
Regis University Regis University

ePublications at Regis University ePublications at Regis University

Regis University Student Publications
(comprehensive collection) Regis University Student Publications

Fall 2006

Development of Dynamically-Generated Pages On a Website Development of Dynamically-Generated Pages On a Website

Jodi Wagner
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wagner, Jodi, "Development of Dynamically-Generated Pages On a Website" (2006). Regis University
Student Publications (comprehensive collection). 429.
https://epublications.regis.edu/theses/429

This Thesis - Open Access is brought to you for free and open access by the Regis University Student Publications
at ePublications at Regis University. It has been accepted for inclusion in Regis University Student Publications
(comprehensive collection) by an authorized administrator of ePublications at Regis University. For more
information, please contact epublications@regis.edu.

https://epublications.regis.edu/
https://epublications.regis.edu/theses
https://epublications.regis.edu/theses
https://epublications.regis.edu/regiscollege_etds
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F429&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F429&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/429?utm_source=epublications.regis.edu%2Ftheses%2F429&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
School for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

Running head: DEVELOPMENT OF DYNAMICALLY-GENERATED PAGES ON A
WEBSITE

Development of Dynamically-Generated Pages on a Website

Jodi Wagner

Regis University

School for Professional Studies

Master of Science in Computer Information Technology

Development of Dynamically-Generated Pages v

Regis University

School for Professional Studies Graduate Programs

MSCIT Program

Graduate Programs Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection (“Collection”) is

limited and restricted to those users who agree to comply with the following terms of use.

Regis University reserves the right to deny access to the Collection to any person who

violates these terms of use or who seeks to or does alter, avoid or supersede the

functional conditions, restrictions and limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for knowing

and adhering to any and all applicable laws, rules, and regulations relating or pertaining

to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of Regis

University and the authors of the materials. It is available only for research purposes and

may not be used in violation of copyright laws or for unlawful purposes. The materials

may not be downloaded in whole or in part without permission of the copyright holder or

as otherwise authorized in the “fair use” standards of the U.S. copyright laws and

regulations.

Development of Dynamically-Generated Pages vi

Abstract

The purpose of this paper is to examine the project management techniques

involved in developing dynamically-generated pages for an existing website. The

dynamically-generated pages will allow the editors of a website to add and remove

content from pages without directly editing the pages themselves. The project will

benefit editors, who will be able to spend more time on creating content for the website,

which will lead to benefits for site visitors as well, in the form of uniformly designed

pages and more content for the site.

Development of Dynamically-Generated Pages vii

Table of Contents

1 Introduction and Background 1
1.1 Thesis 1
1.2 Background on the Project 1
1.3 Customer Need for Project 3
1.4 Business Reasons for Project 3
1.5 How This Project Relates to the Field Overall 4
2 Project History 5
2.1 How the Project Began 5
2.2 Issues in Project Definition 6
2.3 Comparison of Goals to Final Outcome of the Project 8
3 Research 11
3.1 Research & Analysis Methodology 11
3.2 Research on Products 11
3.2.1 Web Portal Software 11
3.2.2 Database 12
3.2.3 Programming Language 12
3.3 Review of Research Deliverables 12
4 Project Scoping, Analysis, & Design 13
4.1 Project Scoping 13
4.2 Analysis 18
4.3 Design 22
4.3.1 Application Design 25
4.3.2 Application Design for Conversion 28
4.3.3 Design Deliverables, Accomplishments, and Milestones 28
4.4 Summary and Phase Outcome 28
5 Construction and Test 29
5.1 Methodology 29
5.2 Deliverables, Accomplishments, and Milestones 33
6 Implementation and Project Ending 34
6.1 Implementation 34
6.2 Project Ending 35
6.3 Summary and Phase Outcome 36
7 Outcome & Project Maintenance 36
7.1 State of the Project 36
7.2 Summary of Project Outcome 37
7.3 Project Maintenance 37
8 Future of the Project 37
8.1 Future Plans: 37
8.1.1 Enhancements 37
8.1.2 Maintenance 40
9 Conclusions & Lessons Learned 41
9.1 Investigation and Planning Phases 41

Development of Dynamically-Generated Pages viii

9.2 Construction and Test 42
9.3 Project Management 42
10 References 44
11 Exhibits 45
11.1 User Acceptance Tests 45

Development of Dynamically-Generated Pages ix

List of Figures

Figure 1 24

Development of Dynamically-Generated Pages 1

1 Introduction and Background

1.1 Thesis

The purpose of this project was to make it possible to replace a website's existing

static HTML pages with dynamically-updated pages created from data in a database. This

project reduced the time spent on updating pages and helped decrease problems common

to index-type web pages, such as broken links and out-of-date information. This project

was a part of a larger website quality improvement and efficiency project.

1.2 Background on the Project

The website in question, HP Dev Resource Central (http://devresource.hp.com),

provided resources to help software developers who write software that interacts with

HP's software offerings. The resources on the site are free of charge, and cover a wide

range of topic areas. These resources include white papers; software downloads; a

newsletter; forums for developers to discuss various topics; technical tips; information

about upcoming events; and other topics of interest to software developers. Site offerings

generally fit into two categories: content pages that contained information users

commonly need to get their jobs done, and index pages that logically group links to the

leaf-level pages. A user may navigate through one or two index-type pages in order to

reach the content-level pages; for example, if a user were to bookmark the homepage, it

would then be necessary to click a link to an index page that lists links to pages that relate

to a particular topic he or she is interested in. The topics of these index pages are

generally a product or technology to which each offering applies. These product- and

technology-specific index pages are called topic pages on the site. This makes it easy for

users to find all the information pertinent to a single topic, and to ignore resources that

Development of Dynamically-Generated Pages 2

are not of interest.

The lists of links on these topic pages were originally static HTML, which was

edited by hand every time a link was added, removed, or updated. Document metadata

must be displayed for each link in order to help users make an informed decision about

whether to visit the destination page. The document title, file format (if the format

something other than HTML – PDF, for example), the document's date, and a short

description are all helpful to users. Additionally, the index pages display the links by

document title, a design decision based not on the usefulness of alphabetic ordering, but

on the need for a simple paradigm that users can grasp quickly. Since some documents

are relevant to more than one topic, it was often necessary to edit more than one topic

index page when adding a new document to the site.

When the site was small and the number of links on each topic page was low,

coding these pages statically was not overly time-consuming. As the number of topics

and resources on the site grew, so did the time required for each edit. The effort involved

in editing and testing all of this information would eventually make it impossible to

continue making timely updates without adding more employees.

The process for doing manual updates to the static topic pages was simple. Since

the information that needs to be displayed about that resource is generally the same on

every topic page, an editor could cut and paste the same HTML code from one page into

the others that link to the document. Editors would then publish the new resource and

each of the topic pages they modified. Updating and publishing index files one by one is

time-consuming, and leaves a lot of opportunity for error on the part of the site editors.

Furthermore, any time there was an update to any of the information about a resource that

was displayed on a topic page, editors had to find out which topics link to the resource

Development of Dynamically-Generated Pages 3

and make the same change on each of those topic pages.

1.3 Customer Need for Project

The primary customers of this project were the site editors. The goal of this

project was to decrease the time that site editors spent on site maintenance, allowing them

to focus on creating and formatting new content pages. It centralized document metadata

into a database where it could be more easily found and quickly changed. Storing

metadata in the database rather than on each topic page reduced the chances for error

when adding or updating document information on multiple topic pages. Editors were

also expected to be more likely to link to relevant documents from more than one topic

page because of the lessened amount of time required to do so.

The secondary beneficiaries, the users of the site, benefited from more timely and

accurate updates to the topic pages; and the increased cross-linking made it more likely

that all relevant information would be linked to from each topic page. They also received

new content more frequently, since editors will have more time to work on that.

