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Abstract 

Data storage requirements have increased dramatically in recent years due to the explosion in 

data volumes brought about by the Web 2.0 era. Changing priorities for database system 

requirements has seen NoSQL databases emerge as an alternative to relational database systems 

that have dominated this market for over 40 years. Web-enabled, always on applications mean 

availability of the database system is critically important as any downtime can translate in to 

unrecoverable financial loss. Cost is also hugely important in this era where credit is difficult to 

obtain and organizations look to get the maximum from their IT infrastructure from the least 

amount of investment. The purpose of this study is to evaluate the current NoSQL market and 

assess its suitability as an alternative to a relational database. The research will look at a case 

study of a bulletin board application that uses a relational database for data storage and evaluate 

how such an application can be converted to using a NoSQL database. This case study will also 

be used to assess the performance attributes of a NoSQL database when implemented on a low 

cost hardware platform. The findings will provide insight to those who are considering making 

the switch from a relational database system to a NoSQL database system. 
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Chapter 1 – Introduction 

Thesis Statement 

Web 2.0 applications are turning to NoSQL databases as a more scalable solution than a 

relational database for data storage. Transitioning an application from a relational environment 

to NoSQL environment presents many challenges in terms of schema design and data access 

methods. 

Preface 

Information explosion is a term that first appeared in the 1960’s in reference to the 

increasing amounts of electronic data that was starting to appear at that time. It would have been 

impossible to envisage, however, how big that explosion would become once the Internet 

became mainstream over 40 years later. The amount of data that exists today is growing at an 

alarming rate year on year and this has put an increasing amount of pressure on the database 

systems that are tasked with storing and managing this data. In 2008, the number of devices 

connected to the Internet exceeded the population of the planet (Evans, 2011). And this number 

has continued to grow to the point where it is expected to be at 50 billion devices by 2020. 

The vast majority of these devices produce data of some shape or form that needs to be 

persisted, communicated or otherwise processed in some way. We use our personal computers to 

create documents, write email, download music; smart phones are used to take pictures which are 

posted to social networking sites along with other user generated content. High speed mobile 

networks have enabled us to stay connected outside of the home or office, and once we are 

connected, we are generating data.  

This unprecedented increase in data has put new demands on database systems. The more 

data contained in a database, the more difficult it becomes to manage this data and, more 
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importantly to retrieve this data so it can be used. The relational model has been the mainstay of 

data storage systems since its inception by Edgar F. Codd in 1969. Commercially, vendors such 

as IBM, Oracle and Microsoft have had tremendous success with their database products which 

are all based on the relational model. However, as successful as this model has been, recently, 

companies have found that when the volume of data reaches a certain level, maintaining a 

relational database becomes an increasingly difficult task. There are of course methods of 

implementing a relational database that can handle even the largest volumes of data that need to 

be stored, but the cost of implementing such systems is out of reach of many organizations.  

This has created somewhat of a gap in the data storage market for a system that is capable 

of handling large volumes of data but does not carry a cost beyond the boundaries of a 

company’s budget. NoSQL databases have emerged as the leading contender to fill this gap. 

These systems are designed to handle huge volumes of data through a scale-out model that 

allows the database to be spanned over hundreds, or even thousands, of low cost commodity 

servers. This distributed model is designed to be highly fault tolerant as each piece of data in the 

database is replicated a number of times on other participating nodes in the cluster. Although 

relational database systems also support distributed architectures, the difficulty and cost of 

implementing this with the relational model has been a barrier for many. NoSQL databases aim 

to make this type of architecture more accessible by automating many of the difficult aspects of 

data distribution. Features such as automatic data sharding and replication abstract much of the 

complexity of distribution, allowing an organisation to easily expand their data storage system. 

On top of all this, NoSQL databases provide a flexible schema for data storage, as opposed to the 

rigid schema required in the relational model. This makes them more suitable for unstructured 
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data and changing requirements which has become increasingly important when designing 

databases systems.  

These benefits have seen an increasing uptake in NoSQL technology in recent years. Web 

industry giants such as Google, Facebook and Twitter have led the way in terms of adopting this 

technology and this has given confidence to others to move in the same direction. But what if an 

organisation is heavily invested in the relational world? Making the change to a new technology 

may seem like a daunting prospect for many, particularly as such a high value is placed on an 

organisations information. The goal of this study is to show that moving from a relational 

environment to a NoSQL environment can be achieved if the right approach is taken. Schema 

translation from relational to NoSQL is a key aspect of making the transition. Normalisation of 

data is the order of the day when designing relational databases, but a different thought process is 

required for NoSQL databases. Another important aspect is data retrieval. Although there is no 

standard query language for NoSQL, most SQL can be converted to equivalent commands in 

whatever language the NoSQL database uses for data access. This thesis will evaluate both 

schema design transfer and SQL to NoSQL translation. 

 

Research Methodology 

The research conducted for this thesis will require both qualitative and quantitative 

research methodologies. I intend to research the usage of NoSQL databases in industry, in 

particular the reasons organisations decided to utilize NoSQL and the steps taken to come to this 

conclusion. A content analysis will be conducted on literature pertaining to the usage of NoSQL 

in industry to identify patterns in the thought process undertaken by an organisation deciding to 
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use a NoSQL database. Customer service in the NoSQL sector will also be examined to 

determine if it is comparable to the established relational database vendors. 

To evaluate the process of transitioning from a relational database to a NoSQL database, 

a case study will be undertaken that takes an existing application based on a relational database 

and converts the application code to use a NoSQL database instead. This case study will also be 

used to assess some of the performance characteristics of the NoSQL database in comparison to 

the relational database. 

 

Thesis Scope 

A definition of a NoSQL database will be established in Chapter 2 and the research will 

be confined to those databases classed as NoSQL. For reference, the relational database used in 

the case study will be MySQL and the NoSQL database will be restricted to a single vendor.  

Other aspects such as backup & recovery, performance tuning tools, high availability tools, 

replication, and the robustness of the query language will not be considered.  

 

Success Criteria 

The following list makes up the success criteria for this study: 

• The reasons for transitioning to a NoSQL database have been established through 

research; 

• An analysis of the support provided by NoSQL vendors has been undertaken; 

• A case study has been undertaken to convert an application from using a MySQL 

database to a NoSQL database; 
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• An analysis of the performance of the NoSQL database compared to the MySQL 

database has been completed. 

 

Chapter Summary 

NoSQL databases are an emerging technology that provides an alternative to the more 

established relational databases that have traditionally dominated the data storage market. They 

aim to provide a more scalable and highly available database system with less cost and overhead, 

while sacrificing certain characteristics such as consistency and a simple query language. 

The remainder of this thesis is structured as follows: 

• Chapter 2 provides a review of the literature pertaining to the use of NoSQL 

databases in industry, the different classifications of NoSQL databases, 

performance characteristics of NoSQL database and the challenges they face in 

order to achieve wide spread adoption. 

• Chapter 3 describes the methodology used to transfer an existing relational 

database in to a NoSQL environment. 

• Chapter 4 provides an analysis of converting existing database access code from 

relational to NoSQL in a typical application and a comparative analysis of the 

performance differences between the existing application and the converted 

application. 

• Chapter 5 summarises the findings of the research and details some further 

research areas to be explored. 
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Chapter 2 – Literature Review 

Introduction 

This literature review will research the current trends in the large data store industry as it 

relates to NoSQL databases and scalable relational databases. NoSQL databases are a recent 

addition to this industry and as such, the various vendors are constantly altering their offerings to 

provide continuous improvements to the underlying system. This creates somewhat of a moving 

target in terms of the correctness of the literature available. Articles and papers that make 

statements about a particular NoSQL system can quickly become outdated by revisions to that 

system. Bearing this in mind, this literature review will attempt to draw information from sources 

that are as recent as possible.  

The purpose of the literature review is to gather and analyse information relating to 

NoSQL databases and scalable relational databases to support the decisions made in the practical 

element of the thesis. The first part will deal with NoSQL systems currently available and the 

classification of these systems. The next section will look at how NoSQL systems are currently 

being used in industry. This will be followed by a discussion of how NoSQL systems support 

scalability in comparison to scalable relational databases, the performance characteristics of 

NoSQL systems and the challenges facing NoSQL in terms of widespread adoption in the 

industry. 

 

Classification of NoSQL Systems 

The NoSQL movement came about largely because of the increasing data storage needs 

of the Web 2.0 industry. The big players in this industry became frustrated with the difficulties of 

building distributed storage architectures based on traditional RDBMS systems. Because of this, 
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web application developers took matters in to their own hands and developed their own database 

technologies (Couchbase, 2012). Google and Amazon are two such companies that are now seen 

as pioneers of the NoSQL movement (Cattell, 2010; Couchbase, 2012; Neo Technology, 2011). 

Google’s BigTable showed that it was possible to store simple data on a system that could scale 

to hundreds or thousands of nodes (Cattell, 2010). Amazon’s Dynamo database pioneered the 

idea of sacrificing strong consistency in favour of high availability; data was not guaranteed to 

be up-to-date on every node but updates would be applied to each node eventually (Cattell, 

2011). 

Since then, there have been a many developments in the NoSQL industry with many 

more vendors now providing NoSQL systems. Of the systems currently available, most will fall 

in to one of three categories (Cattell, 2010): 

• Key-value stores: All data is stored as a simple key-value index. The key is used to 

identify a value that is typically stored as a BLOB, but can contain other data types 

such as strings or pointers. These systems can be equated to a distributed index that 

was popularised by the memcached open source cache system which took advantage 

of the increasing availability of main memory to store in-memory indexes (Cattell, 

2011). These systems are highly efficient, they can scale to a high number of nodes, 

but provide a very simple data model (Pokorny, 2011). Examples of key-value stores 

include Redis, Riak, Scalaris and Project Voldemort 

• Document Stores:  Data is stored in semi-structured documents that are indexed by a 

key. Documents can have a varying number of attributes of varying types and can 

also be queried to look for matching attributes contained within the document 

(Cattell, 2010). They offer additional functionality to key-value stores while 
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maintaining the ability to partition data over multiple nodes and provide support for 

replication and automatic recovery (Cattell, 2010). Examples of document stores are 

CouchDB, MongoDB and Dynamo. 

