
Regis University
ePublications at Regis University

All Regis University Theses

Fall 2005

Emanager - Cdo Made Simple
Solomon Vedaprakash
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

Part of the Computer Sciences Commons

This Thesis - Open Access is brought to you for free and open access by ePublications at Regis University. It has been accepted for inclusion in All Regis
University Theses by an authorized administrator of ePublications at Regis University. For more information, please contact epublications@regis.edu.

Recommended Citation
Vedaprakash, Solomon, "Emanager - Cdo Made Simple" (2005). All Regis University Theses. 395.
https://epublications.regis.edu/theses/395

https://epublications.regis.edu?utm_source=epublications.regis.edu%2Ftheses%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/395?utm_source=epublications.regis.edu%2Ftheses%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
School for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

eManager – CDO Made Simple

A Thesis submitted

to the Graduate School

Regis University

in partial fulfillment of requirements for the degree of

MASTERS OF SCIENCE

in the Department of Masters of Science in Computer Information Technology

October 2005

Solomon Vedaprakash

 1

Acknowledgements

It is with great gratification and joy I find myself writing this section. There were times

during the project I didn’t think that I would make this project a success, but here I am.

The development of the eManager application provided many benefits, including the

opportunity to cultivate the knowledge in programming with CDO, ADO and other

Windows artifacts such as events, processes and threads using VC++.

“We create a world for ourselves by what we speak. Words have power, and we can

speak life into a situation”. I take pleasure to show my gratitude to Prof. Dan Likarish,

Assistant Professor, Regis University for his sincere, dedication and commitment he

showed in encouraging me throughout this project. There were times I almost gave up on

certain areas of the project, but Dan helped me with wonderful suggestions cheerfully

even if it was after office hours. It was amazing how professionally he organized the

online conference calls and engaged everyone involved, though some of us were

connected from thousands of miles away. His encouragements and guidance were not

only limited to technical and professional project but I had the privilege of enjoying his

great advice on pursuing my PhD program. Dan, I will never forget those conversations

and your words of caution on my decisions; you will always be my loving professor, so

dear to me.

I would like to convey my sincere and genuine thanks to Mr. Mohan Reddy, President,

RedySoft Inc (www.redysoft.net) for readily offering this project to be developed and

 2

acknowledging the success of the eManager application development. His

encouragements and willingness to impart technological advancements were definitely

the motivating factor for the successful completion of this project. I personally thank him

for providing the infrastructures such as software, hardware and support throughout. It

was a pleasure working with you.

I would like to extend my special thanks to Mr. Rajan for providing the valuable

technical wealth of experience and sharing it with me. I thank him for all his technical

references and guidance throughout. I promise to bombard you with more technical

questions!

Before I move on, my special thanks to my dad, mom, brothers, sister and their families

for their persistent encouragement. Today, I can boldly admit, without you, I wouldn’t

have made this possible. I thank you for all your prayers, support, incredible patience,

dedication, flexibility, support and commitment throughout. “A praying family is God’s

power” and your prayers released the power to do Gods will. Magnificent products such

as eManager do not make perfect without your love, affection, care and guidance. I have

so much to say and thank each and every one of you and not enough time and space left

to say it all.

Even though this is the last part of this section, I pray that this is just the beginning of the

blessings of the LORD towards me. May HIS Blessings and HIS Seeds of faith deeply

planted in prayer grow in me into following HIS heart and will.

 3

October 8, 2005

 4

Table of Content

Acknowledgements.. 1
Table of Content.. 4
List of Figures .. 5
Abstract .. 7
Summary .. 8
Introduction ... 10
Project History... 13
Systems Analysis and Design.. 15

Systems Analysis... 15
Functional Requirement .. 16
Usability Requirement... 17
Reliability Requirement .. 17
Supportability Requirement .. 18
Performance Requirement... 18

Development Methodologies... 19
Functional Modeling ... 19
Entity Class Modeling... 21
Dynamic Modeling.. 22

Overview of Technology ... 24
Active Directory.. 25
LDAP .. 26
ADSI.. 27
CDO for Exchange .. 27
COM Component Design.. 28

Application Design .. 32
TAB Control.. 33
Custom ComboBox Control.. 37

CMListCtrl class: .. 38
CMListCtrlWnd class:... 38
CMButtonCtrl class:.. 39

Windows Messages ... 40
ON_MESSAGE: ... 41
User-Defined Messages/WM_APP constant Messages:... 42
Registered Windows Messages:.. 42

Process and Threads .. 44
Inter Process Communications.. 46
Accessing Web Storage System using SQL.. 47
CDO for Exchange .. 50

Application Enhancements... 55
Obstacles, Pitfalls and Suggestions.. 56
Conclusion.. 59
Appendix A: Use Cases ... 61

 5

Appendix B: CRC Cards .. 92
Appendix C: List of Figures ... 93
References .. 113
Glossary.. 117

List of Figures

Figure 1: eManager UC1 [Use Case] ... 93
Figure 2: Read Items UC-RI00 [Use Case].. 94
Figure 3: Read Items UC-RI01 [Use Case].. 95
Figure 4: Read Items UC-RI02 [Use Case].. 95
Figure 5: Read Items UC-RI03 [Use Case].. 96
Figure 6: Read Items UC-RI04 [Use Case].. 96
Figure 7: Read Items UC-RI05 [Use Case].. 97
Figure 8: Read Items UC-RI06 [Use Case].. 97
Figure 9: CrNew Items UC-NI00 [Use Case] .. 98
Figure 10: CrNew Items UC-NI01 [Use Case] .. 98
Figure 11: CrNew Items UC-NI02 [Use Case] .. 99
Figure 12: CrNew Items UC-NI03 [Use Case] .. 99
Figure 13: CrNew Items UC-NI04 [Use Case] .. 99
Figure 14: MtClient Process UC-MT00 [Use Case] .. 100
Figure 15: eManager Context Diagram [Use Case]... 100
Figure 16: Application accessing Directory Service using LDAP wire protocol [CMN00]

... 101
Figure 17: The relationship of ADSI and ADO to Active Directory [CMN00] 101
Figure 18: CDO to access Active Directory [CMN00].. 102
Figure 19: Proxy / Stub Overview [JSW00] .. 102
Figure 20: Connection Points and Sinks [JSW00]... 103
Figure 21: eManager Application Architecture ... 103
Figure 22: eManager Contacts Tab Control Dialog... 104
Figure 23: Custom ComboBox Control Class Diagram .. 105
Figure 24: eManager Contacts window with custom ComboBox shows the Business 2

item selected.. 106
Figure 25: eManager application attachments processing using XML document and

Stream object... 106
Figure 26: eManager Data Communications through XML.. 107
Figure 27: eManager application class diagram... 107
Figure 28: eManager application Logon/Server Event .. 108
Figure 29: eManager application Send Mail.. 108
Figure 30: eManager application Read Items .. 109
Figure 31: eManager application Save Draft ... 110
Figure 32: eManager application Move Item... 110

 6

Figure 33: eManager application Delete Item.. 111
Figure 34: eManager application Create New Message State Diagram 111
Figure 35: eManager application Component Diagram... 112
Figure 36: eManager application Deployment Diagram.. 112

 7

Abstract

“eManager – CDO Made Simple” by Solomon Vedaprakash

The eManager application integrates the existing enforcement systems and MS Exchange

Server 2003. The application exploits the benefits of CDO, ADO, LDAP, ADSI, XML

and COM technologies. The application explicates the integration and utilization of CDO

using VC++ programming language. It illustrates how CDO can be implemented

effectively in various circumstances while maintaining uncomplicated application design

and solutions. It demonstrates how CDO and ADO complements each other and interacts

with other Windows artifacts such as ADSI, LDAP and Active Directory. The application

implements the COM methodology that establishes the COM events using connection

points and sinks. The integration and management of process and threads using events is

the prim benefit for application programmers.

Keywords:

CDO ADO LDAP ADSI

COM Events Sink Process

Thread Active Directory Connection Point

 8

Summary

The current system supporting Redysoft Technologies necessitates modernization

in providing a successful enforcement programs with instant messages and critical data

updates needed by the Law Enforcement agencies. The eManager application integrates

the existing enforcement applications and MS Exchange Server 2003. The application is

an advanced e-mail software program that allows users to send and receive e-mail. In

addition to e-mail, eManager has a personal calendar, group scheduling, personal

contacts, personal tasks, the ability to collaborate and schedule with other users. The

eManager authorizes administrators to execute user and group administration effectively

with friendly user interface. The application exploits the benefits of CDO, ADO, LDAP,

ADSI, XML and COM technologies. The application divulges the benefits of utilizing

these technologies and imparts a valuable source of example for incorporating CDO

using VC++. The application supports and imparts the benefits and implementations of

callback methodologies incorporating COM connection points and sinks to initiate instant

alerts to the clients. The application can also be perceived as a viable example for

uploading attachments using binary stream assimilating XML methodology. The

eManager application utilizes the effective implementation of multi-process and threads.

 9

It is a suitable exemplar in explaining how custom controls can be dispensed using simple

regular MFC controls, and how events can be handled effectively in providing a

competent application that can manage all of its processes and threads while providing

uncomplicated simple application. The eManager application was developed employing

the Object Oriented Analysis methodologies. The application enhanced the functionality,

usability, reliability, portability, supportability and upgradeability of the current

enforcement system while integrating user and group administration by system

administrators.

 10

Introduction

Microsoft Exchange 2003 is a messaging and collaboration platform that provides

e-mail, scheduling, online forms, and tools for custom messaging and collaborative

applications. A successful Exchange 2003 development hinges on many aspects; these

include a strong dependency on Windows 2003 Active Directory (AD), Windows 2003

Internet Information Server (IIS), a properly configured DNS (Domain Name Service)

infrastructure, sufficient and reliable hardware and good operational practices. The core

of Exchange development paradigm is the Web Storage System. The Web Storage

System combines the functionality of an intranet Web server, a database server and a

collaboration server. One of the most significant enhancements in Exchange 2003 Server

is the wide variety of data access options available. Most importantly, the OLE DB

provider ExOLEDB, is high performance server-side provider that interacts with folders,

items, and files in a Web Storage System. ADO and CDO for Exchange use ExOLEDB

to interact with Exchange on the server. For years, earlier versions of ADO have been

used to access data stores, such as MS Access and SQL Server. ADO 2.8 presents a high-

level, easy-to-use interface and a low-level, high-performance interface to practically any

data store available using the ExOLEDB provider. CDO for Windows 2003 is one in a

suite of collaborative COM components referred to collectively as CDO and unlike

 11

previous CDO components; CDO for Windows 2003 is not MAPI-based. To send

messages using CDO, you must have network or local access to an SMTP or NNTP

service. These restrictions on CDO make it challenging for application programmers. The

fast changing technology, growing need for applications developed with record-breaking

time constraints, forced almost all of the support available on CDO to VBA and VB

programming languages. Though VC++ can effectively and efficiently deliver light

weighted applications using MFC, COM and ATL, there aren’t much published help

available. The main objectives of the eManager application development are,

• Provide comprehensive aid with examples for the development of custom

applications using CDO

• Expose the MS Exchange CDO collaboration capabilities to applications on the

server

• Demonstrate how CDO for Exchange complements ADO, rather than competing

with it

• Demonstrate how ADO for Exchange can be used to create new resources, delete

unwanted resources, copy and move resources, and even query a Web Storage

System.

The eManager application is designed to deliberate the effective implementation

of user administration and user management using Windows 2000 Active Directory. The

application configurations enable the system administrators to perform Microsoft

Exchange 2000/2003 Server user and group administration in synchronization with

Active Directory from within the “eManager’ application. The application also

 12

establishes and imparts one of the indispensable methods of implementing the Tab

Control in the client area rather than presenting it as a property page using easy to adapt

methodology in establishing the Tab Control.

One of the most important means of communication in windows is Messages. The

Windows concept is different than traditional programming. The way programs in

windows responding to events are called messages. The messages signal many events,

caused by user, operating system, or other programs/applications. The eManager

application is a viable exemplar to inter-process windows message processing. The inter-

process communications enable the application to be independent of other applications

while reinforcing the established behavior of the application to specific windows

messages.

 eManager is an advanced e-mail software program that allows users to send and

receive e-mail. In addition to e-mail, eManager has a personal calendar, group

scheduling, personal contacts, personal tasks, the ability to collaborate and schedule with

other users. The eManager authorizes administrators to execute user and group

administration effectively with friendly user interface.

