
Regis University Regis University

ePublications at Regis University ePublications at Regis University

Regis University Student Publications
(comprehensive collection) Regis University Student Publications

Fall 2006

Design and Development of a Software Module for Minimizing Design and Development of a Software Module for Minimizing

Transportation Cost Transportation Cost

Gopalakrishna Udupi
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Udupi, Gopalakrishna, "Design and Development of a Software Module for Minimizing Transportation
Cost" (2006). Regis University Student Publications (comprehensive collection). 410.
https://epublications.regis.edu/theses/410

This Thesis - Open Access is brought to you for free and open access by the Regis University Student Publications
at ePublications at Regis University. It has been accepted for inclusion in Regis University Student Publications
(comprehensive collection) by an authorized administrator of ePublications at Regis University. For more
information, please contact epublications@regis.edu.

https://epublications.regis.edu/
https://epublications.regis.edu/theses
https://epublications.regis.edu/theses
https://epublications.regis.edu/regiscollege_etds
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/410?utm_source=epublications.regis.edu%2Ftheses%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
School for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

 Minimize transportation costs

SOFTWARE MODULE FOR MINIMIZING TRANSPORTATION COSTS

DESIGN AND DEVELOPMENT OF A SOFTWARE MODULE FOR

MINIMIZING TRANSPORTATION COSTS

Gopalakrishna Udupi

Regis University

School for Professional Studies

Master of Science in Computer Information Technology

 Minimize transportation costs

 Abstract

The goal of this project is to design and develop a software module to solve a

transportation problem, relating to minimizing costs to transport finished goods from

multiple origins to multiple destinations. The transportation problem will be modeled as a

linear programming model, using AMPL linear programming (LP) software. A graphical

user interface (GUI) will be developed to enable the user to enter the data and parameters

for the transportation problem. The GUI will be developed using C# programming

language within the Microsoft® .NET framework. The GUI will also enable the user to

launch the AMPL module to solve the transportation problem to calculate optimum

transportation costs. A relational database will be designed and developed to store the

parameters and data for the AMPL LP module. Both the AMPL LP model and the GUI

will be interfaced with the relational database.

 Minimize transportation costs

Table of Contents

CERTIFICATION OF AUTHORSHIP OF PROFESSIONAL PROJECT WORK.. 2

ABSTRACT.. 6

TABLE OF CONTENTS... 7

LIST OF TABLES AND FIGURES... 9

CHAPTER ONE: INTRODUCTION.. 10

Project Goals..10

Barriers and/or issues ...11

Scope of project ...11

Outline of the project ..12

CHAPTER TWO: LITERATURE REVIEW... 14

Research Overview..14

Review of existing solutions ..14

Linear Programming ..15

Simplex method ...16

Linear programming in AMPL..16

Other mathematical modeling tools...17

Transportation problem ...17

Methods for solving the transportation problems ..17

CHAPTER THREE: PROJECT METHODOLOGY... 18

Methodology Overview ...18

Development of the AMPL model and RDB interface ...19

Design and development of the GUI for the transportation module...20
Advantages of the .Net Framework...20
Advantages of the C# programming language ..21
Requirements for the graphical user interface ...22

 Minimize transportation costs

Formats for presenting results/deliverables..23
MS Word document ..23
Diagrams ...23

Methodology outcomes..23

CHAPTER FOUR: MULTI-COMMODITY TRANSPORTATION PROBLEM 24

AMPL model for the transportation problem ..24

Objective Function ..26

Constraints...26

Data for the transportation problem ...27

Solving the AMPL model..31

CHAPTER FIVE: USER INTERFACE FOR AMPL TRANSPORTATION MODEL
... 32

Principles of good GUI design ..33

Technical design of the GUI ...34

Main screen..36

Screen for entering/displaying origins, destinations and products ...38

Screen for entering/displaying supply ...41

Screen for entering/displaying Demand ..43

Screen for entering/displaying transportation costs and quantities..45

Screen for solving the transportation problem by launching the AMPL module..................................45

CHAPTER FIVE: TESTING AND VALIDATING THE SOLUTION 48

Data for the Transportation problem..48

Testing the graphical user interface (GUI) ...50
Testing the main screen...50
Testing the Supply screen..52
Testing the Demand screen ...53
Testing the Costs Screen ...54
Testing the screen to solve the transportation problem ...55

CHAPTER SIX: LESSONS LEARNED AND CONCLUSION 60

Lessons learned..60

 Minimize transportation costs

Was this project a success?...62

Challenges faced during the project ..62

Directions for further improvements to this project ..63

LIST OF REFERENCES .. 64

List of Tables and Figures

Table 1 Supply ...48
Table 2 Destinations (distribution centers) and the respective demand levels.............................. 48
Table 3 The transportation costs for each origin destination pair is displayed below per product.49
Table 4 The optimum transportation amounts ...57

Figure 1 High level view architecture of the graphical user interface .. 35
Figure 2 The logic for establishing the parent child relationship.. 37
Figure 3 Screen shot of the design mode.. 38
Figure 4 The form for entering origins, destinations and products, as displayed in design mode. 39
Figure 5 Snippet to show the logic for saving the contents of the ListBox for origins to the

database ... 40
Figure 6 Origin, Product and Supply for the Origin-Product combination...................................... 42
Figure 7 Code snippet to refresh the DataGrid.. 43
Figure 8 Code snippet for specifying the main form as a parent ... 44
Figure 9 Screen for solving the transportation problem by launching the AMPL module.............. 46
Figure 10 Code snippet for the logic for launching the process and refreshing the grid 47
Figure 11 Menu screen .. 51
Figure 12 Nodes screen... 52
Figure 13 Supply screen .. 53
Figure 14 Demand screen.. 54
Figure 15 Costs screen.. 55
Figure 16 Solve screen showing a run... 56

 Minimize transportation costs

Chapter One: Introduction

This software project was intended to design and develop a windows application

to optimize transportation costs. The primary objective to be met by this application was

to minimize costs to transport multiple product lines from several origins to several

destinations. The secondary objective was to learn how to interface disparate software

modules, such as a linear programming module, a Windows application and a relational

database, in order to solve a business (transportation) problem.

Project Goals

The primary goal of this project was to learn how Linear Programming (LP)

techniques could be applied, using a combination of software tools to solve a hypothetical

business problem. The hypothetical business problem was related to minimizing the total

cost to transport finished goods from multiple manufacturing plants (origins) to multiple

warehouses (destinations). When solving the business problem using the software tools

and LP techniques, knowledge of a programming language, database package and a

modeling software package would be gained. This knowledge could be used to solve real-

world business problems of the same nature. This solution would be more flexible and

customizable than off-the-shelf packages available for optimizing transportation costs,

such as the Logility Voyager® solutions suite.

