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Abstract 

Supervisory Control and Data Acquisition (SCADA) systems involve the use of distributed 

processing to operate geographically dispersed endpoint hardware components.  They manage 

the control networks used to monitor and direct large-scale operations such as utilities and transit 

systems that are essential to national infrastructure.  SCADA industrial control networks (ICNs) 

have long operated in obscurity and been kept isolated largely through strong physical security.  

Today, Internet technologies are increasingly being utilized to access control networks, giving 

rise to a growing concern that they are becoming more vulnerable to attack.  Like SCADA, 

distributed processing is also central to cloud computing or, more formally, the Service Oriented 

Architecture (SOA) computing model.  Certain distinctive properties differentiate ICNs from the 

enterprise networks that cloud computing developments have focused on.  The objective of this 

project is to determine if modern cloud computing technologies can be also applied to improving 

dated SCADA distributed processing systems.  Extensive research was performed regarding 

control network requirements as compared to those of general enterprise networks.  Research 

was also conducted into the benefits, implementation, and performance of SOA to determine its 

merits for application to control networks.  The conclusion developed is that some aspects of 

cloud computing might be usefully applied to SCADA systems but that SOA fails to meet ICN 

requirements in a certain essential areas.  The lack of current standards for SOA security presents 

an unacceptable risk to SCADA systems that manage dangerous equipment or essential services.  

SOA network performance is also not sufficiently deterministic to suit many real-time hardware 

control applications.  Finally, SOA environments cannot as yet address the regulatory 

compliance assurance requirements of critical infrastructure SCADA systems. 
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Chapter 1 – Introduction 

The acronym SCADA refers to Supervisory Control and Data Acquisition, a type of 

process control system (PCS) used to monitor and control processes that are distributed 

geographically (IBM Internet Security Systems [IBM-ISS], 2007, p. 3).  Examples of such 

processes include power generation and distribution, water and waste treatment, or railway track 

management – systems that are often critical to a country’s infrastructure.  Because SCADA 

systems are integral to maintaining human health and safety, commercial productivity, and 

emergency or military responsiveness, they are often operated in a strict regulatory environment 

(Stouffer, Falco, & Scarfone, 2008).  After safety, availability has always been the top design 

goal for these systems (Dzung, Naedele, Von Hoff, & Crevatin, 2005).  In the context of control 

systems, availability is tightly intertwined with reliability as continuous operation is the overall 

performance driver (Fabro & Maio, 2007; Fenrich, 2007; National SCADA Test Bed [NSTB], 

2010).  Security is an essential aspect of reliable operations, as noted by Stouffer et al.:  

“Improved control systems security and control system specific security policies can potentially 

improve control system reliability and availability” (p. 51).  Accordingly, the security of SCADA 

systems has been recognized as a key element of national defense.  In 2002, a U.S. Department 

of Energy (DOE) report recommending greater adoption of control network security measures 

announced that “…SCADA networks provide great efficiency and are widely used. However, 

they also present a security risk.  SCADA networks were initially designed to maximize 

functionality, with little attention paid to security” (p. 2). 

While the origin of many SCADA systems predates the Internet, an increasing majority 

of these systems are now connected using Internet technologies.  Fenrich (2007) clearly presents 

the nature of this change: 
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Historically, process control systems…were typically operated in an isolated 

or stand-alone environment, and did not share information or communicate with other 

systems.  These systems were normally comprised of proprietary hardware, software, 

and protocols designed specifically to control and monitor sensitive processes.  Since 

access to these control systems was greatly limited, and knowledge of these protocols 

was limited to a small population, control system network…security efforts were 

minimal, and focused primarily on physical measures.  

Today…stakeholders are demanding real-time plant information be readily 

available from any location.  This has led many previously stand-alone control 

systems to become part of the “always connected” world, where real-time control 

system information can be easily accessed…via corporate networks or Internet 

technologies.  This increased connectivity, coupled with the adoption of standardized 

technologies, protocol implementations, and operating systems, has dramatically 

increased the focus on control system security.  (pp. 1-2) 

This new connectivity is eliminating the past security benefits of using proprietary 

systems that were almost unknown outside of industrial circles and instead brings to control 

networks a fresh exposure to standard IT network security concerns (Centre for the Protection of 

National Infrastructure [CPNI], 2008).  Increased connectivity has also elevated certain 

additional and distinctive security issues for these systems.  Some of these issues are 

technologically based as automation controllers have not typically been endowed with enough 

computing capacity to support the processing overhead of authentication, encryption, or other 

security measures (Stouffer et al., 2008).  Further issues are based in performance reliability 

requirements as even the momentary disruption of a controlled process may not be acceptable.  

“Both the SCADA systems and the underlying physical systems have strict survivability 
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requirements on a twenty-four-hours-a-day, seven-days-a-week (24x7) basis. Here survivability 

means the capability of a system to fulfill its mission in a timely manner, even in the presence of 

attacks, failures, or accidents” (Xiao, Ren, & Kwiat, 2010, p. 1).  Accordingly, “the use of 

typical IT strategies such as rebooting a component, are usually not acceptable solutions due to 

the adverse impact on the requirements for high availability, reliability and maintainability of the 

ICS” (Stouffer et al., p 29).  The potential consequences of a control system failure extend 

beyond typical IT dimensions.  As serious as it can be for a corporate network to be 

compromised by a worm or hacker, there are far more dire consequences inherent in the breach 

of a control system regulating operations at a nuclear power plant.   

 Cloud computing  is based on service oriented architecture (SOA).  It offers compelling 

business benefits for many consumers of enterprise IT services such that its use is growing 

increasingly common.  As with SCADA, the cloud computing model is rooted in distributed 

processing and is possessed of certain security characteristics that differ from those of 

conventional networks.  Unlike SCADA, cloud computing has mostly evolved within the past 

decade and is based on leading edge Internet technologies that offer tantalizing prospects for the 

future.  The central question of this thesis concerns whether these prospects include the potential 

to improve SCADA control networks. 

1.1 Research Questions 

The central question this research seeks to answer is whether or not present-day cloud 

computing technologies can provide a worthwhile improvement over the conventional 

networking methods currently used to meet the distributed processing needs of SCADA 

industrial control systems.  Improvement in this case can largely be rated as an increase in 

reliability and availability or a decrease in cost with no sacrifice to either.  The best opportunity 
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for improvement may not come in operational performance  but through increasing the security 

of control networks in the Internet age. 

SOA and SCADA systems are both based on distributed processing models but it is not 

immediately obvious how readily one may be substituted for the other.  Of concern is how these 

models map to each other and whether SOA’s unique attributes are suited to addressing 

SCADA’s distinctive operational requirements.  Research is required to determine if the 

technological advances making SOA development feasible are also suited to improving process 

control systems.   

In order to evaluate the applicability of cloud computing to improving control networks, 

the research for this thesis addresses the following questions: 

• What are the benefits of cloud computing?   

• To what degree do these benefits accrue to control networks as opposed to 

enterprise networks, particularly in regards to security?   

• What are the performance requirements for SCADA control networks? 

• Can SOA be expected to meet SCADA performance requirements? 

• Are SOA information assurance capabilities (security and compliance) sufficient 

to meet the regulatory standards required of many SCADA systems? 

1.2 Assumptions 

It is assumed that the application of cloud computing to control networks will not be 

commercially viable unless SOA implementations at least match the operational performance of 

legacy SCADA systems.  Any cloud-based solution can be no less stable or robust than current 

systems, should address the full range of control requirements presently satisfied by conventional 

implementations, and will otherwise meet or exceed present-day performance in all critical areas. 
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Chapter 2 – Review of Literature and Research 

The literature review for this project encompassed three primary areas including the 

security and performance requirements of SCADA systems; the technological nature and 

performance aspects of cloud computing; and the application of design science methodology in 

research.  Research into SCADA security amalgamating general enterprise IT security risks and 

mitigations with the differentiating security considerations specific to control networks.   

Security was given strong emphasis in researching the merits and constraints particular to SOA 

implementations and their potential operational impact on – and suitability for – SCADA 

systems.   

A significant majority of literature reviewed for this project was drawn from two types of 

sources:  peer reviewed works from journals and proceedings or publically reviewed compendia 

of best practices developed by industry groups and governmental or quasi-governmental bodies 

such as the Department of Homeland Security, NIST, and various national laboratories.  These 

latter guidelines are frequently produced in the form of mandated standards that must be applied 

to systems developed for use by federal programs.  Due to the current rapid evolution of SOA in 

deployment, peer reviewed material was supplemented by gleaning consensus opinions from 

timely industry sources.  These sources included white papers and references produced by 

professional organizations and consortia such as the Cloud Security Association that are 

spearheading the latest efforts to develop standards and best practices for cloud computing.   

Peer reviewed literature concerning the design science methodology was also reviewed to 

establish what criteria to apply in determining sufficiency with regard to the work performed for 

this project. 
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2.1 SCADA Systems and Industrial Process Control 

SCADA systems constitute one class of automation control systems more generally 

referred to as Process Control Systems (PCS) or Industrial Control Systems (ICS).  A control 

system may be as simple as the volume control knob on a radio or a thermostat that regulates the 

temperature maintained by an oven or air conditioner.  SCADA control systems are used to 

manage hardware typically associated with large-scale operations such as factories, utilities, 

transportation systems and the like. 

The fundamental nature of process control is different than that of enterprise computing.  

Weiss (Control systems cyber, 2009) spells out two central distinctions.  First, tasks in the 

business IT model generally have a defined beginning and end whereas the process control 

model is built around the continuous loop.  While the IT community generally avoids the 

continuous loop, it is the continuous loop that enables an ICS to operate efficiently and safely.  

Second, the end user of an enterprise system is usually a person whereas the end user in a 

SCADA system is most likely to be a computer or other control device.   

One of the most frequently cited distinguishing properties of control systems that it that 

they are deterministic, that is, process control often has strict real-time or near real-time 

requirements for monitoring and response (Byres & Hoffman, 2004; Control systems cyber, 

2009; Dawson, Boyd, Dawson, & Nieto, 2006; Dzung et al., 2005; Fabro & Cornelius, 2008; 

Fenrich, 2007; Fernandez & Fernandez, 2005; Miller, 2005; Naedele, 2007; Stouffer et al., 

2008).  In contrast, the standard for “real-time” in enterprise systems typically reflects the 

amount of delay that is acceptable before a user loses patience. 

These characteristic differences between systems result in a certain subset of performance 

requirements that separate process control from enterprise applications.  This separation in turn 
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leads to diverging implementation standards by impacting areas such as system design and 

security orientation. 

SCADA Components and System Organization 

SCADA systems are multi-tiered and may be viewed hierarchically from two parallel 

perspectives, control and communications.  Control may be considered in terms of both logical 

and physical distance from the endpoint hardware components or machinery while 

communication relates to being closest to the top-level SCADA controller, sometimes referred to 

as a master terminal unit (MTU) or a real-time processor (RTP).  At the lowest communication 

level, the components of a control system will consist of somewhat intelligent “field devices” 

such as intelligent electronic devices (IEDs), or programmable automation controllers (PACs) 

(IBM-ISS, 2007).  These components may control somewhat basic processes and sub-processes 

but often simply regulate a limited collection of very fundamental hardware endpoints such as 

valves, relays, motors and solenoids or monitor sensors for temperature, pressure, pH, current 

and so on. 