 13

Project History

RedySoft Inc is an outstanding IT Systems Consultants and is staffed with high-

tech professionals with ten to twenty years of experience with proven consulting

methodology, contribution to cost effectiveness in implementing new technologies,

exceptional network team to analyze and to recommend purchase, configure and install

hardware and software and reduce the operating costs by 60% through improved

performance with uncompromising security features in place.

Redysoft was developing advanced applications that were capable of providing

operational information they needed to provide an effective and modernized application

that was capable of rendering instant messages to Law Enforcement agencies, and other

State and Federal agencies. The instant messaging system with tracing features is the

growing need of the hour. The modernized system will dominate the supremacy in instant

messaging system in accordance with State and Federal regulations and guidelines.

I have been developing applications in IBM Mainframe platform with COBOL

programming language for sometime. The introduction of Microsoft Visual C++

 14

definitely changed my view of application development. The eManager application

system is designed to provide enough effective samples that outline the process of

working with CDO for Microsoft Exchange. As a result, the application is built to explore

and expose the facts of working with CDO using VC++, while effectively implementing

the strengths of MFC.

The development of eManager system was unique and involved a degree of

uncertainty. The system was designed and developed by only one member and involved

analysis and design, project plan development, leading and managing the different parts

of the project management including establishing direction, motivating and inspiring

client and communicating with clients and other project stakeholders. The project

negotiations and their outcome, and agreements were documented in detail. The

negotiation and decision-making includes analyzing the problems, their probable cause,

choice solutions and recommendations. Once the decision is made, the decision is

documented and implemented. The eManager system development lifecycle has been a

very powerful tool to me in understanding the mechanics of power and politics in

application development and implementation.

 15

Systems Analysis and Design

The eManager system is designed and developed by way of Object-Oriented

analysis and Iterative development process using Unified Process methodologies. The

Object-Oriented Analysis methodology proffer and outstand in providing methodical

approach in dealing with projects that are constrained by ruthless time constraints through

Iterative development process. OOA also provides the maintainability through simplified

mapping to the real world, which provides for less analysis effort, less complexity in

system design, and easier verification by the user; reusability of the analysis artifacts

which saves time and costs; and depending on the analysis method and programming

language, productivity gains through direct mapping to features of Object-Oriented

Programming Languages [BDN96].

Systems Analysis

The eManager system development requires a short initial step expose the vision

and business case with feasibility examination. The system requirements, capabilities and

 16

conditions the system supports are of prim challenge. The system requirements were

classified into different categories as shown in table below.

Artifact Comment

Vision and Business Case Implement the email subsystem providing instant

messaging with message tracking capability

Use-Case model The functional requirements and related non-

functional requirements are documented

Supplementary Specification Windows 2000 Operating System and Microsoft

Exchange 2003

Risk and Risk Management Delay in instant messaging system implementation

due to technological training required for

application development team members

Conceptual Proofs and Prototypes The entire design section provides innumerable

examples and prototypes that provide in depth

realization of concepts required

Functional Requirement

In product development, it is useful to distinguish between the baseline

functionality necessary for any system to compete in that product domain, and features

that differentiate the system from competitors' products, and from variants. What makes

the product lines part of a family, are some common elements of functionality and

identity. These strategies have important implications for software architecture. In

 17

particular, it is not just the functional requirements of the first product or release that

must be supported by the architecture.

Usability Requirement

The user requirements effectiveness, efficiency and satisfaction for the user are

considered. The acceptable task time and optimum target, well-disposed contingency

plans, the understandability, learnability, operability and attractiveness are analyzed. The

understandability provided the interface elements such as menus that are easy and catchy.

The system provides a gradual but steady increase in learning curve while maintaining

the simple context sensitive help and effective documentation. The system actions and

elements are consistent with most email applications. The system screen layout and color

layout are appealing and customizable. [SER01]

Reliability Requirement

Most organizations are concerned with the reliability of their products; many will

not develop good reliability specifications. While this is once again an admirable aim, if

there is no numerical measure of "customer expectations," the requirement is essentially

useless. Ideally, customer measurement programs and input should be used to develop

reliability goals, but in a more quantitative manner. Another common pitfall when it

comes to specifying product reliability is the use of the mean life or MTTF (mean time to

failure) metric. We have seen that non-quantitative statements and MTTF values are not

adequate for reliability specification. [REL01] The reliability requirements should

adequately address the following three components:

 18

• A specified reliability

• A time associated with the specified reliability

• A desired confidence level

Supportability Requirement

Developers of modern systems face challenging ownership and availability

requirements, and need cost effective techniques for satisfying them. These measures are

used because customer satisfaction is determined by system performance, cost, and

ability to perform when needed (or operational availability). During allocation, a portion

of the cost of ownership and availability (or more accurately down-time) is apportioned

to each lower level element of the system. [PBS97]

Performance Requirement

Performance specifications leave out unnecessary "how to" or detail and give the

manufacturer latitude to determine how to best meet our stated needs. The specification

enumerates the interface requirements necessary to allow maintenance at the appropriate

level, but it must not impose a design solution beyond that necessary to ensure a proper

interface.

 19

Development Methodologies

The Unified Process is use-case driven. During the analysis the use cases were

described in terms of the classes of the software product. The UP does not describe how

classes are to be extracted in OOAD. The entity class extraction process consists of three

steps that are carried out interactively and incrementally:

1. Functional modeling

2. Entity class modeling

3. Dynamic modeling

Functional Modeling

The Unified Process defines the Use-Case Model within the requirements

discipline describes the functionality and environment of the system. The Use-Cases

provide a mechanism that help stakeholders understand the system indicating what the

system will do. The UML defines a use case diagram to illustrate the names of use cases

and actors and their relationships. The Use-Cases are written in different formats,

depending on the needs. Use Cases that describe system responsibilities specific to what

the system must do (functional requirements) without specifying how it will do it (the

 20

design) are known as black-box use cases. Use cases that describe system responsibilities

that specify how the requirements are fulfilled are known as white-box use cases.

The system is perceived as having high quality in meeting the user needs. The

users of the system and the tasks they must undertake with the system were identified.

The actors are identified as a user of the system in a particular role. The use cases are

recognized as, tasks the actor needs to perform with the help of the system. The system

boundary is clearly identified. The system boundary is clarified to identify the system

responsibilities. The Figure 15 shows the context diagram of the eManager system.

People who need assistance from DS contact the enforcement workers, who then identify

the needs of the client and their eligibility for certain specific programs. The enforcement

workers also identify and discover if there is a need to initiate criminal enforcement

activities against the other parties involved. In case of legal proceedings the enforcement

attorneys are informed to initiate any legal actions required. The above process identifies

the actors and their needs the eManager system has to perform.

The actors and their primary goals in terms of UP artifacts are identified and

documented as shown in Figure 1. The use case embodies a, possible complex, set of

requirements on the system, which starts to emerge during the initial requirements

capture and are refined as the system is developed. The possible scenarios and what

determines which of them applies in any given set of circumstances are analyzed and

documented.

 21

Entity Class Modeling

The entity class modeling determines the entity classes and their attributes. The

interrelationships and interactions between the entity classes are identified. The attributes

not methods of an entity class are determined. There are two different ways of

determining the class model.

1. Noun Extraction

2. CRC Cards

The eManager system was developed with extensive use of the CRC cards

method as part of the UP/Object-Oriented analysis workflow [WBW90] The CRC model

(Appendix B: CRC Cards) was developed by filling in a card showing the current name

of the class, its functionality (responsibility), and a list of the other classes it invokes to

achieve that functionality (collaboration).

The class diagram that describes the entity classes was identified in the use case

analysis and their relationships. The CRC cards for the eManager system were developed

by creating one CRC Card for each of the entity class identified in the Functional

Modeling (Use Case analysis). Each of the CRC Cards was named with the entity classes

and their name written <http://c2.com/doc/crc/draw.html>(May 19, 2005 16:25). The

responsibilities of each of the entity classes were determined by examining the class

diagram. [RMD] The collaboration details of each of the classes were determined as the

interaction of individual class with other classes in the domain. [KBWC] The analysis

using CRC Cards brought in the design reviews and a framework for implementation into

the center stage by providing an informal notation. [OOA96], [CAC]

 22

Dynamic Modeling

The dynamic modeling determines the operations performed by or to each entity

class or sub-class. The dynamic modeling produces a statechart, a description of the

target product and is not a complete representation of the product to be built but consists

of a set of transition rules of the form,

Current state and event and predicate => next state [SCH05]

 The eManager state diagrams were designed to capture the stimuli, responses, and

actions of the classes identified using use cases and CRC Cards. The state diagram shows

the events that cause a transition from one state of a class to another state. It is a network

of states and events, and records the dynamic behavior of important classes in the system.

The state diagram was developed just for the MESSAGE class based on various events.

The state diagram clearly identifies the extent to which the current state of the class will

continue and when will it change.

The State diagram shows the events that cause a transition of a class from one

state to another state. It is a network of states and events. It captures the class’s received

stimuli, responses, and actions. Each state receives one or more events, at which time the

class transitions to the next state. The next state depends on the current state as well as

the events. Modeling a state diagram is useful for understanding the dynamic behavior of

important classes in the system. The state diagram is build for the classes in the system

that necessities further understanding or communicate its dynamic behavior in response

to events.

 23

The state diagram shows the lifecycle of an object; what events it experiences, its

transitions, and the states it is in between these events. It does not illustrate every possible

event; if an event arises that is not represented in the diagram, the event is ignored as far

as the state diagram is concerned. This helps create state diagram that describes the

lifecycle of an object at arbitrarily simple or complex levels of detail, depending on the

requirements. [SDR05] The state diagram help designer methodically develop a design

that ensures correct system event order. The diagram (Figure 34) describes the different

states realized by the message class. The diagram delineates how the object reacts to

various events extensively.

 24

Overview of Technology

Building a system that requires a great deal of communications between both

windows applications and web applications is demanding. Although CDO is widely used

it is considered to be a lower level of programming when developing with MFC using

VC++. The underlying application artifacts are provided by MFC and Microsoft XML

technologies.

The MFC provides the framework to make Windows objects such as windows,

dialog boxes, and controls behave like C++ objects and help create self contained and

highly reusable classes that can respond to its own events. The MFC provides an object-

oriented interface to the Windows operating system that supports reusability, self-

containment, and other tenets of OOP. MFC also provides these without imposing undue

overhead on the system or unnecessarily adding to an application’s memory

requirements.

XML has become the standard for exchanging data in many organizations.

However, the Microsoft Internet Explorer (IE) XMLDOM via COM (Component Object

 25

Model) is used in order to use XML from MFC. Using the XMLDOM doesn’t compare

to the very elegant and powerful set of .NET XML classes. As a result, the .NET Base

Class Library (BCL) is used with MFC applications to provide ultimately more

productive and marketable applications.

“A collaborative application facilitates information sharing and management,

allowing groups to work together across an organization.“[MSD05] Many types of

collaborative applications can be developed on the Exchange store, such as Messaging

applications, Workflow applications, and applications that allow users to communicate in

real time. The CDO and CDO Rendering Libraries are used for building collaborative

Web server applications on Microsoft® Exchange Server. The CDO Library can be used

to build both client and server applications, but the CDO Rendering Library can be used

only for server applications. Server applications integrated with Active Server Pages and

a browser can provide Web access to the client, namely mailboxes, and public folders.

This library lets you add the ability to send and receive mail messages and to interact

with folders and address books from client applications. The eManager application design

enables the user to interact with the Exchange store through WEB and client server

architecture.