1.4 Business Reasons for Project

Business reasons for the project can be derived from the customer needs: the

project resulted in increased efficiency for editors, more accurate topic pages, and more

content. Users' experience on the site is directly related to how much useful, relevant

content customers can find, as well as their ability to find all relevant content easily.

This project also made the HTML on the site more centralized, resulting in a more

standard look and feel (important to customers who learn visually and therefore expect to

find things in a certain way) and making it simpler to update the look and feel of the site

or fix errors, since it can be done in a central location rather than by editing each page

Development of Dynamically-Generated Pages 4

individually.

1.5 How This Project Relates to the Field Overall

Every large website has its content in a database. The data itself may or may not

be stored in a database (the files that contain the content may be stored on the file

system), but at least the metadata about that content must be stored in a database to

support the dynamic display of data on index-type pages.

This project was the first step in making the website more cost-effective and more

competitive. What makes the site unique is its content. There are many different types of

documents, and they can be organized in several different ways: according to the task the

developer is performing (compiling, debugging, porting, designing); according to

document type (reference manual, case study, white paper, technical tip); according to

operating system (UNIX, Windows); according to programming language (C, C++,

Java); the list goes on. The types of documents, programming languages, tasks, operating

system, and so on are not unique to the site, but the combination of them is ... and the

organization of this diverse information presents a special challenge for the site

infrastructure.

The long-term goal of the site is to make it possible for users to filter out the

content that is irrelevant to them – even within the topic pages some content will not be

relevant - and leave only the useful information. That would never be possible in a static

world. A site that dynamic would be a major undertaking and require a complete site

redesign, as well as diverting site editors from their normal content-creation and

formatting tasks.

In order to be able to continue normal work while moving toward the future, it

was be necessary to undertake small, incremental projects. The first step was just to get

Development of Dynamically-Generated Pages 5

the metadata into the database. One further option was to put the content itself in the

database, but that would create another problem: the URLs of all the documents would

change. Site statistics show that the home page is not the only entry point on the page;

users of the site have bookmarked various pages, search engines have the current URLs

in their databases, and other sites link to the index and content pages. Internet search

engines are an important way that users find the site and individual pages of content; if all

of the site's URLs change, it would be a major inconvenience to users to re-find the

documents they need. Good Web citizenship means avoiding link rot (the dead ends that

occur when pages move or are removed). It might be possible to resolve the problem by

redirecting each request to the right page, but maintaining those redirects would not have

a good return on investment. Redirects like this are not uncommon when sites are

redesigned, but the goal of the project is to improve the site in small, achievable

increments rather than to drastically overhaul the site.

2 Project History

2.1 How the Project Began

This project was initiated in response to concerns about potential problems for the

site's two main user groups: site editors and site users.

First, site editors were spending too much time on updating the site topic pages,

and are introducing inconsistencies in the page layout on some topic pages and in the way

various resources were being linked to and described. Some of the inconsistencies were

intentional – intended to improve the user experience – and some were accidents

resulting from copy-and-paste errors, omissions of content, and inability or unwillingness

to test rigorously enough. When editors spend too much time simply doing updates to the

topic pages, it detracts from the time they have available to spend getting content added

Development of Dynamically-Generated Pages 6

to the site.

Second, site users may not have benefited from the flexibility that hand-coded

pages offer: new layout ideas could not be efficiently transferred to other pages, and the

resulting inconsistencies in page layout were a usability issue. For pages that have the

same purpose – listing documents related to a particular topic, in this case – users should

not have to learn a new page layout every time they go to a new page on the same site.

There was some discussion about how each page's layout might need to be different

simply because of the content mandated by its topic, but it was decided that customers

would receive more benefit from consistent layouts; new design ideas and would be

considered with their effects on all topic pages in mind.

2.2 Issues in Project Definition

The project boundaries were fairly clear. There is a set of index pages for

product- and technology-related tasks that all have the same purpose and should all have

the same structure. Since these pages are a repository for links to almost all the other

information on the website, they were edited the most frequently of any pages on the site.

No outside (hardware or software support) assistance was required. A separate

team provides and maintains the site infrastructure consisting of web servers, a database,

and the hardware they run on, but was not involved in developing the application to

display content on the Dev Resource Central website.

Using existing infrastructure for this project kept costs low. This dictated

restricted infrastructure options for the project, but also reduced the amount of time spent

on research. The infrastructure allowed use of any of the following:

• Apache Tomcat web server, which supports Java servlets and Java Server Pages

(JSP) on either Microsoft Windows or UNIX servers

Development of Dynamically-Generated Pages 7

• Microsoft IIS web server, which supports Active Server Pages (ASP) on Microsoft

Windows

• Apache, which supports Perl and various other scripting languages on UNIX

servers

• An Oracle 9i database

The project was required to have as little effect as possible on the group that

maintains the site infrastructure, since this project was not on that group’s plan of record

and would not be allowed to interfere with projects already in progress.

This project depended on a separate project to set up storage and publishing of

metadata to the production web server database: the Content Management System (CMS)

project. Requirements from this project fed into the CMS project, so timely

communication between teams was essential. This interdependency dictated one

fundamental requirement for the CMS project: the structure of the database needed to be

modifiable at all times to allow for changes in the metadata to be displayed on the topic

pages.

The initial deployment of the project was a proof-of-concept on one page, which

meant manually entering into the database the data necessary for that page to display.

Conversion of the rest of the site data was not part of the project upon which this project

depended (the Content Management System project); however, a plan for the completion

of data conversion and deployment of topic pages was a deliverable for this project.

One concern about the project was the lack of flexibility in layout of dynamically-

generated pages, but flexibility leads to questions about inconsistencies in layout. Since

the topic pages have evolved separately over time, it was necessary to arrive at a single

page design that met the majority of the needs for all pages. Pages that did not fit into

Development of Dynamically-Generated Pages 8

that layout required additional display logic and were added to the project scope where

possible.

No team member spent more than 25% of his or her time on this project, so that

other work on the site did not fall behind. This was because the primary benefactors of

this project – site editors – are not an external customer; since external customers are the

primary focus, work that affects them directly and substantially gets priority.

The deployed project could not affect the other sites hosted on the same machines

as Dev Resource Central. Potential areas of concern were: display performance, network

bandwidth, processor and memory usage, and database performance and size. The

development server needed to be as similar to the production environment as possible.

The development server's operating system, web server, and database software needed to

be the same as that of the production server in order to reduce unexpected problems

during deployment. Final testing of the application occurred on a staging server that is

nearly identical to the production server.

Of the three project management variables (scope, schedule, and cost), scope was

the least flexible and schedule the most. Scope for the project was already pared down to

the bare minimum: there are many other pages of the same style that could benefit from

the same treatment. Cost was mostly a function of the investment in project members,

and was therefore mostly fixed. Schedule could slip as necessary: completing the project

was of most direct benefit to the editors of the site, and getting new content to HP's

customers took precedence over improvements for site editors, even though that had

indirect benefits for customers.

2.3 Comparison of Goals to Final Outcome of the Project

The schedule was wildly different at the end of the project than it was projected to

Development of Dynamically-Generated Pages 9

be at the beginning, due mostly to a six-month slip in publishing project upon which this

project depended. Minor schedule slips when content projects took precedence also had a

small effect on the schedule.