While a field device may communicate directly with a SCADA controller, it will 

frequently be managed or coordinated along with other field devices by intermediate controllers 

such as remote terminal units (RTUs), programmable logic controllers (PLCs), or distributed 

control systems (DCSs) that serve to control complex processes or sub-processes (Stouffer, et al., 

2008).  Some intermediate controllers have extensive capabilities that may rival those of the 

SCADA controller.  A DCS, for example, controls an entire site, factory, or process that is 

geographically situated so that all components can be connected on a LAN.  Although a typical 

RTU is often described as a being a ruggedized field device on the order of some IEDs (Patel, 

Bhatt, & Graham, 2009), they can often provide fairly complex control of an entire process or 
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field station.  PLCs have evolved to offer a great deal of flexibility and may be configured to 

function as an RTU or be sophisticated enough to serve as a low-end DCS.  Common usage of 

terms for the various types of process controllers shows some fuzziness of definition and there is, 

at all levels, a certain amount of overlap in the range of capabilities for each. 

A SCADA controller consists of a SCADA server, most often coupled to a separate 

computer that provides the human machine interface (HMI).  An HMI normally offers graphical 

view of system conditions and events in real time while serving as the terminal through which an 

operator enters commands, run tests, and respond to alarms.  The other key component of a 

SCADA system is the data historian.  This is server used to keep a time line record of process 

states and activities.  Multiple or redundant instances of any SCADA component will exist 

according to the operational requirements of the system. 

The distinguishing characteristic of a SCADA controller is that it manages processes over 

a wide enough area that some form of WAN is required to connect all of the constituent elements 

(IBM-ISS, 2007).  The process may not actually be as complex as one typically managed by a 

DCS but the system will be geographically distributed.  The WAN may utilize any manner of 

communication links including wired, wireless, or satellite and follow a mix of standard process 

automation protocols such as ICCP, DNP3, or Modbus, as well as TCP/IP (Giani, Karsai, 

Roosta, Shah, Sinopoli & Wiley, 2008; Graham & Maynor, 2006; IBM-ISS, 2007).  Technical 

precision is often waived as the term “SCADA” is used interchangeably with “control” to refer 

to any control network or system, regardless of the actual network span. 
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Figure 1:  General SCADA System Layout 

The SCADA controller may oversee a local site in conjunction with remote operations, in 

which case it is also connected to a production system LAN.  LANs in an automation control 

environment typically employ a diverse set of channels and protocols.  The mix utilized is less 

often driven by bandwidth requirements than by considerations such as immunity to electrical 

noise or poor grounding, signal attenuation over the distance required, and the choice of 

communication interfaces provided by the vendors of particular specialized equipment.  Serial 

communications via RS-232 or RS-485 are not uncommon and, along with previously identified 

process automation protocols, may utilize proprietary protocols mixed with standards such as 

GPIB or, more recently, USB.  This LAN, or control network, may also be referred to as the 

process control or industrial control network (PCN or ICN), as distinct from the enterprise, 

corporate, business, or IT network.  In the case of SCADA systems, the PCN extends to include 

the SCADA WAN as well. 

A good application to use as model for envisioning SCADA systems is that of electrical 

production and distribution.  An individual electrical generation plant will be controlled by a 

DCS that manages the plant’s many processes, sub-processes, and components.  A SCADA 



SCADA SYSTEM SECURITY  10 

system will provide for the centralized monitoring and coordination of a number of generation 

plants within a region as well as overseeing the power distribution network and its associated 

substations (each of which has its own RTU).  In this way, the SCADA system manages power 

generation to match total system load requirements and parcels out that load to different 

locations according to current demand in each area. 

OPC 

In the world of PCNs, OLE for process control (OPC) plays a significant role.  OPC is a 

very widely used set of protocols for integrating the multifarious communications protocols 

utilized by automation hardware vendors and has, in turn, received a great deal of vendor 

acceptance and support (Byres Research, 2007; Dzung, et al., 2005; Tu, Cuong, Tan, & Thang, 

2010).  OPC utilizes a client-server communication architecture to deliver one of the key features 

also found in SOA:  a simplified means to link heterogeneous systems, of which there are 

multitudes in the automation and process control industry.  The recommended architecture for 

highest-reliability systems includes redundant OPC servers with a “heartbeat” signal to keep 

each server alert to the other’s status, allowing the backup server to know when to assert control 

(Dzung et al.; Tu et al.).  Figure 2 illustrates the differences between conventional control 

network communications and OPC communications. 
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Figure 2:  Conventional vs. OPC Communication Architectures 

OPC is built on Microsoft’s remote procedure call (RPC) and distributed component 

object model (DCOM) protocols central to its Object Linking and Embedding (OLE) technology 

(Byres Research, 2007; Tu, 2010).  The OPC Foundation has more recently developed OPC-UA 

(OPC universal access), a backwardly compatible OPC based on XML and .NET Web services 

that provide a foundation for the potential adoption of a service oriented architecture.  The intent 

is to address, among other things, better OPC security and Microsoft’s plans to retire DCOM 

“but it may be a number of years before many companies actually convert their systems” (Byres, 

2007b, p. 4) so OPC “classic” is very much the prevailing technology.   
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Threat Evolution with SCADA Systems 

SCADA systems pre-date the Internet but are now largely connected to TCP/IP networks. 

These connections often occur in unintentional ways that are not recognized by system managers 

and are therefore overlooked for their security risks (Graham & Maynor, 2006).  According to 

Naedele (2007), “direct…and indirect…links between the automation system and external public 

networks is often underestimated” (p. 2).  

Recognized or not, these connections expose previously insulated control networks to the 

entire host of mainstream enterprise network vulnerabilities (Cagalaban, Kim, & Kim, 2008; 

Dzung et al.; Fenrich, 2007; Landau, 2008; Taylor, Krings, & Alves-Foss, 2002).  Even though 

the rate of Internet adoption in process control environments has lagged that of business and 

personal computing, by 2004 studies were showing that the overall rates of control systems 

incidents had increased five-fold in the preceding10 years while between 2002 and 2004 the 

percentage of external incidents more than doubled to 66% from a 20-year baseline of 29% 

(Miller, 2005). 

There are distinctive consequences of an ICS security breach above and beyond those 

applying to enterprise networks due to standards for fault tolerance, downtime, operational 

safety, equipment damage, etc.  As itemized by Fabro & Cornelius (2008, p. 23):  

The consequences associated with cyber incidents in a control systems 

environment can vary and can include: 

• Loss of localized or remote control over the process 

• Loss of production 

• Compromise of safety 
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• Catastrophic cascading failures that affect critical infrastructure and 

can extend to peer sites and other critical infrastructure sectors 

• Environmental damage 

• Injury or loss of human life 

For historical reasons, “controls systems that are not Windows-based generally have poor 

security designs and weak protection” (Byres, 2004, p. 5).  Even so, these systems have largely 

escaped external attacks and, until fairly recently, reports of process systems succumbing to an 

Internet attack have been rare.  Until PCNs were connected to the Internet, physical security 

provided the greatest measure of protection and incidents were largely the result of insider 

actions, both accidental and deliberate.  The proprietary nature and rarely understood workings 

of automation systems software also created a barrier to outside attack, often referred to as 

“security through obscurity” – potentially effective protection but only under conditions that are 

seldom realized in practice today (Udassin, 2008b).  It is not clear that external attacks have yet 

superseded internally induced events but the trend is in the making.  Appendix A provides a 

summary of many of the best known industrial control security incidents organized by date to 

help highlight the progression from events being internally generated to instead being externally 

induced. 

A SCADA server may provide an attacker entrée to a corporate network and vice versa.  

Increasingly, SCADA systems have been impacted by common network attacks, not because 

these attacks specifically targeted the lower process control tiers but because hardware control 

was incidentally affected when control network servers or pc-based controllers were disrupted.  

One of the best known incidents occurred when the safety monitoring system of the Besse-Davis 

nuclear power plant was disabled by the Slammer worm because a contractor plugged his laptop 
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into a local service port behind the firewall while being remotely logged in to his company’s 

infected network (Naedele & Dzung, 2005).   

Malware moved closer to directly threatening automation controllers with the 

exploitation of vulnerabilities in the RPC DCOM interface that is at the core of the widely used 

OPC standard (Byres, 2007a).  In 2007, for the first time ever, the OPC network server of a 

popular SCADA system used to control railroads, oil refineries, dams, and nuclear power plants 

was discovered to harbor a remotely exploitable vulnerability that could crash the system and 

potentially even allow it to be taken over (Vaas, 2007).   

Since then, not only have PCNs been challenged but the proprietary operating systems 

used for process control have come under increasing scrutiny and even attack.  In 2008, an Israeli 

SCADA security firm, C4, was the first to document and demonstrate a remotely exploitable 

vulnerability that would definitely allow the takeover of an industrial control system (Udassin, 

2008a).  Subsequently, the Stuxnet worm was discovered in June 2010.  Stuxnet was the first 

rootkit to specifically target a manufacturer’s proprietary operating system for industrial control 

(Falliere, 2010).  Not only did Stuxnet use sophisticated techniques to infiltrate Windows 

systems running targeted SCADA software, it also could identify a variety of PLCs under 

SCADA control and then download and hide blocks of code on those PLCs capable of secretly 

impacting hardware activities.  The Stuxnet-targeted SCADA system supplied by Siemens is in 

common use running nuclear facilities and the worm, though widely distributed geographically, 

was found to be clustered primarily at nuclear installations in Iran.  Analysis of Stuxnet code 

revealed that an early form of the worm existed for roughly a year prior to its discovery and that 

a newer upgraded version circulated undetected for several months. 
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Security Impact of Differences between Control and Enterprise Networks 

Control networks and enterprise networks coexist within organizations that are engaged 

in process control.  The primary point of contact between the two networks is usually the Data 

Historian, which is a server like many that would commonly be found on the corporate network.  

Workstations are generally the most visible computers the SCADA controller level.  The rather 

ordinary nature of these most visible PCN components contributes to the impression held by 

many IT groups that the distinctions between control and corporate networks are minimal.  

While much of the computational hardware that is employed may be similar, the performance 

requirements for control networks are at strong variance to those for enterprise networks.  Weiss 

made the point in his 2009 testimony before the Senate “that IT encompasses a large realm, but 

does not include ICS processes” (Control systems cyber, 2009).  Table 1 presents a summary of 

the most significant differences in performance expectations between control systems and 

enterprise IT systems. 