Active Directory

In Windows 2000, Active Directory manages all the user and group information

in a Windows domain. Exchange 2000 turns over the user and mailbox management

responsibilities to Windows 2000 and Active Directory. Windows 2000 manages the

 26

domain accounts, user mailboxes along with the distribution groups for exchange. Client

applications can communicate with Active Directory using Active Directory Service

Interface (ADSI) and Lightweight Directory Access Protocol (LDAP). [CMN00]

LDAP

The Lightweight Directory Access Protocol (LDAP) is a directory service

protocol that runs directly over the TCP/IP stack and permits low-level access to a

directory. LDAP supports C and C++ programming languages and is applicable to

directory management and browser applications that do not have directory service

support as their primary function. The LDAP cannot create directories or stipulate how a

directory service operates. A directory entry in LDAP is represented by its entry name, or

relative distinguished name (RDN), and by its distinguished name (DN). The LDAP API

provides functions that allow LDAP client applications to search for and retrieve

information from an LDAP directory server, as well as functions for modifying directory

entries, where such modifications are permitted. Microsoft also provides the Active

Directory Service Interfaces (ADSI) for developing client-side directory service

applications using COM interfaces that enable applications access the network directory

services for Windows Operating system. The ADSI uses LDAP to communicate with the

Active Directory [CMN00]. The diagram (Figure 16) explains configurations of LDAP

and ADSI.

 27

ADSI

The Active Directory Service Interfaces (ADSI) are Component Object Model

(COM) interfaces that provide an abstraction layer for manipulating resources stored in a

directory service. ADSI bolster access and maintenance of different network providers in

a distributed network environment. The ADSI accomplishes common network

administrative tasks, such as adding new users, managing printers, and locating resources

in a distributed computing environment unchallenging. [CMN00] The ADSI requires

components to reside on both the server and the client. In addition, ADSI supplies its own

OLE DB provider, so that any client already using OLE DB, including those using

ActiveX® Data Objects, can query directory services directly [MSD052]. The diagram

(Figure 17) illustrates the communication between client and server using ADSI through

LDAP wire protocol. Here the client requests the appropriate directory service through

the application that issues the ADSI requests. The ADSI then distributes the application

request to the LDAP. The LDAP services the request from ADSI in accordance with the

Active Directory in the server and the results are returned to the ADSI, which in sequence

returns the results back to the application. [CMN00]

CDO for Exchange

CDO for Windows 2000 is one in a suite of collaborative COM components

referred to collectively as CDO. CDO provides a number of objects and interfaces for

managing users and mailboxes. Unlike ADSI, CDO for Exchange cannot be installed on

a client and it requires the Exchange OLE DB (ExOLEDB) provider that can only be

installed on the Exchange 2000 Server. Any application that requires CDO to interact

 28

with Active Directory is forced to run on the Exchange Server. CDO consists of three

object models, each of which serves a unique purpose. CDOEX provides the fundamental

interfaces and Component Object Model (COM) classes that are used to manage most

types of items in the Exchange store. The Collaboration Data Objects (CDO) Workflow

Objects for Exchange and the CDO for Exchange Management (CDOEXM) COM

components extend this core component to provide additional functionality. The diagram

(Figure 18) enlightens how the client application can interact with the Active Directory

using CDO through LDAP. CDO and ADO enhance one another rather than compete

and both use the ExOLEDB. The ADO is optimized for navigating, searching, and setting

properties within the Web Storage system and specializes in generic resource

manipulation tasks such as copying, moving records. CDO is optimized for creating

messaging, calendaring, and contact-management systems. CDO can also be used to

build server-management tools and complex routing systems. The above elucidation is

the basis for the eManager application to exclusively incorporate both CDO and ADO.

The eManager system also exploits the preeminent features of ADSI and LDAP wherever

applicable. [CMN00]

COM Component Design

COM is a system API that allows the applications to access the functions and data

in another application (EXE) or a dynamically linked library (DLL). COM methods can

be called from C++ with no different than calling any other C++ methods. Creating COM

object in C++ is achieved by specifying what file the object is in and what object inside

needs to be created. [JSW00] The actual API appears like the following:

 29

The diagram (Figure 19) explains how C++ communicates with COM. Initially

the C++ calls the go-between function called proxy. This proxy actually serializes the

calling arguments into the standard COM client/server protocol and sticks it onto the

channel to the COM EXE where another function called stub unpacks it and finally

places the call to the method. Hence, when the CoCreateInstance() is called to create the

object starts the COM EXE, creates the object and return the pointer generated by the

proxy. The system registry helps in identifying the EXE/DLL that is associated with

interface requested by CoCreateInstance method.

It is vital for the client to notify the user of any event that interests the user. The

modern design and requirements outline the growing need for the server to notify the

client of an event than the client waiting for some events to occur at the server. COM

provides two standard ways for a server to communicate with its client that uses both of

those solutions.

STDAPI CoCreateInstance(
REFCLSID rclsid,
LPUNKNOWN pUnkOuter,
DWORD dwClsContext,
REFIID riid,
LPVOID * ppv

);

Example:
CoCreateInstance(__uuidof(DOMDocument40)
, NULL
, CLSCTX_INPROC_SERVER
, IID_IXMLDOMDocument
, (void**)&pIXmlDomDocPtr_eManager);

 30

In Win32, when one function passes an address to another function to call when

some event occurs, that address is called callback address. In COM such events are

known as connection point and sink where one or more clients can give a server a

callback address that the server will call when something happens The address the server

calls in a client is considered a sink and a server that can do this is considered to have a

connection point. COM also implements early binding and late binding interfaces

analogous to early and late binding interfaces. [JSW00]

MFC and ATL (Active Template Library) support early binding connection points

and sinks. This can be implemented by creating a COM interface project for that client

with its own COM class and methods (Figure 20), IDL file and proxy/stub DLL. A client

class derived from CCmdTarget – such as the main window (CMainFrame or CDialog) –

and sticks the same MFC macros in its .h file that can be used as a regular MFC COM

server to implement a COM class described below.

In the example, IID_sink is the name of the client’s COM class interface, SinkCls

is the implementation of that COM class interface and Callback is the method of that

COM class. The early bindings calls COM methods directly and are efficient. [XYL01].

The eManager application implements early binding interface methodology to provide

DECLARE_INTERFACE_MAP()
BEGIN_INTERFACE_PART(SinkCls, IID_sink)

STDMETHOD_(HRESULT, Callback)(long);
END_INTERFACE_PART(SinkCls)

 31

real-time messaging to notify the user of events such as, the arrival of new email,

appointment reminders and other critical events.

 32

Application Design

The eManager application is a working demonstration of delivering a successful

application developed and implemented on time within budget using Object Oriented

Analysis and Design with Unified Process. The application analysis and design, and

technological artifacts described previously contribute extensively in the development of

the eManager application.

Real-world enterprise applications are seldom single, monolithic systems and

most enterprise applications must cooperate with multiple data sources and enterprise

information systems. The eManager application separate modules while maintaining the

functional requirements of the business need. The result is a decoupled enterprise

architecture that can interoperate with existing Microsoft Exchange Server 2003 data

store. [SADI]

As discussed earlier, the exchange stores information in both web storage systems

and active directory. The exchange uses the web storage system to store resources such as

folders, items, and files, and it uses the active directory to store and manage data about

 33

exchange mailboxes. The dual information source means the application often needs to

access data from both web storage system and active directory. The eManager

development application architecture accesses the web storage system using ADO, CDO,

XML, and optionally using HTTP. The eManager application uses CDO to access the

active directory, and assimilates extensive use of COM methodologies while utilizing the

.NET features. As a result, the .NET Base Class Library (BCL) is used to provide

ultimately more productive and robust application.

TAB Control

The tabbed dialog boxes containing pages of controls that the user can switch

among with mouse clicks are one of the most appreciated windows programming

controls. It is not difficult to add property sheet to MFC applications as MFC

encapsulates the property sheet in CPropertySheet and CPropertyPage classes. The

CPropertySheet represents the property sheet itself and is derived from CWnd. The

CPropertyPage represents a page in a property sheet and is derived from CDialog. The

general procedures for creating a modal property sheet are:

1. Create a dialog template for each page in property sheet defining the page

contents and characteristics and set the dialog title

2. For each page in property sheet, derive a dialog-like class from CPropertyPage

that includes public data members linked to the pages controls via DDX or DDV

3. Derive a property sheet class from CPropertySheet. Instantiate the property sheet

class and property sheet page classes defined in step 2

4. Call the property sheets DoModal function to display it on the screen.

 34

The above-described method is well documented and there are plenty of examples

and worked solutions available. The advantages of the Tab controls are far beyond just

property sheets and property pages. One of the classic and widely utilized examples is

Microsoft Outlook client application. The MS Outlook implements the tab control very

effectively to display/edit the Contacts details. The foremost difference between

implementing the tab controls using property sheets and property page and the method

used to implement the tab control in MS Outlook are,

• The tab control is employed as part of the entire client area as part of

CDialog class and not in the form of property sheet and property pages.

• Implementing tab control as part of CDialog class extends the MFC

framework support to the tab control being implemented. The application

developer is encouraged to utilize some of the features such as support for

printing, etc with no effort provided by the MFC framework. This lessens

the work of the application developer in spending more time on

reinventing the same functionalities provided freely by the MFC

framework.

Designing applications similar to MS Outlook Contacts dialog appear to be very

simple and I always thought it is one of the easiest design decisions to implement tab

control similar to MS Outlook. Actually, the implementation needs little more tricky

approach to accomplish the tab control that fulfills the requirements in its entirety in

providing the easy look a like approach. There are many different solutions to software

 35

development and there is no wrong approach, but some are elegant than others. The

methodology adapted to implement the tab control in eManager application is very

flexible and is somewhat variation to the solution provided in the article “CTabCtrlSSL –

An easy to use, flexible extended tab control” by Derek Lakin

<http://thecodeproject.com/tabctrl/ctabctrlssl.asp>. The eManager application

implements tab controls using accepted MFC CTabCtrl class in following steps.

1. Design the dialog resource for each of the property pages in the tab control.

2. Add each of the dialog resources to a class derived from CDialog.

3. Add empty methods to handle the default OK and Cancel events for each of the

dialog resource designed.

4. Create a new class derived from CTabCtrl class.

5. Add an integer array member to the CTabCtrl class. The size of the array is equal

to number of tab control dialogs designed.

6. Initialize the integer array with the resource Ids of the tab control dialogs.

7. In the InitDialog handler for the dialog class create the tab control class generated

and add pages to the tab control.

8. Set the current selected tab dialog.

The steps described support most requirements and is the simplest solution to

implement the tab control using CDialog. The above implementation has its own

anomaly. Events handling and responding to events that transpire from various controls

that occupy each of the tab control dialogs are not new to Windows application

 36

development. Responding to list box control events was one of the requirements of the

eManager application. As the tab control dialogs were implemented as described above, it

became evident that the framework failed to instantiate the classes described for each of

the tab control dialogs. This caused an undocumented extraordinary situation. There were

enormous amount of research performed on this topic and almost all were found not

fertile. It was after much efforts and research eManager design was slightly altered so

those specific tab control dialogs that require specific event handling were designed

dynamically. Each and every control on those specific tab controls were created, and their

properties and event handling specified dynamically at run time. Implementing the tab

control dialog dynamically deciphered the predicament. It was one of the situations

where an easy and simple solution provided at the appropriate place and time helped the

eManager application thrive.

Tab Control Dialog Re-Positioning

The discussion above provided the approach of integrating the tab control to

dialog window. The tab control dialogs attached to the dialog window now occupy the

default window position in the client area. This default window position may not

void CContactsTABCls::OnSize(UINT nType, int cx, int cy)
{

int i=(int)cx, j=(int)cy;
CRect pRect;
this->GetParentFrame()->GetClientRect(&pRect);
pRect.top=0;
pRect.right=pRect.right-2L;
this->AdjustRect(true, pRect);
pRect.top=0;
this->MoveWindow(pRect, true);
this->Invalidate(true);
this->GetParentFrame()->Invalidate(true);

}

 37

necessarily be the appropriate place for the tab control dialogs and in most cases the

dialogs are ungallant and are not user friendly. Research proved that this conundrum

could be resolved by tweaking the tab control dialog position in accordance with the

client area of the tab control itself in the handle for OnSize() for the class derived from

CTabCtrl control class. This technique provided the much-desired outlook for the GUI.