When deployed to the production server, the response time was substantially

slower than it had been during development and test. The original plan to put only one

dynamic page in place as a final test instead of immediately converting all topic pages

from static to dynamic was a good one. In the staging environment, page display was

adequate; load testing indicated that performance would be acceptable, and while there

was a slightly longer delay in the page load time than for static pages, it was still less than

a second: the page display was not quite as fast as the static page had been, but it was not

enough to be annoying. Since the performance test passed, management approved

deployment to the production servers. The first test on the production servers was a

disappointment. The delay was magnified. The brief pause on the staging server was the

result of the return trip between the web server and the database server, which are co-

located in the same data center. Unfortunately, the database and the production servers

were not co-located, and in production the user's browser window had time to go blank

while waiting for the page to display. Due to the slow display, the lowest-volume,

lowest-content topic page was chosen to be converted as a test page while investigations

into the poor performance were underway. The project team then had to work to figure

out why the production system (much bigger hardware than either the staging or

development environments provided) was responding so slowly.

There were two possible explanations for the slow response: a query that took too

long, network latency, or formatting (a code or processor/memory problem on the

server). Benchmarking the formatting and query times separately in the JSP page showed

Development of Dynamically-Generated Pages 10

that the formatting took a reasonably short amount of time, and considerably less time

than the database request. The next thing to do was to time all steps involved in making

the query: opening the connection, performing the query, and closing the connection.

Testing in the database showed that the query ran in only a few milliseconds.

That left the network. When the web server was co-located with the database server, as

in the development environment, the performance was excellent. Unfortunately, the

primary production server was half a continent away from the database server. At that

point, the only way to solve the problem was to convince the team that provides the

infrastructure that the primary server and database needed to be co-located. This turned

out to be already in the plans, but not for a couple of months. No more topic pages in

production could be converted until the servers were physically next to each other.

During this time, enhancements were added to the project to help speed up the

connection in spite of the network latency issues. The initial implementation opened and

closed a connection each time a database connection was needed, which is not very

efficient. The solution was a database connection pool, in which a servlet that is loaded

at server startup keeps a number of connections to the database open at all times, and

doles them out to processes as they are needed.

The additional slip in schedule meant that the editors would continue to hand-

code their pages when they should be spending their time on getting new content on the

site; this was acceptable to management since the user experience in the production

environment was unacceptable.

The project makes it easier for editors to change the content in the one topic page

that uses the Java tag libraries that were deployed as part of this project. Some additional

content has had its metadata set, which will reduce the work required to migrate content

Development of Dynamically-Generated Pages 11

when the project enters its second phase: deployment of all topic pages.

The project also benefited its sister project; usability problems in the content

management system were found and fixed before the CMS was provided to users outside

the core web team.

3 Research

3.1 Research & Analysis Methodology

Online research was foundational to the project. Web software that was likely to

be a candidate for this project has most of its documentation online, and the software and

associated documentation change so rapidly that it is impractical to get information from

printed sources. The project team had experience with Vignette, a content management

suite, while working on another incarnation of the site. That experience demonstrated

that portal software would require extensive customization and a steep learning curve to

become productive; it might be possible to overcome that curve, or at least to put it off,

by hiring consultants familiar with the software to build the system, but the project's

budget is too small to make that reasonable.

3.2 Research on Products

3.2.1 Web Portal Software

A solution using web portal software such as BEA WebLogic or Vignette

StoryServer involves a large learning curve, since web portal software offers very

specific components that then need to be customized to create a solution. They also

require support and money expenditures greater than what the existing site allows for,

and are frequently difficult to modify to the look and feel desired (or required, in this

case, by the corporation).

Development of Dynamically-Generated Pages 12

Open source software is far less expensive, but presents other problems: a

learning curve similar to that of the web portal software, a high level of complexity to get

the resulting pages to look and feel like part of the site, and the support and

documentation of open source software packages are often inadequate or inaccurate.

3.2.2 Database

The infrastructure team offers an Oracle database and system administrators, so

the decision to go with that database was simple. This had some influence on what

software and languages to use: they needed to have good support for Oracle. Fortunately,

there is pretty broad support for the Oracle database, and it is a very well-known and

stable commodity.

3.2.3 Programming Language

Programming languages and associated tools to be used would be directed by the

web application server and database: the learning curve needed to be small; the language

needed to be widely accepted and well-documented; and there needed to be stable,

preexisting libraries for the web application server and database. For professional

reasons, as well, it was important to use a popular language with a broad user group:

working in a programming language that has only a small or shrinking user base would

not be particularly useful for professional development.

3.3 Review of Research Deliverables

The project team knows the existing infrastructure, data, and the look and the feel

of the site well. Because the problem to be solved was straightforward, the Apache

Tomcat web application server seemed to be a good choice. The design would have to be

extensible in the future, but Tomcat provided the fastest, most flexible, and most

Development of Dynamically-Generated Pages 13

inexpensive option available.

4 Project Scoping, Analysis, & Design

4.1 Project Scoping

The scoping methodology is reflected in the project scoping document. The

project is suggested by a person and projects are then prioritized by the management

team. Once the project is approved, a project lead is assigned to propose a schedule and

defines the project, including what it is, what it is not, the people involved, and the

schedule. Among the other things to be considered are whether the team that hosts the

site will be involved or will need to be notified of the project. They need to be notified

during application deployment, since they are responsible for server maintenance and

application deployment. If that group is involved, then their freezes and schedules

needed to be taken into consideration, and attendance in regularly-scheduled change

review meetings would be necessary to go ahead with the project. The infrastructure

team needed to review the effects of the application deployment and consider how the

new application would affect the other sites that using the shared server infrastructure

(web server software, hardware, and database).

Ideas for projects come from known customer needs. Project requests are posted

to a project listing page, and management evaluates them on a weekly basis to determine

the priority of each. During that evaluation, projects are ranked as high, medium, or low

priority. The projects that are ranked high priority are then prioritized as 1 (top priority)

2 (medium priority) or 3 (lowest priority). When a project is ranked high priority and 1,

the project is assigned to a project lead based on his or her area of expertise and other

workload.

The lead is responsible for creating a project outline. The project outline is a one-

Development of Dynamically-Generated Pages 14

to two-page high-level description of the project, starting with the project objective.

The project objective, a one-sentence statement of purpose, gives direction to the

rest of this document. In the case of this project, the project objective statement was:

Using a streamlined publishing process, revise methodology to dynamically

generate pages.

This clearly stated that the methodology to dynamically create pages on the site

would be based on a streamlined publishing process (this was already in the works when

the DPG project was initiated), and that a new process for generating dynamic web pages

needed to be created (a previous project for dynamically generating pages had never been

put into use). It also left changes to the publishing process outside the scope of this

project, while acknowledging the dependency. Every section of this document helped to

clarify the purpose of the project so that the scope of the work was clear to everyone from

high-level managers to those doing the coding.

The Benefits section helped explain the reason for the project:

Sets up environment for greater productivity and flexibility in the future. This

is a companion project to the CMS Publishing Process project. When the new

publishing process is implemented, the way dynamic pages are generated will

have to change.

This set the context for the project: some of the infrastructure (the publishing

process) was changing, which meant that the dynamic page generation functionality that

was already in place - and that relied on certain facets of the publishing process - had to

change.

The customers of this project were listed next:

Users - will get a more consistent, accurate, and complete view of available

Development of Dynamically-Generated Pages 15

content

Content Contributors - will have the tools and capabilities to quickly enter

content that can be assigned to appear on multiple pages in various locations

(for example: in the main body, as a highlight, as a feature, etc.).

Listing the customers of the project was paramount: if no customers could be

listed, there would be no reason to do the project. It also provided the perspective from

which the test cases should be written.