• Extensible Record Stores: Also referred to as wide column stores due to the fact that 

each row in a related dataset can contain a varying amount of attributes (Cattell, 

2010). Of the NoSQL systems, this data model is the closest to the relational data 

model. Data is stored in tables but each row has a dynamic number of attributes 

(Cattell, 2010). Both rows and columns can be distributed across nodes providing 

high scalability and availability (Cattell, 2011). Examples of extensible record stores 

are Google BigTable, Cassandra, HyperTable and HBase. 

Other non-relational database systems in existence have been put into the NoSQL 

category that do not fit in to the three categories above. Graph databases, such as Neo4j, store 

data as relationships between key value pairs (Neo Technology, 2011). Object-oriented databases 

store data as collections of objects that can be easily materialized as programming language 

objects (Cattell, 2011). Both of these systems provide features such as horizontal scaling and the 

ability to store massive amounts of data, however as Cattell (2011) points out, these systems 

differ from those found in the three categories described above in that they generally provide 

ACID transactions and data querying involves complex object behaviour rather than simple key 

lookups (Cattell, 2011). This represents a significant characteristic difference to the key-value 

stores, document stores and extensive record stores. Therefore, this review will exclude these 

systems from the NoSQL category and any reference  to NoSQL will assume a system from the 

three categories described above. 
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Characteristics of NoSQL systems 

Besides placing each system in to one of the three categories described, all of the systems 

have common characteristics which allow them to be collectively described as NoSQL 

databases.  

• Horizontal Scaling: This is a key feature of NoSQL. Data can be replicated and 

partitioned over many servers in a “shared nothing” architecture (Cattell, 2011), that is, 

all nodes are equal and none of the hardware is shared. This enables two important 

features of NoSQL – storage of large amounts of data and the ability to use cheaper 

commodity servers instead of more expensive enterprise class servers. The CouchDB 

system derives its name from this characteristic: Cluster Of Unreliable Commodity 

Hardware (Bhat & Jadhav, 2010). 

• Automatic Sharding: Data is automatically spread across all servers in the cluster. Also 

referred to as “elasticity”, due to the fact that servers can be added or removed without 

any downtime. Any new server added immediately begins to receive data from the other 

servers in the cluster. Data is also replicated across the cluster (Couchbase, 2012). 

• No Schema: Unlike a traditional RDBMS, NoSQL databases are confined to a rigid data 

schema. Any record that is inserted can have an arbitrary number of attributes associated 

with it and these attributes can be altered at any time (Couchbase, 2012). This provides 

excellent flexibility for applications whose data may not conform to a constant structure 

and is likely to change regularly. 
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• Simple query interface: As the name implies, NoSQL does not support the SQL query 

language1. Instead, querying is provided through various different mechanisms which 

varies from one distribution to another. For example, Amazon’s SimpleDB uses a subset 

of SQL commands such as SELECT and DELETE along with operations like 

GetAttributes and PutAttributes. HBase uses another restricted SQL variant called HQL, 

and CouchDB uses a procedural approach to querying its document based records 

(Pokorny, 2011). 

• Highly Available: Data is replicated across multiple servers (and even across multiple 

data centres) allowing for a highly available configuration that can handle multiple server 

failures and support disaster recovery (Cattell, 2010) (Couchbase, 2012).  

• Weaker consistency  model: Providing ACID semantics has been a staple feature of 

RDBMS databases since their inception in the 1970’s. However, in a distributed 

architecture, the consistency property becomes more difficult to guarantee. Because the 

web has enabled 24x7x365 access to applications, availability has become a high priority 

for a database system. Because of this, developers are willing to sacrifice strong 

consistency in favour of higher availability. NoSQL systems provide this sacrifice, 

offering eventual consistency instead of strong consistency. This means that it may not be 

possible to get a consistent view of data across all nodes at any one time. Many 

developers are willing to live with this compromise (Cattell, 2010). 

                                                 

 

1 Although lack of SQL support is a characteristic of NoSQL, the NoSQL name is commonly understood to mean 
‘Not Only’ SQL.  
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Use Cases in Industry 

Despite the relative immaturity of NoSQL, there has been a surprisingly positive uptake 

of various implementations in industry. Unsurprisingly, a large percentage of organisations that 

are using NoSQL are Web 2.0 industry leaders such as Google and Facebook. However, there 

are also implementations from organisations in the areas of media, online entertainment and 

governmental departments. 

Facebook. 

In November 2010, Facebook launched their new messaging system which is based on 

HBase. Other platforms such as MySQL and Cassandra were considered for the project but 

HBase was chosen based on its ability to scale well, the replication system it employs and 

previous experience with the underlying technology within Facebook (DBPedias.com, n.d.). 

MySQL was originally used to support this application but the volume of data involved (25TB 

per month) necessitated a system capable of supporting a high write throughput 

(Muthukkaruppan, 2011).  

Nokia. 

Like Facebook, Nokia have also converted a working relational database system to a 

proprietary NoSQL system developed in-house by Nokia (Farrell, 2011). The Nokia Places 

application is a POI registry used to support GPS applications. The system was originally built 

on a MySQL database and contained about 600GB of data (Farrell, 2011). However, due to a 

possible merger with Bing maps and the unwillingness to make a significant investment in 

upgrading the current RDBMS server, Nokia took the decision to move to a NoSQL system 

(Farrell, 2011). This enabled on demand scaling, which was a key requirement given the possible 
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merger. Another factor was the fact that the schema required for the system was not rigid. This is 

another area where NoSQL provided an advantage over the existing MySQL system. 

Danish Department of Health. 

The Department of Health in Denmark are using the key-value store Riak to store data for 

a medicine card system which controls the administration of drugs to medicine card holders 

(Thorub, 2011). This is another example of a system that was based on MySQL and converted to 

NoSQL. The main reasons cited for this were (Thorub, 2011): 

• High availability: Because of the criticality of the system, high availability was a high 

priority requirement. Using Riak allowed the system to be configured in a distributed 

architecture across multiple data centres. 

• Scalability: To prepare for expected growth by allowing dynamic scaling of the system.  

• Operational improvements: Such as the ease of creating backups in comparison to the 

MySQL system. 

This use case demonstrates that the use of NoSQL is not confined to the Web 2.0 industry; it 

is also being employed to support highly critical enterprise applications. 

Guardian.co.uk. 

Developers at the guardian.co.uk took the decision to move to a NoSQL environment 

when they began to hit continuous road blocks with their J2EE/RDBMS/ORM solution due to 

the complexity associated with every upgrade of their web site. Every change they made required 

a schema upgrade which changes had to be made to over 300 tables, 10,000 lines of hibernate 

XML configuration, 1000 domain objects mapped to the database and 70,000 lines of domain 

object code (Wall, 2011). The tight binding to the application prompted them to look for an 
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alternate solution and because they were using a JSON API, it made sense for them to store the 

data as JSON documents. This eventually led them to the document store MongoDB.  

Where most of the NoSQL use cases in industry originate from the need for scalability 

and availability, the primary reasons for choosing MongoDB in this particular case were because 

of its data model, its ability to do complex queries, the flexible consistency modes, no schema 

and the fact that it works well at large and small scale deployments (Wall, 2011). This shows that 

NoSQL databases are being used for a range of reasons and not just for scalability and 

availability. 

 

Scalability Concepts 

The ability to scale easily and on demand is seen as one of the most appealing 

characteristics of NoSQL systems amongst adopters in industry. This is worth discussing in the 

context of current scalability options user of relational databases are faced with. The relational 

database was designed on a centralised computing model. Notably, other tiers in an enterprise 

architecture, such as the web tier and the application tier, are typically built on a distributed 

model (Couchbase, 2012). The only option to increase the capacity of a standalone relational 

database system is to invest in more powerful hardware; increasing CPU, memory, I/O capacity 

and disk space. Pokorny (2011) refers to this as vertical scaling, or scale up. This form of scaling 

introduces a number of undesirable characteristics: 

• Big servers are usually highly complex and expensive. The more users a system must 

support, the bigger the server required. This brings an exponential growth in cost for a 

linear increase in users (Figure 1); 
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• No matter how much a server is upgraded, there is a limit to the total capacity of a 

system (Figure 1); 

• There is increased pressure on fault tolerance and high-availability strategies if there 

is only one database server and often these strategies involve highly complex 

hardware configurations (Couchbase, 2012). 

 

Figure 1. System cost vs. No of users of RDBMS (Couchbase, 2012) 

In contrast, NoSQL systems scale horizontally, or scale out, using cheaper commodity 

servers. This mirrors more closely the distributed architectures found in web tiers and application 

tiers. Each server contributes equally in a shared-nothing architecture and there is no one single 

point of failure (Cattell, 2011). Horizontal scaling allows for a more agile and cost effective way 

to scale a database (Figure 2). 
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Figure 2. Cost effectiveness of horizontal scaling (Couchbase, 2012) 

 In order to provide horizontal scaling, NoSQL systems provide a weaker concurrency 

model than the ACID transactions found in relational database systems. The acronym BASE 

(Basically Available, Soft State, Eventually consistent) has been suggested in many sources as a 

more appropriate term for NoSQL (Cattell, 2011). What this acronym alludes to is that a NoSQL 

system will always be available, but the data may not be in a consistent state. Instead, most 

NoSQL systems provide eventual consistency, meaning all nodes will eventually be in a 

consistent state after updates have been propagated. The properties of an ACID system versus 

those of a BASE system are presented by Brewer (2000) and shown in Figure 3. 
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Figure 3. ACID vs. BASE (Brewer, 2000) 

An alternative view is to compare scalability in a relational database and a NoSQL 

database in terms of the CAP theorem, also presented by Brewer (2000). This theorem states that 

of the three properties consistency, availability and partition tolerance, only two of these can be 

guaranteed in a shared data system. Pokorny (2011) explains these properties in more detail: 

• Consistency: After data is written, all users will see the same version of the data 

• Availability: Every operation on the database will terminate successfully. 

• Partition tolerance: The database can still operate even when some nodes in the 

distribution are unavailable.  

 Distributed relational databases tend to forfeit the availability property in favour of 

consistency and partition tolerance. But in order to provide this strong consistency in a 

distributed system, any writes to the database must be committed on every node before a 
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transaction can complete. This is the critical factor that limits the scalability of relational 

systems.  