Custom ComboBox Control

The ComboBox control to provide the list of obtainable contact’s details such as

home address, business address, home phone number, business phone number, mobile

phone number, home fax number, business fax number, primary and optional email

addresses. The standard ComboBox control provided by framework offered a strange

appearance on the application GUI. It was far from the appearance provided by MS

Outlook and it was decided to initiate a customized control that can provide satisfying

appearance and boost the UI of the eManager application. The methodology adapted to

implement the custom ComboBox control in eManager application is very flexible and

somewhat variant to the solution provided in the article “A Custom Group Combo Box”

by Brett R. Mitchell <http://thecodeproject.com/combobox/customcombo.asp>.

The requirements of the custom combobox control was analyzed and studied

thoroughly. The underlying parts of the control were documented as shown in the class

diagram (Figure 23). The composite relationship between CMButtonCtrl class and

CMListCtrlWnd class establishes a special kind of aggregation, which does impose some

 38

further restrictions. In a composition association, the whole strongly owns its parts: if the

whole object is copied or deleted its parts are copied or deleted with it. The multiplicity at

the whole end of the composition association must be 1 or 0..1 – a part cannot be part of

more than one whole by composition. The composition association is shown just as

aggregation is, except that the diamond is filled in. [PLY00] The ComboBox control can

be implemented by using the steps described below.

CMListCtrl class:

1. Define a class derived from CListBox class.

2. Implement the Create method.

3. Implement DrawItem method. This method draws the list item with specific text

color, text background color and selected item background color.

4. Implement the MeasureItem method. This method measures the width, height of

text using current font setting.

5. Implement a method to add text items to the list.

6. Implement a handle for selected item changed event. (This method also sends

corresponding message to the view class of the application so the contact

information is displayed appropriately.)

CMListCtrlWnd class:

1. Define a class derived from CWnd class.

 39

2. Implement the Create method. As part of the composition association specified in

the class diagram, this method also creates an object of the class CMListCtrl

class.

3. Implement the OnSize handle. As the size of this class changed, reposition the

CMListCtrl accordingly.

4. Implement the OnShowWindow handle. This method should enforce the

redrawing of the parent window when the control goes off focus.

CMButtonCtrl class:

1. Define a class derived from CButton class.

2. Implement the Create method. As part of the composition association specified in

the class diagram, this method also creates an object of the class CMListWnd

class.

3. Implement the DrawItem method. This method draws the control text with

specified text color, text background color and the control background color and

control border.

4. Implement the OnMeasureItem handle. This method measures the width, height

of text using current font setting.

5. Implement the DrawArrow method. This method measures the rectangle size of

the CMButtonCtrl control and draws the arrow at the right of the text item.

6. Implement the handle for Left Button click. When the CMListCtrlWnd class

object is not visible, determine the total number of list items added and determine

 40

the size of the rectangle that occupies the list control. Reposition the

CMListCtrlWnd class object and display the list control window.

The CMButtonCtrl class object is utilized to implement the custom ComboBox

control. The initial ComboBox control text is specified when creating the CMButtonCtrl

class object. The window is displayed to the user. When the ComboBox control item is

selected or changed, the text displayed on the ComboBox button is changed respectively.

This technique provided the much-desired outlook for the GUI using the custom

ComboBox class control. The discussion above provided the approach of integrating the

custom ComboBox control to dialog window.

Windows Messages

The Windows Operating system and the applications that run generate messages

for every event that occurs in Windows. Messages are fundamentally important to the

value of Windows as a multitasking operating system. Windows generates messages for

every hardware event that occurs and it then passes each message to the appropriate

message queue. Occasionally the system generates several copies of a message that it

simultaneously places in multiple message queues. A message queue is a place in

memory, which stores messages that are transferred between applications. [JMS02]

Windows has default message handler for almost all messages providing a default

behavior. As discussed above, Message handling is one of the prim aspects of the

Windows Operating System. The motivation for this discussion is to highlight some of

the established methods in which messages can be effectively implemented within

 41

applications without impinging the functioning of the Windows OS. This discussion does

not address the MFC message-handling methods using message handlers provided by

classwizards. It is implied that this discussion is meant to deal with something beyond

and to highlight the message handling that are not supported by the classwizards. The

discussion deals with widely used three distinctive message-handling techniques,

1. Message-handling using ON_MESSAGE macro

2. User-Defined Messages/WM_APP constant Messages

3. Registered Windows Messages

ON_MESSAGE:

MFC provides a generic macro feature that can be suited for any special

requirements using ON_MESSAGE. The prototype of the message ON_MESSAGE

handler is as shown. Here ID_ON_CUSTOM_EVENT is the message and

OnIDCustomEvent is the method, which is invoked on the message.

afxmsg LRESULT OnMessage(WPARAM wParam, LPARAM lParam);

Example:

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)

ON_MESSAGE(ID_CUSTOM_EVENT, OnIDCustomEvent)

END_MESSAGE_MAP()

 42

User-Defined Messages/WM_APP constant Messages:

It is sometimes discernible to implement message handling between two different

windows of an application or even more so between two different applications as well. In

situations like these the User-Defined messages can be exploited. The Windows OS

predefines all standard messages and their number identifies the messages. The user-

defined messages are defined by just using one of such numbers from WM_APP through

0xBFFF. [WMH200], [WMH100]

Registered Windows Messages:

The RegiserWindowMesage provides the potential to communicate between

cooperating applications by defining a new window message that is guaranteed to be

unique throughout the system. [MSD053] The registered window messages can be used

to post or send messages between application boundaries and WM_APP constant

messages described earlier can be used within the same application.

#define WM_INQUIRE WM_APP + 0x101

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)

ON_MESSAGE(WM_INQUIRE, OnInquire)

END_MESSAGE_MAP()

 43

In the example, the CContactProcView1 class uses the registered window

message CDLG_CLOSE. The message is registered using RegisterWindowMessage and

to make the message unique across systems a GUID is attached to the definition as

shown. When the CContactProcView1 class sends the message, the CMainFrame class

receives it where the same event is registered to provide the handle. The eManager

application utilizes the entire message handling techniques described extensively to

provide elegant method of message handling, while maintaining the source code that is

precise but uncomplicated for the system maintenance.

// CContactProcView1 class
static const UINT CDLG_CLOSE=RegisterWindowMessage("CDLG_CLOSE_{B7A832D1-
8B2D-4312-8A15-874284D868F2}");

void CContactProcView1::OnClose()
{

// TODO: Add your message handler code here and/or call default

CListView::OnClose();

SendMessage(CDLG_CLOSE, 0, 0);
}

// CMainFrame class
static const UINT CDLG_CLOSE=RegisterWindowMessage("CDLG_CLOSE_{B7A832D1-
8B2D-4312-8A15-874284D868F2}");

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
ON_REGISTERED_MESSAGE(CDLG_CLOSE, OnCloseCDlgBar)

END_MESSAGE_MAP()

 44

Process and Threads

A process can be defined as an executing program. A process may contain one or

more threads. A thread is a path of execution within a process. Each time Windows

initializes a new instance of a process, the OS creates a new primary thread for that

process. The primary thread starts when Windows loads the program. The thread intern

calls WinMain function and continues to execute until WinMain function ends

processing, and the program calls ExitProcess to end itself. However, process can create

additional threads to help accomplish certain tasks. A new thread can be created using

CreateThread method. The new process and the new thread handle inherits all the access

rights from the process thread that created it and the CreateProcess method can also

specify security attributes using SECURITY_ATTRIBUTES structure that determines

whether the child processes can inherit the returned handle. When the function provides a

security descriptor, the program performs an access check on all subsequent uses of the

handle before it grants access. If the access check denies access, the requesting process is

not able to use the handle to gain access to the thread. [JMS02]

The eManager application was designed to extend the benefits of Dynamic Link

Libraries (DLLs) beyond their basic library support and to incorporate multitasking and

multithreading. Multithreading using DLL led to very intensive research and analysis for

a considerable period of time with no foreseeable and acceptable solutions available to

fulfill within the time constraints. The application design was restructured and modified

to incorporate multithreading/multitasking using multiprocessing technique. This led to

the utilization of multiple processes while controlling them within the application domain

 45

effectively using Windows messages discussed earlier. The processes were created using

CreateProcess method.

The example below shows how eManager application creates a process when the

user selects to create a new message. The CreateProcess invokes the MessageProc.exe

application by passing the parameters “E EditMessageID”. This creates the thread with

an initial stack whose size is described in the image header of the specified program’s

executable file. The thread begins execution at the image’s entry point.

void CMainFrame::Newmailmessage()
{
STARTUPINFO si;
PROCESS_INFORMATION pi;

ZeroMemory(&si, sizeof(si));
si.cb = sizeof(si);
ZeroMemory(&pi, sizeof(pi));

if(!CreateProcess(NULL
, "MessageProc E EditMesageID"
, NULL
, NULL
, TRUE
, CREATE_NEW_PROCESS_GROUP
, NULL
, NULL
, &si
, &pi
))
{
AfxMessageBox(" New Message Creation Failed ", MB_OK);
return;
}

// Wait until child process exits.
//WaitForSingleObject(pi.hProcess, INFINITE);
// Close process and thread handles.

CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);
}

 46

Inter Process Communications

Communications between two different applications can be accomplished in

many different techniques. The eManager application exploits the benefits of events and

process and threads both collectively and individually. The discussions on events and

process and threads delineate how they are achieved in eManager application. The

eManager utilizes the integration of process, threads and events in a unique approach.

There are situations wherein they demonstrate their effective implementation in

applications. The CreateToolhelp32Snapshot function takes a snapshot of the specified

processes in the system, as well as the heaps, modules, and threads used by these

processes. The Process32First function retrieves information about the first process

encountered in the snapshot and Process32Next function retrieves information about the

next process encountered in the snapshot. Each process can be associated with multiple

modules. The Module32First function retrieves information about the first module

associated with a process or thread and Module32Next retrieves information about the

next module associated with a process or thread. These methods can be used to retrieve

information about the processes or thread and modules associated with them. eManager

application utilizes these functions to obtain information about the processes or threads of

specific interest. Once the process and their modules are identified the application then

sends predetermined events to those processes. The eManager application effectively

implements this method in the following areas to achieve specific outcome.

 47

1. To effectively implement the unauthorized access to different modules and

enforce the access to specific modules only through specific actions such as

preventing access to different modules without login to eManager application.

2. Complete the “message delete” process to reflect the changes to the client

instantaneously

3. Complete the “save message as draft” to reflect the changes immediately

available to client

4. Complete the “send new message” to reflect the copy of the message available in

sent items.

5. Do cleanup process when application ends or terminates.

Accessing Web Storage System using SQL

The Exchange provides a variety of data access application programming

interfaces and protocols. This discussion highlights the Structured Query Statements

(SQLs) that can be used to access the Web Storage System effectively. The GetChildren

method of ADO Record Object get all the child records including items and folders but

the SQL help restrict only the subset of resources or use only one of the properties of

each of the resources returned is to be obtained. The Exchange supports several SQL

commands including SELECT, WHERE, ORDER BY, CONTAINS and GROUP BY but

does not support AVG, CONVERT (use CAST), COUNT, CREATE VIEW,

DATASOURCE, DELETE, DROP INDEX, INSERT, JOINS, MAX, MIN, UPDATE,

SET and SELECT DISTINCT. It is evident that SQL can be effectively used to query the

exchange store. It is sometimes required to determine the total number of resources in the

 48

solution set. The SQL does not support the COUNT but this can be achieved by using the

RecordCount property of the RecordSet object and the DELETE can be achieved by

using the DeleteRecord method of the RecordSet object.

The SQL uses the concept of tokens for search conditions and each token must be

delimited with single quotes. It is important to establish the connection with the database

explicitly using Connection object or Command object. The eManager application uses

the SQL to determine the URLs of specific resources to further data manipulations using

CDO. The SQL query results can also be exported to XML using Recordset object. The

basic steps to query the exchange using SQL are,

1. Build the query

2. Establish Connection using Connection Object

3. Open the Recordset object

4. Get fields of the Recordset object using GetFields method.

5. Use GetItem method of Fields object to obtain specific field data

The example below shows how the SQL statement was built using string

concatenation. The connection object establishes the connection to one of the default

folders for the specified user. The Recordset object opens the SQL using Open method,

and the fields and corresponding items are obtained.