The deliverables section came next; it is a fairly standard section in that many of

the project deliverables remain the same from one project to the next. The deliverables

section for this project was as follows:

User acceptance tests (standard)

Implementation plan (standard)

Support plan (standard)

Revised code for current dynamic pages

Data model updates

CMS updates corresponding to data model changes

The deliverables were listed at a fairly high level. The standard deliverables were

listed first, followed by the items that were specific to this project. In this case, Revised

code is one file (or set of files) that was deployed to the production server; Data model

updates were changes that must be made to the existing database; and CMS updates were

changes to the content editors' user interface so that they could enter data using the new

data model.

The Milestones section was a simple enumeration of the project steps and their

due dates:

Development of Dynamically-Generated Pages 16

21May03: Sponsor agreement [approval of project outline]

30May03: Analysis checkpoint [analysis complete]

10Jun03, 27Jun03: Design/Construction/Testing checkpoint(s) [check in,

completion date]

11Jul03: Implementation checkpoint

18Jul03: Retrospective report complete

The last design, construction, and testing checkpoint was the completion date for

those three phases; any other checkpoints were simply reminders to provide management

with status reports and let them know what, if anything, is compromising project

schedule; there was no formal meeting for projects that did not require interaction with

other groups. Informal updates were made on a weekly basis in team meetings or during

hallway chats. The project was expected to be in production, and the developers’ work

complete, on the implementation checkpoint date. It was then the project lead's

responsibility to request information from all involved on what went well and what could

go better for the next project.

The People section was a list of the people involved and their roles in the project.

The full list of people was made up of the project lead, sponsor, team members and their

respective areas of contribution, and reviewers, who needed to be kept informed on the

progress of the project.

The Boundaries section simply lists the boundaries of the project:

Other than simple file moves, no involvement on the part of the infrastructure

team is anticipated

Only content and data for this site will be affected by this project

A follow-on effort will be launched to address new dynamic pages; only topic

Development of Dynamically-Generated Pages 17

pages are included here.

This made clear which pages on the site would be affected by this project and the

amount of project management that would be required (if other groups were involved or

if the project were to affect data or content outside the website, project management time

would be greater).

The Assumptions and Risks section outlined the assumptions foundational to the

project:

Although this project can be done in parallel with the Publishing Process

project, it is dependent on the outcome of the new publishing process.

Therefore, final testing and implementation must occur after implementation of

the new publishing process.

No team member will expend more than 25% of his/her time on this project

Scope is the least flexible project parameter; resources are the most flexible.

This made clear the dependency of this project on another project and let

management know how much time the project team would be spending. Most

importantly, it made clear to the entire project team what trade-offs should be made when

there was a conflict for time: schedule was the least-important component of the project,

so slips were likely to be approved of.

The Completion Criteria section was a one-sentence statement describing how to

know when the project is done:

When topic pages are generated dynamically using the new publishing process,

this project will be considered complete.

This was a clear, easy-to-measure criterion for completion; any task that did not

advance the project toward this criterion was outside the scope of the project and should

Development of Dynamically-Generated Pages 18

not be undertaken.

Finally, a Revision History section appeared at the end of the document to

summarize any major updates to the document; it provided a project history of sorts,

although its main purpose was to make it easy to tell at a glance when, if, and how the

document was changed.

Once all this information was documented, it was sent for review by email to

those listed in the People section of the document. This check ensured that all those

listed in the document were aware that they would potentially be helping on the project

and gave them a chance to add any risks or other foundational information that

management should be aware of. After this round of reviews was complete, the

document was sent to the project sponsor(s), who then reviewed and signed off on the

project. This process ensured that the project was the same as what was expected and

that timing and resources for the project were appropriate.

The final deliverable for the scoping phase of the project management life cycle

was the project tracking entry on the team's intranet site. This site made program

management tracking easier by aggregating status information in one place. Although a

view of all active projects was available, the single-project view was the one pertinent to

this project: it tracked status (green for 'on track', yellow for 'there are concerns', and red

for 'needs management attention to get back on track'); lifecycle state (analysis, design,

and so on); and stored status reports, task lists, test plans, and all the other information

necessary to track project status. When the sponsor approved the project outline, the

project lead moved the project state to the next phase: Analysis.

4.2 Analysis

The Project scoping document that was the end result of the Scoping phase

Development of Dynamically-Generated Pages 19

provided the starting point for the analysis phase. The most pertinent section of the

project outline document for this phase was the list of customers of this project. The list

of customers provided a perspective from which to write the user acceptance tests that

ultimately provided direction for the project.

The user acceptance tests were the primary outcome of the analysis phase. The

tests described the things that users would be able to do once the project was complete.

User acceptance tests were important because they ensured that the project team was

thinking about customers and not about working on projects that would not help them, or

adding unnecessary functionality. The user acceptance tests were labeled as Must (M) or

Want (W). Tests labeled as must had to pass before the project could be deployed. Tests

labeled want would be completed if time allowed.

During this phase, issues arose that needed to be resolved before the project was

complete (in some cases) or before moving on to the next step in the project. An issues

log document was created to track these issues, and was attached to the project's entry in

the project management website. This document listed each issue concisely, as well as

the date each issue was opened, its due date, and its resolution date. If the issue required

more description, a more thorough discussion was entered at the end of the document.

Some of the issues that arose were brought to light when creating user acceptance

tests for the project. The user acceptance tests provided a list of tasks that each user must

be able to perform when the project is complete. A more detailed test plan could be

created from the user acceptance tests as appropriate (for instance, a unit test plan may be

created for each separate software module to ensure that it produces the technical results

necessary, whether the results tested are performance boundaries, calculations, etc.), but

this document was the ultimate test suite that must be executed. The user acceptance

Development of Dynamically-Generated Pages 20

tests brought issues to light because creating them forced the team members to put

themselves in the place of the user rather than in the place of the doer; questions arose

regarding how a user would behave in a given situation, whether it was technically

feasible to meet a need that was expected to be desired by the user, and so on. The user

acceptance tests were created by the project lead, but were reviewed by the entire team.

Ideally, the team would have included a customer (Extreme Programming), but since

there were not enough people to do that and because the editorial team itself was the

customer base, the project team represented the customers.

Once the user acceptance tests were complete, they were used to determine what

functionality was necessary. The list of functionality was then turned into a task list.

The business requirements document described the business justification for the

project. Customer needs had already been documented, but even those could be justified

(or removed or prioritized based on lack of business need). Business requirements were

then derived based on the tasks: whether a database would be necessary; what sort of

server hardware and software functionality would have the best support for the

customer's needs; and what sort of support would be necessary from outside teams were

all documented so the business could be aware of potential costs and risks before the

project began.

The business process flowchart showed the interactions between the various

business segments that were involved in the project. It helped the support group

understand when they might be involved with the software that resulted from the project,

and helped the deployment team understand who would provide the software and other

information necessary for deployment. It also confirmed the approval process for

deployment, which let the developers know the release criteria from a business

Development of Dynamically-Generated Pages 21

perspective.

The data requirements document showed the inputs and outputs of the software.

As with most of the rest of the documentation in the planning portion of the project, this

documentation helped provide boundaries and details during the design phase of the

project. The flow diagram also showed the screens the user would see (without design

elements; these screens simply have labels describing their general functions). Any

reports that might be required or generated based on user or system outputs were listed

here as well.

Security is always a concern for any website; however, there were no user

security requirements for this project, so security audit requirements for this project are

minimal. The largest concern for this project was keeping the database user name and

password private. This meant simply storing that information in a secure area, which is

standard practice.

The buy/build criteria for this project were straightforward. The project budget

did not provide for large software purchases, so the budget was the least-flexible

component of the resources available. Since the server infrastructure was provided by

another group, the web application server that was already in place was the best choice,

and the dynamic page application would be built using that. In previous web projects,

dynamic web applications have required as much effort to customize using large content

management systems as they do when they are built from scratch, so the lower

expenditure on software would be just as efficient as buying a large web application

server.