As this project plan was executed, a hypothetical business problem was selected

in the area of transportation of goods from manufacturing plants to distribution centers

across the country. An LP model, with an objective of minimizing transportation costs,

 Minimize transportation costs

was developed for the problem. A mathematical modeling tool was used for this purpose.

This model was interfaced with a relational database, which contained the data related to

the problem. Finally, a graphical user interface (GUI) was developed to enable the user to

enter the data and parameters related to the problem and solve it.

A final project outcome analysis report was written after all the components for

the project were designed and developed. The background of the business problem was

described. The mathematical model and all the software components designed and

developed for solving the problem were also described in detail. This Professional

Project Paper is the collation of these above-mentioned documents, along with all

additional project details and project outcomes.

Barriers and/or issues

The barriers against successful implementation of this project were the following:

a) The business problem could be too complex to model using LP techniques

b) The tools used to develop the GUI and data repository (C# and Access) are new

and continually changing.

The project discusses how these issues were addressed.

Scope of project

The long-term objective of the Minimize Transportation Cost project was to solve

a critical business problem facing the shipping and transportation department of a

manufacturing company. The critical business problem typically involves minimizing the

costs to transport goods from manufacturing plants to warehouses of a real-world

 Minimize transportation costs

business. This usually involves multiple origins and destinations, with layered

transportation costs. Transportation in the real world might not lend itself to being

modeled as a linear problem and might need non-linear modeling techniques. However,

the scope of this proposed project was limited to solving a hypothetical transportation

problem. If the business problem could be solved using mathematical modeling

techniques, relational database and a GUI, then the project could be expanded to solve a

real world business problem. However, if the outcome of this project was negative, or

only partially successful, then the resulting “lessons learned” knowledge could still be a

great asset to future research and/or engineering projects that attempt to solve this same

problem.

Outline of the project

The project was conceptually organized into two parts. The first part dealt with

the transportation problem, and the methods and tools to solve it. It also considered in

detail the chosen problem and its software model. The first part is covered by the chapters

as follows

1. Introduction

2. Literature review

i) Research overview

ii) Linear programming (LP) techniques for solving transportation

problems

iii) Software tools for modeling/solving linear problems

 Minimize transportation costs

iv) Reasons for choosing AMPL modeling package.

3. Project Methodology

i) Methodology Overview

ii) Development of the AMPL Model and RDB interface

iii) Design and Development of the GUI for the transportation module

1. Multi-commodity transportation problem

i) Description of the problem

ii) AMPL model for the transportation problem

iii) Data for the Transportation problem

The second part of the project dealt with the graphical user interface for the

AMPL LP model, as covered in the following chapters:

2. User interface for the transportation problem

i) Principles of good GUI design

ii) Design and development of the GUI

3. Testing and validation of the GUI

The final part of the project considered the lessons learnt from this project and

ways to further enhance it:

4. Lessons learnt and conclusion

 Minimize transportation costs

Chapter Two: Literature review

Research Overview

The theoretical research performed for this project was in the area of Linear

Programming (LP) techniques to solve business problems in manufacturing and

distribution. Another type of research performed for this project was experimental

research. This involved selecting a software package to create the LP model and solve the

problem. The next step was to research and learn how to develop the model itself.

Experimental research also involved choosing a software package/tool to develop the

graphical user interface (GUI) for the LP model. Finally, the selected GUI tool was

researched and learned, in order to develop the GUI for the LP model.

Review of existing solutions

In today’s competitive world, companies have manufacturing plants and

warehouses in different, geographically distant locations, from which to deliver products

to the customer in the timeliest fashion. Thus transportation costs incurred to deliver

finished products from manufacturing plants to warehouses become a big component,

affecting the profitability of these companies. Such companies can increase profitability

by minimizing transportation costs. Transportation costs are minimized by optimizing the

amount of goods transported along the various routes between origins and destinations.

There are many off-the-shelf solutions available to companies to optimize transportation

costs. Examples of such solutions are Logility Voyager® solutions suite and Oracle's JD

Edwards EnterpriseOne Strategic Network Optimization® module.

These modules are typically tightly integrated with the company’s Enterprise

Resource Planning (ERP) backbone. Any changes to the data being passed between the

 Minimize transportation costs

two systems or setup information within the two systems require programming changes

and extensive testing. For example, a company may have plans to acquire a

manufacturing plant and a set of related distribution centers. Bringing these into the ERP

system and the off-the-shelf module will be a long-term project. The software module

developed as part of this project aims to be a prototype of a quick and highly

customizable solution that can be used for optimizing transportation costs for a

department or division not served by the ERP and off-the-shelf optimization module.

Linear Programming

After World War II, universities and industry conducted considerable research

into solving large-scale problems related to flow of commodities between industries,

planning large-scale military operations and crop rotation. As efforts were made to

provide a mathematical framework for these problems, linear programming emerged as a

strong tool for solving them.

If the system exhibits a structure that can be represented by a mathematical

equivalent, called a mathematical model, and if the objective can also be quantified, then

some computational method may be evolved for choosing the best schedule of actions

amongst alternatives. Such use of mathematical models is termed mathematical

programming (Dantzig, 1963). Mathematical programming has been used for solving

problems involving maximizing profits and minimizing costs, subject to constraints on

resources, capacities, supplies and demand. Linear programming is among the most

powerful of mathematical programming techniques. Linear programming problems can

 Minimize transportation costs

be solved in many ways. The Simplex algorithm is the most efficient technique for

solving linear problems, and is also the most conducive to being developed as a software

model.

Simplex method

One of the common techniques of solving Linear programming problems is by

using the Simplex algorithm. The Simplex algorithm solves a LP problem algebraically

(Dantzig, 1963). The algorithm has two basic parts. First, it finds out whether a given

basic feasible solution (BFS) is an optimal solution. If not, it obtains an adjacent BFS

with a larger or smaller value (depending on whether the problem is maximization or

minimization) for the objective function. The Transportation Simplex Method is a special

version of the Simplex Method used to solve transportation problems.

Linear programming in AMPL

This project concentrated on linear programming, which is the best-known and

easiest method for modeling and solving. AMPL is a language for specifying such

optimization problems. AMPL provides an algebraic notation that is very close to the

way a problem is described mathematically. Simple linear programs can be replicated and

combined to dealing with complex problems.

Separation of model and data is the key to describing more complex linear

programs in a concise and understandable fashion. This project achieves this by

interfacing the AMPL LP model with a relational database.

 Minimize transportation costs

Other mathematical modeling tools

There are other mathematical tools, such as GAMS. Spreadsheet solutions, such

as Excel, ILOG, are available but they are lacking in certain features that make the

modeling tool easy to use and understand. These features are: availability of control flow

statements, procedures and intuitive modeling commands. Some of the other features that

make AMPL superior to other models are availability of OSBC/OLE linkage, Windows-

based IDE and diagnostic tools.