 49

// Build SQL
char tChrSel[]="Select ",
tChrFrm[]=" \"urn:schemas:httpmail:from\" ",
tChrTo[]=" \"urn:schemas:httpmail:to\" ",
tChrSub[]=" \"urn:schemas:httpmail:subject\" ",
tChrDtRcvd[]=" \"urn:schemas:httpmail:datereceived\" ",
tChrFrom[]=" From SCOPE('SHALLOW traversal of
\"http://Server.com/exchange/userID/Inbox/\"') ",
tChrWhere1[]=" Where \"DAV:iscollection\" = false ",
tChrWhere2[]=" And \"DAV:isfolder\" = false ",
tChrWhere3[]=" And \"DAV:ishidden\" = false ",
tChrWhere4[]=" And \"DAV:isstructureddocument\" = false ",
tChrOrder[]=" Order by \"urn:schemas:httpmail:datereceived\" DESC ";
char tChrDavHref[]=" \"DAV:href\" ",
tChrDavDateReceived[]=" \"urn:schemas:httpmail:datereceived\" ",
tChrComma[]=" , ",
tChr4096[4096];

// Build the SQL String
strcpy(tChr4096, tChrSel);
strcat(tChr4096, tChrDavHref);
strcat(tChr4096, tChrComma);
strcat(tChr4096, tChrDavDateReceived);
strcat(tChr4096, tChrFrom);
strcat(tChr4096, tChrWhere1);
strcat(tChr4096, tChrWhere2);
strcat(tChr4096, tChrWhere3);
strcat(tChr4096, tChrWhere4);
strcat(tChr4096, tChrOrder);

// Establish Connection
hr=pConn->Open(L"http://Server.com/exchange/userID/Inbox/", _bstr_t(),
_bstr_t(), adCmdUnspecified);

// Open Recordset
hr=pRecordSet->Open((_Command*)pCmd, vtMissing, adOpenForwardOnly,
adLockOptimistic, adCmdUnspecified);

// GetFields
pFlds=gRecordSet->GetFields();

// GetItem
tfName0=pFlds->GetItem(0)->GetName().GetBSTR();

 50

CDO for Exchange

The CDO uses COM classes and interfaces. The discussions earlier outlined the

fundamental ideas on how CDO interacts with other Windows OS artifacts. This

discussion delineates the implementation of CDO interfaces and COM classes into the

application programs. The CDO interfaces define an encapsulated set of properties,

methods, some are specific to certain classes and others have common functionality. A

default interface exposes the default functionality for a class and a default interface has

the same name as the object it represents but it is prefixed with I. In addition to default

interface, most classes use at least another interface. For example, Person and Message

classes implement IDataSource interface and this helps application programmers achieve

their requirements easily. CDO provides named constants for all the predefined schema

properties. It uses easier approach than ADO by passing fully qualified schema property

name of the associated CDO constant equivalent, if it exists.

hr=::CoCreateInstance(__uuidof(Message), NULL, CLSCTX_ALL,
__uuidof(IMessage), (void**)&pMessage);

hr=pMessage->DataSource-
>Open(“http://domain.com/exchange/username/inbox/emailID.eml”,

variant_t((IDispatch*)gConn, true),
adModeRead,
adFailIfNotExists,
adOpenSource,
_bstr_t(),
_bstr_t()
);

pTemp_DomNodePtr=pDoc->createElement("BCC");
pTemp_DomNodePtr->text=pMessage->BCC;
pOut_DomNodePtr=pDomNodePtr->appendChild(pTemp_DomNodePtr);

 51

The example above shows how the BCC property of the IMessage interface is

extracted using CDO Message class. The example above evidently demonstrates the

reliance of CDO on the URLs and the ExOLEDB provider interacts with resources in a

Web Storage System. The URL must be properly constructed with both the complete

folder path and the display name of the resource being accessed. If opening an item such

as contact or email message the .eml extension can be appended. It is a good practice to

include a trailing slash mark on a URL that points to a folder [CMN00]. The eManager

utilizes the Uniform Resource Locators (URLs) throughout the application to access

resources precisely and uses trailing slash when accessing the folders. This standard is

adhered throughout the application development to maintain consistency. The Web

Storage resources can be accessed using URLs using the DataSource class. The Open

method uses the ADO active connection details, access mode, resource open options, user

ID and password. The example above shows the implicit authentication where the system

enables the authentication based on the Windows domain access specifications. The URL

of the resources is obtained using the SQL described earlier. [MSDN05]

The eManager application exploits the strength of XML in data transfer between

client and server. The diagram (Figure 26) shows the communications between the client

and server, employing XML documents. All communications between client and server is

converted into XML and the XML document is transmitted and received. The conversion

of fields accepted from applications are formatted and interpreted to incorporate binary

data transfer. This process requires the conversion of the attachments be converted into

 52

XML before transmitting it to the server. When server receives this XML document the

server is then required to convert back the received XML document into corresponding

fields and continue to process the data in correlation with their intended purpose and not

loose their meaning or translate them on its own.

The IMessage interface of the Message class supports AddAttachment method.

The AddAttachment method attaches the attachments within a BodyPart object using

Uniform Resource Locator (URL). This attached message can be transmitted using the

send method. Though sending messages using this method transmits the message, it falls

short of meeting the requirements specifications. To achieve the utmost requirements

specifications, eManager handles the email messages and attachments independently. The

ADODB::_Stream structure facilitates the conversion of the email Message class object

into a stream. The Istream object supports reading and writing data to stream objects. The

stream objects contain a structured storage object where the object provides the structure.

Methods in this IStream interface present the object data as contiguous sequence of bytes

that can be read or written. The eManager application builds the email message using the

IMessage interface of the Message class. The attachments are attached to the message as

described earlier in this discussion using AddAttachments method of the IMessage

interface. The AddAttachments method returns the interface IBodyPart. The GetStream

of the IBodyPart interface returns the stream object, which is converted to the required

format using the Type property of the stream object. The Read method of the stream

object can be used to read the stream object data. This stream object data is converted

into XML document and transmitted to the client to be uploaded as part of the email

 53

message. The XML document received by the server is converted back to the original

message using the raw_Open method of the stream object by specifying the respective

conversion type the stream object data can be read back into the stream object. The

IDataSource interface can be used to reinterpret the stream object back into the

attachments using the IBodyPart interface. The diagram (Figure 25) shows the

attachment converted into XML document as transmitted to the Server to be uploaded as

attachment of the specified email message.

SendMail()
{

CDO::IMessagePtr pMessagePtr1;

// Create IDataSource object using Message class
CDO::IDataSourcePtr pDSin;
pDSin.CreateInstance(__uuidof(CDO::Message));

// Transmit the message
hr=pMessagePtr1->Send();

// Initialize IDataSource object with message
pDSin=pMessagePtr1;

// Save message in Folder
hr=pDSin->SaveTo(pSrcURL

, variant_t((IDispatch*)pConnPtr, true)
, adModeReadWrite
, adCreateNonCollection
, (RecordOpenOptionsEnum)NULL
, bstr_From
, bstr_Passwd
);

pMessagePtr1=NULL;
pDSin=NULL;

}

 54

The new email message can be transmitted using the send method of the

IMessage of the Message class. Transmitting the messages using this method establishes

the connection between the exchange server and the server relays the message. While the

server efficiently handles this, it failed to fulfill the required, widely accepted standard of

saving a copy of the sent message in the SentItems folder. Research shows that this can

be handled in many different ways. The eManager application utilizes the uncomplicated

simple solution by saving the copy of the message in SentItems folder with SaveTo

method of the IDataSource interface through Message class. The IDataSource interface

enables access message data in other objects. [MSDN05]

 55

Application Enhancements

The eManager application modeled the real world situation requiring the

integration of mail capabilities to current application and is continuously changing

according to the ever-changing requirements and technological changes. The phase 1 of

eManager application integrates the mail capabilities including send/receive email, create

personal contacts, delete items, integration of server events, process and threads and

application events. The phase 1 lays the foundation for further application enhancements

and explorations. The phase 2 of the application will include the integration of Active

Directory in addition to e-mail, personal calendar, group scheduling, personal contacts,

personal tasks, the ability to collaborate and schedule with other users. In addition to all

of the above-mentioned strengthening additions, the eManager application will integrate

the virus scan integration of the email messages before transmitting them and before

delivering the messages to individual users. The current outward show of the application

is adequate in providing and supporting the most pressing requirements, the application

necessitates further improvements when integrating the different artifacts mentioned

above.

 56

Obstacles, Pitfalls and Suggestions

Saving the messages using the SavetoContainer method of the IDataSource

interface was just enough in saving the messages. It was noticed that the messages were

saved with a GUID as part of the message title to form the resource Uniform Resource

Locator (URL). Research showed that this might create issues at a later stage of the

system implementation, limiting the amount of messages that can be stored in the folder

itself. This limitation could initiate serious predicaments at the maintenance phase of the

application. A solution to this problem was worked out to accommodate the messages

without any limitations enforced by the application as a default on the amount of

messages that can be stored on users personal folders. The solution incorporates

adaptation of the message title into the formation of the URL of the resource. While this

unraveled the problem greatly, it created a situation where the system failed to save

messages with matching titles. Further analysis on how this issue was handled by

Microsoft led to the process of suffixing the URL of the resource with numbers when

storing messages with matching title.

The discussion highlighted the importance of effective management of process

and threads in fulfilling the requirements and their implementation. There were several

 57

incidents in the development of eManager application where successful message handling

between applications and application windows were of prim importance. While there

were several approaches to handle inter-process communication messages, the critical

need was to decide how these messages would be sent to the specific

application/application window. Research showed and directed to utilize the message

handling thru windows messages and other means where the message is passed thru

Windows operating system. While this method was effective, a more robust

implementation was required on specific circumstances. This was again handled by

obtaining the process using the snapshot methods explained in the discussions earlier.

Here, the process of specific interest is identified and distinguished from the snapshot and

the desired message is sent to the application directly. This method provides the much-

anticipated effective application performance.

Multithreading an application could fetch untold complications and untold

impediments. Initial analysis requirements suggested utilizing multithreading different

artifacts of the eManager applications to be implemented as part of DLLs. This fabricated

a situation where the multithreading could not be achieved. There were considerable

amount of time and with no impending solution that can be achieved within the specified

time constraints, it was decided to implement the application modules that require

multithread processing as an independent application module managed and organized

using effective inter-process communications management. This awards one of the areas

for further research where multithreading applications are implemented using DLL.

 58

Applications providing implicit authentication require recognizing the user details

including the user name, Domain Name, fully qualified Domain Name, network

identification details, etc. Research proved that these requirements could be fulfilled

using Secure32.lib of the windows system library. This helps in identifying the user

credentials for auditing and tracing purposes.

In the world of Web applications, today, it is hard to locate an application that

does not support hyperlink controls and hyperlink capabilities. The eManager application

was designed to incorporate the hyperlinks to enable the implementation the addition and

removal of attachments. The hyperlink was incorporated and proved to be effective as an

independent application distributed as part of the application main window. The

eManager application requirements incorporate the hyperlink as part of the dialog bar

integrating MFC CDialogBar. Generating the hyperlink class dynamically at runtime as

part of the CDialogBar implementation led to difficulty in message handling. The issue

was discussed with the client and it was acknowledged to avoid utilizing the hyperlinks

as part of the phase 1 of the project due to time constraints. The implementation of the

hyperlinks is to be implemented as part of the phase 2 of the project.

 59

Conclusion

The eManager application was built using VC++ utilizing COM methodologies

incorporating CDO, ADO, LDAP and Active Directory. The ability to utilize CDO for

Exchange is demonstrated beyond regular handling. The application provides convincing

examples in achieving the custom controls easily. The eManager application provides the

foundation for effective application development using processes and threads, and

realizes their effective management and assimilation into successful application design.

To ensure that the key software engineering techniques are understood, each and every

artifact of OOAD methodologies are introduced and dealt with great detail throughout the

application development process. The above discussion outlined the relevant examples

and highlighted methods of operation and how each of the artifacts outlined influenced

the development of the eManager application.

The software process is to furnish the ability to measure what is happening to the

project. The discussion utilized the object-oriented life-cycle model, object-oriented

analysis, object-oriented design and the testing and maintenance of object-oriented

software. The eManager application development underlines the importance of

 60

documentation, maintenance, reuse, portability, testing and utilization of CASE tools.