Table 1 

Major differences between performance expectations for enterprise IT systems and PCS systems 

Category Enterprise IT Systems Process Control Systems 
Performance 
Requirements 

 Consistent response time required 
 Demand is for high throughput 
 High delay and jitter may be 

acceptable 

 Real-time, response is time-critical 
 Modest throughput is acceptable 
 High delay and/or jitter is not 

acceptable 
Availability 
Requirements 

 Occasional failures may be tolerated 
 Depends on operational needs  
 Acceptable problem responses 

include actions such as rebooting 
 Field beta testing can be acceptable 

as is timely – or even automated – 
software change management  

 Maximum availability is essential 
 Redundant systems may be required 
 Rebooting likely not acceptable and 

is a slow painstaking process 
 Downtime planned well ahead of time 
 Changes, including patching, are 

infrequent and require exhaustive 
pre-deployment testing to assure 
they do not disrupt ICS processes 

Risk Management 
Requirements 

 Top priorities are data confidentiality 
and integrity 

 Fault tolerance is less consequential 

 Top priorities are human safety, then 
process protection/continuity 

 Fault tolerance is critical – even 
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– transient downtimes generally not 
a big risk 

 Major risk impacts are delay of 
business operations and exposure of 
proprietary information or methods 

 Outsourcing viable and utilized 
extensively, increasingly so with the 
advent of cloud computing 

momentary downtime may not be 
acceptable 

 Major risk impacts include loss of life, 
environmental damage, equipment 
damage, regulatory non-compliance, 
and lost production 

 Outsourcing rare except for vendor 
maintenance contracts 

Security Orientation  Emphasis on protection of IT assets 
and the information stored or shared 
among these assets 

 A security breach may make system 
unavailable and result in lost data 
integrity or confidentiality 

 Emphasis on protecting edge clients 
(e.g., field devices that monitor and 
control processes) 

 A security breach may result in a 
dangerous or lethal outcome for 
many people 

Computational 
Resource 
Constraints 

 Systems are specified with enough 
resources to support additional third-
party applications such as security 
solutions 

 Automation control systems often 
lack capacity to support or cannot 
tolerate the latency of added security 
measures like encryption, IDS, or 
anti-virus  

 Penetration testing network may 
disrupt operation 

System 
Components 

 Typical lifetime of 3-5 years 
 Usually local and easy to access 

 Typical lifetime of 15-20 years 
 Often remote and can be very difficult 

to access 
 

While security remediation for enterprise and control networks will overlap, there are 

consequential differences that must be recognized.  This can be demonstrated by highlighting 

just a couple of the distinctions between the two types of systems:  computational resources and 

security orientation.  IT systems are consistently specified with the communication bandwidth 

and enough memory and processor speed to accommodate security measures like anti-virus 

programs and encryption protocols.  Control systems, by contrast, typically communicate at a 

fairly pedestrian pace and have little in the way of excess computational resources over and 

above what is required for their hardware management duties (Control systems cyber, 2009; 

Dawson et al., 2006; Dzung et al., 2005; Naedele, 2007; Stouffer et al., 2008).  Common 

enterprise security measures like software patching or network scanning can easily disrupt 

process controllers (Duggan, Berg, Dillinger, & Stamp, 2005; Naedele; Stouffer et al.). 
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When considering the three core attributes of security – confidentiality, integrity, and 

availability – IT systems generally rank their importance in just that order, with integrity 

possibly tying with confidentiality for first place (Fabro & Cornelius, 2008).  For control 

systems, the rank order is reversed with availability being far and away of the highest 

importance, and then integrity of the data/message stream followed at some distance 

confidentiality (Control systems cyber, 2009; Control Systems Security Program [CSSP], 2009; 

Dzung et al., 2005; Fabro & Cornelius; Fabro & Maio, 2007; Fenrich, 2007; McQueen, Boyer, 

Flynn, & Beitel, 2006; Miller, 2005; Naedele, 2007; Stouffer et al., 2008).  “Whether this is 

correct, it is indeed a result of historically non-cyber security cultures having to make system uptime 

the primary operational activity” (Fabro & Maio, p.18).  While there are other contrasts between 

enterprise systems and control systems, these distinctions in computational resources and security 

posture are the predominant drivers of differences in security remediation decisions between the two 

types of systems. 

As with enterprise IT security, securing SCADA systems requires a defense-in-depth 

approach.  In the ICS security realm, certain misinformed beliefs have been widely held that 

form an impediment to enhanced security.  According to Xiao et al. (2008), these beliefs include 

(in italics with discussion following): 

• Control network inaccessibility:  PCNs are physically segregated from the 

Internet and access from corporate networks is protected through strong access 

control measures.  In practice, many control systems are externally accessible by 

modems that may be discovered by “war dialing” then compromised by password 

cracking utilities (Stouffer et al., 2008).  Graham and Maynor (2006) document 

many cases where ICS networks were subject to compromise because they were 

not as well isolated as operators believed them to be.  Wireless accessibility is 
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also a potentially vulnerable feature of many control systems.  Too often, 

employee access to a control network relies on IT network security while the link 

between networks utilizes weak authentication protocols and grants privileges to 

too many users.  (Fernandez & Fernandez, 2005; Permann, Hammer, Lee, & 

Rohde, 2006; Stouffer et al., 2008) 

• Security through obscurity:  process systems consist of niche applications and 

proprietary networks that require specialized knowledge to access and control.  

As Byres (2004) points out, HMI controllers in SCADA systems rely heavily on 

Windows platforms with commonly known vulnerabilities.  This leaves them 

subject to disruption at least, if not a targeted attack on operational controls.  

Appendix B summarizes certain key findings of Homeland Security’s ICS 

vulnerability assessments performed by the Idaho National Labs (NSTB, 2010) 

which reveals that the 10 most critical ICS vulnerabilities all ranked “High” for 

attacker awareness of their existence.  Eight of the 10 vulnerabilities were ranked 

“Easy” or “Moderate” for attacker ease of detection, “High” or “Widespread” for 

prevalence of being found ICSs, and had CVSS v2 scores between 9.0 and 9.8 out 

of 10 for impact/damage potential. 

• A control system network breach will not confer end point control:  a process’ 

hardware operations will not be impacted if the ICN is compromised due to the 

specialized knowledge needed to exert control over field units like PLCs or IEs.  

In practice, field units communicate often in clear text with message banners that 

identify what units are on the network while the information needed to gain 

control of these units is freely available on the Internet (Graham & Maynor, 
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2006).  Often the necessary information can be found on the compromised 

network (Udassin, 2008b).  It has further been demonstrated that an unknown 

control protocol may be reverse-engineered within a matter of days (Naedele, 

2007).   Stuxnet provided further proof that the need for proprietary knowledge is 

not a sufficient barrier to prevent field unit attacks. 

 Even given the corporate will to secure control systems, strategies for securing enterprise 

systems do not always translate well to a control network environment.  “Factors such as 

operational isolation, legacy networking, and inflexible roles in job activities may not be 

conducive to creating environments that are rich with cyber security capability, functionality, or 

interest” (Fabro & Maio, 2007, p. 1).  For this reason, there is a need for enterprise and control 

systems specialists to work jointly on ICN security issues rather than relying overmuch on 

standard IT systems expertise (Stouffer et al., 2008). 

One aspect of ICS security that does correlate strongly with enterprise systems is that of 

utilizing secure network architecture.  Isolation of control networks is a major objective and 

wherever possible an “air gap” is employed such that there are no external network connections 

to systems that directly control equipment.  This is a requirement for core nuclear plant control 

systems and appears to be one reason that the Stuxnet worm was designed to propagate through 

both USB and network connections.   

Sometimes vendors will have external connections to a control network for maintenance 

purposes but the primary vulnerability to external intrusion is via corporate network connections 

that are established for a variety of useful and convenient business reasons (Stouffer et al., 2008).   

Both Homeland Security (CSSP, 2009) and Canada’s National Infrastructure Security 

Coordination Centre (Byres, Karsh, Carter & Savage, 2005) reviewed network architectures that 
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have been used over time to promote securing the connections between enterprise and corporate 

networks.  Solutions using only routers or dual homed servers are no longer considered to have 

any effective security value and even placing a single firewall between networks is deemed only 

marginally useful when a low-risk control network is involved.  The most worthwhile network 

architectures use multiple firewalls to place a DMZ between the control and enterprise networks 

as illustrated in Figure 3.  This topology ensures that communication between networks is never 

direct but occurs primarily through data exchanged via the SCADA Data Historian located in the 

DMZ, in effect buffering the control network from the corporate network as if it was an open 

conduit to the Internet.  The same conceptual network segregation might also be enforced with 

the use of VLANs to implement the firewall zones rather than multiple firewalls, though VLANs 

come with additional security vulnerabilities that must be carefully addressed (Dzung, et al., 

2005; Leischner & Tews, 2007). 

 

Figure 3:  DMZ Segregation of Control and Enterprise Networks 

Company networks are often thought to be more secure than they are so the policies 

controlling connections to the control network from inside the enterprise are not suitably 

stringent.  While it is necessary to understand technical solutions that extend into the control 

system space, there is also a great need to focus on the “soft side” of security – issues such as 

policy, training, and organizational security culture.  As Naedele (2007) notes:  “Security is in 



SCADA SYSTEM SECURITY  21 

the first place not a technical issue.  In consequence, some of the largest challenges in making 

control systems more secure relate to human behavior and the perception of the problem” (p.2 ).  

2.2 Cloud Computing 

The commonly used term “cloud computing” is an informal label applied to networks 

using Service Oriented Architecture (SOA) for which NIST provides this broad working 

definition:  “Cloud computing is a model for enabling convenient, on-demand network access to 

a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, 

and services) that can be rapidly provisioned and released with minimal management effort or 

service provider interaction” (Mell & Grance, 2009, p. 9).  The terms “cloud computing”, 

“SOA”, and “the cloud” are used interchangeably in this thesis. 

One primary aspect of SOA is that the various parts of the system are integrated with 

each other by means of messaging.  Since the messaging mechanisms used are o/s- and platform-

independent, heterogeneous systems are encapsulated behind their messaging interface and can 

be made to effectively interoperate with each other over the network.  And, since a cloud is 

network based, one of its key characteristics is that its component elements may be widely 

distributed geographically in a fashion similar to SCADA systems. 

Units of software functionality, called Web services in SOA, are conceptually related to 

methods in object-oriented programming in that the inputs and outputs are public but the manner 

of execution remains private.  “A web service is basically a collection of related operations, with 

each operation (e.g. placeOrder) being associated with a message or a pair of messages 

(placeOrderRequest, placeOrderResponse)” (Kearney, 2005).  Alternatively, Mell & Grance 

provide a more general picture of Web services as “self-describing and stateless modules that 

perform discrete units of work and are available over the network” (2009, p. 71).  Also known 
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simply as “services”, Web services are frequently constructed to be “multi-tenant” so that 

simultaneous use by multiple requestors is possible (Cloud Security Alliance [CSA], 2009).  One 

or more instances of each service may exist at various locations within a cloud.  

A cloud’s services are catalogued in a service registry.  This registry may be publically 

accessible or kept private (within a single organizational entity).  The registry is a database 

containing a roster of web services, with a formal description of their functions (methods, inputs, 

and outputs), and their location in the cloud (Sinha, Sinha, & Purkayastha, 2010).  Service 

requestors query the registry to “discover” web services that meet their needs.  The entire process 

of connecting requestors to services is brokered using a Web services protocol stack consisting – 

in the most basic view – of four protocols that provide for transport, messaging, description, and 

discovery. 

XML and the Web Services Protocol Stack 

XML (eXensible Markup Language) provides the foundation for three of the four Web 

services protocols:  messaging, description, and discovery of Web services (Rosenberg & Remy, 

2004, chap. 1).  Only the transport protocol (i.e., SMTP, FTP, HTTP, etc.) is not rooted in XML.  

XML is also being applied to extending trust and security capabilities for Web services through 

such means as the Security Assertion Markup Language (SAML), the eXtensible Access Control 

Markup Language (XACML), and a group of SOAP extensions (WS-Security, WS-Trust, etc.) 

identified collectively as WS-* (Martino & Bertino, 2006). 

XML uses a text-based format to provide a structured self-describing means of 

representing data in a manner independent of the platform, operating system, programming 

language or protocol used by any system.  Different languages, including the document type 

definition (DTD) language that is part of the XML specification, are used to create XML 
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schemas that define the rules for an enormous variety of XML documents and domain-specific 

languages (Rosenberg & Remy, 2004).  It is the flexibility of XML that has allowed its use for 

the creation of Web services protocols. 

The Simple Object Access Protocol (SOAP) is built on an XML schema that defines the 

predominant Web services message protocol.  “It allows a program running in one system to call 

a program running in another system and it is independent of any programming model” 

(Rahaman, Schaad, & Rits, 2006, p. 78).  SOAP messages exchange structured information, 

principally XML data, between Web services, most frequently utilizing HTTP/HTTPS as the 

transport protocol. 