Transportation problem

The transportation problem is a classic operations research problem where the

objective is to determine the schedule for transporting goods from origins to destinations

in a way that minimizes the shipping cost, while satisfying supply and demand

constraints (Fourer, Gay and Kernighan, 2003). The transportation cost problem is a

common type of minimum cost flow model. It is a specialized form of a network flow

model, where nodes representing origins and destinations are connected by arcs that carry

flows of some kind. There are a few existing solutions for the problem this project

examined.

Methods for solving the transportation problems

Transportation problems (TSP) can be modeled as Linear Programming (LP)

problems. To set up the transportation problem as a LP problem, the following elements

need to be considered:

 Minimize transportation costs

Variables: The variables in the LP model of the TSP will hold the values for the number

of units shipped from one source to a destination.

Xijo = Number of units of product p, shipped from source i to

destination j

Sets: products, origins and destinations will be stored in sets to enable separation of the LP

model and its related data.

Parameters: supply at origins, demands at destinations, and transportation limits imposed

on an origin-destination pair, are stored in parameters.

Objective Function: The objective function is a minimization problem that seeks to

minimize the total transportation cost.

Let Cijp denote the cost of shipping one unit of product p from source i to

destination j.

 p q r

Minimize Z = ∑ ∑ ∑ Cijp Xijp
 i = 1 j = 1 p = 1

Constraints are the set of equations and/or inequalities that restrict the solution

space of the problem. If a problem is not constrained by equations, the solution space will

not be well defined (Fourer, Gay and Kernighan, 2003)

Chapter Three: Project Methodology

Methodology Overview

This project involved designing and developing a software module for solving a

transportation problem. Therefore, different methodologies were used to develop the

AMPL module and the GUI for the AMPL module. Developing the AMPL module

 Minimize transportation costs

involved choosing a textbook transportation problem involving multiple products, origins

and destinations and modeling it using AMPL commands. After the development of the

model, the relational database for storing the data for the AMPL LP model was designed

and developed. Once the relational database was designed and developed, it was

interfaced with the AMPL module.

The next major step was to design and develop the GUI. The rapid prototyping

method was used for designing and developing the GUI. The details of the design and

development processes for the GUI are described in the following sections.

Development of the AMPL model and RDB interface

The selected transportation problem was modeled as a linear problem using

AMPL commands. The objective function was developed based on the objective of

minimizing the total transportation cost. The constraints were developed in order to

ensure that the total amount produced was equal to the total amount shipped.

The relational database was designed and developed based on the data and

parameters for the AMPL LP model. Then it was interfaced with the AMPL LP model.

The AMPL model, its data and the interface with the RDB are described in detail in

Chapter 4.

 Minimize transportation costs

Design and development of the GUI for the transportation module

The graphical user interface (GUI) for the transportation problem modeled in

AMPL was developed using Visual C# and .Net technology. The .Net framework was

chosen because the of the advantages outlined in the following section

Advantages of the .Net Framework

The .Net framework has the following advantages over the other software

development tools and frameworks:

a) Interoperability and management: One of the most significant advantages of the .NET

framework is its level of interoperability with other languages, applications, and

systems.

The solution designed and developed in this project is a Windows application.

However, it could be enhanced to run on the web and to interface with other web

applications. At the heart of .NET is the ability to help businesses integrate and

manage their web-based solutions through web services. .NET enables modern

software applications to communicate through standard Internet protocols, such as

XML and SOAP, creating a channel through which internal and remote systems can

easily interact. Applications hosted in-house—in addition to external systems—can

be "stitched together," allowing businesses to meet their unique business needs

quickly, through specialized yet economical solutions (MSDN documentation, 2006).

 Minimize transportation costs

b) Greater support for security: The .Net framework allows the developer and the system

administrator to specify method level security. It uses industry-standard protocols

such as TCP/IP, XML, SOAP and HTTP to facilitate distributed application

communications. These distributed applications, developed using the .Net framework,

work seamlessly with the network security framework.

c) Easy deployment and maintenance: The .NET framework makes it easy to deploy

applications. In the most common form, to install an application, one needs to copy

the application, along with the components it requires, into a directory on the target

computer. The .NET framework handles the details of locating and loading the

components an application needs, even if several versions of the same application

exist on the target computer. The .NET framework ensures that all the components

that the application depends upon are available on the computer before the application

begins to execute.

Among the various languages available in the .Net framework, C# was chosen for

this project, for the reasons mentioned in the following section.

Advantages of the C# programming language

a) Rapid development tool: Visual C# is a very robust object-oriented language and is

designed to be a fast and easy way to create .NET applications, including web

services and ASP.NET web applications. Applications written in Visual C# are built

 Minimize transportation costs

on the services of the common language runtime and take full advantage of the .NET

framework.

b) Commonality with C, C ++ and Java: Since C# is very similar to C and C++, it has all

the powerful features of these languages. A developer familiar with these languages

can easily become productive in C#.

c) Superior to C and C++ in some aspects: Development in C# is simpler than it would

be in C and C++ languages, because some of the more complex aspects of these

languages, such as namespaces, classes, enumerations, overloading, and structured

exception handling, have been simplified. C# also eliminates C and C++ features,

such as macros, multiple inheritance, and virtual base classes.

d) Superior to VB.net: C# is a more robust object-oriented language than VB.net. Thus it

brings the benefits of object-oriented development to the developer in a better way

than VB.net.

Requirements for the graphical user interface

The GUI for this project should meet the following requirements.

a) The user should be able to navigate, from a main screen to the various screens to

enter/modify the parameters and data related to the transportation problem.

b) The user should be able to enter, delete and save values that will be used as origins in

the transportation problem.

c) The user should be able to enter, delete and save values that will be used as

destinations in the transportation problem.

 Minimize transportation costs

d) The user should be able to enter, delete and save values that will be used as products

in the transportation problem.

e) The user should be able to enter and delete values for the supply from each origin per

product.

f) The user should be able to enter and delete demand at each destination per product.

g) The user should be able to enter transportation costs for each origin-destination pair

per product.

h) The user should be able to solve the transportation problem by executing the AMPL

LP modules developed as part of this project.

i) The user should be able to switch between screens by without having to open and

close them each time.

Formats for presenting results/deliverables

MS Word document

The final Masters thesis document will be delivered in MSWord format.

Diagrams

The navigation diagram for the GUI will be drawn using the drawing editor

within MSWord.

Methodology outcomes

The methodology adopted worked well in delivering the results for the project.

The AMPL module was developed by researching the problem, and modeling it, using

 Minimize transportation costs

AMPL commands. The data and parameters for the AMPL module were modeled in a

database using principles of entity integrity and relational integrity.

The graphical user interface was designed by applying principles of a good GUI

design. It was then developed by using the features of the .NET framework. Microsoft

Visual Studio® was the development environment used to develop the GUI. Active Data

Objects (ADO.NET®) component of the .NET Framework was used to interface the GUI

with the relational database. After the development of the GUI, it was also interfaced

with the AMPL module, to enable the user to launch it and solve the transportation

problem. Finally, testing was performed to validate the total solution, consisting of the

AMPL module, GUI and the relational database.