The Phase 1 of the eManager application is to be integrated with the existing enforcement

process applications. The eManager application will reduce the post delivery

maintenance costs by 10 percent as post delivery maintenance and application

development is treated with no distinction throughout the application development. The

eManager application provides the communication solutions that are vital for

enforcement agencies to carryout critical tasks efficiently and will bring the next

generation technological advancements, while supporting instant messaging, send and

receive email, personal calendar, personal and group scheduling, personal contacts,

personal tasks and the ability to collaborate and schedule with other users. Most of all the

eManager application provides and supports the ability to administer user and group

administration tasks by system administrators with friendly user interface.

 61

Appendix A: Use Cases

Use Case UC: eManager System Application

Description: eManager application provides an integrated solution for managing and

organizing e-mail messages, schedules, tasks, notes, contacts, and other information for

the enforcement workers. The system is an integrated application system. It is designed to

provide the essential real-time communication between stakeholders. The application

provides critical support as backbone to Rhoden Technologies.

Primary Actor: Enforcement Workers and Attorneys

Stakeholders and Interests:

Enforcement Workers

- The enforcement workers are interested in effective and comprehensive

communication between clients, Attorneys and law enforcement agencies

- The enforcement workers need the alert system to alarm them of any critical

activities that require their attention and effective judgment in providing valuable

service to the clients

Attorneys

 62

- The attorneys are interested to be aware of critical information concerning the

client’s performance, outstanding amounts owed to the state and federal agencies,

effective procedures and practices applied in choosing the legal actions against

the client

- The attorneys are interested in identifying any deliberate actions that caused the

legal proceedings and their impact on the speedy status changes leading to

effective financial aid distribution to the client.

- The attorneys are interested to make decision that are acceptable to eliminate

funds being distributed to clients

Frequency: powerfully 24/7

Preconditions: The enforcement worker must be authorized to log into the system to

access the emails. The eManager client must be installed on the network client. The client

must be in the same network as the eManager server.

Post Condition: The enforcement workers may choose to respond to the alerts and

emails received. The actions alerts require specific tasks be completed/initiated before

deadline.

Main Success Scenarios:

1. System initializes the client

2. System authenticates user

3. System transmits the emails.

4. System senses new emails and alerts the user

5. System moves items between email folders

6. System deletes the selected items

 63

7. System displays the selected item for the user to read

Extensions:

1.a. Authentication failure:

1. The system ends process.

2.a. Invalid server connection:

1. The system ends process.

Special Requirements: Client system requirements:

Technology and Data Variations List: None

Open Issues:

Use Case Diagram:

(Please refer to Figure 1 in Appendix C)

Last Updated by: Solomon Vedaprakash

Date Last Update: October 08, 2005 12:14:21

 64

Use Case: UC-RI00-Read Items

Description: System validates the user input and guide and transfer input requirements to

respective Use Case processes based on the operations performed. The display inbox

action requires the operations performed in accordance with reading inbox and returning

the end results back. The display appointments action requires the operations performed

in accordance with reading appointments and returning the end results back. The display

contacts action requires the operations performed in accordance with reading contacts

and returning the end results back. The display deleted items action requires the

operations performed in accordance with reading deleted items and returning the end

results back. The display drafts action requires the operations performed in accordance

with reading drafts and returning the end results back. The display sent items action

requires the operations performed in accordance with reading sent items and returning the

end results back.

Primary Actor: System

Stakeholders and Interests:

Enforcement Workers:

- The Enforcement Workers are interested in viewing and reading the message

items

- The Enforcement Workers are interested in viewing and reading the drafts items

- The Enforcement Workers are interested in viewing and reading the deleted items

 65

- The Enforcement Workers are interested in viewing and reading contact details

- The Enforcement Workers are interested in viewing and reading appointments

Frequency: Daily

Preconditions: The enforcement worker must be authorized to log into the system to

access the emails. The eManager client must be installed on the network client. The client

must be in the same network as the eManager server.

Post Condition:

The system displays the requested item for the worker to view and read.

Main Success Scenarios:

System performs the following to read inbox items.

1. System displays the inbox message item in accordance with UC-RI01 use case.

System performs the following to read appointment items.

2. System displays the appointment items in accordance with UC-RI02 use case.

System performs the following to read contact items.

3. System displays the contact items in accordance with UC-RI03 use case.

System performs the following to read deleted items.

4. System displays the deleted items in accordance with UC-RI04 use case.

System performs the following to read draft items.

5. System displays the draft items in accordance with UC-RI05 use case.

System performs the following to read sent items.

6. System displays the sent items in accordance with UC-RI06 use case.

 66

Extensions:

Special Requirements: None

Technology and Data Variations List: None

Open Issues:

Use Case Diagram:

(Please refer to Figure 2 in Appendix C)

Last Updated by: Solomon Vedaprakash

Date Last Update: October 08, 2005 12:14:21

 67

Use Case: UC-RI01-Read Inbox Items

Description:

The system reads the email messages received by the system for the particularized user.

The email details are sent to the client through XML and shown to the user.

Primary Actor: System

Stakeholders and Interests:

Enforcement Workers:

- The Enforcement Workers are interested in viewing and reading the inbox

message items

Frequency: Daily

Preconditions: The enforcement worker must be authorized to log into the system to

access the emails. The eManager client must be installed on the network client. The client

must be in the same network as the eManager server.

Post Condition:

System authenticates the worker successfully.

 68

Main Success Scenarios:

System performs the following to read inbox items.

1. System connects to the server

2. System reads the inbox records

3. System generates the XML

4. System returns the XML details to the client

5. System interprets the XML

6. System loads the records into the grid in the form

Extensions:

Special Requirements: None

Technology and Data Variations List: None

Open Issues:

Use Case Diagram:

(Please refer to Figure 3 in Appendix C)

Last Updated by: Solomon Vedaprakash

Date Last Update: October 08, 2005 12:14:21

 69

Use Case: UC-RI02-Read Appointment

Description:

The system reads the appointment details received by the system for the particularized

user. The appointment details are sent to the client through XML and shown to the user.

Primary Actor: System

Stakeholders and Interests:

Frequency: Daily

Preconditions: The enforcement worker must be authorized to log into the system to

access the emails. The eManager client must be installed on the network client. The client

must be in the same network as the eManager server.

Post Condition:

The system displays the requested item for the worker to view and read.

Main Success Scenarios:

System performs the following to read Appointment items.

1. System connects to the server

2. System reads the appointment records particularized for the user

3. System generates the XML

4. System returns the XML details to the client

5. System interprets the XML

6. System loads the records into the grid in the form

 70

Extensions:

Special Requirements: None

Technology and Data Variations List: None

Open Issues:

Use Case Diagram:

(Please refer to Figure 4 in Appendix C)

Last Updated by: Solomon Vedaprakash

Date Last Update: October 08, 2005 12:14:21

 71

Use Case: UC-RI03-Read Contacts

Description:

The system reads the contact details received by the system for the particularized user.

The contact details are sent to the client through XML and shown to the user.

Primary Actor: System

Stakeholders and Interests:

Frequency: Daily

Preconditions: The enforcement worker must be authorized to log into the system to

access the emails. The eManager client must be installed on the network client. The client

must be in the same network as the eManager server.

Post Condition:

The system displays the requested item for the worker to view and read.

Main Success Scenarios:

System performs the following to read Contact items.

1. System connects to the server

2. System reads the contact details saved by the worker

3. System generates the XML

4. System returns the XML details to the client

5. System interprets the XML

6. System loads the records into the grid in the form

 72

Extensions:

Special Requirements: None

Technology and Data Variations List: None

Open Issues:

Use Case Diagram:

(Please refer to Figure 5 in Appendix C)

Last Updated by: Solomon Vedaprakash

Date Last Update: October 08, 2005 12:14:21

 73

Use Case: UC-RI04-Read Deleted Items

Description:

The system reads the deleted items details received by the system for the particularized

user. The deleted items details are sent to the client through XML and shown to the user.

Primary Actor: System

Stakeholders and Interests:

Frequency: Daily

Preconditions: The enforcement worker must be authorized to log into the system to

access the emails. The eManager client must be installed on the network client. The client

must be in the same network as the eManager server.

Post Condition:

The system displays the requested item for the worker to view and read.

Main Success Scenarios:

System performs the following to read Deleted Items.

1. System connects to the server

2. System reads the deleted records particularized for the user

 74

3. System generates the XML

4. System returns the XML details to the client

5. System interprets the XML

6. System loads the records into the grid in the form

Extensions:

Special Requirements: None

Technology and Data Variations List: None

Open Issues:

Use Case Diagram:

(Please refer to Figure 6 in Appendix C)

Last Updated by: Solomon Vedaprakash

Date Last Update: October 08, 2005 12:14:21

 75

Use Case: UC-RI05-Read Drafts

Description:

The system reads the drafted email messages received by the system for the

particularized user. The draft email message details are sent to the client through XML

and shown to the user.

Primary Actor: System

Stakeholders and Interests:

Enforcement Workers:

- The Enforcement Workers are interested in viewing and reading the inbox

message items

Frequency: Daily

Preconditions: The enforcement worker must be authorized to log into the system to

access the emails. The eManager client must be installed on the network client. The client

must be in the same network as the eManager server.

Post Condition:

System authenticates the worker successfully.

Main Success Scenarios:

System performs the following to read drafts items.

1. System connects to the server

2. System reads the drafts records

 76

3. System generates the XML

4. System returns the XML details to client

5. System interprets the XML

6. System loads the records into the grid in the form

Extensions:

Special Requirements: None

Technology and Data Variations List: None

Open Issues:

Use Case Diagram:

(Please refer to Figure 7 in Appendix C)

Last Updated by: Solomon Vedaprakash

Date Last Update: October 08, 2005 12:14:21

 77

Use Case: UC-RI06-Read Sent Items

Description:

The system reads the sent items details received by the system for the particularized user.

The sent items details are sent to the client through XML and shown to the user.

Primary Actor: System

Stakeholders and Interests:

Frequency: Daily

Preconditions: The enforcement worker must be authorized to log into the system to

access the emails. The eManager client must be installed on the network client. The client

must be in the same network as the eManager server.

Post Condition:

The system displays the requested item for the worker to view and read.

Main Success Scenarios:

System performs the following to read Sent Items.

1. System connects to the server

2. System reads the sent items records particularized for the user

 78

3. System generates the XML

4. System returns the XML details to the client

5. System interprets the XML

6. System loads the records into the grid in the form

Extensions:

Special Requirements: None

Technology and Data Variations List: None

Open Issues:

Use Case Diagram:

(Please refer to Figure 8 in Appendix C)

Last Updated by: Solomon Vedaprakash

Date Last Update: October 08, 2005 12:14:21

 79

Use Case: UC-NI00-Create New Items

Description:

The system accepts the new message details and transmits the message or saves the

message based on the user action. A copy of the sent message is saved in the sent items

folder when the message is transmitted and the message is saved in the drafts folder when

the message is saved as draft. System accepts new contact details and creates the new

contact details. System accepts new appointment details and creates the new appointment

details.

Primary Actor: System

Stakeholders and Interests:

Enforcement Workers:

- The Enforcement Workers are interested in creating new email messages

- The Enforcement Workers are interested in creating new contacts

- The Enforcement Workers are interested in creating appointments

- The Enforcement Workers are interested in saving drafts

Frequency: Daily

Preconditions: The enforcement worker must be authorized to log into the system to

access the emails. The eManager client must be installed on the network client. The client

must be in the same network as the eManager server.

 80

Post Condition:

The system displays the requested item for the worker to view and read.

Main Success Scenarios:

System performs the following to create new message.

1. System creates the new message in accordance with UC-NI01 use case.

System performs the following to create new contact.

2. System creates the new contact in accordance with UC-NI02 use case.

System performs the following to create new appointments.

3. System creates the new appointments in accordance with UC-NI03 use case.

System performs the following to create new drafts.

4. System saves the drafts in accordance with UC-NI04 use case.

Extensions:

Special Requirements: None

Technology and Data Variations List: None

Open Issues:

Use Case Diagram:

(Please refer to Figure 9 in Appendix C)

Last Updated by: Solomon Vedaprakash

Date Last Update: October 08, 2005 12:14:21

 81

Use Case: UC-NI01-Create New Message

Description:

System accepts the new message details along with attachment details, collects the

attachments and transmits the information to the server. The server transmits the message

and a copy of the message is saved in the sent items folder of the user.

