collapses.   
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Chapter 5: Games with Communication 

 There are many realistic situations where players can communicate to one another 

either during or before a game.  For example, a buyer and a seller of a house will 

negotiate through their realtors to decide on an agreeable price that both parties can 

accept.  One way to go about portraying the possible outcomes that are affected by 

communication is to build the communication directly into the game by representing each 

interaction as a different node with many possible actions.  However, it is quickly 

obvious that trying to represent a game with communication in this manner becomes 

extremely complicated, as every different word or phrase spoken between players can 

evoke a different feeling or portray a different meaning.  The games would be 

unmanageable at this level.  Instead, we break games with communication down by type 

and analyze the resulting solution concept with the results of the different types of 

communication built into them. 

 First, let’s look at games with contracts.  Signing a contract forces the players to 

implement a specific correlated strategy to receive a specific allocation or payoff.  A 

correlated strategy “is any probability distribution over the set of possible combinations 

of pure strategies that these players can choose.”30  In many games, the players are not 

required to sign the contract, and so possible game strategies must include not only 

accepting but also declining the contract.  Consider the following scenario.   

                                                
30 Myerson, Roger. Game Theory Analysis of Conflict. Pg. 247. Harvard University Press, Mass. 1991. 
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Figure 15: Payoff Matrix Example with Contracts 

  Player 2 
  x2 y2 s2 

Player 1 
x1 (1,1) (0,6) (0,6) 
y1 (6,0) (2,2) (1,1) 
s1 (6,0) (1,1) (3,3) 

 

In this game, player 1 and player 2 are faced with three different strategy options.  They 

can choose to play either strategy x or strategy y or sign a contract.  For both players, 

strategy x is a dominated strategy, meaning the players will choose between strategy y 

and signing the contract, neither of which are dominated.  However, for both players 

there is an incentive to sign the contract.  While the highest payoff possible for either 

player choosing either y or s is 6 and the lowest payoff possible is 1, signing the contract 

has a higher overall outcome of 3.33 which is equal to (6+1+3)/3, while strategy y only 

has an overall outcome of 3 which is equal to (6+1+2)/3.  So, both players have an 

incentive to sign the contract, and indeed, it would be most beneficial for one player to 

sign the contract if he thought the other player was going to.  On the other hand, if player 

1 thought player 2 was not going to sign the contract and instead choose strategy y, it 

would be more beneficial for player 1 to not sign the contract and instead choose strategy 

y also.  This example shows that players can decide to sign or not sign a contract based 

upon the other player’s decisions.  So, we have a Nash Equilibrium found in games with 

contracts. 

 In some games, a mediator exists to facilitate the communication between 

players.  The mediator collects all of the information about the game and then offers 

recommendations to each player as to which strategy she should implement.  It is 
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assumed that communication between the mediator and player is one-way, meaning the 

mediator gives his recommendation to the player and then communication stops; the 

player is not allowed to question the mediator as to other recommendations.  This is often 

the case in real life when lawyers or an acquisition company are used to communicate 

between firms and often times recommend courses of action.  This next example shows 

the usefulness of mediators and how, many times, it is in the players’ best interest to 

follow the mediator’s recommendations.  Consider the payoff matrix below. 

Figure 16: Payoff Matrix Example with Mediators 

  Player 2 
  x2 y2 

Player 1 
x1 (3,1) (0,0) 
y1 (2,2) (1,3) 

 

In this scenario, there are three equilibria (x1, x2), (y1, y2) and a third based on a 

randomized equilibrium of (3/2, 3/2).  The randomized equilibrium exists when players 

do not know the decision of the other player and therefore base their playoffs as to the 

expected outcome of the game, meaning (3+0)/2 if they play strategy x or (2+1)/2 if they 

play strategy y.  Now consider what happens when we introduce a mediator to this 

scenario.  Let’s say the mediator recommends player 1 to play strategy x1.  Now the 

mediator’s role is to offer the best recommendation to both parties, so if the mediator 

recommends player 1 to play strategy x1, then player 1 knows that player 2 was 

recommended to play strategy x2 since by playing strategy x2, player 2 receives a payoff 