Chapter Four: Multi-commodity transportation problem

The hypothetical transportation problem chosen for this project involved

transporting multiple types of products, from several origins to several destinations at

minimum overall cost.

AMPL model for the transportation problem

AMPL linear programming language provides many statements and constructs to

enable modeling of LP problems. AMPL enables the programmer to define the LP

problem in a manner that mirrors the algebraic form. For modeling larger LP problems, it

is necessary to separate the model and data into 2 separate files to enable modularity.

 Minimize transportation costs

Separation also enables modification of the problem data without changing the model.

The LP problem is defined in an AMPL model file, which is described below. The data

for the problem can either be stored in a text file or a relational database.

Three fundamental sets of objects underlie the transportation problem: sources

(manufacturing plants), destinations (distribution centers) and product lines. These are

declared in the beginning of the AMPL model.

set ORIG;

set DEST;

set PROD;

There is a supply for each product at each source and there is a demand for each

product at each destination. Such non-negative quantities are defined as param

statements, indexed over a set or a combination of sets.

param supply {ORIG,PROD} >= 0; # amounts available at

origins

param demand {DEST,PROD} >= 0; # amounts required at

destinations

The transportation model has been set up in such a way that the sum of supply for

a finished good item equals the sum of demand for that item at all destinations. There is a

check statement in AMPL that ensures that this test is performed on the data after it has

been read. AMPL will issue an error if the “check” condition is violated. The check

statement is given below.

check {p in PROD}: sum {i in ORIG} supply[i,p] = sum

{j in DEST} demand[j,p];

 Minimize transportation costs

There is a cost associated with transporting each product from each origin to all

the destinations.

param cost {ORIG,DEST,PROD} >= 0; # shipment costs

per unit

var Trans {ORIG,DEST,PROD} >= 0; # units to be

shipped

The amount of product p transported from origin i to destination j, is defined as

Trans[i,j,p]. The corresponding cost of transporting the goods per unit is cost[i,j,p]. The

total cost for the combination is cost[i,j,p] * Trans[i,j,p].

Objective Function

The objective function is to minimize the total transportation cost of transporting

all the product types from all the origins to all destinations. This is expressed in AMPL as

follows:

minimize Total_Cost: sum {i in ORIG, j in DEST, p in

PROD} cost[i,j,p] * Trans[i,j,p];

Constraints

The first constraint states that the sum of all shipments of all products from an

origin is equal to the supply available. Since the amount transported of a product p from

an origin i to a destination j is Trans[i,j,p], the amount shipped to all destinations is : sum

{j in DEST} Trans[i,j,p].

A parameter called supply has been defined, indexed over origins and products.

Therefore the supply constraint is:

 Minimize transportation costs

subject to Supply {i in ORIG, p in PROD}: sum {j in

DEST} Trans[i,j,p] = supply[i,p];

The demand constraint is defined similarly, using the demand parameter and

corresponding index variables:

subject to Demand {j in DEST, p in PROD}: sum {i in

ORIG} Trans[i,j,p] = demand[j,p];

The last constraint limits the sum of shipments of all products from an origin i to a

destination j to limit[i,j]. Parameter limit has been indexed over origins and destinations.

All the above definitions, objective function and constraints are written into an

AMPL model file with a .mod extension. Model file is read into AMPL using a model

command

Data for the transportation problem

Data for an LP model can either be stored in a text file with a .dat extension, or in

a relational database. As already stated, parameters and variables, defined in an AMPL

model file, are indexed over sets. This indexed data is similar to the structure of relational

tables in a database linked by foreign keys. The AMPL table declaration can be used

to define connections between sets, parameters, variables and relational database tables

maintained by other software. Storing the LP data in a relational database has the

following advantages:

 Minimize transportation costs

a) Data can be entered, stored and sorted easily when stored in a relational database.

Most modern relational database applications provide GUI tools to develop

applications over the tables

b) Better data integrity is maintained when a relational database is used, as rules can

be developed to prevent accidental deletion of records

c) Parameters/variables in AMPL that are indexed over multiple sets correspond to

tables with a composite key structure, and hence provide an easy understanding of

how the data is structured.

For the above reasons, the data for the transportation model solved as part of this

project was stored in a relational database. Microsoft Access was chosen as its structure

is easy to understand and technical documentation is available. AMPL provides in-built

table handlers to interface model files with relational databases.

As mentioned earlier, AMPL table declaration is used to establish a

connection between the elements within a model and the tables in a relational database.

The name and location of tables are specified as part of the table declaration. The

following paragraphs describe how the entities within the transportation LP model

correspond with the related tables in the Access database. The techniques for reading and

writing data into the tables are also described.

The AMPL transportation model contains set for origins (ORIG), destinations

(DEST) and products (PROD). Each of these sets corresponds to a table in the relational

 Minimize transportation costs

database. The table statements for linking these sets with corresponding tables are

given below:

table Orig IN "ODBC"

"c:\ampl\amplcml\transportation.mdb": ORIG <- [ORIG];

table Dest IN "ODBC"

"c:\ampl\amplcml\transportation.mdb": DEST <- [DEST];

table PROD IN "ODBC"

"c:\ampl\amplcml\transportation.mdb": PROD <- [PROD];

Each table declaration has two parts. The part before the column provides

general information, such as the table name, such as Orig, which is the name by which

the table will be known in AMPL. The keyword “IN” states that all the non-key columns

will be read-only. The strings “ODBC” and the path of the database specify the location

of the table. After the colon, the table declaration gives details of correspondence

between AMPL entities and the relational table columns. The key columns are specified

by enclosing the square brackets [...]. The arrow indicates that the value from the key

column is read into the AMPL set such as ORIG.

Next, the table statements to read the two parameters namely, supply and

demand are described. The statements are given below:

table Supply1 IN "ODBC"

"c:\ampl\database\transportation.mdb": [ORIG, PROD],

supply;

 Minimize transportation costs

table Demand1 IN "ODBC"

"c:\ampl\database\transportation.mdb": [DEST, PROD], demand

~ Demand;

Since both supply and demand are indexed over two sets, a composite primary

key is required to store them in relational tables. The parameter supply is stored in a table

called Supply1, which has a composite key consisting of columns ORIG and PROD.

Supply from every origin-product pair is stored in a column called supply. For

simplicity’s sake, the same of the parameter in AMPL and the name of the columns in the

table are kept the same. The same concepts apply to the table statement for reading in

the parameter demand.