Primary Actor: System

Stakeholders and Interests:

Enforcement Workers:

- The Enforcement Workers are interested creating new email messages

Frequency: Daily

Preconditions: The enforcement worker must be authorized to log into the system to

access the emails. The eManager client must be installed on the network client. The client

must be in the same network as the eManager server.

Post Condition:

System authenticates the worker successfully.

 82

Main Success Scenarios:

System performs the following to create new email message.

1. System accepts the to email address

2. System accepts the cc email address

3. System accepts the email subject

4. System accepts the email message body

5. System accepts the attachments

6. System transforms the email message into XML document

7. System sends the XML document to the server

8. Server restores email message from the XML

System skips steps 9 and 10 when the user wants the email message be saved as a draft

and performs step 11

9. System sends the email message to recipients

10. System saves the copy of the email message sent in user’s sent items folder

System skips step 11 when sending the message to recipients

11. System saves the email message in drafts folder

12. System returns success/failure indicator back to client

Extensions:

Special Requirements: None

Technology and Data Variations List: None

Open Issues:

 83

Use Case Diagram:

(Please refer to Figure 10 in Appendix C)

Last Updated by: Solomon Vedaprakash

Date Last Update: October 08, 2005 12:14:21

 84

Use Case: UC-NI02-Create New Contact

Description:

System accepts the new contact details and transmits the information to the server. The

server saves the contact details in the contacts folder of the user.

Primary Actor: System

Stakeholders and Interests:

Enforcement Workers:

- The Enforcement Workers are interested creating new contacts

Frequency: Daily

Preconditions: The enforcement worker must be authorized to log into the system to

access the emails. The eManager client must be installed on the network client. The client

must be in the same network as the eManager server.

Post Condition:

System authenticates the worker successfully.

Main Success Scenarios:

System performs the following to create new contacts.

1. System accepts the contact name, address, phone numbers, email address, website

address, office details, secretary details, spouse details, date of birth and

anniversary dates.

2. System transforms the contact details into XML document

3. System sends the XML document to the server

 85

4. Server restores the contact details from the XML

5. System saves the contact details in user’s contacts folder

6. System returns success/failure indicator back to client

Extensions:

Special Requirements: None

Technology and Data Variations List: None

Open Issues:

Use Case Diagram:

(Please refer to Figure 11 in Appendix C)

Last Updated by: Solomon Vedaprakash

Date Last Update: October 08, 2005 12:14:21

 86

Use Case: UC-NI03-Create New Appointments

Description:

System accepts the new appointment details and transmits the information to the server.

The server saves the appointment details in the appointments folder of the user.

Primary Actor: System

Stakeholders and Interests:

Enforcement Workers:

- The Enforcement Workers are interested creating new appointments

Frequency: Daily

Preconditions: The enforcement worker must be authorized to log into the system to

access the emails. The eManager client must be installed on the network client. The client

must be in the same network as the eManager server.

Post Condition:

System authenticates the worker successfully.

Main Success Scenarios:

System performs the following to create new appointments.

1. System accepts the appointment details such as participants, subject, location,

date and time and description of the appointment.

2. System transforms the appointment details into XML document

3. System sends the XML document to the server

 87

4. Server restores the appointment details from the XML

5. System saves the appointment details in user’s calendar folder

6. System returns success/failure indicator back to client

Extensions:

Special Requirements: None

Technology and Data Variations List: None

Open Issues:

Use Case Diagram:

(Please refer to Figure 12 in Appendix C)

Last Updated by: Solomon Vedaprakash

Date Last Update: October 08, 2005 12:14:21

 88

Use Case: UC-NI04-Create New Drafts

Description:

System accepts the new message draft details along with the attachment details and

transmits the information to the server. The server saves the message in the drafts folder

of the user.

Primary Actor: System

Stakeholders and Interests:

Enforcement Workers:

- The Enforcement Workers are interested creating new email message draft

Frequency: Daily

Preconditions: The enforcement worker must be authorized to log into the system to

access the emails. The eManager client must be installed on the network client. The client

must be in the same network as the eManager server.

Post Condition:

System authenticates the worker successfully.

Main Success Scenarios:

 89

System performs the following to create new drafts.

1. System accepts the new message draft details.

2. System transforms the message details into XML document

3. System sends the XML document to the server

4. Server restores the message details from the XML

5. System saves the message details in user’s drafts folder

6. System returns success/failure indicator back to client

Extensions:

Special Requirements: None

Technology and Data Variations List: None

Open Issues:

Use Case Diagram:

(Please refer to Figure 13 in Appendix C)

Last Updated by: Solomon Vedaprakash

Date Last Update: October 08, 2005 12:14:21

 90

Use Case: UC-MT00-Create New Alert

Description:

The eManager client process registers the client with the server. The server notifies the

client of arrival of the new email messages.

Primary Actor: System

Stakeholders and Interests:

Enforcement Workers:

- The Enforcement Workers receive alerts of the arrival of the new email messages

and new appointment requests from users and/or other stakeholders

Frequency: Daily

Preconditions: The worker is authenticated by the system to access the emails and is

currently logged on the eManager system.

Post Condition:

The system displays the new email message and/or the appointment requests from other

stakeholders.

 91

Main Success Scenarios:

1. System registers the client with the server by passing the clients address.

System continues to perform steps 3 and 4

2. The Server inspects the users email message folder continually for new email

messages or new appointment requests.

3. System validates if the client is still active

System performs step 5 when the client goes inactive

4. The Server alerts the client of the new item found in users folder

5. System terminates the client reference

Extensions:

Special Requirements: None

Technology and Data Variations List: None

Open Issues:

Use Case Diagram:

(Please refer to Figure 14 in Appendix C)

Last Updated by: Solomon Vedaprakash

Date Last Update: October 08, 2005 12:14:21

 92

Appendix B: CRC Cards

Enforcement Worker

USER

01. Logon to eManager
02. Read Inbox
03. Read Drafts
04. Read Outbox
05. Read Contacts
06. Read Calendar
07. Read Sent Items
08. Read Attachments
09. Read Appointments
10. Read Deleted Items
11. Create New Message
12. Save Drafts
13. Add Attachments
14. Create New Contact
15. Create New Appointment
16. Delete Inbox
17. Delete Drafts
18. Delete Outbox
19. Delete Contacts
20. Delete Sent Items
21. Delete Attachments
22. Delete Appointments
23. Delete Deleted Items
24. Update Drafts
25. Update Contacts
26. Update Attachments
27. Update Appointments
28. Move Inbox Item
29. Move Drafts Item
30. Move Sent Items Item
31. Move Deleted Items Item

01. Appointment
02. Attachment
03. Contact
04. Message

Message

01. Read Message
02. Create New Message
03. Save Message
04. Delete Message
05. Update Message
06. Move Message
07. Send Message
08. Generate XML

01. User
02. XML

Contact

01. Read Contact
02. Create New Contact
03. Save Contact
04. Delete Contact
05. Update Contact
06. Move Contact
07. Generate XML

01. User
02. Appointment
03. XML

Appointment

01. Read Appointment
02. Create New Appointment
03. Save Appointment
04. Delete Appointment
05. Update Appointment
06. Move Appointment
07. Send Appointment Request
08. Generate XML

01. User
02. Contact
03. XML

XML

01. Read Appointment
02. Create New Appointment
03. Save Appointment
04. Delete Appointment
05. Update Appointment
06. Move Appointment
07. Send Appointment Request
08. Generate XML

01. User
02. Appointment
03. Message
04. Contact

eManagerSystem

01. Validate User
02. Validate Application Call
03. Terminate Process
04. Register Client
05. Process Server Call
06. Alert User
07. Release Server Registration
08. Serve Server Events

01. User

CRC Cards

 93

Appendix C: List of Figures

Figure 1: eManager UC1 [Use Case]

eManager Application

Process
MultiThreading
Server Events

eManager
System Logon

Process

Move Items

Delete Items

Terminate
Process

Create New
Items

Read Items

Connect to
Server

Initialize client

Authenticate
user

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>
<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

 94

Figure 2: Read Items UC-RI00 [Use Case]

Read ItemsRead Inbox

Read Sent
Items Read Drafts

Read Deleted
Items

Read Contacts

Read
Appointments

<<include>>

<<include>>
<<include>>

<<include>>

<<include>>
<<include>>

 95

Figure 3: Read Items UC-RI01 [Use Case]

Figure 4: Read Items UC-RI02 [Use Case]

Read Items MailProcInterface

Read
Appointments

<<include>>

Read Items

Read
Attachments

Read Inbox

MailProcInterface

<<include>>

<<include>>

 96

Figure 5: Read Items UC-RI03 [Use Case]

Figure 6: Read Items UC-RI04 [Use Case]

MailProcInterface

Read Items

Read Deleted
Items

<<include>>

Read Items

MailProcInterface

Read Contacts

<<include>>

 97

Figure 7: Read Items UC-RI05 [Use Case]

Figure 8: Read Items UC-RI06 [Use Case]

Read Items MailProcInterface

Read Sent
Items

Read
Attachments

<<include>>

<<include>>

Read Items

MailProcInterface

Read Drafts
<<include>>

 98

Figure 9: CrNew Items UC-NI00 [Use Case]

Figure 10: CrNew Items UC-NI01 [Use Case]

MailProcInterface

Add
Attachments

Save DraftCreate New
Message

<<include>>

<<extend>>

Create New

Contact

Create New
Appointment

Save Draft

Create New

Message

Create New

Items

<<extend>>

<<include>>

<<include>>

<<include>><<include>>

 99

Figure 11: CrNew Items UC-NI02 [Use Case]

Figure 12: CrNew Items UC-NI03 [Use Case]

Figure 13: CrNew Items UC-NI04 [Use Case]

MailProcInterface

Save Draft

Create New
Appointment IeMPersonProc

IeMPersonProc
Create New

Contact

 100

Figure 14: MtClient Process UC-MT00 [Use Case]

Figure 15: eManager Context Diagram [Use Case]

eManager Application

Client

Law & Enforcement Officials

Enforcement Worker

Attorney

Process
MultiThreading Server

Events

IciFace

IclientSink

Initiate Client
Event

Register Client

Enforcement Worker

<<include>>

 101

Figure 16: Application accessing Directory Service using LDAP wire protocol [CMN00]

Client Application

Client

Active Directory

Windows 2000 Server

LDAP

Figure 17: The relationship of ADSI and ADO to Active Directory [CMN00]

Client Application
Client

Active Directory

Windows 2000 Server

LDAP

ADO

ADSI OLE DB provider

OLEDB

ADSI

ADSI LDAP provider

 102

Figure 18: CDO to access Active Directory [CMN00]

Client Application
Client

Active Directory

Windows 2000 Server

LDAP

ADO

ADSI OLE DB provider

OLEDB

ADSI

ADSI LDAP provider

CDO and
CDOEXM

Figure 19: Proxy / Stub Overview [JSW00]

Client

COM
DLL

System
Registry

proxy/
stub dll

exe
server

COM
Object

proxy/
stub dll

 103

Figure 20: Connection Points and Sinks [JSW00]

Client

COM
Object

COM
server

COM
Object

Figure 21: eManager Application Architecture

eManager
client

MS Exchange Server 2003
Mailbox folders

Web storage system folders

Active Directory
Exchange users and mailbox settings

CDO, ADO, XML

ADSI, CDO

 104

Figure 22: eManager Contacts Tab Control Dialog

 105

Figure 23: Custom ComboBox Control Class Diagram

CMButtonCtrl

- bCtrlBorderPen : CPen
- m_MListCtrlWnd
- m_ListRect : RECT
- m_CtrlWidth : int
- m_CtrlHeight : int
- aArrowColor : COLORREF