Conversely, NoSQL systems forfeit the consistency property in favour of availability. 

The eventual consistency approach means that a transaction can complete once the data is written 

to one node and it is then up to the database engine to propagate the data to each of the other 

nodes in the distribution. If it is critical that an application be always available and an acceptable 

possibility that it may read stale data, then this compromise may be more desirable than a 

relational system. Furthermore, many NoSQL systems provide a level of control on the 

consistency property, allowing the developer to specify a number of nodes in the cluster that the 

write must propagate to before the transaction can be considered complete. Cassandra, for 

example, provides six different consistency levels for write operations. Specifying a consistency 

level of ONE or ANY requires a write to complete on only one node in a replica, ALL requires 

the write to complete on all replica nodes and QUOROM requires the write to complete on a 

quorum of nodes calculated by the formula (Black, 2009): 

 (replication_factor / 2) + 1 

Therefore, if the number of replicas is 3, then writes must succeed on at least two of the 

nodes before the transaction completes. The quorum can also be enforced on read operations. If 

the data returned from each node in the quorum does not match, the conflict must be dealt with 

before the data is returned. This ensures that no stale data is read because the write and read 

quorums overlap (Black, 2009).  

Even though a traditional RDBMS does not provide simple scalability, many developers 

are left with no choice but to implement a distributed system when the demands of applications 

outgrow what is achievable with a single server system. The most common approach to scaling 
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an RDBMS is to shard data across several servers. This involves partitioning a table based on 

some pre-defined criteria and placing each partition on a separate node in the distribution. 

Although this is a common technique, there are a number of drawbacks to this approach: 

• A cross-shard filter or join must be performed in the application; 

• If there are updates on multiple shards within a transaction, then the application is 

responsible for guaranteeing consistency across nodes; 

• As the system scales, node failures become more common. Consistent replicas are 

difficult to maintain, it is difficult to detect failures, fail over to replicas and replace failed 

nodes in a running system; 

• Making schema changes is very difficult without taking shards offline; 

• Adding additional nodes or changing configuration is “extremely tedious” and “much 

more difficult if the shards cannot be taken offline” (Stonebraker & Cattell, 2011). 

There are, however, a number of scalable relational systems available that claim to 

provide comparable scalability and availability to NoSQL systems, such as MySQL Cluster, 

VoltDB and Clustrix. Cattell (2011) notes that some RDBMS systems can provide scalability on 

a similar level to NoSQL systems if they can abide by two conditions: 

1. Avoid operations that span many nodes, e.g. joins over many tables.  

2. Avoid transactions that span many nodes. The communication and two-phase commit 

overhead will lead to inefficient performance. 

It is worth noting that NoSQL systems inherently avoid these issues by making it difficult 

to perform these types of operations (Cattell, 2011). If these scalable RDBMS systems prove to 
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be comparable with NoSQL, then the fact that they retain ACID properties and the SQL query 

language could make them a more attractive option for a scalable data store.  

 

The Cost Advantage of Scaling with NoSQL 

As well as being easier to scale with NoSQL, it can also be more cost effective than it is 

to scale out with a relational database system. Many NoSQL database vendors license the 

database engine under the GNU Free Software Foundation license, leaving the only costs with 

the hardware required to implement the cluster. Compared to a commercially licensed relational 

database system, the savings can be significant. For example, the cost for a typical 4 node Oracle 

RAC Cluster set up: 

• Standard license: $17,500 X 2 processors X 4 nodes = $140,000; 

• Real Application Clusters option: $23,000 X 2 processors X 4 nodes = $184,000; 

• Partitioning option: $11,500 X 2 processors X 4 nodes =  $92,000; 

• In-memory Database Cache: $23,000 X 2 processors X 4 nodes = $184,000 

(Oracle, 2012). 

This gives a total licensing cost of $600,000. MySQL Cluster is probably a more 

comparable option as, like the NoSQL databases, it is free to license. However, if support is 

required, this costs $10,000 per year for each 1-4 socket server (Oracle, n.d.). Not all NoSQL 

vendors offer a support option, but two that do are Riak and MongoDB. They provide support at 

a cost of $3,995 and $4,000 per node per year respectively (10Gen, 2012) (Basho Technologies 

Inc., 2012).   
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NoSQL Performance Characteristics

Besides from the scalability advantages, the other area in which NoSQL claims to 

provide an advantage over traditional RDBMS systems is in performance. However, 

performance of a database system can be affected by several different factors and performance 

requirements can vary from one application to another. A classic OLTP type system is generally 

more write intensive than read intensive, while a data warehouse type system will normally be 

more read intensive. A Web 2.0 application will normally fall at a v

two. Stonebraker & Cattell (2011)

application and plot the graph in Figure 4 to depict where such an application will fall on a write

focus vs. read-focus scale. Different applications will have different performance requirements 

and therefore it is not possible to simply state tha

than distributed relational databases. The reality is likely to be that NoSQL can provide 

performance gains for certain 
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research in the area of performance measurement for NoSQL systems, and any systems that have 

been developed are in the early stages of maturity. The most widely recognised benchmark for 

NoSQL is the Yahoo! Cloud Serving Benchmark (YCSB), developed by Yahoo! to facilitate 

comparisons between “new generation cloud data serving systems”, which are analogous to 

NoSQL systems (Cooper, Silberstein, Tam, Ramakrishnan, & Sears, 2010). The YCSB is not 

confined however to NoSQL systems. It is the intention of the framework to provide evaluation 

of any cloud based storage systems, including sharded relational systems. The YCSB is a 

significant tool in terms of comparing sharded relational and NoSQL systems to assist in the 

selection of an appropriate data storage solution and merits further discussion. 

 

Yahoo! Cloud Serving Benchmark 

The YCSB is an extensible open source framework and it is the intention of the 

developers that the benchmark be adapted for use with multiple database systems. However, the 

system is in the very early stages of maturity, having been released in 2010, and there is a limited 

amount of results of usage of the system at this point.  

The benchmark currently evaluates systems on two tiers: Performance and Scalability2: 

• Performance is evaluated in terms of latency of requests when the database is under 

load. There is a trade-off between latency with throughput. A system is evaluated by 

measuring latency as throughput is increased until a saturation point is reached 

(Cooper et al., 2010).  

                                                 

 

2 Other aspects such as availability and replication can be supported through extension of the system 
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• The scalability tier examines the impact on performance as more servers are added. 

The benchmark measures two metrics in this tier: 

o Scale up – A workload is run on a given number of servers and performance is 

evaluated. More servers are then added and a larger workload is run on this 

configuration. Good scaling is indicated if performance remains constant as 

the workload and the number of servers are proportionally increased. 

o Elastic Speedup – This metric evaluates how performance is impacted as the 

number of machines is increased in a running system. A system that provides 

good elasticity should show an increase in performance when a machine is 

added, after an initial period of reconfiguration. 

The YCSB uses a set of predefined workloads to produce results. These workloads can be 

tweaked to perform various combinations of insert, update, read and scan operations. In order to 

decide which records should be operated on, the tool uses one of several distribution algorithms: 

• Uniform: An item is chosen uniformly at random. All records are equally likely to be 

chosen; 

• Zipfian: Choose an item according to the Zipfian distribution. In this mode, some 

records will be extremely popular while most will be unpopular. This is useful for 

modelling items whose popularity is independent of their newness, for example in a 

social networking application where some profiles are updated more often than 

others, even though the profile may be many years old; 
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• Latest: The most recent records are more likely to be chosen. This could be used to 

simulate something like a blogging application where the most recent posts are more 

likely to see activity; 

• Multinomial: The probability of operations can be assigned a value. For example, a 

probability of 0.95 can be assigned to the write operation to simulate a write-heavy 

workload (Cooper et al., 2010). 

Once the workload has been created, it is executed against the database using a Java 

program called the YCSB client. This client is responsible for generating both the data to load 

and the operations to be performed. The workload executor drives multiple threads which throttle 

the rate at which requests are generated to control the load on the database. They are also 

responsible for measuring latency and throughput and reporting the results to a statistics module 

(Cooper et al., 2010). The client architecture is shown in Figure 5. 

 
Figure 5. YCSB Client Architecture (Cooper et al., 2010) 
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In order to demonstrate the YCSB tool, Cooper et al. (2010) present benchmarking 

results for four distributed database systems: Cassandra, HBase, PNUTS and sharded MySQL. 

These results provide a valuable insight in to how a distributed relational system might compare 

against a NoSQL system under certain conditions. Five workloads were created and these are 

detailed in Figure 6. 

 

Figure 6. YCSB Workloads (Cooper et al., 2010) 

Results for performance are presented in a graph of Read latency (measured in 

milliseconds) versus throughput (measured in total operations per second, reads and writes). 

Workload A results, shown in Figure 7, indicate that the NoSQL systems (Cassandra and HBase) 

perform better for update-heavy workloads consisting of an equal amount of reads and updates. 

 

Figure 7. Workload A results - (a) is read operations and (b) is update operations (Cooper et al., 

2010) 
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The read-heavy operations of workload B, however, show that the sharded relational 

system performs significantly better than the NoSQL systems (Figure 8), indicating again that 

NoSQL is a more suitable candidate for write-heavy or update-heavy types of applications. 

Workloads C (read only) and workload D (read latest) also indicated that the sharded MySQL 

system performed better for these operations. 

 

Figure 8. Workload B results - (a) read operations, (b) update operations (Cooper et al., 2010) 

The remainder of the tests focus on the tier 2 benchmarks, scalability and elasticity. To 

test scalability, performance is measured with a varying number of servers. The load is increased 

proportionally with each server added, which should produce a straight line result. This is shown 

to be the case in Figure 9, apart from HBase which only begins to perform consistently at a 

higher number of servers. MySQL is omitted from this test which is unexplained by the authors. 

 

Figure 9. Scalability test (Cooper et al., 2010) 
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The final set of tests demonstrate elasticity by measuring performance as a single server 

is added to a cluster. Results were expected to show high latency at the point where the server is 

added before returning to a consistent level. However, as Figure 10 shows, this was not exactly 

the case, in particular with Cassandra which performed erratically after the server was added. 