of 1, as opposed to receiving a payoff of 0 if he had played strategy y2.  So player 1 has 

every motivation to follow the mediator’s recommendation.  Now, let’s say that the 
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mediator recommended that player 1 play strategy y1.  This means that the mediator 

recommended that player 2 play either strategy x2 or y2 with equal probability.  Again, 

because the mediator is recommending the best outcome for both players, (2, 2) and (1, 3) 

both have an overall expected outcome of 2 since (2+2)/2 and (3+1)/2 both equal 2.  This 

means the two outcomes seem equally ideal to the mediator, and so there is an equal 

probability that the mediator will recommend either of these outcomes to the players.  So, 

since player 1 does not know which outcome player 2 was recommended to play, player 

1’s expected outcome is 3/2 which is equal to (2+1)/2 which is the same expected 

outcome if he switched to strategy x1 or 3/2 which is equal to (3+0)/2. So, again player 1 

has every incentive to follow the mediator’s recommendations and not switch.  We use a 

similar argument to say that player 2 has no incentive to deviate from the mediator’s 

recommendations.   

Through this analysis, we know that the mediator will never recommend strategy 

(x1, y2) as there are better outcomes for both players.  So, we can represent the possible 

recommendations of the mediator in another payoff that removes strategy (x1, y2).  Now, 

the remaining three equilibria (x1, x2), (x2, y1), and (y1, y2) are chosen at random by the 

mediator with an expected outcome of (2, 2) resulting from (3+2+1)/3.  This randomized 

payoff is obviously higher than the original randomized payoff of (3/2, 3/2) that still 

included the strategy (x1, y2).  This example shows the usefulness of a mediator in a 

game with communication as he was able to increase the overall expected outcome of 

each player from 3/2 to 2 by removing the less than ideal payoff of (x1, y2) from his 

possible recommendations.  This example also demonstrates the use of a correlated 
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equilibrium which is any correlated strategy which is “self-enforcingly implemented with 

the help of a mediator who can make nonbinding confidential recommendations to each 

player.”31  The self-enforcing nature of this equilibrium means there is nothing that binds 

the players to this recommendation such as a contract other than the player’s own 

personal motivation to maximize his outcome.     

 Bayesian games with communication require additional analysis.  Remember, in 

Bayesian games, some information is private, such as a player’s type.  This would create 

two-way communication between the mediator and the players, as the players would tell 

the mediator their types and the mediator would respond with the appropriate 

recommendation taking this information into account.  Because of this two-way 

communication, there is an opportunity for the player to lie about his or her type, as well 

as to not follow the mediator’s recommendation.  We say that a Bayesian game with 

communication has a mediation plan that is incentive compatible if and only if “it is a 

Bayesian Equilibrium for all players to report their types honestly and to obey the 

mediator’s recommendation when he uses the mediation plan.”32  However, when a 

mediation plan is not incentive compatible, rational and intelligent players are not likely 

to act honestly or obediently. We can generalize this notion of incentive compatible 

mediation plans with the revelation principle for general Bayesian games.  This principle 

states that “given any general communication system and any Bayesian Equilibrium of 

the induced communication game, there exists an equivalent incentive-compatible 

                                                
31 Myerson, Roger. Game Theory Analysis of Conflict. Pg. 253. Harvard University Press, Mass. 1991. 
32 Myerson, Roger. Game Theory Analysis of Conflict. Pg. 260. Harvard University Press, Mass. 1991. 
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mediation plan, in which every type of every player gets the same expected utility as he 

would get in the given Bayesian Equilibrium of the induced communication game.”33  

This means that we can use a mediator in a game with players who respond honestly and 

obediently without a loss of generality between Bayesian games.   