Finally, the statement relating to reading the transportation costs is explained. A

table called TransportationCosts stores the unit transportation cost from all origins to all

the destinations per product. It also stores the optimum transportation amount to be

transported between each pair to minimize cost.

table TransportationCosts "ODBC"

"c:\ampl\database\transportation.mdb": [ORIG,DEST,PROD],

cost IN, Trans OUT;

The above statement contains both an “IN” keyword and an “OUT” keyword. The

“OUT” keyword ensures that after the LP problem is solved, the optimum transportation

amounts are written for each node within the transportation problem.

 Minimize transportation costs

After defining the connection between the sets, parameters and variables and their

respective tables, the records from the tables are read using a read statement. The read

statements for all the tables are as follows:

read table Orig;

read table Dest;

read table Prod;

read table Supply1;

read table Demand1;

read table TransportationCosts;

read table Limit;

After the model and data have been read into AMPL, the transportation problem

is solved using the solve command. Upon receiving the solve command AMPL,

solves the linear problem using the mathematical solver, specified in the file that houses

all the commands mentioned in the previous paragraphs. Having such a file automates the

process of reading the model and data, solving the problem and finally writing the

optimum values in output tables. Writing the output to related tables in the database is

performed using the write command. In this project, the write command was used

for writing the optimum transportation costs back to the table – Transportation costs.

Solving the AMPL model

The AMPL model, along with its data, is solved using the solve command. The

solve command displays the following information after its execution:

 Minimize transportation costs

a) Name and version of the mathematical solve used for solving the problem.

b) Whether or not the problem could be solved. If problem cannot be solved, the

phrase “infeasible solution” is displayed. If the problem can be solved, the value

of the objective function is displayed, which in the case of this project is the total

minimum transportation cost.

c) The number of iterations needed to solve the problem.

 AMPL provides several commands that cause input to be taken from a file. One

such command used in this project is the include command. The command include

filename

is replaced by the contents of the named file. In this project, the named file

contains all the table, model, read and write commands. This obviates the necessity of

entering these commands separately and also allows the “include” file to be called from a

user interface. In this project a graphical user interface has been developed (GUI) to

allow easy entry of the model parameters and data related to the model.

Chapter Five: User interface for AMPL Transportation model

This chapter describes the technical design and implementation history of the

graphical user interface (GUI) for this project. The requirements of the GUI were listed in

Chapter 3. This chapter describes the principles of good GUI design and how they were

applied to the GUI designed this project.

 Minimize transportation costs

Principles of good GUI design

Following are the principles of a good GUI design:

a) The audience for a given GUI application should be known. In other words the

designer should aware of the technical knowledge level of the expected users

when designing a screen.

b) A common metaphor should be chosen for all the screens in the application. It is

not always necessary. In many cases, the natural function of the software itself is

easier to comprehend than any real-world analog of it (Tognazzini, B. (1991)).

c) Users’ opinion should be actively sought when deciding the layout of fields and

other controls.

d) While the GUI need not be a work of art, it should be appealing to the eye of the

user.

e) If certain controls do not apply in a certain context, they should be disabled in that

mode or context, to prevent confusion in the mind of the user.

f) The principle of safety should be applied through out the application. In other

words, the user should be able to abort or exit from a screen/process, if he/she

feels that it might compromise the data.

g) The GUI should be coherent and easily understandable. The user should be able to

be able to use the controls and navigate from screen to screen intuitively.

h) Short cuts on the keyboard should be provided for controls, in case the mouse is

not available.

 Minimize transportation costs

Technical design of the GUI

The rapid prototyping method was adopted for designing and developing the GUI

for this project. One of the main goals of the project was to demonstrate how LP

techniques could be used to solve real world problems in the area of optimization. The

tools used for developing the GUI for this project viz., Visual C# and MS Access are

conducive for bringing ideas into reality in a rapid manner. In future revisions of the

project, formal object-oriented techniques could be used to design the screens for

entering the data and parameters related to the LP model and solving it. Figure 1

illustrates the high level view architecture of the graphical user interface developed for

this project and the workflow between the various screens. Each of the screens in the

graphical user interface and the C# controls used to deliver the functionality are described

in detail in the following sections.

 Minimize transportation costs

Main screen
with menus
(Parent form)

Enter /Display
Demand
(Sub form)

Enter/Display
Supply
(Sub form)

Enter/Display
Origins,
Destinations and
Products
(Sub form)

Enter/Display
Transportation
costs, Optimum
Qtys
(Sub form)

Launch AMPL LP
Module to solve the
problem
(Sub form)

 RDBMS

AMPL LP
module

Launches

Figure 1 High level view architecture of the graphical user interface

 Minimize transportation costs

Main screen

This screen is the main entry point to the application. It meets requirement a)

mentioned in the list of requirements. It has a parent form, from where other “child”

forms are launched. It has a menu, listing the names of other forms for performing other

operations related to entering data and parameters for the LP model. The menu was

created using the Visual C# control MainMenu. The individual menu items under

MainMenu are used to launch the various sub forms for entering data and parameters

for the LP model and solving it. The button_clicked event of each menu item has

the logic to display the respective child form.

The GUI application for the AMPL LP module has been developed as a Multiple

Dialog Interface (MDI). MDI applications present the user with a menu and have the

ability to hold multiple windows open at the same time (Watson K., 2003). This is a

requirement for the application developed for this project, as the user may have to switch

between screens to check/enter various parameters related to the LP model, without

opening and closing the screens each time. An MDI application is created as a windows

application within Visual Studio .NET. The main screen that is the entry point to the GUI

interface is designated as an MDI container, by setting the IsMDIContainer to be

true. The other forms are configured as child forms, by setting the MdiParent property

of the child screen to a reference to the main form. This property has to be set

programmatically.

 Minimize transportation costs

To display the child form from the parent (container) form, it is necessary to

create an instance of the child form to be displayed and then display using the Show()

function within C#. This logic is present in the button_clicked event of the menu

items within the MainMenu control. This event is executed when the user selects a menu

item, thus launching the selected form. Also the constructor function of the child form

should be configured to have the parent form as a parameter. This establishes the parent-

child relationship between the main form and the “called” form. The logic for

establishing the parent child relationship, and launching the child form on selection of the

menu item, is illustrated by the following code snippet (Fig 2).

}

private void menuItem3_Click(object sender,
System.EventArgs e)

{
WindowsApplication1.frmCosts costsForm =

new WindowsApplication1.frmCosts(this);
costsForm.MdiParent = this;
costsForm.Show();

Figure 2 The logic for establishing the parent child relationship

The screen shot for the design mode (Fig. 3) displays the different menu options.

 Minimize transportation costs

Figure 3 Screen shot of the design mode

Screen for entering/displaying origins, destinations and products

This form allows the user to enter and display the origins, destinations and

products that are parameters of the transportation problem. Each of these parameters is

entered and displayed, using the ListBox controls. ListBox control displays a list of

strings, from which one or more can be selected at a time. There are buttons for adding

and removing items from the List box. There is a separate field where the items to be

added to the list can be entered. Then the user clicks the “Add” button to add the item to

the list. The button_clicked event of each of these buttons contains logic for

 Minimize transportation costs

adding and removing items from the list using the methods and properties provided with

the ListBox control.