The sharded MySQL system is automatically omitted from this test on account of being 

“inherently inelastic”, giving an instant win for NoSQL systems in this area.  

 

Figure 10. Elasticity results (Cooper et al., 2010) 

The YCSB benchmark results presented by Cooper et al. (2010) provide a solid 

foundation for testing the performance of NoSQL systems in comparison with a distributed 

relational system. The results predominantly match the claims of the NoSQL systems, but there 

are some exceptions, particularly in the elasticity tests, indicating that vendor claims need to be 

fully tested before a system can be put to use. There are other factors, such as availability and 

replication which have not been addressed and this provides an area for further research.  

 

Challenges for NoSQL Adoption 

Despite the advantages of NoSQL, there are a number of challenges facing vendors that 

must be addressed before widespread adoption can occur.  
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Vendor Support. 

Although there are many different NoSQL vendors, many are community driven and do 

not provide any formal support structure. Most businesses will look for the assurances of a 

support contract when choosing a database system to prevent any potential data loss or 

unavailability of data. Some NoSQL vendors however do provide a support option for enterprise 

level applications. The initiator and sponsors of MongoDB, 10gen, offer two support packages 

with varying levels of support for an annual fee of either $2,500 or $4000 per cluster node 

(10Gen, 2012).  Riak provides an Enterprise license for their database system which includes 

24x7 customer support, developer support and implementation consultancy at an annual cost of 

$3,995 per cluster node (Basho Technologies Inc., 2012). Other vendors will need to follow suit 

in order to penetrate the enterprise market. 

Data Querying. 

One of the main advantages of relational databases is the ability to query for data using 

SQL. Apart from some minor differences between vendors, the SQL language can be used on 

practically all relational database systems. Consequently, extracting data from relational 

databases is a standardized process that has been in existence for nearly 40 years. People are 

familiar with how to use SQL and it makes it easier to transfer from one relational DBMS to 

another. Because NoSQL is relatively new technology, a standardized query language that is 

capable of extracting data from all NoSQL database types has yet to be developed. There are 

efforts in existence that are attempting to achieve this, one of which is UnQL, an unstructured 

query language for JSON, semi-structured and document databases (Young, 2011). However, 

efforts on this project have slowed recently and it does not seem likely that it will be continued 

(Celler, 2012).  
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Relational databases are all based on the use of tables to store data and therefore a 

universal language is easier to create. With NoSQL, there are several different approaches to 

storing data, as discussed above, therefore making it more difficult to create a universal 

language. SQL succeeded because it was easy to learn, easy to read and easy to understand. With 

NoSQL, you either need to learn the query language that the vendor has created for each 

individual product or be proficient in a programming language that is compatible with the 

NoSQL system. For instance, Google has created its own query language called GQL which is 

compatible with its own data store products such as Google Big Table (Google, 2012). Riak 

bases its query language on Lucene, an open source search engine written in Java (Rowe, 2012). 

These are two vastly different approaches to querying data and in the case of Riak and other 

vendors that use Java based languages for querying, it is likely to deter people from transitioning 

from the familiarity of relational databases and SQL. 

Using Map-Reduce for data retrieval. 

One area of querying where NoSQL vendors do seem to be united on is the use of Map-

Reduce for distributed queries. Map-Reduce is a model for processing large amounts of data that 

is distributed over a large number of nodes, in order to produce a set of derived data. Essentially, 

Map-Reduce is a method to abstract the complexity of parallelization, fault tolerance, data 

distribution and load balancing that is required when running computations across hundreds or 

thousands of nodes (Dean & Ghemawat, 2008). A Map-Reduce operation is capable of retrieving 

data at rates of up to 30GB/s by using its approach of assigning worker threads to each node in 

the cluster to process the data and then merging the output of these worker threads in to one final 

result (Dean & Ghemawat, 2008). 
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Map-Reduce is a concept that transfers well to NoSQL environments. If the data is 

sharded across several nodes, the database engine can dispatch the Map-Reduce job to all of the 

nodes and run them in parallel. This allows even the largest databases to return the results of 

queries very quickly in a “divide and conquer” approach. Because of the way Map-Reduce 

iterates over data in a collection, it is possible to aggregate data which have fields with matching 

values and store these computations in secondary collections. As a result, Map-Reduce functions 

are an ideal replacement for SQL GROUP BY statements that would be found in a relational 

database.  

Immaturity of the technology. 

NoSQL databases have only been in existence for a matter of years and many vendors are 

still in beta stage or are releasing updates continuously. This could be unsettling for potential 

adopters of the technology as most are looking for ultra reliability in the system that is managing 

their critical data. Software often needs to go through many minor and major revisions before 

bugs are discovered and patched.  

The immaturity of the technology also brings a shortage of expertise in the field. 

Relational database systems have built up sizeable knowledge bases and technical papers to 

assist users in the deployment and use of their system. With NoSQL, many adopters are taking a 

“learn as we go” approach, which may not be to everyone’s liking. For example, Foursquare, the 

location based social network were one of the first major users of MongoDB and they suffered 

an 11 hour outage early in their NoSQL adoption because of a flaw in their design which led to 

uneven growth of their partitions in the database which eventually resulted in the database 

having to be taken offline (Bodkin, 2010). As a result, the creators of MongoDB used this 

incident to improve the reliability of their system and the learning’s were passed on to other 
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users through the MongoDB community, but, this episode does indicate that there may be 

potential issues with the software that the vendors have not yet encountered. 
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Chapter 3 - Methodology 

Introduction 

This section will outline the methodology used to convert an existing PHP/MySQL 

application to a NoSQL application. The relational model used for the bulletin board application 

will be discussed first and subsequently outline how this model can be converted to a NoSQL 

system. By comparing the chosen NoSQL database to a relational database, the existing 

relational schema can be converted to a NoSQL schema. This model will then form the basis for 

a new version of the PHP application which will need to be converted to work with the NoSQL 

schema.  

This chapter will also describe how test data was loaded to both the relational database 

and the NoSQL database for the purposes of performance analysis. The last section of the 

chapter describes how both databases were set up and deployed. 

 

Use Case 

Choosing a data storage platform for an application is no longer the straightforward 

choice that it once was. The relational database was, by and large, the only option available and 

usually the decisions at this level revolved around what vendor to choose and what version of 

DBMS from that vendor. But with new data storage technologies emerging, such as NoSQL, 

designers are starting to evaluate data storage needs from a different viewpoint. Estimating the 

volume of data that an application is likely to produce is becoming an increasingly difficult task, 

particularly if the application is web enabled and accessible by an arbitrary number of users that 

could potentially grow in to the millions. Therefore, scalability is now a much higher priority 

than it may have been 15 to 20 years ago. The database must be able to grow in line with 
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potential demand and, as alluded to in the literature review, the cost of scaling up a relational 

database can be a significant barrier. Increasing volumes of data also bring performance 

considerations which must be addressed. Read and write operations can be adversely affected if 

the database is not designed to cope with high volumes of data.     

These are all problems that many users are facing with relational databases and for this 

reason are starting to look at other options. NoSQL databases can potentially provide the 

solution. They have better scaling capabilities because they can be horizontally scaled, they can 

support large volumes of data with minimal impact to performance through Map-Reduce, and 

they can provide a simpler method of implementing a distributed database. Some of the use cases 

where this may be particularly beneficial include Content Management Systems, Ecommerce, 

Online Games, Real-Time Analytics, Event Logging and the Operational Data Store for a 

website (Merriman & Francia, 2011).  

To evaluate these potential benefits, a single use case will be presented in this chapter to 

provide a basis for comparison between a NoSQL system and a relational system. Online bulletin 

board applications are widespread on the web today and are among the most popular destinations 

for internet users. Many of these sites must be able to support thousands of concurrent users on a 

24x7 basis, who are constantly producing new data and interacting with the database. These are 

exactly they types of requirements to which a NoSQL system is potentially well suited. 

However, many of these bulletin boards are PHP applications which use a relational 

database for data storage. This can be attributed to the fact that sites like phpBB and vBulletin 

offer free open source online bulletin board applications with this configuration. PHP and 

MySQL are two closely knit technologies, but this does not necessarily mean that MySQL offers 

the best solution for a PHP application such as this one. The use case presented in this chapter 
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will include a PHP application that connects to both a MySQL database and a comparable 

NoSQL database. The intent is to show that a NoSQL database can work just as well as a 

MySQL database as the operational data store for a PHP application and in particular situations 

can actually provide a better solution. 

 

Application Details 

There are many options available in terms of creating a bulletin board application. The 

aforementioned vBulletin and phpBB applications provide “off the shelf” frameworks which 

allow anyone to create a customized bulletin board application instantly. These frameworks 

provide a rich set of features such as search optimization, security add-ons like captcha, email 

verification, granular privileges etc., user management functions, customizable styles and many 

more (phpBB, 2007; vBulletin Solutions, 2012). 

Although either of these systems would be ideal to use as the basis for the use case in this 

methodology, converting either to use a NoSQL back-end would be a considerable project. For 

this reason, an application with a subset of this functionality was chosen as the basis for the use 

case. This application is presented in (Naramore & Glass, 2005). It is a basic PHP/MySQL 

bulletin board application. As well as post and forum creation, the application has the following 

additional functions: 

• User Authentication 

• Search Engine 

• Board Administration 

• Regular Expressions for post formatting 

• Pagination to limit the number of posts per page 
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The application interacts with the relational database for all of these functions and 

therefore affects the amount of time required to load a page. At small amounts of data and users, 

this time will be unnoticeable to the end user. But as the number of concurrent users grows and 

the database size increases, this time will eventually reach a point where performance is 

negatively affected to the point where the application becomes unusable. At this point, a course 

of action must be taken to ensure that the application can continue to operate in a usable manner. 

 Assuming that this application is running on a single database server, there are a number 

of options available to improve the performance of this application. One is to upgrade the 

hardware of the database server to increase transaction performance. This might include the 

addition of memory, a faster CPU, quicker hard disks in a striped configuration etc. One would 

need to analyze the system to determine where the bottlenecks are in the system and what 

particular hardware can alleviate this bottleneck. This approach can provide a “quick fix” to 

performance problems. In the long term however, this approach will not prove successful. A 

further increase in user traffic in the future will require further upgrades leading to exponential 

cost increases for hardware and eventually reaching a point where upgrading is no longer 

possible. 