 The notion of incentive compatible mediation plans encourages a discussion of 

two topics that are inherently built into it.  To avoid adverse selection, we “need to give 

players an incentive to report information honestly.”  To avoid moral hazard, “players 

[need] an incentive to implement recommended actions.”34  These two needs can be 

easily understood with a health-care insurance company example.  Health-care insurance 

companies want to know which customers have which medical conditions, because these 

customers will be more expensive to insure.  However, customers have an incentive to lie 

about their existing health problems, because then the insurance company will charge 

them a lower premium due to the customer’s supposed good health.  The insurance 

company needs to encourage honesty, so that it can appropriately estimate its potential 

losses.  Moral hazard can also be illustrated using health insurance.  For example, if a 

customer is insured for every type of medical care possible, then he will be less cautious 

in his everyday life because he knows his medical expenses will be completely paid for.  

Customers with every medical expense covered by insurance will be far less cautious 

than customers with less medical coverage.  The health insurance company also has an 

                                                
33 Myerson, Roger. Game Theory Analysis of Conflict. Pg. 260. Harvard University Press, Mass. 1991. 
34 Myerson, Roger. Game Theory Analysis of Conflict. Pg. 263. Harvard University Press, Mass. 1991. 
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incentive to prevent moral hazard by encouraging people to follow its recommendations 

and be as cautious as if they had less than adequate medical insurance.   

Moral hazard in the health insurance industry also causes customers to over utilize 

procedures and be less cost conscious.  For example, a customer who gets an MRI does 

not care if the procedure costs $5,000 or $500.  The insurance company will pay 

regardless.  This overutilization and lack of customer cost awareness creates an extremely 

expensive and inefficient situation for insurance companies.35    

 

 

 

 

 

 

 

 

 

 

 

 

                                                
35 Nyman, John. “Is ‘Moral Hazard’ Inefficient? The Policy Implications Of A New Theory.”  Health 
Affairs, 23, no. 5 (2004): 194-199.   
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Chapter 6: Housing market collapse analysis 

 We will now analyze the housing market collapse of 2007 using the notion of 

adverse selection and moral hazard in connection with Bayesian games with 

communication.  With our understanding of basic game theory, the Nash Equilibrium, its 

refinements in Bayesian games, and now Bayesian games with communication, we have 

the building blocks to understand exactly what went wrong in this market and to suggest 

several possible solutions.  Before we delve into this discussion, here is a brief overview 

of the housing market collapse.   

 One of the largest problems in the mortgage market was brokers writing loans for 

risky customers.  It began in the 1990’s when the requirements for mortgages were 

relaxed and the “subprime” mortgage market boomed.  A subprime mortgage is a loan to 

someone with a poor credit history; it is a risky, but possibly very rewarding, investment 

due to the high interest rate charged the borrower.  Lower mortgage standards in the 

subprime market caused the “homeownership rate [to increase] from the 64 percent range 

of the 35 years before 1995 to an all-time high of 69 percent in 2004.”36  In many cases, 

the mortgage brokers did not care about the risk because knew they were going to bundle 

up many of the loans into financial products called “mortgage backed securities” and sell 

them to other financial entities.  If the mortgage brokers kept the loans, they assumed that 

if the loans ever did go bad, the collateral would be worth more than the loan balance 
                                                
36 Ronald D. Utt, Ph.D., Executive Summary: The Subprime Mortgage Market Collapse: A Primer on the 
Causes and Possible Solutions 4/22/08 Thomas A. Roe Institute for Economic Policy Studies at The 
Heritage Foundation. http://www.heritage.org/research/economy/bg2127es.cfm 
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meaning the borrower could sell the house to pay off the loan.  Finally, many of the 

customers were also to blame as they were dishonest about their credit history and 

financial stability.  There was a lack of due diligence by mortgage brokers and the rating 

agencies who rated the mortgage-backed securities much higher than they should have.  

If any of these people had taken a closer look at the loans that were being made or 

reconsidered the unrealistic assumption that house prices would continue to rise, many of 

the riskier loans would not have been written, as the customers would have been 

considered far too risky.  Also, the rating agencies would not have rated the mortgage-

backed securities as high as they did, making the market for these securities much more 

realistic.  However, either no one seemed to have enough at stake to practice due 

diligence or all parties seriously misjudged the future of the housing market.  