Figure 4 The form for entering origins, destinations and products, as displayed in design
mode

After all the origins, destinations and products have been added (and finalized) to

their respective ListBoxes, they are added to the relational tables by clicking on the

“Commit” button. Each parameter is added to its respective table by using ADO.NET.

ADO stands for Active Data Objects. ADO.NET is a set of classes provided within C#

and the .NET framework to access data in a relational, data oriented format. This includes

relational databases such as Microsoft Access and Microsoft SQL Server.

 Minimize transportation costs

The code snippet in Fig 5 displays the logic for saving the contents of the

ListBox for origins to the database. To ensure that the latest entries in the control are

saved in the related tables, all the records in the table deleted. Then the contents of the

ListBox are saved to the table. The same logic has been used to save the contents of

the ListBoxes for destinations and products.

Figure 5 Snippet to show the logic for saving the contents of the ListBox for origins to
the database

 Minimize transportation costs

Screen for entering/displaying supply

The screen for entering and displaying supply, from the various origins that are

defined in the transportation problem, is described in this section. This form displays

supply information from the supply table in the relational database, via a DataGrid class

within the .NET framework. DataGrid displays from data from a relational table, in a

scrollable grid using ADO.NET. The procedure of binding a table to a DataGrid involves

the following steps:

a) Connecting to the data source: This is accomplished by using the

oleDBConnection class within the .NET Framework.

b) Opening the connection: The connection, established by using the

oleDBConnection class, is opened by using the open method within the class.

c) Read/Write data from/to the table in the data source: This is accomplished by a

class called OleDBDataAdapter. This class enables reading and writing data

from/to a database via SQL commands. The data read from the data source is

stored in an instance of a DataSet class.

d) Displaying the data in a DataGrid: This is accomplished by using the DataSet

class within the .NET framework. The DataSet class stores the data read, using

SQL commands and displays it in the DataGrid.

The fields on the DataGrid are Origin, Product and Supply for the Origin-Product

combination. These are displayed in the screen shot of form in design mode in Fig 6.

 Minimize transportation costs

Figure 6 Origin, Product and Supply for the Origin-Product combination

There are two buttons for updating and inserting new records in the grid respectively.

There is logic in the button_clicked event of each of these buttons to perform the

respective functions on the DataGrid. The logic within the button_clicked event of

the update button reads the changes made to the DataGrid, using the “GetChanges”

method. These changes are loaded into a DataSet (as described in an earlier section). If

this DataSet is not null, then the changes are saved to the database. Then the DataGrid is

refreshed to display the latest information. The code snippet for this logic is displayed in

figure 7.

 Minimize transportation costs

Figure 7 Code snippet to refresh the DataGrid

When the user clicks the Insert button, a message is displayed instructing the user

to add the new row at the end of the grid and then click the Update button. Then the logic

adds the row to the DataSet attached to the DataGrid. When the user clicks the update

button, the newly added row is saved in the database.

Screen for entering/displaying Demand

The form for entering/displaying demand is very similar to the form for

displaying supply. This form reads and displays data from the demand table within the

relational database. This form also contains a DataGrid and associated classes within the

.NET framework for entering/displaying data. The form has buttons to insert and update

records from the DataGrid respectively.

 Minimize transportation costs

This form is a child form to the main form explained earlier. This form is called

from one of the menu items in the main form. The section on the main form explains

how the main form is configured as a parent in this Multi-dialog Interface (MDI)

application. In the demand form, this relationship is established by specifying the main

form as a parent in the form constructor method. The code snippet displaying this logic is

given in figure 8.

Figure 8 Code snippet for specifying the main form as a parent

 Minimize transportation costs

Screen for entering/displaying transportation costs and quantities

This screen entering and displaying transportation costs for each origin-

destination-product combination also contains a DataGrid. This DataGrid is linked to the

table transportation costs in the relational database. This screen has buttons to add and

delete records from the grid. When the user clicks on any of these buttons, logic related to

performing the corresponding action on the grid (add, delete or update) is executed. The

changes are then committed to the databases automatically, because of the link between

the DataGrid and the database via ADO.NET.

Screen for solving the transportation problem by launching the AMPL module

The purpose of this screen is to enable the user to launch and execute the AMPL

LP module and solve the transportation problem. This form is a child form, whose parent

is the main form described earlier. When the AMPL module is launched it reads the data

and parameters for the problem from the relational database, via the OBBC connection

established between the AMPL model and the relational database, as explained in

Chapter 2. After the transportation problem is solved, the optimum transportation costs

are displayed in a grid for each origin-destination-product combination. Fig 9 displays the

screen in design mode.

 Minimize transportation costs

Figure 9 Screen for solving the transportation problem by launching the AMPL module

This screen contains a button to launch the AMPL module to solve the

transportation module. The AMPL module is launched in the form of a Microsoft batch

(*.bat) file by using the ProcessStartInfo class within the .NET framework.

ProcessStartInfo is used in conjunction with the Process component. A Process

component provides access to a process that is running on a computer. The Process

component is a useful tool for starting, stopping, controlling, and monitoring

applications3. Using ProcessStartInfo enables the user to launch and run the batch file in

the local operation system. The path variable containing the full (and not relative) path of

the application must be specified in the double quotes. After the process ends, the output

of the process started by the ProcessStartInfo command is redirected to a field on the

 Minimize transportation costs

screen. This informs the user if the AMPL LP module found a feasible solution for the

transportation problem. If a feasible solution is found, the optimum transportation cost is

displayed in the results box.

When the user launches the screen for the first time, the grid in the screen displays

the transportation cost for each node (origin-destination-product combination) in a grid.

The optimum transportation amount for each node is initialized to zero. After the

transportation problem is solved by clicking the solve button (as described in the previous

paragraph), the grid is refreshed and the optimum transportation amounts for each node

are displayed in the grid. The logic for launching the process and refreshing the grid are

displayed in the code snippet shown in figure 10 below.

Figure 10 Code snippet for the logic for launching the process and refreshing the grid

 Minimize transportation costs

Chapter Five: Testing and validating the solution

This chapter describes the testing of the different modules developed as part of

this project as a complete solution. The testing and validation process involved using the

GUI and the AMPL LP module to solve a transportation problem involving multiple

origins, destinations and products.

In the problem solved as part of this project, a company has 3 product types –

bands, coils and plates.

Data for the Transportation problem

The list of origins (manufacturing plants) and the respective amounts of each

product which they supply are given below.