A second option is to add a second database server and implement a partitioning strategy 

so that data is divided between the two servers thereby halving the workload of the single server 

system. This approach will prove effective at improving performance but it also adds a layer of 

complexity to the application layer which may prove to be overwhelming for developers and 

unsustainable if the application requires additional servers in the future. 

Replication is also a common methodology used to improve the performance of a 

database application. This involves copying the data from the main database server to one or 
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more replicas. The replicas can then be used for read operations allowing the writes to happen 

exclusively on the main server.  

This study proposes that a NoSQL database provides a further option for improving 

application performance. MongoDB, which will be used in this case study, provides automatic 

replication and sharding, thereby combining both of the options discussed above without the 

complexity overhead. This methodology will describe how an application can be converted to 

using MongoDB to take advantage of these features. 

 

Database Description 

The application uses a MySQL relational database for storage of all persistent data. This 

includes user registration details, user posts, forum metadata and configuration data such as the 

board title and pagination limits. The schema for the database is shown in Figure 11. 

 

Figure 11. Bulletin Board Relational Schema 
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MySQL offers pluggable data storage engines, the two most common of which are 

MyISAM and InnoDB. The original schema for this application uses the MyISAM engine for all 

tables, however, as of MySQL 5.5, the default engine is now InnoDB. The main feature 

differences between MyISAM and InnoDB are outlined in Figure 12. Traditionally, MyISAM 

was seen as the better performing option, but recent benchmark tests have shown that with more 

relaxed ACID constraints, InnoDB can perform comparably with MyISAM while providing 

additional benefits such as crash recovery, referential integrity and scalable performance 

increases (Oracle, 2011). For this reason, the InnoDB engine was chosen as the default for this 

application. 

 

Figure 12. Comparison between MyISAM and InnoDB Storage Engines 

Most of the activity in this database will occur in the forum_posts table as users create 

and update posts through the web interface. The majority of activity will be inserts as users 
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create new posts as either the initial post in a new topic or a reply to a post in an existing topic. 

There will also be a significant amount of updates as users and moderators edit existing posts. 

Frequently accessed columns are also indexed in this table; idxArticle is a multi-column index on 

the fields forum_id, topic_id, author_id and date_posted. 

The original application from Naramore & Glass (2005) provides a full-text index on the 

subject and body fields. However, the InnoDB engine that will be used in this application does 

not support full-text searches3 and therefore will be excluded.  

The next largest table to this will be the forum_users table which holds the data for all 

registered users. A new user registration will produce an insert while any changes to user profiles 

will produce an update. There is also a separate table for storing the number of posts a user has. 

Transactions on this table will be predominantly updates. The other tables in the schema are 

mainly used for site metadata and configuration data and therefore the majority of transactions 

will be reads.  

 

Application Description 

The application consists of 21 PHP files, some of which contain the embedded HTML 

required to display the content in a web browser, and the remaining of which are pure PHP used 

for scripting and database interaction. The files that are of most interest in the context of 

database performance are those that initiate a connection and subsequent transaction on the 

MySQL server. These files will be described in this section. 

                                                 

 

3 Full-text search is due to be added to InnoDB in the upcoming 5.6.4 release of MySQL 
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Starting with the home page, index.php, a request to this page alone creates several 

transactions in the database. Initially, there are three other files included with this file: conn.php 

which creates the connection to the database, functions.php is a helper file containing useful 

functions and header.php which displays the header for the site. Cascading from here, header.php 

includes the file config.php which queries the database for the site administration data contained 

in the forum_admin and forum_bbcode tables. The index.php page then queries the forum_forum 

table to get a list of the forum names and the forum_posts table to get a count of the number of 

threads in each forum. 

Progressing from the index.php page, a user will either choose to log in, register or view 

forum. The log in and registration functions both post to the file transact-user.php which contains 

the functionality to create and modify user information in the database. This file reads an 

“action” parameter sent by the posting page and interacts with the forum_users table accordingly. 

The actions are as follows: 

• Login Action: Reads from forum_users to check the given email and password 

combination and then updates this table with the last login time for this user. 

• Create Account: Writes the new user information to the forum_users table. 

• Modify Account: Updates the supplied information in the forum_users table. 

• Edit Account: Reads the users existing password from the forum_users table for 

verification and then updates the supplied user information. 

• Send Reminder: Reads the users existing password from the forum_users table. 
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Choosing the option to view a forum brings the user to the viewforum.php page. This 

page retrieves a list of the threads in the selected forum, the originating author of the thread, the 

number of posts in the thread and the date of the last post.  

Clicking on any thread will load the viewtopic.php file. This file calls the showTopic 

function, which is defined in the file functions.php, along with many other functions that are 

used throughout the application. The showTopic function retrieves all of the post details from the 

database to be displayed in the browser. This includes the post subject, body, author and date, as 

well as the number of posts each user has made and the users signature. This function triggers a 

series of read transactions in the database involving the forum_posts, forum_forum, forum_users 

and forum_postcount tables.  

Logged in users have a number of additional options in using the application. In terms of 

database transactions, this mainly involves updating the user profile, which has been discussed 

already, and creating and editing posts, which will be the predominant activity during normal 

application operation. Transactions related to forum posts are contained within the file transact-

posts.php. This file operates in a similar manner to the transact-user.php file, reading an action 

parameter from the posting file and responding accordingly. The actions it performs are as 

follows: 

• Submit new post: Writes a new post to the forum_posts table and upserts the 

forum_postcount table 

• Create a new topic: Performs the same action as submitting a new post but with a 

new topic id. 

• Update existing post: Updates the specified post in the forum_posts table. 

• Delete a post: Deletes the specified post from the forum_posts table. 
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A user logged in with elevated privileges can also carry out a number of admin functions 

which will also initiate transactions in the database. The transact-admin.php and transact-

affirm.php encapsulate this functionality. The type of transactions carried out by these files are 

CRUD operations on the forum definitions and the application data (forum_forum and 

forum_admin) tables. Admin users can also modify and delete posts, but this is just an extension 

of the transactions already described in the transact-posts.php file. The level of database activity 

generated by admin users will be fractional compared to normal users however it should be noted 

that deleting a forum will cause a cascading delete of all the posts in that forum and this function 

is only available to an admin user. 

 

Choosing a NoSQL Database 

MongoDB was selected as the NoSQL database to use for this use case. The reasons for 

choosing MongoDB were: 

• A reasonably simple evolution from a relational database can be achieved; 

• It works at small and large scale, unlike other NoSQL databases, such as 

Cassandra and HBase, which are only suited to very large scale deployments. 

• It has the capability to replicate any complex queries that may be encountered in a 

complex relational database. 

 MongoDB is a document oriented database where data is stored in schema-less 

documents which have a unique identifier (the document id). Documents are grouped in to 

collections and each document within a collection can have an arbitrary number of fields. It 

supports indexing of fields in the same way as a relational database, however there are no joins 
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between collections. It provides easy scalability through automatic sharding of data across 

servers and high availability through replicated servers with automatic failover.  

Documents in MongoDB are stored as BSON documents, which is short for Binary JSON 

(JavaSript Object Notation). JSON is a language independent “lightweight data-interchange 

format” (“Introducing JSON,” n.d.). It is a basic human readable format that is built around a 

collection of key/value pairs or an ordered list of values. A value can be a string, number, object, 

array, Boolean type or null. Below is a sample JSON document: 

{ 
      "Car": { 
          "Doors":  4, 
          "Instructor": 600, 
          "Title":  "View from 15th Floor", 
          "Engine": { 
              "CC":    "2.0", 
              "Fuel": "Petrol" 
          }, 
          "Colours": ["Blue","Black","Red","Silver"] 
 } 
} 

 

BSON then, is a “binary-encoded serialization of JSON-like documents” (Creative 

Commons, n.d.). It expands on the JSON format by adding data types such as Date and BinData. 

BSON documents can be traversed easily, are lightweight, and can be easily encoded and 

decoded in most languages (Creative Commons, n.d.).  

MongoDB Comparison to Relational Database. 

When converting a relational database to MongoDB, it is important to take a comparative 

look at the objects in MongoDB and how they relate to a relational database. At the top level, a 

database in MongoDB is conceptually equivalent to a relational database. The major difference 

to note is that the database does not need to be explicitly created in MongoDB, it is implicitly 

created once the first document is inserted.  



TRANSITIONING FROM RELATIONAL TO NOSQL 42 

 

 

A collection in MongoDB is analogous to a table in a relational database (Murphy & 

Chodorow, 2012a). Instead of containing rows, a collection contains documents which are in 

BSON format. Every document has an “_id” field, but apart from this, a document can have a 

varying number of fields and all documents in a collection do not have to contain the same fields, 

unlike in a relational table where each row will have the exact same set of fields. Even though 

the document structure is flexible, the design from the outset should identify the specific fields 

required in each document to allow the application to be built around it.  

Indexes are supported in MongoDB and are conceptually similar to indexes in relational 

databases (Murphy & Chodorow, 2012b). The basic storage format for a MongoDB index is the 

B-Tree and they can be created on any field in a document. The _id field automatically has an 

index created on it, much like the primary key of a relational table. 

Another important concept in MongoDB is sharding. This allows a collection to be 

partitioned across several nodes in a cluster if a collection becomes too large to perform 

sufficiently on a single node. MongoDB supports automatic load balancing of shards so that the 

volume of data on any particular shard does not become proportionally greater than any other 

shard. Sharding is conceptually similar to the partitioning in a relational database. .  below 

summarizes the comparisons between MongoDB and relational databases. 
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Table 1. Comparison between MongoDB and RDBMS 

RDBMS MongoDB 

Table Collection 

Row BSON Document 

Index Index 

Join Embedding & Linking 

Partition Shard 

 

Designing the Schema. 

In order to convert the PHP application to use MongoDB, the first task is to design a 

schema for the database. To create the schema for the MongoDB database, I analysed the 

relational schema to determine what data points are required and how this data is structured. This 

information can then be used to organize the data in to the format that fits the MongoDB engine. 

This schema will then be used as the basis for the analysis chapter where a number of changes 

will be implemented to evaluate the effect this has on the application code and functionality. 