Even if the customers were risky, there would only be a problem if housing prices 

fell, and everyone believed they would not.  This fatal assumption is what brought down 

the metaphorical “house of cards.”  Housing prices began to fall in 2006.  Soon, 

homeowners found themselves owing more for their homes than they were actually 

worth.  This caused many homeowners to simply walk away from the debt, reducing net 

worth on many investors’ balance sheets and driving prices of these mortgage-backed 

securities down.  Tonko Gast, the Europe CEO of Dynamic Credit Management a 

company which not only manages clients’ credit but also offers financial advice and 

analysis, “estimates that most of AAA rated mortgage-backed CDO's [collateral debt 

obligations] that the industry created since 2006, are now worth less than half their value. 
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Some are worth close to zero.”37  Collateral debt obligations are simply pools of 

mortgage backed securities.  Soon, the ripples from the falling home prices, the declining 

value of the mortgage-backed securities, and the bad assets on lenders’ books spread to 

financial markets across the world.  Eventually, a credit crunch put the U.S. in a recession 

in December of 2007.   

 So, what really went wrong?  If we take a closer look at how a mortgage broker 

evaluates a customer, this is a Bayesian game with communication which we learned 

about in Chapter 5.  Both players have a specific type that is, for the most part, unknown 

to the other until information is shared.  The customer may be a financially stable 

individual with a high credit score, or he could be financially unstable with a low credit 

score, making him a risky borrower.  The mortgage broker may also be extremely liberal 

in his loan writing or he may be very conservative and only write loans for very safe 

customers.  However, as the housing bubble inflated, mortgage brokers did not have an 

incentive to care about the types of the customers because the brokers were simply 

writing the loans and then selling them off, completely removing the risk from their 

books.  One of the problems in this scenario is the asymmetric information between the 

customer and the broker.  Before lending standards were relaxed, it was very important 

for the broker to know exactly what type of player the customer was.  Until the customer 

revealed this, the broker was left guessing and was forced to make decisions based on 

assumptions, much like the market for lemons scenario described in Chapter 4.  After 

                                                
37 “This American Life Episode Transcript.” Program 355. National Public Radio. 
http://www.thislife.org/extras/radio/355_transcript.pdf 
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lending standards were relaxed, brokers could easily sell loans removing the asymmetric 

information problem.  It was no longer important to the broker what type of player the 

borrower was.   

 Since asymmetric information was not the major issue in causing the housing 

market collapse, let’s analyze adverse selection.  The risky customer has an enormous 

incentive to be dishonest about his player type so that he receives a larger loan.  Not only 

did the mortgage brokers do nothing to encourage honest behavior from the customers, 

they almost encouraged the dishonesty by loosening their standards and not doing the due 

diligence necessary.  The adverse selection that was present in this Bayesian game with 

communication was not addressed, and so risky mortgages were written to customers 

who could not afford them.  For example, in Sonoma County, California, “when home 

prices peaked in 2005, the typical home buyer in Sonoma County claimed to earn 

$120,000 a year on loan documents, according to federal home loan data. But they 

actually earned about $80,700, according to Census data. The spread grew in 2006, when 

the typical buyer claimed to earn $132,000; their actual income was about $79,000.”38 

This is just one example of adverse selection found during the subprime mortgage boom.   

 In addition to adverse selection, the housing market crash also illustrates moral 

hazard.  The mortgage brokers did not act with as much caution as they should have 

because they knew the risk was going to be transferred to another financial entity or the 

government, much like the health-insurance customers who know that all of their medical 

                                                
38 Coit, Michael. "Loans Built on Lies." The Press Democrat (Sonoma County, Calif.), 2/10/08 
http://www1.pressdemocrat.com/apps/pbcs.dll/article?AID= 
/20080210/NEWS/802100349/1033/NEWS01  
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bills will be paid by the insurance company.  The brokers did not suffer any 

consequences for writing risky loans.  Mortgage brokers had no incentive to follow basic 

financial logic, and so they ignored risk.   