The Web Services Descriptor Language (WSDL) is an XML implementation of the Web 

services description protocol used to define the set of operations provided by Web services along 

with the structure of their related SOAP messages (Rosenberg & Remy, 2004).  This description, 

known as a “WSDL”, is used by one service to tell other services how to interact with it, where 

the service is located, what the service can do, and how it is invoked.   

The service discovery protocol is another XML offshoot, UDDI (Universal Description 

Discovery and Integration).  UDDI is used to compose the Web services registries where 

WSDLs are published.  “It defines a set of standard interfaces for accessing a database of Web 

services. The purpose of UDDI is to allow users to discover available Web services and interact 

with them dynamically. The process can be divided into three phases: Searching (discovery), 

Binding and Executing” (Sinha et al., 2010, p. 135).   

Figure 4 illustrates the relationship between SOAP, WSDL, and UDDI, the XML-derived 

protocols utilized for the Web services model. 
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Figure 4:  XML Protocols and the Web Services Model 

Web Services Performance Considerations 

While flexibility and system agnosticism make XML a powerful and useful tool, it also 

has its drawbacks.  Martino and Bertino (2006) observe that use of XML for Web services may 

hamper SOA system performance due to the amount of processing overhead involved, lead to 

interoperability issues caused by deficiencies or incompatibilities of evolving standards, and 

adversely impact security through a variety of inherent vulnerabilities. 

Security vulnerabilities in XML begin with the fact that it is a text-based standard, which 

creates a requirement to encrypt sensitive data to avoid compromising confidentiality in the 

event it falls into the wrong hands (Martino & Bertino, 2006).  For SOAP messages, routine 

transport layer encryption (SSL/TLS) is not entirely sufficient for this purpose because it only 

provides point-to-point security.  SOAP messages may be transmitted in multiple “hops” through 

a series of services, each of which is an endpoint.  This means that transport layer security ends 

at the first hop rather than at the ultimate destination.  Although TLS security may be separately 

applied to each hop, what is really required is message level security that can provide end-to-end 

validation that each separate leg of the transmission was secured (Hongzhao, 2010; Martino & 

Bertino; Rahaman et al., 2006; Tan, Yoo, & Yi, 2009).  End-to-end message security is evolving 
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through the use of XML-Encryption and XML-Signature in accordance with WS-Security and 

other related SOAP extensions such as WS-Policy and WS-Trust (Rodrigues, Estrella, & Branco, 

2011; Rahaman et al.). 

Researchers have documented numerous other concerns regarding XML vulnerabilities 

including XML schema poisoning (Mehta, 2009), XML rewriting attacks (Rahaman et al., 2006), 

and WSDL scanning and enumeration attacks (Breytenbach, 2005; Mehta).  Sinha et al. (2010) 

raise the additional issue of “how to ascertain that the description of the service provided by the 

registry and the actual service provided by the provider for binding are the same” (p. 137) and 

note that tampering with a WSDL in transit or storage can cause a variety of malfunctions. 

Standards for Web services can be problematic because they are not always fully 

compatible.  Martino & Bertino (2006) point to three types of standards that are in effect.  De 

facto standards are those in wide use that may or may not be officially recognized as de jure 

standards by legal international standards bodies such as ISO while a third kind of standard, the 

consortium recommendation, is prevalent in SOA, particularly as to access control and 

messaging security extensions.  Consortia recommendations may eventually be adopted as de 

jure standards, but in the mean time “the Web service standards community such as OASIS, 

IETF, and W3C among numerous others are producing a plethora of specifications which, in 

principle, could offer potential solutions…However...there is still considerable fluidity in these 

developments and a variety of implementations that exist” (Jie, Arshod, Sinnot, Townend, and 

Lei, 2011, p. 12:24).  Further, many Web service standards are developed using a layered 

approach where upper layer standards can use and extend the standards from lower layers.  As a 

result, the standards for different layers are often developed by different standardization bodies 

such that “standard specifications are not always compatible” (Martino & Bertino, p. 21).  As 
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illustrated by Carlson & Himler (2005):  “Most Web services specifications provide a number of 

mechanisms for accomplishing the same thing, which can lead to interoperability issues.  As an 

example, a sender can encrypt data using Triple DES, AES 128, AES 192, or AES 256 

algorithms, but the receiver might only be able to decrypt AES 128” (pp. 28-29).  This example 

typifies “the need of a flexible negotiation approach that enables the system to dynamically adapt 

to changing conditions” according to Martino & Bertino (p. 23), who also express concerns 

about “the real interoperability between the standard implementations by different manufactures 

[sic]” (p. 22). 

There are additional Web services interoperability issues caused by semantic 

incompatibilities.  “One of the biggest stumbling blocks in the grand vision proposed by SOA is 

data heterogeneity between interoperating services. By data or message level heterogeneities, we 

refer to incompatible formats of messages exchanged by the services” (Nagarajan, M., Verma, 

K., Sheth, A. P., Miller, J., & Lathem, J., 2006, p. 373).  Simple examples might include an 

instance where one service defines test performance as GRADE(A-F) versus another service’s 

SCORE(0-100), or GRADSTUDENT(ID, Name, Addr) versus STUDENT(ID, Name, Addr, 

StudentType[GRAD]).  Addressing issues of this nature is one of the factors driving work on the 

Semantic Web and the Web Ontology Language (OWL) (Nagarajan, et al). 

As issues of Web service security and interoperability requirements have become better 

understood, the processing overhead required to address them has also raised performance 

concerns (Hinton et al., 2005; Martino & Bertino, 2006; Rahaman et al, 2006; Tu et al., 2010).  

Studies to evaluate the transmission and processing times of secured versus unsecured SOAP 

messages indicate a three- to over 10-fold increase for invoking security measures (Rodrigues et 

al, 2011; Tan et al., 2009).  Some manufacturers have responded to these concerns with the 
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development of XML appliances.  Martino and Bertino describe the volume of processing that 

may be offloaded to these appliances, providing further insight into the potential amount of 

overhead involved: 

Such products are commonly referred to as XML appliances and include the XML 

accelerators and the XML firewalls. A XML accelerator appliance is a customized 

hardware and software where the following processing consuming tasks are performed: 

XML/SOAP parsing, XML schema validation, XPath processing and XSLT 

transformation functions. XML firewalls, also known as XML security gateways, are 

devices that, in addition to the functions of a XML accelerator, support the WS-Security 

standards and a range of security-related functions such as: content or metadata-based 

XML/SOAP  filtering functions; XML messages encryption/decryption at the message or 

element level; XML signature verification and XML message signing according to XML 

Encryption standard; Authentication and authorization functions (that in some XML 

appliance can be based on local or on on-board repositories); Auditing and accounting 

functions. (p. 22). 

 Even without adding overhead for security processing and the like, the fact that XML is 

text-based innately increases system overhead because text does not transmit as compactly as 

binary data (Martino & Bertino, 2006; Tan et al., 2009; Tu et al., 2010).  This issue was 

addressed through the creation of a set of standards for using SOAP messages to transmit large 

binary data (Martino & Bertino), resulting in at least a six-fold decrease in message size (Tan).  

However, regarding XML in the control network world of OPC, “the binary encoding routines 

are of particular concern, especially in embedded controllers, which have been especially prone 

to parsing errors in the past” (Byres Research, 2007a, p. 26).  This issue could take some time to 



SCADA SYSTEM SECURITY  28 

fully resolve as only time will tell when the Web services binary data standards are stable and 

then allow for these standards find their way into fully validated control systems which are, in 

turn, deployed at very low turnover rates. 

Virtualization 

Virtualization is not a part of cloud computing by definition but it is so often present as a 

feature that it is warranted for inclusion in any consideration of the cloud (CSA, 2010).  

Virtualization adds a key cost benefit to cloud computing through the part it plays in enabling 

utility computing.  As multi-tenant services allow units of code to be shared, virtualization 

allows units of hardware – servers and storage systems in particular – to be shared.  Like a 

multitasking operating system that oversees the sharing of processor cycles and I/O access 

between several tasks on a single machine, the virtual machine hypervisor shares the many 

processors and other resources of a high-power server among many “virtual” computers.  Unlike 

a task, which is a single software component with limited functionality, a virtual machine has the 

capability of running its own operating system and distinct set of applications as if it was 

contained in a separate standalone box. 

Benefits of Cloud Computing 

There are a number of potential benefits to cloud computing for consumers of computing 

services.  The message-based nature of SOA provides a means to loosely couple both local and 

remote network elements (Flurry, 2007).  This loose coupling enables interoperability between 

heterogeneous systems, meaning that new upgrades and installations may be deployed without 

simultaneously replacing essential, but incompatible, legacy systems (Frievald, 2008).  Loose 

coupling can further allow for interoperability between different cloud infrastructures (Badger & 

Grance, 2010). 
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Cloud computing also enables the acquisition and use of computing services in a fashion 

that approaches the model common to utilities, where – as with household power or water – only 

the scale of services required is utilized and paid for (CSA, 2010; Mell & Grance, 2009).  Shared 

web services support renting software on an as-used basis rather than owning it.  Virtualization 

facilitates utility computing by enabling incremental expansion through the addition of a single 

virtual machine that utilizes only a fraction of a complete physical server that would need to be 

acquired otherwise.  Underutilized capacity is minimized by making a single pool of resources 

available to meet the needs of multiple user groups.  Through resource sharing, processing 

capacity is idle less often and only a modest reserve capacity is needed to support the peak needs 

of all users compared to what is required when each user group provisions independently to meet 

occasional peak demand. 

What cloud computing means for small and medium-sized businesses (SMBs) is that they 

can have utility-like access to sophisticated computing capabilities without making an otherwise 

prohibitive investment in equipment and IT staff (Frievald, 2008).  For large companies that 

might afford full IT departments, cloud computing provides a means to outsource a substantial 

amount of mundane IT activity and focus on strategic issues. 

There are three deployment models for cloud services:  Infrastructure-as-a-Service 

(SaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS) (Badger & Grance, 

2010).  In the order listed, there is an increasing shift of control from the service consumer to the 

cloud provider.  This shift of control also represents a cost benefit from increasing reliance on 

outsourced IT staff functions.  In all cases, the customer is leasing hardware with no direct 

control of the underlying rack server or hypervisor and can only negotiate management policies 

through service level agreements (SLAs) with the provider (CSA, 2010).   
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With IaaS, the customer retains full control of the service layers above the hardware 

level, i.e., the operating system, middleware and, at the top level, the user applications.  IaaS is 

targeted to providing customers with fundamental computing resources like processing, storage, 

and network capacity in a manner highly analogous to typical pc leasing.  IaaS augments PaaS to 

the extent of deploying customer-created or -specified applications to the cloud.  In this role, 

service providers will additionally assume full control of the operating system while sharing with 

customers the administrative control over middleware and applications.  The customer will also 

retain a certain amount of programmability control for these layers as well.  The intent of SaaS is 

to enable the customer to use the provider’s applications over a network (Mell & Grance, 2009; 

CSA, 2010).  Accordingly, the customer cedes almost all control to the service provider except 

for retaining limited administrative capabilities like adding and deleting accounts. 

Badger & Grance (2010) also identify four basic deployment models for clouds:  private, 

community, public, and hybrid.  The infrastructure of a private cloud is owned or leased to be 

operated solely for use by a single organization.  It may be managed by a third party and located 

either on or off premises.  A group of organizations sharing common interests or concerns may 

maintain a community cloud infrastructure, again applying any mix of management and location 

options.  A public cloud is entirely owned and managed by a single organization for the purpose 

of providing cloud services to the public.  The hybrid cloud infrastructure consists of two or 

more unique clouds that are bound together by technologies that enable data and application 

portability between them. 