Using the concepts and the table from the previous section, the MongoDB schema was 

designed by converting the artefacts from the MySQL schema in to their equivalent MongoDB 

artefacts. Tables will map to collections, as shown in Table 2. 
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Table 2. Mapping Tables to Collections 

Table Collection 

forum_users users 

forum_posts posts 

forum_forum forum 

forum_admin forum_admin 

forum_postcount postcount 

forum_access_levels access_lvls 

 

One of the main differences in NoSQL databases is that joins are not supported in the 

same way as in relational databases. Collections can be linked through fields at the application 

level but this will require an extra lookup for every link in the query. With this in mind, one of 

the goals when converting from relational to NoSQL should be to minimize linking where 

possible. Applying this concept to the proposed schema above, and referring to the schema 

diagram in Figure 11, a possible area where links can be eliminated immediately is the one-to-

many relationship between forum_users and forum_postcounts, and forum_users and 

forum_access_levels. The “one” side in these relationships contain only a minimal amount of 

data (one field in both cases) and can be easily absorbed in the users collection. This reduces the 

list of collections to: 

• users 

• posts 

• forum 

• forum_admin 
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To assess the impact of this change, we must first deduce why the schema was designed 

like this in the relational database. In the case of the forum_access_levels table, a logical 

explanation for keeping this separate to the forum_users table is to prevent insert anomalies – 

new access levels can be added without the need to add a row to the users table. Furthermore, an 

application can easily retrieve a list of access levels (to populate a control for example) by 

issuing a SELECT query on the forum_access_levels table. Otherwise, retrieving such a list 

would require issuing a SELECT DISTINCT query on the forum_users table. De-normalizing 

these tables in the MongoDB schema raises the same concerns, however as will be demonstrated 

in the Analysis chapter, it is preferable to design the schema in this way than to have three 

collections with links. 

When the collections have been identified, the next task is to add in the field names that 

will be used in the JSON document. Again, the field names from the relational schema were used 

as the basis for this. Tables 3 to 6 below list the details for each collection, including the data 

type, an example value and the purpose of the field. 

Table 3. MongoDB users Schema 

users 
Key Data Type Example Purpose 

_id integer 234 Default ID Field 

name string John Doe Users full name 

email string johndoe@foobar.com Users email address 

date_joined date 2012-01-01T13:15:41 Date the user joined 

last_login date 2012-07-12T14:56:43 Date of last login 

signature string   Signature appended to each post 

post_count integer 1025 Number of posts 

access_lvl integer 3 Users access level 
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Table 4. MongoDB posts Schema 

posts 

Key Data Type Example Purpose 

_id integer 221 Default ID Field 

author_id integer 234 Link to the id of the poster (users) 

forum_id integer 4 Link to the id of the forum (forum) 

subject string Recipe for success The subject of the post 

body string Work hard every 
day… 

The body of the post 

date_posted date 2012-04-
12T12:13:32 

Date the post was entered 

date_updated date 2012-04-
12T12:13:32 

Date the post was updated 

update_id integer 65 Link to the id of the updater (users) 

topic_id integer 21 Identifier for the thread 

  

Table 5. MongoDB forum Schema 

forum 

Key Data Type Example Purpose 

_id integer 2 Default ID Field 

name string StackApps Name of the forum 

description string Posts from Stack 
Apps 

A description of the forum 

moderator_id integer -11 Link to the id of the moderator (users) 

 

Table 6. MongoDB forum_admin Schema 

forum_admin 

Key Data Type Example Purpose 

_id integer 2 Default ID Field 

constant string titlebar A reference name for the code 

title string description Key 

value string StackApps Value 

 

Data Types in MongoDB. 

As MongoDB uses BSON documents, which is a “binary-encoded” serialization of 

JSON-like documents” (Creative Commons, n.d.), all of the standard JSON data types are 
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available. This includes string, integer, Boolean, double, null, array and object. There are also a 

number of additional types – date, object id, binary data, regular expression and code – which are 

each implemented in language specific ways depending on the driver being used (Chodorow & 

Merriman, 2011). In this case, the PHP driver supports saving and querying of data in all basic 

PHP data types, compound arrays and a number of other classes such as Date, Regex, Timestamp 

and DBRef, as well others listed at (The PHP Group, 2012).  

 

Test Data 

For the purposes of testing the PHP application, both the relational database and the 

MongoDB database must be loaded with test data. Stack Exchange is a popular network of 

forums where users can get answers to questions on a range of topics from their peers. With over 

87 sites in the network, each site produces a large amount of user generated data every day. This 

data is made publically available under the Creative Commons cc-wiki license (Atwood, 2009) 

every three months as XML “data dumps”. It is ideally suited for testing the PHP application in 

this study for the following reasons: 

• It fits well with both the relational schema and the NoSQL schema, mainly 

because the Stack Exchange sites are bulletin board type applications themselves. 

• Each three-monthly data dump is 4-7GB which provides a significant volume of 

data for performance testing purposes. 

• The data is in XML format which can be easily parsed by the PHP application.  

Test data format. 

The data from each site is packaged in a zip file containing six XML files: 
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• badges.xml 

• comments.xml 

• posts.xml 

• posthistory.xml 

• users.xml 

• votes.xml 

Initially, the posts.xml file and the users.xml file were used as the source data to load. 

Each of these files has a defined list of fields which are described in Error! Reference source 

not found. and Error! Reference source not found. Error! Reference source not found.. 

Table 7. users.xml format 

users.xml 

Field Description 

Id Unique Identifier 

Reputation Users reputation score 

CreationDate Date the account was created 

DisplayName Users display name 

EmailHash A hash of the users email 

LastAccessDate Date of last login 

WebsiteURL URL of the users website 

Location Users location 

Age Age 

AboutMe A short profile 

Views Number of times user has viewed a post 

UpVotes The number of times user has up voted a post 

DownVotes The number of times user has down voted a post 
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Table 8. posts.xml format 

posts.xml 

Field Description 

Id Unique Identifier 

PostTypeId Integer identifying post type (1=Question, 2=Answer) 

ParentID The ID of the parent post (Only if post is an answer) 

AcceptedAnswerId The ID of the post accepted as answer (Only if post is a 

question) 

CreationDate Date the post was created 

Score Community score of the post 

ViewCount Number of times post has been viewed 

Body The body of the post 

OwnerUserId The user id of the poster 

LastEditorUserId The user id of the last editor 

LastEditorDisplayName The display name of the last editor 

LastEditDate The date the post was last edited 

LastActivityDate The date of the last activity on the post 

CommunityOwnedDate  

ClosedDate The date the post was closed 

Title The title of the post 

Tags A list of tags describing the post 

AnswerCount The number of answers (if post is a question) 

CommentCount The number of comments on the post 

FavouriteCount The number of users who have marked the post as a favourite 

 

Mapping the test data to the schema. 

Having described the fields available, the next step is to map these fields to both the 

relational schema and NoSQL schema. Some fields will match exactly to those in each of these 

schemas while others require a level of improvisation. There are also other fields that will not be 

used in the mapping, but will have a role to play in the import code. Error! Reference source 

not found. and Error! Reference source not found. Error! Reference source not found. lists 

the mappings for the relational schema. 
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Table 9. Relational Schema Mapping: forum_users 

forum_users 

Table field users.xml field 

id Id 

date_joined CreationDate 

name DisplayName 

email EmailHash 

last_login LastAccessDate 

signature WebsiteUrl 

passwd N/A (password will be randomly generated) 

access_lvl N/A (Access level will be randomly assigned) 

 

Table 10. Relational Schema Mapping: forum_posts 

forum_posts 

Table field posts.xml field 

id Id 

topic_id ParentID (if post type is 2, otherwise set to 0) 

forum_id N/A (Set manually depending on the forum posts are being 

imported for) 

author_id OwnerUserId 

update_id LastEditorUserId 

date_posted CreationDate 

date_updated LastEditDate 

subject Title 

body Body 

 

The NoSQL schema will be mapped in a similar fashion. Each field in the specified 

collection will have a corresponding field in the xml files. The details are listed in  

 and Error! Reference source not found. below. 
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Table 11. NoSQL Schema Mapping: users 

users 

Collection field users.xml field 

id Id 

date_joined CreationDate 

name DisplayName 

email EmailHash 

last_login LastAccessDate 

signature WebsiteUrl 

passwd N/A (password will be randomly generated) 

access_lvl N/A (Access level will be randomly assigned) 

post_count Set to 0 for initial import 

 

Table 12. NoSQL Schema Mapping: posts 

posts 

Table field posts.xml field 

id Id 

topic_id ParentID (if post type is 2, otherwise set to 0) 

forum_id N/A (Set manually depending on the forum posts are being 

imported for) 

author_id OwnerUserId 

update_id LastEditorUserId 

date_posted CreationDate 

date_updated LastEditDate 

subject Title 

body Body 

  

Loading the Test Data. 

The PHP code for loading the test data to both the relational database and the MongoDB 

database is straightforward. The XML file is loaded in to the PHP function simplexml_load_file 
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which returns an object of class SimpleXMLElement, an array like structure which can be used 

to iterate through the individual elements of the XML file. As the code iterates through the 

object, the elements needed from the array are assigned to individual variables. In the case of the 

relational schema, I then executed an INSERT statement using the previously set variables as the 

parameters for the insert statement. For MongoDB, all the variables are added to an array and I 

used the MongoDB insert function provided by the PHP driver which takes the array as a 

parameter and adds the data to the specified collection as a BSON document. Appendix C and 

Appendix D contains the source code required for loading the test data to the MySQL database 

and the MongoDB database. 

 

Deployment 

In this section,  will describe how the application was set up from an infrastructure point 

of view. In order to deploy this application a web server is required to serve the PHP web pages 

and a database server is required to hold the data for the application. This server will initially 

host a MySQL database and subsequently a MongoDB database. An additional number of 

servers will be required to facilitate replication and failover.  

Amazon EC2 Instances. 