+ Create (lpszCaption : LPCTSTR, dwStyle : DWORD, rect
: const RECT, pParentWnd : CWnd*, nID : UINT) : bool
+ OnSize (nType : UINT, cx : int, cy : int) : void
+ DrawItem (lpDrawItemStructure :
LPDRAWITEMSTRUCTURE) : void
+ DrawArrow (passRect : RECT, passStr : CString,
lpDrawItemStructure : LPDRAWITEMSTRUCTURE) : bool
+ OnMeasureItem (nIDCtrl : int, lpMeasureItemStructure :
LPMEASUREITEMSTRUCTURE) : void
+ OnLButtonDown (nFlags : UINT, point : CPoint) : void
+ DispList () : void
+ OnSetFocus (pOldWnd : CWnd*) : void

CMListCtrl

- m_ClientRect : RECT
- csCurrentTxt : CString
- lpCurrentItemStructure :
LPDRAWITEMSTRUCTURE
- CtrlBorderPen : CPen

+ Create (dwStyle : DWORD, rect : const RECT,
pParentWnd : CWnd*, nID : UINT, pTxtHilightClr :
COLORREF, pTxtHilightBKClr : COLORREF,
pCtrlBKClr : COLORREF) : bool
+ MeasureItem (lpMeasureItemStructure :
LPMEASUREITEMSTRUCTURE) : void
+ OnSize (nType : UINT, cx : int, cy : int) : void
+ SetCtrlColor (pTxtHilightPenClr : COLORREF,
pTxtHilightBKClr : COLORREF, pCtrlBKClr :
COLORREF) : bool
+ DrawItem (lpDrawSTructure :
LPDRAWITEMSTRUCTURE) : void
+ AddString (grpID : int, itemID : int, lpszItem :
LPCTSTR) : int
+ SetPrevSelection () : void
+ GetPrevSelection () : int
+ OnKillFocus (pNewWnd : CWnd*) : void
+ OnLbnSelchange () : void

CMListCtrlWnd

- m_Parent : "CWnd*"
- m_MListCtrl

+ Create (pParentWnd : CWnd*, nID : UINT) : bool
+ OnSize (nType : UINT, cx : int, cy : int) : void
+ OnShowWindow (bShow : bool, nStatus : UINT) :
void

Custom ComboBox

implements

-1

contains

+1

 106

Figure 24: eManager Contacts window with custom ComboBox shows the Business 2
item selected

Figure 25: eManager application attachments processing using XML document and

Stream object

 107

Figure 26: eManager Data Communications through XML

Client

Minicomputer

XML Document

Figure 27: eManager application class diagram

 108

Figure 28: eManager application Logon/Server Event

Figure 29: eManager application Send Mail

 109

Figure 30: eManager application Read Items

 110

Figure 31: eManager application Save Draft

Figure 32: eManager application Move Item

 111

Figure 33: eManager application Delete Item

Figure 34: eManager application Create New Message State Diagram

 112

Figure 35: eManager application Component Diagram

Figure 36: eManager application Deployment Diagram

 113

References

[BDN96] Baudoin, Claude & Hollowell, Glenn. “Realizing the Object-

Oriented Lifecycle”, Upper Saddle River, NJ: Prentice Hall,

1996.

[CAC] Cockburn, Alistair, “Using CRC Cards”,

<http://alistair.cockburn.us/crystal/articles/ucrcc/usingcrccards.ht

ml> (May 18, 2005 20:45)

[CMN00] Cindy Martin, “Programming Collaborative Web Applications

with Microsoft Exchange Server 2000”

[DWCA] Andrew W Troelsen, “Developer’s Workshop to COM and ATL

3.0”

[FRU00] “Functional Requirements and Use Cases”, Bredemeyer

Consulting (1999–2000),

<http://www.bredemeyer.com/use_cases.htm> (May 20, 2005

16:45)

[JMS02] Kris Jamsa, “C/C++/C# Programmer’s Bible – The Ultimate

Guide to C/C++/C# Programming” – Second Edition

 114

[JSW00] John E. Swanke, “COM Programming by Example Using MFC,

ActiveX, ATL, ADO and COM+”

[KBWC] Kent Back, Ward Cunningham, “A Laboratory For Teaching

Object Oriented Thinking”, October 1989,

<http://c2.com/doc/oopsla89/paper.html> (May 19, 2005 16:35)

[MSD05] “Collaborative Applications”, Microsoft Corporation, 2005,

<http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/wss/wss/_esdk_intro_coll_apps.asp >(June 16, 2005 21:33)

[MSD052] “Using Active Directory Service Interfaces”, Microsoft

Corporation, 2005,

<http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/adsi/adsi/using_adsi.asp>(June 18, 2005 21:44)

[MSD053] “RegisterWindowMessage Function”, Microsoft Corporation,

2005,

<http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/winui/winui/windowsuserinterface/windowing/messagesandm

essagequeues/messagesandmessagequeuesreference/messagesan

dmessagequeuesfunctions/registerwindowmessage.asp >(June

18, 2005 23:33)

[MSDN05] “IDataSource Methods”, Microsoft Corporation, 2005,

<http://msdn.microsoft.com/library/default.asp?url=/library/en-

 115

us/cdosys/html/9d3b50c4-fcab-4455-b6d9-2acd71d51517.asp

>(May 6, 2005 20:22)

[OOA96] Brummond, Nils, “Object Oriented Analysis and Design using

CRC Cards”, 1996,

<http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/crc_b/>(

May 16, 2005 10:05)

[PBS97] “Performance based supportability analysis: A success story”,

Logistics Spectrum, May/Jun1997,

<http://www.findarticles.com/p/articles/mi_qa3766/is_199705/ai

_n8776821 >(May 15, 2005 9:05)

[PLY00] Perdita Stevens, Rob Pooley, “Using UML Software engineering

with objects and components”

[REL01] “Developing Good Reliability Specifications”, ReliaSoft 2001,

<http://www.weibull.com/hotwire/issue3/relbasics3.htm >(May

15, 2005 8:45)

[RMD] Rubin, M David, ”Introduction to CRC Cards”, SoftStar-Inc,

1994-2002, <http://www.softstar-

inc.com/Methodology/CRCIntro.htm> (May 18, 2005 21:01)

[SADI] “Sample Application Design and Implementation”,

<http://java.sun.com/blueprints/guidelines/designing_enterprise_

applications_2e/sample-app/sample-app1.3.1.html> (May 21,

2005 10:44

 116

[SCH05] Stephen R. Schach, “Object-Oriented & Classical Software

Engineering”, Sixth Edition

[SDR05] “How to Draw UML Diagrams”, SmartDraw 2005,

<http://www.smartdraw.com/tutorials/software-uml/uml5.htm>

(May 19, 2005 17:22)

[SER01] “Cost-Effective User Centered Design”, Serco Ltd (2001)

<http://www.usability.serco.com/trump/methods/recommended/r

equirements.htm >(May15, 2005 8:15)

[WBW90] R. Wirfx-Brock, B. Wilkerson, and L. Wiener, “Designing

Object-Oriented Software”, Prentice-Hall, Englewood Cliffs, NJ,

1990. (Chapters 1, 12, and 13)

[WMH100] Daniel Kopitchinski, “Windows Message Handling – Part 1”,

2000

<http://www.codeproject.com/dialog/messagehandling.asp>(Jun

e 16, 2005, 17:45)

[WMH200] Daniel Kopitchinski, “Windows Message Handling – Part 2”,

2000

<http://www.codeproject.com/dialog/messagehandling2.asp>(Ju

ne 16, 2005, 17:45)

[XYL01] XiangYang Liu, “Early-binding to a non-existent COM object”,

2001, http://www.codeproject.com/com/comearlybind.asp (May

20, 2005 15: 30)

 117

Glossary

AD Microsoft Active Directory is the foundation for distributed networks built

on Windows 2000 Server and Windows Server 2003 operating systems

that use domain controllers. Active Directory provides secure, structured,

hierarchical data storage for objects in a network such as users, computers,

printers, and services. Active Directory provides support for locating and

working with these objects.

ADO Microsoft® ActiveX® Data Objects (ADO) enables client applications to

access and manipulate data from a variety of sources through an OLE DB

provider. Its primary benefits are ease of use, high speed, low memory

overhead, and a small disk footprint. ADO supports key features for

building client/server and Web-based applications.

ADSI Active Directory Service Interfaces (ADSI) is a COM-based interface that

supports multiple directories and multiple languages

 118

ATL Active Template Library is a library of templates to support Visual C++

developers who must create lightweight COM / Component Object Model

components. ATL / Active Template Library has pre-written boilerplate

code which can be use to make programmers job easier, faster, more

efficient and much less tedious.

CDO Collaboration Data Objects library allows you to access the Global

Address List and other server objects, in addition to the contents of

mailboxes and public folders.

COM Common Object Module is an interface-programming paradigm.

Interfaces never provide an implementation and never define state. An

interface only describes what can be done. The supporting class defines

how it is accomplished.

CRC CRC stands for "Class-Responsibility-Collaborator". It names a

brainstorming technique that works with scenario walkthroughs to stress

test a design. It also supports a rapid and thorough exploration of design

alternatives. It may be used during initial model construction as a

brainstorming technique, and again later to evaluate the design. It may be

done by one person, or up to 5 people, after which it needs careful

facilitation.

 119

DLL DLL stands for Dynamic Link Library. A DLL is a special type of

executable file, which can only be called from within another program.

DLL's are often produced to modularize programs. DLLs are used

extensively where the functions within those DLLs are shared by more

than one process. On UNIX platforms DLL's are normally referred to as

Libraries.

DNS The Domain Name Server System is a global network of servers that

translate host names like www.somesite.com into dotted numerical IP

(Internet Protocol) addresses, like 144.268.89.76

ExOLEDB

Microsoft Exchange 2000 Server provides a new, high-performance OLE

DB provider that can be used on the local server to access Exchange store

items: the Exchange OLE DB (ExOLEDB) provider. Through the

ExOLEDB provider, programmers can access the Exchange store using

OLE DB, Microsoft ActiveX Data Objects (ADO), and Collaboration

Data Objects (CDO).

GUI Graphical User Interface lets users to interact with computer using pictures

and symbols in addition to entering typed text. Examples of GUIs include

Mac OS, Mac OS X, Microsoft Windows, and the X Window System. The

 120

purpose of a GUI is to make a computer easier to use. Rather than having

to memorize many complicated commands and type them precisely. The

user may point and click with an input device, usually a mouse, to run

programs or manipulate files.

IIS Internet Information Services (IIS) is a powerful Web server that provides

a highly reliable, manageable, and scalable Web application infrastructure

for all versions of Windows Server 2003. IIS helps organizations increase

Web site and application availability while lowering system administration

costs. IIS supports the Microsoft Dynamic Systems Initiative (DSI) with

automated health monitoring, process isolation, and improved

management capabilities.

LDAP Lightweight Directory Access Protocol is a client-server protocol for

accessing a directory service. It was initially used as a front-end to X.500,

but can also be used with stand-alone and other kinds of directory servers.

LDAP lets user to locate organizations, individuals, and other resources

such as files and devices in a network, whether on the Internet or on a

corporate intranet, and whether or not you know the domain name, IP

address, or geographic whereabouts are known. An LDAP directory can

be distributed among many servers on a network, then replicated and

synchronized regularly. An LDAP server is also known as a Directory

System Agent (DSA).

 121

MFC MFC is the Microsoft Foundation Classes. It's a wrapper to the Windows

API, which allows user to create windowed (GUI) programs under MS

Windows.

MTTF Mean Time to Fail (Software Measure) is a basic measure of reliability for

non-repairable systems. It is the mean time expected until the first failure

of a piece of equipment. MTTF is a statistical value and is meant to be the

mean over a long period of time and large number of units. For constant

failure rate systems, MTTF is the inverse of the failure rate. If failure rate

is in failures/million hours, MTTF = 1,000,000 / Failure Rate for

components with exponential distributions.

MTBF Mean Time Between Failures is a basic measure of reliability for

repairable items. It can be described as the number of hours that pass

before a component, assembly, or system fails. It is a commonly used

variable in reliability and maintainability analyses.

UP Unified Process is a software engineering process, aimed at guiding

software development organizations in their endeavors.

 122

URL Uniform Resource Locators help access the web storage system

efficiently.

XML EXtensible Markup Language was designed to describe data and to focus

on what data is.

	Regis University
	ePublications at Regis University
	Fall 2005

	Emanager - Cdo Made Simple
	Solomon Vedaprakash
	Recommended Citation

	Acknowledgements