 With either adverse selection or moral hazard, players on both sides acted with 

“dishonesty” and “disobedience” to the rules of economic markets.  This means that the 

mediation plan, if one existed, was not incentive compatible, as players benefited by 

acting dishonestly.  To eliminate this there would have to have been a meditation plan 

that was incentive compatible.  Below is an example payoff matrix that is a basic 

representation of the expected outcomes for the borrowers and the brokers.  

Figure 17: Payoff Matrix for Mortgage Lending 

   Broker 
    Lend Deny 

Borrower Dishonest 6,4 (-1,1) 
Honest 3,3 0,1 

  

First, let’s analyze each payoff outcome.  If the borrower is dishonest (D) and 

inflates his income level, he will be able to receive a larger loan, thereby allowing him to 

purchase a larger and nicer home.  This explains why the borrower has an expected 

payoff of 6 if he is dishonest while the expected payoff is only 3 if he is honest (H).  If he 

is denied (Dn) the loan, his payoff is zero if he is honest.  If he is dishonest and does not 

receive the loan, the broker has discovered the dishonesty, causing further penalty to the 

borrower, hence a (-1) payoff.  John Falk of the National Association of Mortgage 

Brokers reports that “lying on a mortgage application is a federal crime . . . [and] can 
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result in jail time.”39  This possible jail time results in the negative one payoff for the 

borrower if he is caught. The broker, on the other hand, will receive the payoff of 4 if he 

lends (L) to a dishonest person because the loan amount is greater, and he does not have 

to deal with the consequences if the borrower defaults.  If he lends to an honest person, 

the broker will receive only 3.  If he chooses not to lend, he will only receive the fees for 

making his evaluation.   

First, let’s analyze this payoff matrix and find an ideal solution using the maximin 

method we learned in Chapter 1.  If the borrower is trying to minimize his losses, he will 

choose strategy H as the least he can lose is 0 while if he chooses strategy D he could 

lose 1.  The broker will choose strategy L, as he loses nothing from either strategy and 

lending offers the highest payoff.  In previous discussions of the maximin payoff method, 

we declared this method was less than ideal, as often times the solution was not optimal.  

This happens here.  The resulting solution is (H, L) which has a payoff of (3, 3).  For the 

players, the optimal Nash Equilibrium is instead (D, L) which has a payoff of (6, 4).   

However, while the solution (D, L) may be optimal Nash Equilibrium for the 

players, the dishonesty by the borrower as well as the lack of due diligence by the broker 

is the behavior that fueled the housing market crash.  This is the outcome we as a society 

want the borrowers and the lenders to avoid.  Having the borrowers utilize the maximin 

method when choosing a strategy seems ideal as it results in the type of behavior that is 

best for society as a whole.  However, typically players who utilize the maximin method 

are risk averse, trying to minimize their losses instead of maximizing their gains.  There 

                                                
39 Know, Noelle. “10 Mistakes that Made Flipping a Flop.” USA Today 10/22/06 
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certainly were many borrowers who followed this method during the housing market 

crash and were not trying to cheat the system.  Yet, the borrowers who chose to be 

dishonest were certainly not risk averse and therefore did not choose the maximin 

method.  Also, as discussed in Chapter 4, a player’s decision is often times influenced by 

a focal point, typically beliefs based upon cultural norms.  In this case, the dishonest 

players could be influenced by the stereotypical American cultural norm that “bigger is 

better,” and this belief would then trigger the focal point effect, making them more 

inclined to choose dishonesty over honesty.   

 Instead of evaluating the payoff matrix using the maximin method, let’s look for 

dominant strategies, also discussed in Chapter One.  Looking at the strategies, strategy H 

for the borrower is not dominated by strategy D, so the borrower will base his decision on 

the broker’s.  For the broker, however, strategy Dn is dominated by strategy L, so in 

every scenario, the broker will lend to the borrower.  This is due to the lax lending 

standards of the time as well as the shifting of consequences through the mortgage-

backed securities to other financial entities.  So, the only Nash Equilibrium is (D, L) 

where the borrower is dishonest and the broker lends, thereby creating the problems of 

adverse selection and moral hazard as previously discussed.     