Amazon Elastic Cloud Compute (EC2) was chosen as the platform to deploy all of the 

required servers for the application. EC2 is a pay as you go web service that allows new server 

instances to be deployed in minutes to Amazon’s computing environment, making it an ideal 

service for scaling up or down as required (Amazon, 2012a). Instances are deployed to the cloud 

as preconfigured Amazon Machine Images (AMIs). There are a range of instance types available 
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offering varying amounts of computing power. In this study, all instances used were Micro 

instances which provide: 

• 613MB of memory; 

• Up to 2 ECUs; 

• 32-bit or 64-bit platform; 

• Elastic Block Store (EBS) storage which is off-instance storage that persists 

independently from the life of the instance itself (Amazon, 2012a). 

Web Server Setup. 

One of the easiest ways to create a web server is to use a LAMP stack. This is an 

acronym for a server running a Linux operating system with Apache web server, MySQL 

Database and PHP components (or Python or Perl). To create a LAMP stack on Amazon EC2, 

one option would be to use the standard Linux instance and install each of the other three 

components individually. A more efficient way to create the LAMP stack is to use a 

preconfigured image from the Amazon Web Services Marketplace 

The AWS Marketplace is an online shop which allows third parties to sell software to 

AWS users in the form of pre-configured Amazon Machine Images (AMIs) which can be 

deployed directly to the cloud as an EC2 instance (Amazon, n.d.-a). This allows software to be 

deployed and made publicly available in a matter of minutes. Furthermore, the image will be pre-

tested and will be more reliable than a manually configured server. Rather than paying a license 

fee for the software, users are charged per hour for use of the software in addition to the standard 

EC2 charges.  



TRANSITIONING FROM RELATIONAL TO NOSQL 54 

 

 

There are many LAMP applications on AWS Marketplace. For this study I have chosen 

one provided by TurnKey Linux. There is no charge to use the software and it has an easy to use 

web management interface for configuration. To set up on EC2, the first task is to create an EC2 

account. Once an account has been created, the instance can be launched from the AWS 

Marketplace web page (Amazon, n.d.-b), as shown in Figure 13 below. 

 

Figure 13. Launching EC2 Instance from AWS Marketplace 

This screen requests a number of configuration settings for the instance: 

• Version: If there are different versions of the application a specific one can be chosen. In 

this case there is only one option. 

• Region: The region that the instance is to run. 
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• EC2 Instance Type: The type of the instance. A micro instance was chosen in this case. 

The instance type can be changed at a later date if volume increases on the web server. 

• Firewall Settings: This is a list of firewall rules (termed security groups in AWS) that 

define what traffic is allowed to connect to the server. This application provides a default 

security group which allows traffic through ports for its web management interface 

(12320-12322), MySQL connections (3306), SSH connections (22) and web traffic (80, 

443). 

• Key pair: This is the SSH public key which allows secure connections to be made to the 

server. This key must be created within the EC2 management console. A private key can 

then be downloaded to any clients connecting to the server to allow secure connections. 

Once the configuration has been completed, clicking the “Accept Terms & Launch with 

1-click” button will create the instance in EC2. After a few minutes the instance will be available 

and can be managed further from the EC2 interface, shown in Figure 14 below: 

 

Figure 14. LAMP Instance running in EC2 
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From here, the various instance parameters can be assessed, such as the public DNS name 

of the server. This is needed for accessing the server through the management interface and 

through SSH. Figure 15 below shows the management interface provided by Turnkey which is 

accessed through port 12321. 

 

Figure 15. Accessing the LAMP Management Interface 

This DNS name is fine for accessing management features, but it is not ideal for 

accessing any applications hosted on the server. A useful feature offered by Turnkey is the 

ability to create a hostname on their website which is linked to the instance running on EC2. To 

do this, details need to be registered with Turnkey. A hostname can then be entered for the 

instance. In this case, the hostname is jmcp-lamp.tklapp.com, highlighted in Figure 16 below. 

This interface can also be used to create an instance as an alternative to using the AWS 

marketplace. 
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Figure 16. Defining a hostname 

MongoDB Setup. 

To create the MongoDB instances, I went again to the AWS Marketplace. The creators of 

MongoDB, 10Gen, provide an AMI in the marketplace to allow consumers to easily get started 

with using MongoDB. The process is the same as what was used earlier to create the LAMP 

instance except this time it will be repeated two more times to make three instances in total. 

Once the instances are launched they can be managed from the EC2 management interface.  

Because the option is not available to assign a hostname in this case, three Elastic IP 

addresses will be assigned to each of the MongoDB instances. Elastic IP addresses are static IP 

addresses which can be assigned to any EC2 instance (Amazon, 2012b). If an instance is 

restarted in EC2, the public DNS name will more than likely not be the same as it was 

previously. Using an Elastic IP address provides a more consistent means to reference an 

instance.  

Once the instances are up and running, some additional configuration is required to start 

the process on each instance and to ensure the process starts when the server is restarted (10Gen, 
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n.d.-a). This can be done through an SSH connection, as shown in Figure 17 below. The same 

SSH key pair created earlier was used for authentication. 

 

Figure 17. Connecting through SSH 

To set up the MongoDB instances in a replica set, they must be able to communicate with 

each other. Amazon EC2 instances are all given a private IP address for internal communication 

between instances. To simplify configuration, an entry for each private IP address was added to 

the /etc/hosts file. This allows communication to be set up through a host name rather than using 

the IP address. 

The default security  group which was defined when the instance was created only allows 

SSH connections through port 22. MongoDB instances communicate through node 27017 by 

default so this was added to the security group. There is also a web interface for MongoDB 

which runs on port 28017, this was also added to the security group. The complete security group 

details are shown in Figure 18 below. 
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Figure 18. Security Group for MongoDB 

The replica set can then be created using the process outlined in the MongoDB 

documentation (10Gen, n.d.-b) and can be verified through the web interface, as shown in Figure 

19 below. 

 

Figure 19. MongoDB Web Interface 
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Chapter Summary 

In this chapter, I have presented a PHP bulletin board application which uses a MySQL 

database at its back end for data storage. The schema of this database was described in detail, 

with a view to converting the schema to a NoSQL system. I have also presented MongoDB as a 

candidate NoSQL system to facilitate this conversion. By making a comparison between 

MongoDB and RDBMS artefacts, a MongoDB schema was designed to replace the relational 

schema already in existence. This schema will now form the basis for our analysis in the next 

chapter where the PHP application will be converted to use our newly created MongoDB 

schema. I have also demonstrated how the application and the MongoDB database was deployed 

to the Amazon EC2 web service. 
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Chapter 4 – Analysis 

In this chapter, I will begin by analyzing the level of effort required to convert the PHP 

application presented in the previous chapter from using a MySQL back end to a MongoDB back 

end. Throughout the conversion process, I will analyze the differences between the relational and 

non-relational systems in use. I will not discuss converting the entire application as many aspects 

of the conversion are similar. Instead, a subset of pages from the PHP code will be chosen to try 

to cover all of the MongoDB concepts required to carry out a complete conversion. For 

reference, the source code for all pages discussed in this chapter can be found in Appendix A and 

Appendix B. Once the conversion process is complete, a number of performance tests will be 

carried out on both the MySQL and MongoDB versions of the application in order to compare 

and contrast the performance characteristics of both systems. The chapter will conclude with an 

implementation of a Map-Reduce function – the NoSQL approach to distributed queries and 

aggregation. 

 

Converting the PHP Code 

The initial approach taken to convert the application is to analyze the database access 

code in each of the pages of the application and try to create equivalent code to access the 

MongoDB database. The steps taken were: 

• Check each PHP page for SQL statements; 

• Record each SQL statement in the page; 

• Write down a logical sentence of what function the SQL statement is carrying out; 

• Try to write data access code for MongoDB that produces the same result as the 

SQL statement; 
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• If it is not possible to create equivalent MongoDB code, re-evaluate the 

MongoDB schema design. 

This will produce a first revision of our new PHP application which will be used for 

further analysis and testing later. As each individual SQL statement is converted, I will begin to 

develop a standard methodology in order to apply the approach to other relational based 

applications. 

To demonstrate the methodology in use, several of the PHP pages in our sample bulletin 

board application will be converted. There are many candidate pages in this application that 

require conversion. A subset of pages was chosen for this study. These pages have been carefully 

selected in order to demonstrate a number of different query options available in MongoDB. 

Converting read queries. 

The first candidate page in the application that was converted is functions.php. This file is 

a helper file containing functions which other pages in the application can use. Many of those 

functions also contain SQL statements to retrieve information from the database.  For each SQL 

statement found in the file a table of information should be constructed, such as Table 13, which 

details which PHP page the query is found in, the function within that page, the return type of the 

function (if applicable) and an explanation of the purpose of the query. 
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Table 13. SQL Analysis for functions.php 

File: functions.php 

Function: getForum 

Function Return Type: Integer 

SQL Statement: SELECT forum_name as name, forum_desc as description, 

forum_moderator as forum_mod FROM forum_forum WHERE id =  

$id; 

SQL Explanation: Find the forum name, forum description and forum moderator id for 

a given forum id 

 

From a first pass analysis of this statement it is clear that this is a read operation. There 

are two functions available in MongoDB for read operations: find() and findOne(). A filter can 

be included by passing an array to either of these functions to retrieve only the data that matches 

the array. This is the equivalent of the WHERE clause in the SQL statement. By default, find() 

and findOne() will return all fields in the document or documents that match the criteria. To 

retrieve only a number of specified fields, a second array can be passed to the function 

containing the fields that are required. The find() function returns a cursor to the data which can 

be iterated over, while the findOne() function will retrieve only one document from the 

collection, regardless of how many documents satisfy the criteria, and the result is automatically 

returned as an array in the PHP code. In this case findOne can be used since the search is for 

only one document and also because it eliminates the extra step of transferring the result to an 

array that would be required if find() were used. We can be sure that only one document will be 

found because we are filtering on the _id field which must be unique. The resultant PHP code is 

given in Figure 20. 
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Figure 20. Converted PHP code for the getForum() function 

This first conversion highlights one of the benefits of using MongoDB. The findOne 

method returns an array of one row of information (to use relational terminology) from the 

specified collection. In the MySQL code, the result of the SQL statement is returned as a 

resource object and a further processing step is required to transpose this result in to an array, 

using the function mysql_fetch_array. Table 14 below displays a comparison of the code 

required for this operation with MySQL and MongoDB. Clearly, the MongoDB code is more 

straightforward in this particular case. 