Table 1 Supply

 Gary Cleveland Pittsburgh

Bands 400 700 800

Coils 800 1600 1800

Plate 200 300 300

Table 2 Destinations (distribution centers) and the respective demand levels

 Franklin Detroit Langley Winchester Seattle Fremont LA

Bands 300 300 100 75 650 225 250

Coils 500 750 400 250 950 850 500

Plate 100 100 0 50 200 100 250

 Minimize transportation costs

Table 3 The transportation costs for each origin destination pair is displayed below per
product.

Band

s

Frankli

n

Detroi

t

Langle

y

Wincheste

r

Seattl

e

Fremon

t

LA

Gary 30 10 8 10 11 71 6

Cleveland 22 7 10 7 21 82 1

3

Pittsburgh 19 11 12 10 25 83 1

5

Coils Franklin Detroit Langley Winchester Seattle Fremont LA

Gary 39 14 11 14 16 82 8

Cleveland 27 9 12 9 26 95 17

Pittsburgh 24 14 17 13 28 99 20

Plate Franklin Detroit Langley Winchester Seattle Fremont LA

Gary 41 15 12 16 17 86 8

Cleveland 29 9 13 9 28 99 18

Pittsburgh 26 14 17 13 31 104 20

 Minimize transportation costs

Testing the graphical user interface (GUI)

The GUI was tested by a) using it to enter the data for the transportation problem

and b) solving the transportation problem by launching the AMPL module. The data for

the transportation problem were entered using the various screens mentioned in the

previous chapter. This section will demonstrate the functionality of each of these screens.

Testing the main screen

The main screen is the first one to be displayed when launching the application. It

has menu options to launch the various other screens. First, the menu option “nodes” was

chosen to launch the screen to enter the origins, destinations and products. Figure 11

displays the form with this menu option chosen. The menu in the main form was used to

launch other forms to enter other parameters and variables for the LP model.

Testing the “nodes” screen

The “nodes” screen was launched using the nodes menu item in the main screen.

It was used to enter origins, destinations and products, using list boxes. After entering

the values, they were saved to the database, by clicking on the “Commit” button. Figure

12 shows the screen shot of the “nodes” screen, with the values for origins, destinations

and products entered.

 Minimize transportation costs

Figure 11 Menu screen

 Minimize transportation costs

Figure 12 Nodes screen

Testing the Supply screen

As described in the previous chapter, the user can enter the supply from each

origin using the grid on the screen. Figure 13 shows the screen with supply entered for

each product from all the origins. The origin, product and supply information was entered

in a grid line and the insert button was used to save that information in the database.

When the screen was closed and launched again, the information previously entered was

displayed in the grid. The supply for any product from an origin can be changed by

entering the information in the grid and clicking on the update button to save the changes

to the relational database.

 Minimize transportation costs

Figure 13 Supply screen

Testing the Demand screen

The user can enter the demand at each destination, using the grid on this screen.

Figure 14 displays the screen with demand information entered for each product at all the

destinations. The origin, product and demand information was entered in a grid line and

the insert button was used to save that information in the database. When the screen was

closed and launched again, the information previously entered was displayed in the grid.

The demand for any product at a destination can be changed by entering the information

in the grid and clicking on the update button to save the changes to the demand table in

the relational database.

 Minimize transportation costs

Figure 14 Demand screen

Testing the Costs Screen

Transportation costs were entered for each origin, destination and product

combination (node). The user can enter the transportation cost for each node using the

grid on this screen. Figure 15 displays the screen with cost information entered for each

node. The information was entered in a grid line and the insert button was used to save

that information to the database. When the screen was closed and launched again, the

information previously entered was displayed in the grid. The transportation cost for any

node can be changed by entering the information in the grid and clicking on the update

button to save the changes to the TransportationCosts table in the relational database.

 Minimize transportation costs

This table also contains a field to store the optimum amount to be transported along each

node. This field is blank until the LP model is solved.

Figure 15 Costs screen

Testing the screen to solve the transportation problem

The screen to solve the transportation problem is used to launch the AMPL LP

module. This screen also displays the optimum transportation costs for each node,

required to minimize the total transportation costs after solving the problem. Clicking on

the solve button launches the AMPL module. The AMPL module reads all the data and

parameters entered in the previously described screens, using the ODBC interface built

between the AMPL module and the relational database. Figure 16 displays the “solve”

 Minimize transportation costs

screen after the problem was solved and the minimum total transportation cost was

determined.

Figure 16 Solve screen showing a run

The optimum total transportation cost is $199500. The optimum transportation

amounts along each node were written back to the TransportationCosts table and also

displayed in the grid.

 Minimize transportation costs

Table 4 The optimum transportation amounts

Origin Destination Product cost Amount

Transported

CLEV WIN bands 7 0

CLEV WIN coils 9 250

CLEV WIN plate 9 50

CLEV LAN bands 10 0

CLEV LAN coils 12 400

CLEV LAN plate 13 0

CLEV FRA bands 22 225

CLEV FRA coils 27 0

CLEV FRA plate 29 50

CLEV DET bands 7 225

CLEV DET coils 9 300

CLEV DET plate 9 100

CLEV STL bands 21 250

CLEV STL coils 26 300

CLEV STL plate 28 0

CLEV FRE bands 82 0

CLEV FRE coils 95 125

CLEV FRE plate 99 100

CLEV LAF bands 13 0

CLEV LAF coils 17 225

 Minimize transportation costs

CLEV LAF plate 18 0

GARY WIN bands 10 0

GARY WIN coils 14 0

GARY WIN plate 16 0

GARY LAN bands 8 0

GARY LAN coils 11 0

GARY LAN plate 12 0

GARY FRA bands 30 0

GARY FRA coils 39 0

GARY FRA plate 41 0

GARY DET bands 10 0

GARY DET coils 14 0

GARY DET plate 15 0

GARY STL bands 11 400

GARY STL coils 16 25

GARY STL plate 17 200

GARY FRE bands 71 0

GARY FRE coils 82 625

GARY FRE plate 86 0

GARY LAF bands 6 0

GARY LAF coils 8 150

GARY LAF plate 8 0

PITT WIN bands 10 75

 Minimize transportation costs

PITT WIN coils 13 0

PITT WIN plate 13 0

PITT LAN bands 12 100

PITT LAN coils 17 0

PITT LAN plate 17 0

PITT FRA bands 19 75

PITT FRA coils 24 500

PITT FRA plate 26 50

PITT DET bands 11 75

PITT DET coils 14 450

PITT DET plate 14 0

PITT STL bands 25 0

PITT STL coils 28 625

PITT STL plate 31 0

PITT FRE bands 83 225

PITT FRE coils 99 100

PITT FRE plate 104 0

PITT LAF bands 15 250

PITT LAF coils 20 125

PITT LAF plate 20 250

 Minimize transportation costs

Chapter Six: Lessons Learned and Conclusion

Lessons learned

The main lesson learned from this project was determining how solve a

hypothetical transportation problem related to minimizing total transportation cost, by

developing disparate software modules and interfacing them. This included the following

a) Modeling the hypothetical transportation problem as a linear problem. This

project involved using mathematical concepts to model the problem as a linear

problem with an objective function and constraints. Therefore, practical

knowledge of using mathematical techniques to solve business problems was

gained. Although the problem solved was a hypothetical one, it could be modified

in future revisions to model a real world problem related to transporting finished

goods from origins to destinations.