Details and distinctions aside, the promise of cloud computing boils down to three core 

advantages for service customers:  agility, control and cost (Frievald, 2007; see also Baer, 2008).  

The distributed nature of the cloud provides agility because components may be added, removed, 
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or modified without impacting other areas while additional functionality and resources may be 

taken on in very discrete, affordable increments, also a cost benefit (Chatarji, 2004).  Further cost 

benefits include streamlining the IT workforce and the application of standards across the cloud 

that leverage rather than compartmentalize skill sets (SOATutorial.net, 2010).  Control is 

enhanced in two ways, the first being that users may gain better control of the features they need 

because solution delivery is componentized in the cloud rather than being tightly coupled to large 

interdepartmental systems like ERPs.  Loose coupling also gives IT more freedom, and therefore 

better control, over how the required functionality is delivered technically, facilitating the 

selection of “best in breed” solutions (SOATutorial.net).  The desire to obtain these advantages is 

driving the adoption of cloud computing at an increasing rate. 

Cloud Performance 

Virtually all cloud computing infrastructures involve a great deal of complexity.  A good 

sense of this complexity can be gained by exploring one aspect of SOA performance:  quality of 

service (QoS).  QoS manifests in concerns regarding critical issues such as reliability, 

performance, interoperability and security (Balasubramaniam, Lewis, Morris, Simanta, & Smith, 

2009).  The nature of SOA itself creates additional issues in these areas beyond those previously 

identified for Web services and their underlying reliance on XML. 

The distributed nature of the cloud makes reliability and performance difficult to design 

and test (Balasubramaniam; Roch, 2006).  Component services are too often black boxes so that 

basics like the error models employed are not understood between decoupled developers.  There 

is a lack of universal semantic standards for describing service functionality for the discovery 

process (Nagarajan, Verma, Sheth, Miller, & Lathem, 2006).  This can confound interoperability 

and, at the least, make it difficult to distinguish differences between related services.   
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Applications are composed of a collection of services that are not linked until an 

application is deployed and not all services will be under a given developer’s control, so 

thorough end-to-end testing is impossible. Further, the performance of multi-tenant services can 

be very dependent on the number of active requestors at any given time while any number of 

other system load factors can unpredictably affect SOA applications.  “In service-oriented 

systems, which involve multiple independent capabilities, or services, combined into an 

application or composite capability, validating and monitoring QoS is challenging” 

(Balasubramaniam et al., 2009, p.1).  These challenges are even greater when significant portions 

of a cloud are leased, which puts a large number of services, policies, and procedures in the 

hands of vendors who are not necessarily amenable to granting customers access to their systems 

for audit, let alone control, purposes (CSA, 2010). 

Cloud Security and Compliance 

Security and compliance loom large among cloud computing QoS issues.  One 2008 

survey by the IDC Enterprise Panel found security to be the preeminent concern with respect to 

the on-demand model of cloud computing (Mell & Grance, 2009, p. 17).  Aside from those 

vulnerabilities inherent in SOA’s XML infrastructure, a cloud’s distributed nature creates 

additional security issues. 

Security in the SOA environment is confounded by some very fundamental factors.  

Farkas & Huhns (2008) note:  “Some of the characteristics that make service-oriented 

architectures appealing for enterprise applications also make them vulnerable to security 

breaches. The vulnerabilities are primarily due to the openness of the service-execution 

environment, to the dynamic run-time selection and composition of services, and to the 

autonomy of the individual services” (p. 428).   
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Access control is cornerstone issue with SOA as “Web services do not have a clear 

notion of a security perimeter” (Carlson & Himler, 2005, p. 2) and permissions for accessing 

web services do not map well to a role-based security model like RBAC (Alam, Hafner, & 

Breau, 2008).  Related considerations of federated identity management, single sign-on (SSO), 

authorization and authentication are also significant factors with respect SOA usability as well as 

security and compliance (Carr, 2008; Jei et al., 2011; Martino & Bertino, 2006).  A cloud may 

encompass multiple security domains, making it inconvenient to the point of impracticality to 

require users to separately sign-on in each domain that contains an essential Web service.  On the 

one hand, authorization and authentication must be sufficient to allow users access to the most 

secure domain hosting a Web service they require.  Balasubramaniam et al. (2009) point out that 

a “service can potentially be reused by multiple consumers in different contexts that have their 

own security requirements” (p. 104), meaning that some Web services may be hosted in less 

secure environments than the service requestor’s context and accessing those services may 

represent an unacceptable security risk. 

The degree of awareness required in multiple areas presents an additional difficulty to 

implementing effective security.  Often security approaches focus on application-to-application 

interactions and overlook the interstices between infrastructure, platform, and application levels 

– issues like hypervisor vulnerabilities and purging latent data from temporary storage or the 

shared memory of multi-tenant services (CSA, 2009).   

Compliance is a concern because verification can be confounding for the same reasons 

that reliability and performance testing is difficult, a situation that can be aggravated when assets 

are under the control of cloud services providers.  SOA is dynamic, system binding occurs at 

execution time and operational performance can be very dependent on the current resource 
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demands within the cloud (Balasubramaniam et al., 2009).  Since control systems can be 

critically sensitive to real-time response, it is not enough to assure that the correct steps occur in 

the proper order.  To a degree seldom required in enterprise networks, compliance for a control 

network involves the assurance that event recognition and response unfailingly occurs within 

strict time limits (Dzung et al., 2005; Fernandez & Fernandez, 2005). 

The Enterprise Service Bus 

In every area, the user convenience provided by distributed on-demand computing 

services is fraught with complexity for the developers and providers of those services.  The 

enterprise service bus (ESB) is a software infrastructure that facilitates application integration 

and helps manage this complexity (Tibbling, 2007).  The ESB accomplishes this through 

simplifying the implementation of SOA’s most critical feature, loose coupling, acting as an 

intermediary between heterogeneous elements in a cloud and forming a backbone for Web 

service transactions.  “As an intermediary, the ESB performs service virtualization to mediate the 

differences between service requesters and service providers, and offers aspect-oriented 

connectivity to act as an enforcement point for SOA policies, such as management and security. 

The loose coupling permits a clean separation of concerns (temporal, technological, and 

organizational) between the parts in a solution to enable flexibility and agility in both business 

processes and IT systems” (Flurry & Reinitz, 2007).  Given that the major role of the ESB is 

simplification, it only makes sense to adopt an ESB only after the system has been built up to a 

tipping point of 25 production services or so (Lawton, 2010). 
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Figure 5:  The Enterprise Service Bus 

Figure 5 depicts the ESB’s position in a cloud as a message broker between services.  In 

this capacity, the ESB has the primary responsibility to translate between the different message 

types and transport protocols native to the various services it connects.  To simplify this work, 

businesses will often adopt a Canonical Message Model (CMM) for use with the ESB (Selvage, 

Flurry, Sauter, & Lane, 2008).  Consider the ESB operating like a group of translators at the 

United Nations, the Web services being U.N. diplomats.  Potentially, each translator would need 

to be able to directly convert their native speech to dozens of other languages spoken by different 

diplomats.  This is clearly an impractical expectation.  However, if every translator was bilingual 

in Esperanto, all native speech could be translated into Esperanto and then retranslated into any 

other language required by the appropriate translator  Like Esperanto, the CMM serves as a 

language common to all, eliminating the need to convert any Web service message to more than 

one other format.   
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Since the Web services registry is the target of a great deal of messaging activity, it is 

typically incorporated in the ESB.  Besides serving as message broker and translator, an ESB can 

also provide a central point to enforce elements of security policy by virtue of its being the 

conduit for all messages exchanged between services (Flurry, 2007; Hinton, Hondo, & 

Hutchison, 2005; Tibbling, 2010).  The downside of its role as a conduit is that it can also 

become a choke point through poor design, insufficient resourcing, or cyber attack.  Despite its 

centralized role, SOA design means that the ESB itself is most likely to be a distributed entity.  

This diminishes the prospects of it becoming a single point of failure but also weakens the 

chances it will provide uniform security policy enforcement as implementation quality will vary 

among scattered development teams. 

2.3 Design Science Research 

A design science approach was adopted for this project (Hevner, March, Park, & Ram, 

2004; March & Smith, 1995).  “The sciences of design are a relatively new entrant to the set of 

methodologies, paradigms and orientations that have been dominated by debates previously only 

positioned as positivist versus interpretive and quantitative versus qualitative” (Purao et al., 

2008).  While design science has become an accepted research method in architecture and 

various engineering fields, it has been slower coming into its own in the IS/IT arena (Peffers, 

Tuunanen, Rothenberger, & Chaterjee, 2008).  This lag may be somewhat attributable to conflict 

over the dualistic nature of scientific interest in IT as being both descriptive and descriptive.  

March and Smith describe the issue in these terms: 

Though not intrinsically harmful, this division of interests has created a dichotomy 

among IT researchers and disagreement over what constitutes legitimate scientific 

research in the field. Such disagreements are common in fields that encompass both 
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knowledge-producing and knowledge- using activities.  They are fostered in part by the 

prestige attached to science in modern societies and the belief that the term "science" 

should be reserved for research that produces theoretical knowledge.  The debate in IT 

research is similar to that between engineering and the physical sciences. Knowledge-

producing, "pure" science normally has the upper hand in such debates.  In IT, however, 

the situation is different.  It could be argued that research aimed at developing IT 

systems, at improving IT practice, has been more successful and important than 

traditional scientific attempts to understand it.  With the issue undecided, the field is left 

in an uneasy standoff.  (p. 252)  

While design science may generate the sort of general or theoretical insights associated 

with the basic research of “pure” science, the approach has a definite applied science orientation.  

“The design-science paradigm seeks to extend the boundaries of human and organizational 

capabilities by creating new and innovative artifacts” (Hevner et al, 2004, p. 75).  March and 

Smith (1995) observe that in contrast with natural science “design science attempts to create 

things that serve human purposes. It is technology-oriented.  Its products are assessed against 

criteria of value or utility - does it work? is it an improvement?” (p. 253).  So, where the Wright 

brothers drew from practical success in wing design to form a generalized theory of lift, merely 

achieving flight was a sufficient outcome for design science purposes. 

 March and Smith (1995) identified four research activities:  building, evaluating, 

theorizing and justify.  Theorizing and justifying were excluded from design science as involving 

a natural science rather than design science intent.  Design research, therefore, involves building 

and evaluating artifacts where artifacts were identified as constructs, models, methods, and 

instantiations.  “Conceptually, a design research artifact can be any designed object in which a 
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research contribution is embedded in the design.” (Peffers et al., 2008, p. 55).  While the term 

“build” in this context always refers to the construction of an artifact, it means “implement” only 

if the artifact is an instantiation.  “An instantiation is the realization of an artifact in its 

environment....  Instantiations operationalize constructs, models, and methods” (March & Smith, 

p. 258).  

Artifacts, then, are the outputs of design science’s first activity, building, which are then 

subject to its second, evaluation.  “An important aspect of design science research is the 

evaluation of the proposed artifacts; in other words, the utility of the proposed artifacts must be 

demonstrated” (Adomavicius, Bockstedt, Gupta, & Kaufman, 2008, p. 781).  A cross-section of 

design science processes found in the literature reveals some bias towards creating instantiations 

for evaluation artifacts as they allow concrete testing by doing (Offermann, Levina, Schönherr, 

& Bub, 2009).  However, an artifact may also be a model or design that may be evaluated 

through expert judgment or that may be depicted with sufficient rigor to enable implementation 

for evaluation purposes (Hevnor, et al. 2004).  The value in this is that the expense of 

implementation is avoided when artifact fails to pass muster on evaluation criteria such as cost, 

performance, or excessive complexity.   