How do we assure that neither player benefits by being dishonest?  First, the 

original lending requirements should not have been lowered.  Risky customers should not 

have qualified for mortgages in the first place.  However, this would not have stopped 

some from lying outright about their player type.  One way to discourage dishonest 

behavior is to implement a disincentive to lie.  But, when we analyze this using game 
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theory, we see this does not solve the problem.  Let’s look at another example payoff 

matrix. 

Figure 18: Payoff Matrix for Mortgage Lending with Borrower Disincentive 

   Broker 
    Lend Deny 

Borrower Dishonest 6,4 (-7,1) 
Honest 3,3 0,1 

 

This payoff matrix is identical to the previous one in Figure 15 except there is an 

additional penalty to the borrower if he is caught being dishonest.  However, the same 

strategies are still dominated as in the previous payoff matrix, and the additional 

disincentive does not change this.  Strategy Dn is still dominated by strategy L for the 

broker.  So, even with the disincentive for the borrower, the broker will still lend, 

regardless of the player type.  This means the only Nash Equilibrium is again (D, L), and 

the problem of moral hazard and adverse selection remains unsolved.   

Even today in 2010, there is still dishonest behavior.  For example, in the 

mortgage modification process customers are trying to renegotiate their mortgages to 

receive lower interest rates or an extension on payments.  If customers understate their 

earnings by less than 25%, and thereby receive larger mortgage modifications, they are 

not required to restart the mortgage process, but simply edit their applications and 

continue with the process.40  By not forcing the dishonest applicants to completely restart 

the mortgage modification process, there is no incentive for the customers to be honest.  

                                                

40 Beck, Rachel. “No consequences for lying mortgage borrowers.” Seattle Times. 12/28/09 
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There must be incentives to persuade people to be honest; otherwise the behavior 

perpetuates itself and adverse selection continues.  Credit scores are a way to achieve this 

honesty, but they only work if the brokers and rating agencies actually use them to 

appropriately evaluate the loan applications.  

Imposing a disincentive upon the borrower does not solve the problem of moral 

hazard or adverse selection. However, a disincentive for the broker who makes bad loans 

makes the strategy to deny to loner dominated by the strategy to lend.  One disincentive 

is to force the brokers to keep a percentage of the loans that they write.  This forces the 

brokers to “eat their own cooking.” If they write risky loans that default, they will lose 

money.  This idea finally imposes a consequence upon the broker for not using due 

diligence, as the brokers can no longer sell off all of the loans they create and escape the 

consequences.  Let’s look at a final payoff matrix to analyze this new scenario.  

Figure 19: Payoff Matrix for Mortgage Lending with Broker Disincentive 

   Broker 
    Lend Success Lend Default Deny 

Borrower Dishonest  6,4 (-5,-3) 0,1 
Honest  3,3 (-1,-2) 0,1 

 

There are several differences between this payoff matrix and the previous ones.  First, the 

broker can now choose between three difference strategies.  He can choose to lend with 

the outcome resulting in success meaning the borrower makes his payments successfully 

(LS).  The broker can also choose to lend with the outcome resulting in a default for the 

borrower (LD).  Finally, the broker can deny the loan all together (Dn).  The borrower is 

faced with the same two options: to be dishonest (D) or honest (H).  Now, when we look 
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at the actual payoffs, we see that again the strategy LS for the broker dominates his other 

two choices, so at first glance it appears that we have not solved our problem.  However, 

does the broker really have a choice as to whether his loan results in a success or a 

default? While the broker can increase his probability of success through due diligence, 

ultimately this is not a choice that he can make.  So this payoff matrix functions a bit 

differently than the ones we have seen in the past.  Instead, there is a distribution on the 

two outcomes (LS and LD) that depends on the player type.  For instance, if the player is 

dishonest and lies about his income, there is a far greater probability that he will default 

on his loan than someone who is honest.  For instance, from the broker’s perspective, an 

honest borrower may default on his loan 5%41 of the time, while a dishonest borrower 

may default on his loan 10% of the time.  These percentages also take into account 