When the documentation for this phase was complete and reviewed by all

responsible parties, the project sponsor gave buy-in for phase end – this was simply

Development of Dynamically-Generated Pages 22

business approval to move ahead with the project as documented to this point. The

documents were kept up to date on the central team project website throughout, so the

project sponsor used them to grant approval. The project dashboard was updated to show

that the project did not require management attention, and to show that the project had

moved to the design phase. The project lead then sent out a project status update to

notify the team of the phase change.

4.3 Design

Inputs to the design phase were the user acceptance tests and the current

implementations of the pages that would become dynamic at the end of the project.

Development of Dynamically-Generated Pages 23

One acceptance test that had a major effect on the software design was that site

editors should not be required to know how to program in order to use the software.

Because of this requirement, Java Tag Libraries were used to do the display of each

section of a page. Tag libraries encapsulate display code into a Java class, which can

then be called by a single HTML-style tag. For this project, sections of the page were

broken into logical units for which the data can be retrieved one query, and the tag library

then formatted the query results and returned them to the user's browser. Figure 1 shows

the page design with two logical units outlined. This allowed editors to place sections of

the page where they were needed or omit a section altogether if a page did not use it. The

downside of this solution was that changes in page layout required recompilation of the

code, which reduced the flexibility of the site and responsiveness of the team to change.

It also meant that each tag required parameters to set widths of tables, heading styles, and

other display attributes, in case the tag was used in an area of the page where those

display elements varied from the original design. This was acceptable in return for

simplified ease-of-use for editors, and because most editors were not able to edit or

recompile the tag library code, they wouldn’t be tempted to spend time rewriting the

HTML code.

Development of Dynamically-Generated Pages 24

Figure 1

Another important set of acceptance tests stated that the final display must match

a compromise design that meets HP.com style and layout guidelines, and must

incorporate the most common or most important elements of the disparate topic pages on

the site. Many of these changes were included in the final design as design

enhancements, but some were discarded or entered for consideration as enhancements to

future versions of the software. Part of the testing included comparing the final page

layout to the agreed-upon compromise design.

The main outputs of the design phase were the page design, the list and

description of fields that were necessary to accomplish that design, and the design

document. The design document's contents are detailed in the following paragraphs.

Development of Dynamically-Generated Pages 25

4.3.1 Application Design

The data flow diagram described, at a high level, how information flowed through

the website, from the editors who input the data to the website user who consumed it.

The diagram followed standard DFD rules, and was created using Microsoft PowerPoint.

The data model described the database tables that were necessary to support the

dynamic page display. Requirements were determined by examining the information and

layout of the pages to be displayed.

The integration requirements described what hardware and software were

required to add this new software to the existing system. For this project, there were no

new hardware or software requirements, and it was important to state that so that

management and the infrastructure team are aware that those needs had been considered.

Application inputs are the things that tell the application what to do. These

included the request made from a customer's browser and the data from the database.

The application process described how the application consumed data from the

database and transformed it for use by customers of the website.

Application outputs are the results that are produced by the application in

response to a request from a customer. The main application output was the response the

server returns to the customer's browser. The other application output was a message

written to log files when errors or warnings occurred in the application.

Next was a list of error conditions that could occur in the application and

procedures to follow to fix them. Some error conditions and procedures for this project

were:

Pages display navigation but no contents. This indicated that the database

connection is down, since the navigation portions of the page are static. To confirm that

Development of Dynamically-Generated Pages 26

this is the case and correct the problem:

1. Refresh the screen.

2. Check the source code; the tag libraries usually write an HTML

comment for debugging purposes when an error occurs.

3. Check other pages that use the dynamic code.

4. Check that the backup server works; if it does, fail over.

5. Check that the database is up; contact the infrastructure team if it is

not.

6. Contact the infrastructure team to restart the web server.

7. Contact the infrastructure team for further help if none of the above

fixes the problem.

The potential problems listed in this document were not application errors,

because those errors should be caught during testing before application deployment;

generally they were errors in the system that would result in catastrophic failure of the

application. For example, the problem listed above might result from a network outage

or a hardware problem on the database server. Problems with data missing from pages

where it was expected are generally user error: the data was most likely not set correctly

or was not published to the correct server.

Security requirements described the ports and machines that had access to the

database, and the user that must be used to log in to the database.

The scheduling requirements section of the document described factors that could

affect scheduling of the deployment of the project. Higher-priority projects, such as

content requests, could push out the schedule, and the deployment of the project

depended on the release of the publishing project. Deployment was scheduled during the

Development of Dynamically-Generated Pages 27

bi-weekly change management meeting held by the infrastructure team.

Audit requirements described the tests that pages had to pass in order to be

deployed. The web pages resulting from this project were required to meet corporate

look-and-feel guidelines. Additionally, the pages were required to meet site design

guidelines, conform to XHTML standards, and be well-formed.

Application performance requirements defined the performance required of the

page before deploying the individual pages. There must not be a noticeable difference in

the time it takes to display the current static pages and the time it takes to generate the

dynamic pages.

The testing requirements section simply mentioned the document that contained

the user acceptance tests. The tests themselves were documented separately since this

document is just a reminder that all tests had to pass before the application can be

deployed.

The implementation plan detailed the steps to take to deploy the code to the

production servers. A test plan that could be executed without help from the

development team was included so the infrastructure team could deploy and test on its

own schedule. In case the tests failed, a rollback plan was also included.

The conversion design was a mapping that described the conversion of the

existing data tables to the tables that supported the new page layout. This design was

relevant to both this and the Content Management System project.

The conversion process design described the process to follow when converting

the database for the new data design, and also the order to convert topic pages from static

to dynamic using the new Java tag libraries.

Development of Dynamically-Generated Pages 28

4.3.2 Application Design for Conversion

Conversion validation requirements are the set of tests to be performed in order to

confirm that the data has been converted and the page deployed correctly. For this

project, the test involved deploying a copy of the page and comparing the data and

functionality of the new page to that on the old.

4.3.3 Design Deliverables, Accomplishments, and Milestones

The main deliverables of the design phase were the topic page design, the list and

description of fields that were necessary to accomplish that design, and the design

document. The topic page design was used to create the tag libraries that generate the

page display, and the list of database fields was provided to the Content Management

System project for implementation. The design document listed the outside influences on

this project, described how the application functioned, explained how the application

would affect the system in which it existed, and how it would be deployed. The

information in the design document was used by the project sponsor to decide whether to

approve the project or not, and to be sure that there is a plan for development. When the

project sponsor approved the design, the design phase was complete.

4.4 Summary and Phase Outcome

At the end of the Scoping, Analysis, and Design phase, the project team was

ready to begin construction and test of the software.

The project moved forward based on the information defined in this phase: the

functions that the software must perform were defined, editors would be able to enter

appropriate metadata to be stored in the database, and users would be able to get the

information they need based on that document metadata. Additionally, management

Development of Dynamically-Generated Pages 29

knew the status of the project, and agreed that it was on schedule.

5 Construction and Test

5.1 Methodology

The construction and test methodology for this project was probably the part of

this process that most resembled the XP process, which prescribes a continuing process

of test-build-compile-test in small increments (Extreme Programming). The process

overhead was minimal, and testing was a very important part of the process. Testing was

so important, in fact, that it was done hand in hand with the development of the actual

software: a unit test for each new portion of the software was created, and then the

functionality was added until the test passed. That test was performed along with all the

other tests as part of integration testing when the code was checked in.

Compared to other test methodologies, the process overhead for managing this

project was very low. Semimonthly progress checks made management aware of

progress and allowed adjustment of priorities as necessary.