b) Developing a software model for the linear problem using the AMPL modeling

software and solving it. In the process, knowledge of using AMPL modeling

commands and programming constructs was gained. This knowledge, along with

the knowledge of linear programming, could be used for modeling other real

world problems related to optimization of processes in business areas of

distribution and manufacturing.

c) Interfacing the AMPL model with a relational database to store the data for the

linear problem. The advantages of using a relational database for storing data and

parameters for a linear program were explained in chapter 4. This knowledge

could be useful, especially when modeling larger problems with hundreds of

variables and parameters. Knowledge was gained of applying relational database

 Minimize transportation costs

principles to organize the LP model data into normalized tables with simple and

compound primary keys and foreign keys.

The AMPL commands to interface the relational database had to be learnt

as part of this project. Then they had to be executed in the correct order to ensure

that data dependencies were taken into account when entering the data for the LP

model.

Designing and developing the various screens for entering and

maintaining data related to the AMPL model.

d) Adding the various controls, such as List boxes, DataGrids to the screens to

enable data entry and maintenance.

e) Adding event driven logic to the controls to ensure that the appropriate actions are

taken when the user tries to enter data using the controls

f) Interfacing the GUI with the relational database using ADO.NET interface within

the .NET framework.

The knowledge gained by accomplishing tasks d, e, f and g was in the area of

designing and developing an event-driven Windows application using the .NET

framework. In this process, knowledge was gained of developing applications using an

object-oriented programming language (C#). Knowledge was also gained of advanced

features of the C# programming language, such as DataGrid, ADO.NET and interfacing

with another program (AMPL module). This knowledge would be very useful in future

enhancements of this project, which might involve modeling larger problems with higher

number of variables and constraints.

 Minimize transportation costs

Linear programming techniques have been used to solve business problems in the

past. However, this project was used to demonstrate how computer modeling techniques,

along with modern software tools, such as object oriented languages/frameworks and

relational databases, could be used to quantify and solve business problems. By utilizing

a combination of modern software tools, this project delivered a solution that is efficient

and amenable to future enhancements.

Was this project a success?

This project was a success because a prototype module for solving a hypothetical

transportation problem was developed. This module consisted of different components

viz., a LP component, a GUI component and a relational database. The transportation

problem was first modeled as a linear problem. Then it was modeled using a linear

programming software language. A user-friendly interface was developed for the linear

model to enable data to be entered for the LP model and solving it. The prototype could

be used as a basis for solving larger problems. The project can also be considered a

success because of all the lessons learned, which have been mentioned in the earlier

section.

Challenges faced during the project

One of the major challenges faced during the project was in developing the

interface between the AMPL model and the relational database. The commands for

interfacing the AMPL LP model and the relational database had to be configured to map

the variables and data in the relational database. Since the parameters and variables in

the LP model had multiple indexes, they had to be mapped to tables with composite

 Minimize transportation costs

primary keys. AMPL commands had to be carefully researched to achieve this. Another

major challenge faced was in the area of developing the GUI screens for the module,

especially in the area of grid processing. Here, the challenge was to establish the

connection between the grid fields and related tables in the relational database to ensure

that the grid was loaded with records at the time of launching the form. A significant

amount of time was also spent in trying to add logic to add and delete records from the

DataGrid. The final challenging aspect of the GUI development was adding ListBoxes

and related logic for adding and removing items.

Directions for further improvements to this project

This software module, developed as part of this project, could be further enhanced

in the following ways in future projects to provide greater feature/functionality to users.

a) The transportation problem selected could be from the real world, i.e., a case

study could be made of the optimization problems faced by the shipping

department of an actual firm and modeled using the techniques used in this

project.

b) The graphical user interface developed for this project could be further enhanced

to provide greater visual aids to model the transportation problem.

c) Formal object-oriented techniques could be used in designing and developing the

GUI for this project.

d) While the GUI developed in this project was a standalone application, it could be

enhanced to interface other business systems used in a business, such as the ERP

system, data warehouse or other network optimization systems.

 Minimize transportation costs

List of References

Dantzig, G. B. (1963). Linear programming and extensions. Princeton, NJ: Princeton

University Press.

Microsoft Solution Development Network documentation. ©Microsoft Corporation 2006.

Fourer, R., Gay, D. M., & Kernigan, B. W. (2003). AMPL – A modeling language for

mathematical programming. Brooks-Cole-Thomson Learning.

Watson, K. (2003). Beginning C#. Wiley Publishing Inc.

Tognazzini, B. (1991). Tog On Interface. Addison-Wesley.

Laurel, B. (1991). The Art of Human Computer Interface Design. Addison-Wesley.

	Design and Development of a Software Module for Minimizing Transportation Cost
	Recommended Citation

	Table of Contents
	
	List of Tables and Figures
	 Chapter One: Introduction
	Project Goals
	Barriers and/or issues
	
	Scope of project
	
	Outline of the project
	Chapter Two: Literature review
	Research Overview
	Review of existing solutions
	
	Linear Programming
	
	Simplex method
	
	Linear programming in AMPL
	
	Other mathematical modeling tools
	
	Transportation problem
	
	Methods for solving the transportation problems

	
	Chapter Three: Project Methodology
	Methodology Overview
	
	Development of the AMPL model and RDB interface
	
	Design and development of the GUI for the transportation module
	Advantages of the .Net Framework
	
	Advantages of the C# programming language
	
	Requirements for the graphical user interface

	Formats for presenting results/deliverables
	MS Word document
	Diagrams

	
	Methodology outcomes

	Chapter Four: Multi-commodity transportation problem
	AMPL model for the transportation problem
	

	Objective Function
	

	Constraints
	Data for the transportation problem
	Solving the AMPL model

	Chapter Five: User interface for AMPL Transportation model
	Principles of good GUI design
	Technical design of the GUI
	Main screen
	Screen for entering/displaying origins, destinations and products
	Screen for entering/displaying supply
	Screen for entering/displaying Demand
	Screen for entering/displaying transportation costs and quantities
	Screen for solving the transportation problem by launching the AMPL module

	Chapter Five: Testing and validating the solution
	
	Data for the Transportation problem

	
	Testing the graphical user interface (GUI)
	Testing the main screen
	Testing the Supply screen
	Testing the Demand screen
	Testing the Costs Screen
	Testing the screen to solve the transportation problem
	Amount
	Transported

	Chapter Six: Lessons Learned and Conclusion
	Lessons learned
	Was this project a success?
	Challenges faced during the project
	Directions for further improvements to this project

	 List of References