This same value is realized in design science through the use of ex ante evaluation, which 

“is well developed for the purpose of deciding whether or not to acquire or develop a 

technology....  When regarded from the perspective of design research, ex ante evaluation 

provides models for theoretically evaluating a design without actually implementing the material 

system or technology.  In other words, the artefact [sic] is evaluated on the basis of its design 

specifications alone” (Pries-Heje, Baskerville, & Venable, 2008, p. 256).  Ex ante evaluation 

notwithstanding, artifact generation predominates in design science and wide scope is given for 
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their construction according to the utility required.  “Such artifacts are represented in a structured 

form that may vary from software, formal logic, and rigorous mathematics to informal natural 

language descriptions” (Hevner et al., p. 77). 
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Chapter 3 – Methodology 

A design science methodology was adopted for this research project.  As stated by 

Hevnor (2007), “Good design science research often begins by identifying and representing 

opportunities and problems in an actual application environment” (p. 89).  The overarching 

purpose of this research was to produce some result that could be of practical applied value.  

"Engineering disciplines accept design as a valid and valuable research methodology because the 

engineering research culture places explicit value on incrementally effective applicable problem 

solutions" (Peffers et al., 2008, p. 47). 

An extensive review of the literature was performed to determine if the distributed 

processing model of cloud computing could be effectively applied to improve upon conventional 

networking technologies currently utilized in distributed SCADA process control networks.  The 

key performance requirements for control networks were ascertained along with the technologies 

currently deployed.   Research was also undertaken to uncover current solution deficiencies that 

might provide areas of opportunity to focus on improvement.   

Further research was performed on the present state of cloud computing and the 

capabilities manifest in its component SOA technologies.  These capabilities were assessed 

against the key control network requirements identified.  An architectural model was constructed 

to embody the current potential for SOA application in a process control network.  The 

descriptive narrative accompanying the model artifact augments the depiction at a greater level 

of detail.  
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Chapter 4 – Project Analysis and Results 

Cloud computing and SCADA systems utilize two different architectures to implement 

distributed processing.  Cloud computing has been developed on enterprise networks to meet IT 

needs for providing business services.  It is based on SOA and typically also incorporates the use 

of virtualization.  SCADA control networks were developed using pre-cloud technologies to 

provide automated control of physical rather than virtual processes.  Control networks share 

certain commonalities with enterprise networks but also have differences related primarily to 

system performance requirements and the nature of some of the hardware clients residing on the 

network.  Findings on the two types of systems are spotlighted below to determine the potential 

applicability of cloud computing for improving the implementation of SCADA systems. 

4.1 Findings on SCADA 

When attempting to qualify enterprise network mechanisms for use in a process control 

environment, it is important to recognize key operational differences between the two types of 

systems.  Although similarities predominate, the distinctions that do exist impact the orientation, 

approach, and capabilities that are factored into the design and implementation of each of 

network. 

Many SCADA systems have real-time response requirements that are seldom present in 

enterprise systems.  “IT systems are ‘best effort’ in that they get the task complete when they get 

the task completed. ICS systems are ‘deterministic’ in that they must do it NOW and cannot wait 

for later as that will be too late” (Control systems cyber, 2009, p. 4).  The need for deterministic 

behavior fits hand in glove with other key distinctive process control requirements.  “ICS 

typically have many unique characteristics—including a need for real-time response and 

extremely high availability, predictability, and reliability” (Ross, 2007, p. I-1).   
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Security is an essential component of reliability (Stouffer, 2008) but as a consequence of 

ICS requirements, the order of importance for the “three pillars of security” in enterprise 

networks – confidentiality, integrity, availability – is reversed for control networks.  Fenrich 

(2007) summarizes the reasons for this reversal:   “Availability and fault tolerance are paramount 

– 99.99% uptime is required – because the process being controlled is continuous and can be 

unstable if not supervised; Integrity remains a necessity to ensure end-to-end data accuracy; and 

confidentiality – except for the protection of proprietary product recipes and plant security data – 

is of lower importance” (p. 6). 

Regulatory compliance routinely plays a larger role in control networks than in enterprise 

systems.  The nature of many processes under ICS control is such that human health and safety 

can be threatened by process instability, which may also result in equipment and environmental 

damage (Duggan et al., 2005; Stouffer et al., 2008).  Failure of such processes can also cause 

widespread social losses as when utility failures disrupt transit, medical, or business operations, 

diminishing the welfare and productivity of a region.  For all these reasons, the scope of 

compliance in SCADA systems extends beyond the assurance of consistent and correct process 

execution ordained by regulatory acts such as Sarbanes-Oxley.  Regulations involving health, 

safety, and other aspects of social welfare also come into play. 

Even given the above differences, recommended security measures for SCADA systems 

follow a depth-in-defense approach very much like that of enterprise networks but with some 

adjustment of emphasis.  Whereas protecting core servers is usually the top objective in 

enterprise system security, SCADA systems are oriented towards isolating the control network, 

protecting edge clients, and generally enhancing the safety, reliability, and availability of the 

process control function (Dzung, et al.; Fabro & Maio, 2007; Fenrich, 2007; NSTB, 2010). 
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Initially, physical security was the primary requirement of control networks because 

those networks were established before the advent of the Internet, so the potential for external 

intrusion was minimal.  “As such, the culture that has been developed as it pertains to system 

security is one that is tied to availability of the systems, as well as to the reliability of the system 

to perform its function.  Measures are taken to protect the system in this regard and often do not 

include consideration for cyber security” (Fabro & Cornelius, 2008).  Growing recognition of the 

increased vulnerability of control systems to intrusive threats is leading the ICS field to begin 

following enterprise system security recommendations in so far as the real-time response 

requirements and limited computational power of field devices will allow.   

Information is readily available on applying the usual panoply of enterprise threat 

remediation measures for taking a depth-in-defense posture for control networks (Fenrich, 2007; 

Scarfone & Hoffman, 2009; Stouffer et al., 2008).  There is strong agreement on best practices as 

promulgated by NIST to configure networks by deploying multiple firewalls and DMZs for 

isolating control networks, most particularly from associated enterprise networks (IAONA, 2003; 

Stouffer et al.), while Byres et al. (2005) add particular advice on isolation practices in instances 

where only a single firewall sits between the process control and corporate networks.   

The legacy of cyber-insecure ICS design has meant that the full range of concerns 

surrounding identity management and access control are often quite poorly managed even now 

(Graham & Maynor, 2006; Patel et al., 2009; Udassin, 2008a).  Since field systems often have 

auxiliary access ports behind the firewall for diagnostic and maintenance purposes, this is an area 

of control systems where additional attention to issues of authorization and authentication is 

required (DOE, 2002; Holstein & Diaz, 2006). 
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NIST also provides detailed guidance on standard system hardening activities such as 

restricting unnecessary applications, blocking unused ports, and configuring or disabling services 

(Scarfone & Hoffman; see also IAONA; Stouffer et al.).  Additional ICS-specific guidance is 

available for hardening against RPC, DCOM and other vulnerabilities that become prevalent 

with the use of OPC (Byres Research, 2007c; Dzung, et al., 2005). 

Many other aspects of defense-in-depth have been thoroughly considered from an ICS 

perspective.  Besides NIST, U.S. government agencies such as Homeland Security and the 

Department of Energy have developed guidance regarding security policies and enforcement 

(Fabro & Maio, 2007; Industrial Control Systems Cyber Emergency Response Team [ISC-

CERT], 2010; NSTB, 2010).   

Less clearly resolved are how to effectively manage newer software vulnerabilities such 

as buffer overflows, SQL injection, or cross-site scripting (NSTB, 2010; Stouffer et al., 2008) 

that are commonly recognized in enterprise computing but are less know though also present in 

ICS.  Part of the problem in dealing with threat evolution in SCADA networks is that operational 

reliability requires system stability, which can be threatened by routine IT security maintenance 

activities.  Patch management, for example, is risky and complicated for ICS as changes that 

enterprise systems find completely innocuous can derail process control (Dzung et al., 2005; 

Naedele, 2007; Stouffer et al., 2008).   

The hardware devices at the edge of the control network closest to physical processes are 

very resource constrained compared to the typical clients found on an enterprise network 

(Control systems cyber, 2009; Dawson et al., 2006; Dzung et al., 2005; Naedele, 2007; Stouffer 

et al., 2008.  Lack of memory and processor power severely curtails the use of typical enterprise 

host-based security solutions for IDS, anti-virus, and the like because of the computational 
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overhead required for these activities (Dzung et al.; Stouffer et al.).  This same concerns apply to 

the use of encryption or network scanning to increase security. A number of expensive incidents 

have been reported where control networks have been disabled or systems driven to damage by 

well-intentioned network scans, including a simple ping scan (Duggan et al., 2005).  If the added 

activity does not simply overwhelm these devices, they readily become so mired down that they 

are no longer able to meet real-time operating requirements (Duggan et al.; Naedele).  Even data 

logging capabilities are limited or non-existent, giving rise to a very limited ability to capture 

events and perform forensic assessments (Fabro & Cornelius, 2008).  As a result, more reliance 

is placed on firewall security, perhaps supplemented by the addition of in-line appliances that 

buffer PLCs and the like with IDS or cryptographic services (Holstein & Diaz, 2006). 

Complexity is another critical issue for SCADA networks because complexity makes 

changes difficult and, more importantly, impacts reliability (Fernandez & Fernandez, 2005; 

Miller, 2005; Stouffer, 2008).  Factors like having thousands of data inputs and a hodge-podge of 

heterogeneous subsystems make process control systems intrinsically more complex and unique 

than IT systems notes Weiss, adding that ICS designers “view ‘the enemy of the ICS’ not as an 

attacker, but rather system failure. Therefore the ICS design uses the ‘KISS’ principle (keep it 

simple stupid) intentionally making systems idiot-proof” (Control systems cyber, 2009, p. 3).  In 

addition to design complexity, Stouffer points out that “regulatory compliance can add 

complexity to security and authentication management, registry and installation integrity 

management, and all functions that can augment an installation and operational qualification 

exercise” (p. 6-31). 
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4.2 Findings on SOA 

The development of cloud computing has so far has been focused on meeting the needs 

of typical business users and satisfying the performance requirements of enterprise IT.  Research 

identified little work having been done to date to vet cloud computing as a sound solution for 

addressing the needs of SCADA networks and automation control, particularly in regard to real-

time process control.  Web service components like XML and SOAP were adopted by the 

process control industry’s standard bearer, the OPC Foundation, to create OPC-UA.  However, 

this cannot be construed as an endorsement of cloud computing for control networks.  Rather, 

these developments were undertaken in response to Microsoft’s plans to abandon DCOM, the 

technology at the heart of the original OPC (Byres, 2007a). 

The advent of cloud computing is the result of a number of computational system 

advances in software, hardware, and system design and architecture.  Faster hardware and, most 

particularly, faster networking have been essential enablers of cloud computing due to the 

absolute dependence of SOA on a high volume of messaging activity.  As SOA has evolved, 

typical Ethernet transfer rates have increased from Megabit to Gigabit ranges and an increasing 

volume of high bandwidth fiber optic cables have been brought on line.  Meanwhile, WAN 

communication has been enhanced by the application of multi-protocol label switching (MPLS) 

to further accelerate high-speed protocols like SONET, ATM, and frame relay (Fischer, 2007).  