Most traditional methodologies advocate testing towards the end of the build

cycle. This does not acknowledge the reality of software development, which is that

developers typically do not write large chunks of code and then compile. Leaving testing

to the end of this process leaves more opportunities for small parts of code to be

overlooked in testing at the end of that process. Writing tests for functionality before the

functionality is written ensures that the code being written has a predefined purpose, and

directly relates to the goals of the project.

If the project team were to follow the XP process strictly, there would be a pair of

people writing code together (Extreme Programming), but resources were slim: there was

really just one person doing coding. Also, there would have been a slightly more

Development of Dynamically-Generated Pages 30

structured approach to writing portions of code: each team member would sign up to

make a particular user acceptance test work, and would need to estimate the time required

to complete each task. Since there was only one team member working on the code for

the project, the process had to be more informal.

Inputs to the construction and test process were all the deliverables from the

design section. The infrastructure provided by the infrastructure team was also included.

The completed software was comprised of a method to connect to the database, an

object that represents each document's metadata, and a unit of code that formatted the

metadata for each section of a topic page. These deliverables were continuously tested as

each increment was completed, and the automatically-generated test results were posted

to a central website.

The database connection was fundamental to the project and to the page display.

The connection was made via a tag that is called like the display tags, and made query

results available to all nested tags. The connection, once established, was used by the

display tags to send queries to the database. The data for each tag is available only to the

tag that made the query. Tests for the database connection included performance tests

and data integrity tests.

The results of the query were marshaled into a Java class that represented the

document, which had getters and setters for each field that was retrieved from the

database. This meant that any changes to the names of database columns or changes in

the database structure wouldn’t affect the display code. It also meant that any changes to

the document model would require that the Document class be recompiled and

redeployed. Unit tests for the Document class included tests for the getters and setters of

the class.

Development of Dynamically-Generated Pages 31

The display tags used the Document class to retrieve metadata about a given

document in a conventional, easy-to-understand way. Tests for the display tags included

HTML validation, look and feel tests, and tests for completeness of data as compared to

the pages in production. In addition to comparing the generated display with the existing

pages and the design, it was important for the person writing the code to check with the

designers frequently to reconcile vagaries and variables in display.

One of the fundamental tenets of the XP process is to do work in small increments

(Extreme Programming). This makes the process very flexible, and takes into account the

fact it is very unlikely that all requirements will be discovered in advance. Since there

are frequent releases and iterations, users can still gain benefit while the project evolves.

In this project, there were several metadata changes required and compensated for using

this approach.

The biggest lesson learned in this project was to test with real data. In order to

avoid causing a strain on the production system, the software was developed against a

test database, with information that was populated manually as it was needed. Although

most of the data was similar to the real site, it did not cover corner cases. Editors, who

were most familiar with the data, were reluctant to spend time populating data, especially

since there was no documentation and therefore no way of knowing how the data they

entered would be displayed. Because of this, some document metadata was initially left

out of the database. For example, some documents needed to be opened in a separate

browser window, and that information needed to be noted in the database, but was

originally overlooked. There also needed to be an explicit flag to note when a resource

had recently been substantially updated. Although the system could tell when the last

update was made, it could not differentiate between a major update to the content and a

Development of Dynamically-Generated Pages 32

minor update that corrected spelling errors or page formatting. It was desirable to note

the major updates on the topic pages, but not the minor ones that users would not care

about.

There were other problems to reconcile: some resources that the site linked to –

documents that are not hosted on the Dev Resource Central site – were new to the site,

but had been created months before. To help customers who visit the topic pages

frequently, the links that are new to the site should be marked as such, but the actual

publication date of the article can not be used as an indicator of newness in this case.

This necessitated multiple date fields in the content management system: one for the

publication date, and one for the date the document was initially linked to from the Dev

Resource Central site. Furthermore, if both dates are the same, editors should not have to

set both, and the application or query code needed to be able to determine which date to

use.

The features and highlights areas of the topic pages were used to draw attention to

important news about the page topic. In many cases, the features and highlights areas of

the page provide extra exposure for a new link. In some cases, editors may want to

change the description of the new link for each topic page the link shows up on, so the

initial project deployment included the ability to make this alteration. In practice,

however, editors rarely had time to customize the text for each topic, so that functionality

will be removed in a future project to make the CMS user interface cleaner and remove

irrelevant data from the database. In the case where an editor felt it was really necessary

to have a different description, it would still be possible to work around the removal of

the extra metadata fields by creating another link in the CMS to do the highlighting work.

To help set customers' expectations about what will happen when they click on a

Development of Dynamically-Generated Pages 33

link, the site convention was to display the format of a file next to the link when the

destination file was not an HTML file. This was useful when a browser plug-in was

required to view the content, as was the case with videos and PDF files. The content

management system did provide an automated file format field, but its convention was

confusing in some cases, so it was necessary to add a metadata field to contain a text

description of these files.

In the original page design, the document title, date, and description were not

links. The file format was off to the side and was used as the text for the link. In some

cases, the file format did not work well as the link text, so an additional field was added

to allow the default link text to be overridden.

The data access tag that created the connection to the database for topic page

display initially created an individual connection for each page view. Tags that queries

for metadata and formatted it for display then used that connection, and when the closing

data access tag was reached, the database connection was closed. When the initial

performance problems were encountered, the data access tag was modified to get a

connection from a pool created by a servlet at server startup instead, which maintained a

steady connection to the database and would reduce the time needed to make that

connection for each page. Although most of the initial performance problems were not

related to the database connection tag, this change would improve performance, help

avoid deadlocks, and keep the overall number of connections to the database from

growing unnecessarily.

5.2 Deliverables, Accomplishments, and Milestones

Deliverables of this phase were unit and integration tests and a test suite, a build

script, completed software, system documentation, user training documentation, and

Development of Dynamically-Generated Pages 34

sponsor buy-in for phase completion. Sponsor buy-in for phase completion came only

when all construction-test iterations were complete. All iterations were complete when

all user acceptance tests and the test suite passed.

6 Implementation and Project Ending

6.1 Implementation

The inputs to this phase were the completed software and test results, and the

implementation plan from the Project Scoping phase, and the user documentation for the

application. These were used to gain approval for deploying the application on the

production servers in the formal change review meeting.

The outputs of this phase were the deployment of the application, a plan for the

ongoing support of the application, and training for the users and support staff.

In order to implement the application, the infrastructure team had to give approval

to confirm that they were aware of the project; that its effects on the infrastructure shared

by other websites had been considered; that testing was complete and thorough; what

machines will be affected; and that they had an implementation plan including backup,

install, test, and rollback plans, and the final files to be deployed. When the

infrastructure team approved – meaning that an executive council approved of the

implementation plan after it was approved by an infrastructure team support engineer

who worked on the system every day, and by a project manager who kept track of what

software deployments are going on and schedules deployments to minimize user effects –

the application could be deployed.

The support plan details the logical pieces of the system and their primary and

backup support engineers. While the system needed to be well-enough documented that

anyone could get the software rebuilt and running again if necessary, a primary and

Development of Dynamically-Generated Pages 35

secondary support person were documented. The primary support person was generally

the primary developer of each logical portion of the system, and the secondary person

needed to be familiar enough with the software that recovery from errors would not be

overly time-consuming. This generally required a little bit of training, so support staff

training was another deliverable. The support plan also detailed the most likely failures

for the system and software along with a brief description of the symptoms of each type

of failure and the steps to solve the problem. This document was not meant to be a

comprehensive support manual, but rather an aid in emergency situations and to help

management understand the risks they might face, as well as who to turn to in case one of

the failures occurs.

Finally, the users and support staff were trained: while this sometimes meant

actually holding a meeting to provide training, for this project it meant that all users

needed to read the documentation created in the construction and test phase; support staff

were expected to read the documentation as time allowed and need demanded.