economic factors that the previous payoff matrices did not account for, implying an 

increased market awareness of the brokers.  One of the fatal assumptions in the housing 

market crash was that housing prices would continue to rise, an assumption that 

challenges the basic principles of supply and demand.  Now, this probability distribution 

encompasses not only inherent risk as to the type of borrower, but also inherent risk in 

the market including house prices declining and/or interest rates rising.  Increasing 

interest rates affect adjustable rate mortgages, a significant number of subprime 

mortgages were ARM’s.42 Both of these economic factors increase default rates.  So, in 

reality the broker simply decides to lend or deny, and the probability distribution placed 

                                                
41 This percentage is unrealistic.  Today, the foreclosure rate is around 2.8% while before that the 
foreclosure rate was below 1.5%.  The larger numbers are used for convenience and simplicity. 
42 “What is a Subprime Mortgage?” Investopedia a Forbes Digital Company. www.investopedia.com 
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upon LS and LD decides the rest.  Because of this probability distribution, LS is no 

longer the dominant strategy.  Instead, if the possibility of default is high enough and the 

penalty to the broker is high enough, this encourages more due diligence by the broker.  

There is no longer only one Nash Equilibrium, but instead outcomes based upon an 

inherent probability distribution.   

 Not only should the brokers have to keep a portion of their loans so that they 

experience consequences of making bad loans, but the ability of mortgage brokers to 

gather up risky loans and sell them to others needs to be regulated to a larger degree.  

Brokers should not get away with creating such risky loans and selling them to others.  

This requires that the rating agencies rate the loans and mortgage backed securities 

accurately so that the financial entities buying these loans know what they are buying.  

Also, the buyers of mortgage-backed securities should not rely on the government to bail 

them out when the loans backing these securities fail.  If the buyers knew they would be 

held responsible for their purchases, they would have been more cautious.  Finally, the 

entire real-estate market should heed the lessons learned from the past: housing prices do 

not always rise.  This fatal assumption gave everyone who touched the risky loans the 

confidence that they would not fail, and therefore caused suboptimal behavior.  Everyone 

knows that markets tend to be cyclical.  Assuming that a market will never fall is a 

blatant disregard of historical lessons and economic teachings.   

 The housing market crash resulted from both dishonesty and disregard for classic 

historical lessons.  Adverse selection and moral hazard created an environment that 

encouraged dishonesty, and the lack of lending standards as well as a lack of due 
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diligence by both brokers and rating agencies created a market bound to fail.  As soon as 

the fatal assumption of ever-increasing housing prices proved false, the entire market 

collapsed.  By using the concepts of adverse selection and moral hazard found in 

Bayesian games with communication as well as asymmetrical information found in 

perfect Bayesian Equilibrium, we are able to understand what went wrong with the 

housing markets and what could help solve the problem.  By analyzing the dominant 

strategies found in this particular game, we showed that a disincentive for the borrower 

would not be effective, as the broker still has a dominant strategy to always lend, 

regardless of the borrower type.  We also showed that a disincentive for the broker would 

increase the likelihood of honest behavior as long as the broker understood the 

probability distribution placed upon the success or default of a loan.  Through increased 

due diligence, the broker could increase the probability that the loan would be successful, 

but this only matters if the disincentive for writing a poor loan is large enough.  

Understanding the basic definitions, forms, and methods to finding a Nash 

Equilibrium, along with the varying refinements and types of games including those with 

incomplete and imperfect information, and games with communication proved useful in 

analyzing the housing market collapse.  However, despite all of the building blocks 

learned in the previous chapters, analyzing a scenario from a game theoretic approach 

tells one part of the story.  A complete analysis includes many different perspectives, 

each with its own set of assumptions and guidelines.  In game theory, players are rational 

and intelligent.  Game theory recognizes that many outside forces contribute to 

preferences reflected in utility functions.  But there are many other disciplines that focus 
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on these outside forces. A more complete picture incorporates these other disciplines.  

Game theory is just one tool to understand the world around us and how humans interact 

within it.   
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