Some of these networking advances are finding their way into process control at “the higher and 

less time-critical levels in the industrial automation hierarchy” (Dzung et al., 2005). 

Virtualization is central to utility computing, one of the most compelling features driving 

the adoption of cloud services as a means to increase agility in business (Baer, 2008; Frievald, 

2007).  Virtualization might be considered an option for SCADA data backup and/or system 
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recovery solutions with or without incorporating SOA.  Virtualization techniques also may hold 

some promise for encapsulating the static elements of an ICS to provide an abstracted interface 

to more mutable parts of the network (Naedele, 2007).  However, control networks use slow, 

non-enterprise protocols on field device LANs, have real-time response requirements, and harbor 

systems with uptime requirements that demand local administration and require extraordinary 

care to manage the slightest amount of change (Dzung et al., 2005; Naedele; Stouffer et al., 

2008).  Such systems offer generally poor prospects for taking advantage of the shared-resource 

aspect of virtualization, particularly if acquired on an outsourced basis.   

Virtualization further offers certain security disadvantages.  There are data latency 

concerns in a multi-tenant environment, as well as added risk stemming from the fact that all 

tenants will share the security level of the least secure tenant.  Collecting data into a centralized 

cloud services database is, in principle, more secure than having it distributed among numerous 

varied endpoints but also increases the seriousness of a single-point breach.  According to the 

Cloud Security Alliance (2009), another important risk is that virtualization technology adds new 

attack surfaces in the hypervisor and other management services “but more important is the 

severe impact virtualization has on network security. Virtual machines now communicate over a 

hardware backplane, rather than a network. As a result, standard network security controls are 

blind to this traffic and cannot perform monitoring or in-line blocking” (p. 68), which also 

greatly complicates compliance assurance. 

XML is a cornerstone technology for cloud computing.  ”Web services implement 

service oriented architectures (SOA) using open standards based on XML messages and 

widespread Internet transport protocols such as HTTP” (Kearney, 2005).  More specifically, 

“The technologies that form the foundations of Web services are SOAP, WSDL, and UDDI” 
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(Sinha et al., 2010, p. 135), all of which are derived from XML.  A key virtue of utilizing XML 

is that “All of these protocols are independent from the machine architecture, the underlying 

operating system and the programming language” (Mehta, 2009 p. 1).   

While many of the advantages of cloud computing derive from the use of XML, 

numerous issues do as well.  XML presents intruders with an increased attack surface (Byres 

Research, 2007a.) and is vulnerable to a variety of assaults such as XML schema poisoning 

(Mehta, 2009).  None of the three foundational technologies of Web services are free of XML 

vulnerabilities.  SOAP messages may be compromised through XML rewriting attacks 

(Rahaman et al., 2006) while WSDL scanning and enumeration can locate vulnerabilities by 

probing the UDDI registry (Breytenbach, 2005; Mehta).    

A large set of standards to address Web services security concerns has been evolving for 

some time (Martino & Bertino, 2006; Sinha et al., 2010).  Since XML is text based, encryption 

standards have been established to preserve the confidentiality of stolen or intercepted material.   

Message level security measures have also been created since transport level (SSL/TLS) point-

to-point security is only partially effective for multi-hop SOAP message transport (Martino & 

Bertino; Rahaman et al., 2006; Sinha et al.).  However, despite the progress that has been made, 

“there isn’t a complete architecture for the Web service security” (Hongzhao, 2010, p. 4).  

According to Martino and Bertino, the principle problem is that standards for the multiple 

security protocol levels are being developed by different standards bodies so that compatibility 

between them is not always assured for every combination of implementation options specified 

at each level (see also Carlson & Himler, 2005).  They further note that resolving such issues 

into a unified standard can be expected to take years.  Accordingly, “The security future thus 

remains in considerable flux” (Jei et al., 2011, p. 12:24). 
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Even assuming that Web services cannot be hijacked or corrupted, other security 

concerns arise simply as the result of the distributed nature of SOA.  Since Web services that 

reside in a variety of security domains may be called into use by a single requestor, significant 

access control concerns come into play (Balasubramaniam et al., 2009).  A complex web of 

interrelated issues regarding federated identity management, SSO, authorization and 

authentication must be considered in the effort to grant secure access in a manner that is not 

unduly cumbersome in terms of requiring multiple sign-ins by users (Carr, 2008; Jei et al., 2011; 

Martino & Bertino, 2006).  According to Delessey and Fernandez (2008), “A methodology to 

design and build secure SOA-based applications is still lacking” (p. 1). 

Execution overhead is a concern with  XML as “XML messages processing can require a 

very large amount of bandwidth with respect to traditional binary messaging protocols” (Martino 

& Bertino p 22).  Along with the issue of expanded message length resulting from XML’s 

verbose text format, “overhead can occur due to the extra CPU time for processing information 

related to WS-Security, and more time to carry SOAP messages on the network is increased 

because of additional content to the WS-Security” (Rodrigues et al., 2011, p. 18).  Studies 

indicate a three- to 10-fold penalty for SOA message security processing alone, without 

considering Web services discovery or binding activities (Rodrigues et al.; Tan et al., 2009).  Tan 

reports result that show SOAP extensions allowing binary rather than text data reduce 

transmission times by a factor of six, but no performance comparison was found of binary SOAP 

messaging to the OPC DCOM messaging that is in prevalent use today.  

Interoperability is another concern with SOA as exemplified by the incompatibilities 

between security protocols.  At best, messaging overhead is increased by the need for Web 

services to negotiate over issues like what encryption standard they are jointly able to apply in 
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order to interoperate (Nagarajan et al., 2006).  Far more numerous opportunities to have  

problems with interoperability due to semantic discrepancies, that is, format incompatibilities at 

the data or message level.  This leads to yet another layer of complexity being added to deliver 

interoperability by providing data mediation through OWL schemas and Semantic Web services 

such as WSDL-S that are under development (Nagarajan). 

One of the  primary means employed in cloud computing to assist with simplifying and 

managing complexity is the use of an ESB (Flurry & Reinitz, 2007; Tibbling, 2007), always an 

objective for maximizing system reliability (Stouffer, et al., 2008).  As with SOA, the degree of 

complexity intrinsic to process control networks is greater than that of conventional networks 

(Control systems cyber, 2009).  This research did not identify if cloud complexity could be 

substituted for ICS complexity or would be in addition to it.  However, one of the problems in 

dealing with “an admittedly immature cloud ecosystem” (CSA, 2009, p. 6) is that complexity is 

increased by the need to continuously fine-tune implementations until best practices have 

evolved to the point of having a truly stable set of SOA standards.  

The adoption of SOA has a strong impact on achieving regulatory compliance for 

systems.  ”Assurance accreditation of agile, interconnected IT landscapes is a great challenge, 

and is currently often cited as one of the showstoppers for the adoption of modern IT 

architectures (e.g. agile, model-driven, process-led SOA and Cloud) in mission critical domains” 

(Lang & Schreiner, 2009, p. 13).  SOA features such as dynamic binding and unpredictable Web 

service performance under variable system loads present significant challenges for audit and 

assurance activities. 
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4.3 Cloud Computing and the Process Control Environment 

The resource limitations of field devices are at odds with the processing requirements of 

modern networking, particularly when SOA technologies are being utilized.  One option to 

address this dilemma is to employ some type of middleware – hardware, software, or both – to 

isolate edge clients from high volumes of network activity and complex processing overhead.  

OPC is the predominant example of such a middleware solution (Dzung et al., 2005) but there 

are others like the Actor Role Coordinator (ARC) middleware model created by Xiao et al. 

(2008).  Fairly early on, Web services achieved recognition as a form of middleware, albeit for 

business systems rather than control networks (Kearney, Chapman, Edwards, Gifford, & He, 

2004).  However, others have since recognized that new architectures incorporating OPC-UA 

will bring SOA technologies into the realm of middleware for SCADA systems (Tan & Yoo, et 

al., 2009; Tu et al., 2010). 

CLOUD

ENTERPRISE                             NETWORK

Endpoint Field Devices

Real-time Channel(s) to Operator

Field Device ControllersCONTROL                                  NETWORK

Middleware (Devices and Software)

DMZ

 

Figure 6:  Combining Cloud Computing with a Control Network 
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Figure 6 illustrates the concept of segregating field hardware from SOA networking and 

shows the limits of potential cloud penetration into a control network.  The cloud could be 

entirely private but is generalized for illustration as a public or public-private hybrid.  The 

enterprise network is represented as having a contained perimeter within the cloud without 

revealing any internal complexity or close linkages that might exist with vendors or other outside 

business partners.  In keeping with NIST architectural recommendations for industrial control 

networks (Stouffer et al., 2008), the DMZ tier is primarily viewed as a location for the Data 

Historian so that system status and historical operational information may be shared with the 

enterprise network while minimizing direct exposure of the control network to intrusion from the 

Internet via the enterprise.  The control network is stratified into functional three tiers with some 

limited overlap between tiers as discussed below. 

  The corporate network and DMZ may or may not embrace cloud computing.  If they do, 

SOA can be considered as an option for providing a channel to the control network.  This 

channel would extend no deeper than the middleware tier, principally in consideration that Web 

services could be selected as a means to update the Data Historian in the DMZ.  The choice to 

use a cloud at this level will depend on a number of factors including security policies and 

response time or latency considerations with respect to the control network. 

Some occupants of the middleware tier include control network members that are high up 

on the process control chain:  SCADA computers, HMI or engineering workstations, and any 

other servers required for configuration, applications, backup, etc.  Other occupants with less 

overall capability would include dedicated inline hardware appliances used to provide additional 

firewall, encryption, or other security services for systems that lack the resources to incorporate 

host-based solutions to strengthen their communication channels (CSSP, 2009; Holstein & Diaz, 
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2006).  To the extent that cloud computing extends into a control network, XML appliances 

designed to relieve the burden of XML overhead and expedite SOAP transactions should be 

considered middleware (Martino & Bertino, 2006). 

The demarcation between tiers is conceptual and not always absolute.  In some instances 

a unit may be deployed that directly controls devices and is powerful enough to straddle across 

the upper and middle tiers of the control network as indicated by the overlapping corner with the 

dotted edge.  Examples of these systems are OPC servers, MTUs, or SCADA controllers that 

have the capability to direct devices while also performing middleware duties – including, 

perhaps, using Web services.  However, the great majority of device controllers – PLCs, RTUs 

and the like – will fit squarely in the middle tier of the control network, primarily engaged in 

controlling devices while maintaining a modest level of communications with the middleware 

tier as a conduit for outbound hardware status data and occasional operator input.  Field devices 

at the furthest edge of the control network are represented in the lowest tier of the diagram.  Here 

again, a dotted corner indicates that the idea of a homogeneous tier involves some simplification 

as IEDs incorporate onboard controllers directly into their devices and functionally overlap both 

lower tiers. 

Besides separating hardware control from an overwhelming amount of network activity, 

this architectural pattern also ensures that the most deterministic real-time control activities 

remain with or near the endpoint hardware.  System requirements for deterministic performance 

will vary considerably depending on the processes under management.  Extremely tight 

regulation of temperature and humidity profiles may be critical in a pharmaceutical 

manufacturing process whereas the tolerable variance for a switch change in a railroad track is 

likely to be measured in seconds.   
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Beyond real-time device control there is a general system requirement to transfer alarms 

and other rapid response signals to and from the operator with a minimum of delay (Dzung et al., 

2005; Tu et al., 2010).  Figure 6 represents the need to address this requirement through 

inclusion of the bidirectional Real-time Channel(s) to Operator in a manner similar to the 

unidirectional path proposal by Tan, Yoo, and Yi (2009).  Separate back channel provisioning 

for the most urgent device communications promotes consideration of SOA networking for the 

most modern systems in the middleware tier, such as the SCADA controller, HMI, and other 

servers and workstations. 
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Chapter 5 – Conclusions 

The objective of this project is to determine the present viability of a cloud-based 

architecture as an alternative to conventional networking approaches for implementing SCADA 

systems.  To this end, the prospects for a cloud solution were evaluated against conventional 

approaches.   