6.2 Project Ending

After the software was deployed to the production servers, the system was

monitored for a few days to make sure there were no problems. At the end of that time,

the project sponsor's approval was solicited to end the project. The project outline did list

the application as a deliverable, but did not list the conversion of all topic pages as such.

Since the performance issues made conversion impossible, the pages were explicitly

excluded from the deliverables section at this point. Since it was possible to generate

pages using the application, the completion criteria specified in the project outline were

technically fulfilled. Approval to end the project was granted, and the project was

considered complete and moved to maintenance. The project management website was

Development of Dynamically-Generated Pages 36

updated to show the maintenance status.

6.3 Summary and Phase Outcome

This project was considered complete even though the software application

created during the project was not immediately put to use in all topic pages. The

conversion of the topic pages was specifically stated as being outside project boundaries

because of the potential to keep the project open for a long period of time.

7 Outcome & Project Maintenance

7.1 State of the Project

After deployment, the software was not immediately put into use on the system:

there was not enough data in the database, and there was a question about what the

performance would be in the production system. As it turns out, the performance was not

acceptable. The physical distance between the web server machine and the database was

too great, and although the query speed was excellent and the display time was

acceptable, the data could not be returned from the database to the web server fast

enough. This meant escalation: none of the other sites using the database had their

normal pages as tightly coupled with the database as a back end, so it was not an issue

except on the Dev Resource Central site. A large infrastructure improvement project was

underway that would address the problem, so this meant a delay in the rollout. Instead of

converting a high-traffic topic page first, the lowest-traffic topic page was converted as a

test; that page would require the smallest amount of data entry time and would affect the

fewest customers, while still allowing a test on the production server. Testing showed

that the software was stable enough to be in production despite the performance issues,

and the test page would be used to find whatever remaining design flaws existed before

Development of Dynamically-Generated Pages 37

all the pages had to go into production using the software.

7.2 Summary of Project Outcome

The application that was the result of this project performed satisfactorily in the

right environment. Due to forces outside the control of the project team, it could not be

put into use immediately. This was disappointing, but meant only a delay in the editorial

team’s ability to make use of the application – the time spent on the project was not

wasted; just premature.

7.3 Project Maintenance

The first plan for the project during maintenance phase was to convert topic pages

to use the new software. This required that all the metadata for all the documents on the

site be entered, but it also required faster performance from the query. Until the database

could be moved, the editors were encouraged to enter metadata when they entered new

content so that the burden of entering metadata would be lighter later on. Once the

database and web servers were moved to the same location, performance was acceptable

and editors began entering metadata more often. Ultimately, the amount of data that

needed to be entered was too daunting to be done ad hoc, and a small project was

required to get all the metadata entered and the topic pages migrated.

8 Future of the Project

8.1 Future Plans:

8.1.1 Enhancements

After the additional topic pages are converted, there are several projects that could

make enhancements to the topic pages easier.

Development of Dynamically-Generated Pages 38

It would be nice to decouple display more from the back end. The HTML that is

generated for each page is currently hard-coded into tag libraries. Moving the HTML

strings into properties files to make changes easier is one option, but it would not

alleviate the need to recompile the display logic when page layout changes; it would

simply make it easier to make minor modifications in the case that the HTML code is

invalid. Any changes to the display require changing Java code, compiling, testing, and

deployment, a process that can be time-consuming and process-heavy due to the

involvement of the infrastructure team. If the performance is not adversely affected by

writing the display code in JSP, the Java coding and compiling steps would be simplified,

and the extra process requirements for deployment that are imposed by the infrastructure

group for compiled code would be removed. This would make the team more able to

respond to changing requirements. This improvement will be more complicated than any

of the others, and will only be considered when it would take a significant amount of time

to make a change or implement a new tag.

Another part of the software that is too inflexible for a fast-changing web

environment is the Document object that is used to hold data retrieved from the database.

The metadata is marshaled into the Document object, which gives the display code a

convenient way to refer to each metadata field. The database is not expected to change

often or drastically, but even when it does, the Document object isolates the display code

from some of those changes: for instance, if a column name changed in the database but

still contained the same data, the column name would only have to be changed in the

code that does the marshalling. In practice, the column names will not change, so this

precaution turned out to be overkill. Additionally, since code changes would be required

whenever a new column is added to the database, the database changes can't be taken

Development of Dynamically-Generated Pages 39

advantage of very quickly. If the display code were migrated to JSP, JSTL tag libraries

might help with this: query results can be automatically marshaled into easily-accessible

objects that have a getter- and setter-like interface, but are more flexible than the

Document object. This change would be implemented when the pages are converted to

use JSP for the display, and the Document object would simply be removed when the tag

libraries that use it are no longer in use.

Finally, it would be ideal to move the queries into a properties file to make it

easier to modify them. Currently, each tag that makes a query has the SQL statement

hard-coded; if even a minor change is made to the SQL, the entire application must be

recompiled and redeployed. Since moving the queries into a properties file would require

the least amount of time and can be used in all of the other potential improvements, it has

first priority.

These enhancements will be scheduled to fit between content generation and

formatting tasks. The process will not require the same amount of documentation, since

the scope of the enhancements is not as large as that of the original project: there will be

no project outline, and no need to get approval for the changes from the infrastructure

team. The user tests will be reused since the enhancements simply re-implement the

same site functionality in a different way. For instance, the test that states “Topic pages

should have a ‘related technical topics’ section” still applies, regardless of the technology

used to get it done. This is strength of the user acceptance tests: they should always

apply and pass, as long as the tasks a customer would want to perform do not change.

Unit tests will change as the code itself changes. As with the original project, all unit

tests must pass, and unit tests for new code should be written before the code.

Deployment will still be subject to approval from the infrastructure group, but JSP code

Development of Dynamically-Generated Pages 40

and the removal of code from the system when it’s no longer in use will not require as

much scrutiny on their part.

8.1.2 Maintenance

The application will not be able to remain in use in an unchanged state forever;

the web environment changes constantly.

The application will need to be updated for display changes. These changes may

be required in order to conform to corporate look and feel guidelines. As content and

audience change, the layout of a page may change as well, which will require changes to

the display tags. This type of change may also require changes to the database and

relevant queries. Any change to the database will have to be more closely scheduled than

changes to the code; the code can be deployed quickly and without customers noticing

thanks to backup servers, but the way the database works means that columns can’t be

added or removed without effecting pages that rely on it for display. Database changes

will therefore require more coordination with the infrastructure team and within the

project team, and in order to reduce the effect of these changes, it may even be necessary

to temporarily replace dynamic pages with a static copy.

While this project focused on displaying only one type of page dynamically, there

are other pages on the site that would benefit from the application. Creation of these

pages is included in the maintenance phase of this project.

The web application server and Java version used by this project will inevitably

be upgraded as well, and the unit tests will need to be run when this happens.

Development of Dynamically-Generated Pages 41

9 Conclusions & Lessons Learned

9.1 Investigation and Planning Phases

The research, scoping, analysis, and design phases of this project went fairly

smoothly. Although the project team was limited to the software provided by the

infrastructure team, the limitation kept the investigation from being bogged down in

nearly limitless possibilities. The project scoping document, known to the team as the

project outline, made clear the boundaries, deliverables, and resources for the project.

These were useful when later parts of the project threatened to grow too large, and helped

keep the team from spending too much time considering alternatives.

The design phase resulted in documentation that was a good starting point for the

implementation phase. Although the application design turned out to be incomplete, the

project outline document helped track changes in the project, and the project was able to

move forward and accommodate changes when they were discovered to be necessary.

The user acceptance tests provided a comprehensive set of functionality for which

software needed to be created.

The design could have been improved with more people involved to notice the

vagaries of display on the various topic pages in advance. Fortunately, the project

management style used allowed for a lot of flexibility in the project: when new

requirements were discovered, the project manager needed to document the requirement,

evaluate the new requirement’s importance compared to the other tasks, and inform the

project sponsor if any schedule or resource changes were required. The project sponsor

could then evaluate proposed changes in the schedule to decide whether the new

requirements were more important than other concurrent projects and whether the

changes would affect follow-on projects. This arrangement allowed the project team to

Development of Dynamically-Generated Pages 42

compensate for its small size, yet complete the project on time.

9.2 Construction and Test

 The iterative style of development and testing suited this project well because it

took into consideration that designs are frequently incomplete to start with and provided a

way to be successful even with an incomplete initial design. Although the design was as

complete as possible at the end of the design phase, it would be nearly impossible to

cover every area of design in a short period of time with a very small team.

The user acceptance tests provided direction for the project and were a good way

to prioritize development tasks. The tasks that were marked want were lower priority,

and in some cases did not get done. Some of the tasks that were marked as musts were

downgraded to want when it became clear that they were not really necessary for the

project to be successful. It would have been good to be more conservative in the

estimation of what was really necessary to complete the project.

The unit tests helped show when the code was working and when it was broken,

provided up-to-the-minute status updates for management, and helped improve code

quality overall.

9.3 Project Management

The project outline was a very effective tool to manage and track the progress of

the project. It clearly communicated the project status and showed the schedule at a

glance, which was valuable to the project team’s management. The largest delays in the

project were the results of forces outside the project: the project on which this one

depended slipped, and when the project was completed, it couldn’t be fully put to use due

to infrastructure problems. The other impediment to using the application, which was the

Development of Dynamically-Generated Pages 43

large amount of data that needed to be converted, should have been defined in advance as

a follow-on project. Fortunately, this oversight did not affect the project’s schedule.

Overall, the project was a success. The project management overhead was kept to

a minimum, but still met the needs of management and the project team. With future

enhancements in place, the editorial team will be able to save time editing topic pages

and spend more time working on delivering content pages to customers.

Development of Dynamically-Generated Pages 44

10 References
Extreme Programming: A gentle introduction. (n.d.) Retrieved June 15, 2006, from
http://www.extremeprogramming.org/

Development of Dynamically-Generated Pages 45

11 Exhibits

11.1 User Acceptance Tests

Test
No.

Weight
1 (lo) –
5 (hi)

Description Criteria Comments Status
(p/f)

A-1 5 An ‘other resource
sites’ section should
show up on the
devresource home
page when other
resource sites exist.
See the orange-
outlined section of
figure 2, appendix.

Does the 'other
resource sites'
section of the
home page contain
the links identified
by the editor and
only those links?

3/9 no test
data entered
for home
page yet.

P 3/12

A-2 3 A ‘features’ section
of the page is
dynamically
displayed for both
the home page and
topic pages. See
figure 1, appendix.
This section of the
page may be
comprised of one or
more documents that
have been specified
to be featured
documents for the
home page.
The features section
should not have a
heading, and should
be at the top of the
center column.

a. Does the home
page have 1 or
more featured
documents?
b. Does the
OpenCall topic
page have a
features section?
c. Does the
features section
appear at the top
of the center
column?
d. Does the
features section
have a header? (it
should not)

The contents
of this
section of the
page are
specified in
the “long
description”
field in the
CMS; the
length of this
field is 2000
characters.
3/9: no test
data entered
for item a
yet.

a. P
3/12
b. P 3/9
c. P 3/9
d. P 3/9

A-3 5 A ‘developer
programs’ section of
the page should
show up on the
home page and all
appropriate topic

a. Does the
“developer
programs” heading
appear on the
home page?
b. Are there one

3/9: no test
data for item
a yet.

a. P
3/12
b. P 3/9
c. P 3/9

Development of Dynamically-Generated Pages 46

pages where
developer programs
exist. See the
orange-boxed
section of the home
page, figure 3,
appendix.

or more links
below the
heading?
c. Does the
“developer
programs” heading
appear on the
OpenView topic
page?

A-4 5 An image appears in
the top-right corner
of the content area
of the home page.
This image is not
dynamically
generated or placed
on the page.

Does an icon
appear on the
page?

 P 3/9

A-5 5 Topic pages should
have a full listing of
content, including
an in-page
navigation section.

a. Is there an in-
page navigation
section on the
page, with the
heading “slice
your information”?
(See orange-boxed
area, figure 4,
appendix)
b. Is there a list
of content
following the
index? (See pink-
boxed area, figure
4, appendix)
c. Does the
number of color-
bar headings in the
content list match
the number of
links in the in-page
navigation
section?
d. Do all the in-
page navigation
section links jump
to the correct place

 a. P 3/9
b. P 3/9
c. P 3/9
d. P 3/9
e. P 3/9
f. P 3/9

Development of Dynamically-Generated Pages 47

on the page?
e. Does each
content type have
a color bar
heading? (it
should)
f. Do content
listing sections
have sub-
headings?

A-6 5 Topic pages should
have an ‘other
resource sites’
section on the right
side of the page, if
the data dictates it.
See figure 5,
appendix.

a. Does this
section show up on
the OpenView
page? (it should)
b. Does this
section show up on
a dummy page
with no resource
sites? (it should
not)

 a. P 3/9
b. P 3/9

A-7 5 Topic pages should
have a ‘highlights’
section in the
rightnav. See figure
6, appendix. The
highlights section
should be indicated
by a colorbar.

a. Does the
Highlights section
display
(dynamically) on a
dummy page with
highlights
specified for it? (it
should)
b. Does the
Highlights section
display on the
OpenCall page? (it
should not)
c. Is the
highlights section
header a color bar?
d. If no highlights
are specified for a
topic or the home
page, does the
highlights heading
show up? (it
shouldn’t)

3/9:
Highlights
will not
function
until the
ext_subject
field exists
in
Autonomy.

a. P
3/12
b. P
3/12
c. P
3/12
d. P
3/12

A-8 5 Topic pages should a. If a topic page 3/9: need to a. F

Development of Dynamically-Generated Pages 48

have a ‘related
technical topics’
section. See related
technical topics
section, figure 4,
appendix.

is specified to be
related to another
topic, does it
appear as such on
the appropriate
topic?
b. If a topic page
is specified NOT
to be related to
another topic, does
it fail to appear as
such on the
appropriate topic?
c. If there are no
related technical
topics for a topic
page, is the section
heading absent?

enter test
data

b. F
c. F

A-9 5 Rightnav items on a
topic page should
appear in the
following order:
- highlights
- related technical
topics
- other resource sites
- developer
programs
- news

Do rightnav items
appear in the order
specified on all
topic pages?

 P 3/9

A-10 5 Manually-created
pages and
dynamically-
generated pages
should appear
identical except
where human error
is present in the
manually-generated
pages (for example,
the inconsistent
ordering of content
types).

Is there a
noticeable
difference in the
appearance of the
pages?

 P 3/12

A-11 5 Manually-created
pages and

Is there a
noticeable

There will be
a noticeable

P 3/12

Development of Dynamically-Generated Pages 49

dynamically-
generated pages
should take
approximately the
same amount of
time to display.

difference in the
amount of time it
takes to retrieve
the page?

difference
the first time
a page is
generated
after being
published,
since the JSP
must be
compiled at
that point.
After the
first
compilation,
the page
should not
take
noticeably
longer to
display.

 Pass

10

 Fail 1

	Development of Dynamically-Generated Pages On a Website
	Recommended Citation

	Development of Dynamically-Generated Pages on a Website