There are a priori limits to the degree of improvement cloud technologies might bring to 

control systems.  Simply modernizing distributed processing technologies using SOA will not 

address many of the vulnerabilities in that presently exist in control networks due to such issues 

as weak security policies, implementations, and enforcement; under-resourced field devices; or 

the need for staff with combined expertise in both IT and process control systems.   

The impact of alternative technologies on SCADA must be considered as well with 

respect to implementations that are presently in place, OPC solutions in particular, which have 

been developed for most control systems of significant complexity.  Simply replacing an existing 

functionality may be considered worthwhile if the replacement provides some form of 

maintenance advantage such as technological forward-compatibility.  This would, however, be a 

minimum useful gain and some operational performance benefit would almost certainly be 

required to financially justify a platform replacement. 

Superficially, SCADA and cloud computing share a certain degree of alignment by virtue 

of being intrinsically distributed systems.  Both have common security needs with regard to 

accessing geographically dispersed resources.  Further, SOA communication standards to 

implement sharing of on-demand Web services are evolving rich protocols for managing the 

authentication and related security issues of every transaction undertaken within a cloud, 

potentially addressing a key weakness of many control network implementations. 
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Despite their obvious points of alignment, SCADA and cloud computing are not 

fundamentally compatible technologies.  This research has identified a number of factors that 

make the present state of cloud computing generally unacceptable for use in SCADA systems.  

These factors can be grouped into four interrelated areas:  reliability and availability, 

compliance, security, and complexity.   

Availability is closely related to reliability as the process output must be continuously 

available (e.g., electricity) while monitoring and control systems must always be available as 

well to avoid unregulated activity or automated safety shutdowns due to control access failures.  

Control system reliability further imposes a strong requirement for deterministic system 

performance to assure the correct uninterrupted execution of time-sensitive processes.   

Cloud computing has been developed so far only to meet enterprise networks needs 

where a best effort response is sufficient as opposed to one in real-time.  Even with conventional 

networking, limited-capacity process control field devices must generally be buffered from high 

bandwidth activities like TCP/IP networking to avoid being overwhelmed,  causing a disruption 

of safe unimpeded operation.  The increased message length and additional security overhead 

that comes with SOA only serve to exaggerate this isolation requirement. 

Control networks are often responsible for critical or potentially hazardous processes and 

so must meet reliability criteria that are not considerations for enterprise systems.  As a 

consequence, SCADA systems also comply with a broader set of regulatory mandates than is 

typical for business systems.  Cloud computing properties such as the composability of Web 

services, late system binding, and unpredictable execution under different system loads confound 

the process of compliance assurance (Balasubramaniam, 2009).  This presents regulatory risks, if 

not operational ones.   



SCADA SYSTEM SECURITY  57 

Not only is security closely intertwined with compliance, it is accorded an extra measure 

of gravitas when dealing with process control where a breach may result in environmental and/or 

human health and safety may being seriously affected.  There is strong evidence that SOA is 

harder to secure overall than more conventional network architectures due to the increased attack 

surfaces presented by XML-based Web services compounded by its complex, multi-component 

structure.  This security risk is not acceptable for SCADA systems because of the dangers 

concomitant with disabled or maliciously directed hardware operations.  While SOA-driven 

developments in access and authentication solutions would remediate one of the most frequent 

and severe security weaknesses of control networks, SOA is not necessarily a prerequisite to 

their adoption.  The increasing wealth of transaction security measures currently being nurtured 

within the cloud community are undermined by the lack of a set of standards to fully assure 

secure interoperability. 

Finally, complexity is a concern as it not only adds a set of issues in its own right but it 

makes correct implementation more difficult, impedes compliance verification of consistent and 

reliable operation, and increases the number of potential vulnerabilities that must be secured 

against.  Control networks are intrinsically more complex than enterprise networks so their 

designs are simplified wherever possible in an effort to remove risk of the unforeseen and 

enhance reliable operations.  SOA is more complex than conventional network architecture 

making its use contrary to control network design practices, particularly since the enterprise 

computing benefits of SOA complexity do not accrue to control networks.  Complexity is one 

reason that cloud computing is still undergoing significant evolution, which is further a negative 

for control networks where patches and other updates are difficult to administer without risking 

the underlying stability of process operations. 
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It is functionally possible for SOA to be utilized for some aspects of SCADA system as 

demonstrated by the tiered network architecture presented herein.  However, the degree of such 

inclusion does not at this point constitute a fundamental improvement in implementing 

distributed control networks.  Nor does the mere fact that an SOA implementation can be made 

to function necessarily recommend for its adoption when risk considerations are factored in.   At 

this time it would take a significant effort to avoid cloud implementations that were both more 

complex and poorer performing than the solutions they replaced.  The security and regulatory 

compliance of XML-based Web service technologies need to be assured.  At the same time, field 

devices must be upgraded with the capacity to accommodate SOA processing overhead without 

diminishing the performance reliability of endpoint hardware.  Given the slow replacement cycle 

of control devices, edge clients will remain incapable of employing Web services for some time, 

thus preventing their direct participation in cloud computing for the foreseeable future. 

Much of the research required to advance SOA as an architectural choice for control 

networks aligns with work already underway in the enterprise networking realm.  The advent of 

cloud computing has turned the IT spotlight on longstanding ICS issues regarding identity 

management and access control for distributed processing systems.  Even without migrating to 

the cloud, SCADA systems ultimately stand to benefit from accelerated efforts in this area.  

Similarly, improved provisions in SOA to enable compliance assurance will not only be a benefit 

to ICS but will be required before highly regulated process operations can embrace the cloud. 

The most immediate need for research on cloud computing in process management 

concerns the ability of SOA technologies to meet real-time control performance requirements.  

Knowledge in this area would be furthered by research designed to compare the throughput of 

binary SOAP messaging to that of DCOM communications in current use.   
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The prospective instability of cloud implementations due to the continued necessary 

evolution of interoperability features presents at least a near-term negative for process control.  

This is due to the fact that any need to patch or upgrade control systems represents a threat to 

reliable continuous operations.  Here the likely opportunity is to identify and confirm a 

streamlined subset of SOA standards that may already be sufficient for adoption by SCADA 

systems without the expectation of requiring substantial future refinements – or to clearly 

identify what the remaining unmet requirements are.  Focus areas for such research include 

simplifying SOA implementations and achieving performance optimization through the use of 

such measures as binary SOAP messages, restricted preset security options to avoid negotiation 

overhead, and a indentifying a Web services deployment model that precludes multi-hop 

transmissions to avoid onerous additional message level security processing.   

Process control systems are already complex and will become even more so as legacy 

design deficiencies in security are addressed.  The ultimate question is whether or not SOA 

complexity may be exchanged for, rather than added to, existing SCADA complexities in order 

to deliver an improved solution overall. 
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Appendix A – Time Line of Well-known Industrial Control Security Incidents 

• June 2010:  Belorussian security company VirusBlokAda discovered the Stuxnet worm, the 

first-ever rootkit for exploiting a SCADA system.  Indications are that the earliest versions of 

this worm were deployed up to a year before it was discovered.  Stuxnet required a 

sophisticated understanding of both Windows and industrial control software to create.  The 

malware is not only capable of stealing code and design projects stored on Windows systems, 

it can locate and exploit Siemens SCADA software on these machines to download and hide 

code on a variety of PLCs that directly control industrial processes. 

• January 2008:  Israeli SCADA security firm C4 released documentation that revealed 

vulnerabilities present in General Electric SCADA systems commonly used at nuclear 

facilities around the world.  This is the first time an exploit was demonstrated to definitely 

enable the remote takeover of a SCADA system. 

• March 2007:  Research firm Neutralbit documented the discovery of a significant security 

hole in the popular NETxAutomation OPC server that could crash or potentially allow the 

takeover of systems controlling oil refineries, dams, railroads, and nuclear power plants. 

• February 2005:  Christopher Maxwell and two juvenile helpers were paid to spread adware 

by engineering a botnet attack that flooded the network at Seattle’s Northwest Hospital, 

jamming keycards and doctors’ pagers while also shutting down intensive-care unit 

computers.  In 2006, Maxwell was sentenced to three years each of prison and supervised 

release for damaging the hospital’s computers, over 1,000 California school computers, and 

hundreds of other computers worldwide according to the U.S. Department of Defense. 

• Naedele & Dzung: 
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• May 2004:  Some 300,000 commuters were stranded for a day when the “Sasser” worm 

infected the signaling and control system of Australian railway company, RailCorp. 

• August 2003:  The U.S. railway company, CSX Transportation, suffered a worm infection in 

the communication network used for signaling, halting all trains for half a day. 

• January 2003: The safety monitoring system of the Davis-Besse nuclear power plant in the 

U.S. was infected with the “Slammer” worm. The worm bypassed the plant’s firewalls via a 

contractor’s laptop which was connected both to the power plant network and to the 

contractor’s infected company network.  Three years later, this worm impacted at least two 

power utilities, a nuclear reactor safety monitor, and an emergency services phone system. 

• December 2000:  Attackers compromised the computer network of an unnamed U.S. power 

utility by exploiting an unsecured data exchange protocol.  The compromised hosts were 

used to play networked computer games and co-opted so much of network’s computing 

resources and bandwidth that it severely impeded the utility’s electricity trading. 

• March 2000:  The control system of a sewage treatment plant in Queensland Australia was 

accessed by a disgruntled former contractor who flooded the surrounding area with millions 

of gallons of untreated sewage. 

• January 1998:  External attackers took over the central control center for the pipeline system 

of Gazprom, the primary natural gas distributer in Russia. For an unknown period of time 

they were able to control flows throughout the complete Gazprom pipeline network. 
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Appendix B – Table of 10 Most Critical Industrial Control System Vulnerabilities 

In May 2010 the U.S. Department of Energy’s National SCADA Test Bed program 

released the Idaho National Labs 10 most significant ICS vulnerabilities shown below as 

established using Common Weakness Enumeration (CWE) and Common Vulnerability Scoring 

System (CVSS v2) metrics applied generically to the vulnerabilities identified during NSTB 

assessments. 

 
Vulnerability Source 

Risk Level 
(0.0-10.0) 

Ease of Attacker 
Detection 

Attacker 
Awareness 

ICS 
Prevalence 

1 Unpatched Published Vulnerabilities 9.8 Easy High High 
2 

 
Use of Vulnerable Remote Display 
Protocols 9.8 Easy High High 

3 Web HMI Vulnerabilities 9.8 Med-High High High 
4 Buffer Overflows in ICS Services 9.3 Easy High Widespread 
5 Improper Authentication 9.3 Moderate High High 
6 

 
Improper Access Control 
(Authorization) 9.1 Moderate High Widespread 

7 
 

Use of Standard IT Protocols with 
Clear-text Authentication 9.0 Easy High High 

8 
 

Unprotected Transport of ICS 
Application Credentials 9.0 Easy High Common 

9 
 

ICS Data and Command Message 
Manipulation & Injection 8.8 Med-High High Widespread 

10 Data Historian Access / SQL Injection 8.6 Easy High Common 
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