Table 14. Comparison of PHP code for the getForum function 

MySQL  MongoDB 

$sql = "SELECT forum_name as name,     

forum_desc as description, forum_moderator 

as forum_mod FROM forum_forum  

WHERE id = " . $id; 

 

$result = mysql_query($sql) 

    or die(mysql_error() . "<br>" . $sql); 

$row = mysql_fetch_array($result); 
 

return $row; 

$coll = new MongoCollection($db, 'forum'); 

$doc = $coll->findOne(array("_id" => $id)); 

 
return $doc; 

 

The next page that requires conversion is the index.php page, the default page for the 

application. This page displays a list of the forums and some related information that are 
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currently available for browsing. There is only one SQL statement on this page, its details are 

captured in Table 15. 

Table 15. SQL Analysis for index.php 

File: index.php 

Function: N/A 

Function Return Type: N/A 

SQL Statement: SELECT f.id as id, f.forum_name as forum,  

 f.forum_desc as description, 

 count(forum_id) as threads, u.name as forum_mod 

FROM forum_forum f 

LEFT JOIN forum_posts p 

ON f.id = p.forum_id 

AND p.topic_id=0 

LEFT JOIN forum_users u 

ON f.forum_moderator = u.id 

  GROUP BY f.id 

SQL Explanation: Find each forum id, forum name, a count of threads and the forum 

moderator  

 

 Replicating this statement in MongoDB presents a number of challenges. The first 

element that jumps out from this statement is the presence of two joins. It was noted earlier that 

joins are not supported in MongoDB. This does not mean that an equivalent query cannot be 

generated for this statement, but it does mean that the data cannot be retrieved with one query. 

Instead an initial query must be created with the fields from one collection and then loop through 

this result and retrieve the data from each collection that needs to be joined. This is known as 

client-side linking, owing to the fact that collections are joined by the client rather than on the 

server as is the case with relational database systems.  
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The second point to note with this query is the aggregation required to determine the 

number of threads in the forum. The query retrieves this by getting a count of the number of 

posts with a distinct topic id for each forum id. In MongoDB, this is can be achieved by running 

the distinct command with a given key and search criteria. In this case, the key is the topic_id 

and the filter criteria is the forum_id. 

 

Figure 21. Code for index.php query 

  The PHP code required for this is shown in Figure 21. We can clearly see here the initial 

query which finds all of the forums, followed by the iteration through this collection to retrieve 

the number of threads in each forum and the moderator of the forum. This is in contrast to the 

SQL query where the data is joined on the server and returned to the client. The SQL statement 
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requires, at worst, one scan of each table involved in the query to join the data. Analysing the 

code for the MongoDB query, we can see that for each forum that exists, one scan is required of 

both the posts collection and the users collection. This can have a significant impact on 

performance and be must be considered carefully in the schema design. To determine the impact 

a join type query will have on the design, the number of collection lookups required can be 

determined using the formula below: 

Ns = 1 + (Nirf × Njc) 

where:  
 Ns  = Number of collection scans 
 Nirf  = Number of initial records found 
 Njc  = Number of collections the initial collection is joined to 
 
Applying this to the index.php page, if our bulletin board has 12 forums, this query will 

require 25 find commands in total to retrieve the information required: 1 initial scan of the forum 

collection plus 12 scans each of the users collections and the posts collection. This particular 

example results in a small amount of find commands and the query time will be negligible. 

However, if the forum collection became very large, or if it was necessary to add another 

collection to the query, this figure could grow rapidly and have a detrimental effect on 

application performance. This situation arises in the next page that will be converted. 

The viewforum.php page is responsible for retrieving all the starting posts for each topic 

and displaying the topic subject, along with the number of replies and the date of the last post. 

The SQL analysis is given in Table 16. 
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Table 16. SQL Analysis for viewforum.php 

File: viewforum.php 

Function: N/A 

Function Return Type: N/A 

SQL Statement: CREATE TEMPORARY TABLE tmp (  

topic_id INT(11) NOT NULL DEFAULT 0, 

postdate datetime NOT NULL default '0000-00-00 00:00:00' 

 

INSERT INTO tmp SELECT topic_id, MAX(date_posted)  

FROM forum_posts  

WHERE forum_id = $forumid  

AND topic_id > 0  

GROUP BY topic_id 

 

SELECT  t.id as topic_id, t.subject as t_subject,  

         u.name as t_author, count(p.id) as numreplies,  

         t.date_posted as t_posted, tmp.postdate as re_posted 

FROM forum_users u  

JOIN forum_posts t  

      ON t.author_id = u.id  

LEFT JOIN tmp  

       ON t.id = tmp.topic_id  

LEFT JOIN forum_posts p 

       ON p.topic_id = t.id  

WHERE t.forum_id = $forumid  

AND t.topic_id = 0  

GROUP BY t.id  

       ORDER BY re_posted DESC 

SQL Explanation: Find the topic_id, subject, author name, number of replies, date 

posted and date of last post of each starting post for a given forum id  

 

This is a quite complex query that involves the use of a temporary table in order to first 

determine the date of the most recent post for a thread. This temporary table is then joined with 
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the forum_posts table, which in turn is joined with the forum_users table. This enables all of the 

required fields to be retrieved for the given forum id. There is also some aggregation in this 

query: a count of the number of posts for each topic_id (i.e. the number of replies) and the 

maximum post date for each topic_id (i.e. the date of the most recent post).  

To convert this query to use MongoDB the same methodology defined in the previous 

example was used. The main table involved in the query is forum_posts as this is the table that 

contains all of the posts that comprise the forum. Note that there are three joins in the query. The 

forum_users table is joined with the author_id field in order to get the thread author, the 

temporary table is joined on the id field to include the date of the last post, and there is a self join 

in order to count the number of replies. This means that one initial query of the posts collection 

is required and then three subsequent queries for each record found. The initial query will find 

the subject and the post date, along with the join fields required to retrieve the rest of the fields, 

namely, topic_id and author_id. Retrieving the post author and the number of replies is trivial 

and requires one line of code to query the users collection and the posts collection respectively. 

Retrieving the date of the last post however is not so straightforward. 

In order to find the last post date, we must first determine if there are any replies to the 

post. If there are no replies, then the last post date is the post date of the parent post. If there is 

only one reply, then the last post date is the post date of this reply. If there are multiple replies, 

then the last post date is the most recent date of this collection of replies. Represented in pseudo-

code: 

retrieve all date_posted records for the given topic_id 

if there are no records  

 last_post_date = date_posted of parent post 
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else if there is one record

 last_post_date = date_posted of this record

 else there are multiple records

  last_post_date = maxium(date_posted) of the records found

 

The corresponding PHP implementation is shown in 

Figure 

TRANSITIONING FROM RELATIONAL TO NOSQL 

else if there is one record 

last_post_date = date_posted of this record 

else there are multiple records 

last_post_date = maxium(date_posted) of the records found

The corresponding PHP implementation is shown in Figure 22. 

Figure 22. Converted PHP code for viewforum.php 

70 

last_post_date = maxium(date_posted) of the records found 
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 On examination of this code, the first thing that is apparent is the complexity. Although 

the SQL query in the relational example was by no means straightforward, once the data had 

been retrieved from the database there was very little processing required at the code level to 

display this information. The other point to note is the number of total queries required to 

retrieve the data. The initial query requires one scan of the posts collection, but then to retrieve 

the number of replies and the last post date the posts table must be scanned twice for each record 

found, as well one scan of the users table for each record. Using the formula defined in the 

previous example, the number of scans required can be determined if a forum had 10,000 posts. 

  Ns = 1 + (10,000 × 3) = 30,001 

It must also be considered here that two of the collection scans within the for loop are 

also of the posts collection, which is the collection that will contain the most amount of 

documents and therefore the longest scan times.  

Converting the insert/update/delete queries. 

Converting the sections of the application that deal with inserting, updating and deleting 

data is relatively straightforward when compared to the read operations. The bulletin board 

application encapsulates all update/insert operations in 4 files: 

• transact-admin.php, 

• transact-affirm.php, 

• transact-post.php, 

• transact-user.php. 

The transact-post.php file will be examined further in this section, as this file contains all 

interactions relating to inserting/updating posts on the forum, however, the methodology can be 

applied to all SQL statements carrying out insert/update/delete functions. The transact-post.php 
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file performs a number of different SQL operations depending on the parameter sent to the page. 

This analysis will deal with each of these queries separately.  

Inserting a new post. 

The first operation is to insert a new post to the database. The analysis for the SQL 

statement is shown in Table 17.  

Table 17. SQL Analysis of transact-post.php insert function 

File: transact-post.php 

Function: Insert new post 

Function Return Type: N/A 

SQL Statement: INSERT INTO forum_posts VALUES ( 

NULL,   $_POST['topic_id'], 

 $_POST['forum_id'] , 

 $_SESSION['user_id'], 

 0,  date("Y-m-d H:i:s",time()),  

 0, $_POST['subject'], 

 $_POST['body']; 

 

INSERT IGNORE INTO forum_postcount  

     VALUES ( $_SESSION['user_id'], 0); 

 

UPDATE forum_postcount SET count = count + 1 

      WHERE user_id = $_SESSION['user_id']; 

SQL Explanation: Insert a new row in to the forum_posts table with the given 

parameters and update the post count for the user.  

 

This query performs a straightforward insert to the forum_posts table and then updates 

the forum_postcount table. By using INSERT IGNORE, the query handles the scenario of the 

user’s first post. If the user exists, the INSERT statement is ignored and the UPDATE statement 

proceeds to increment the count field. If the user does not exist, the INSERT statement will 
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succeed and enter 0 for the post count and then proceed to increment this to 1 with the following 

UPDATE statement. 

To convert this functionality for the MongoDB database, an array is required that has all 

the required variables and then this array is passed to the MongoDB insert function, as shown in 

Figure 23. Converted PHP code for transact-post.php insert function. The second parameter 

passed to this command specifies that this command should be executed in safe mode, which 

tells the PHP script to wait for a response from the database. If the insert fails, the script will 

throw an exception which can be handled by the code. If this parameter is not explicitly set to 

true, the PHP code will continue regardless of the result of the insert command. Unless insert 

speed is critically important for the application, this parameter should always be set to true. 

Otherwise any issues with the database will not be captured and the command will appear to 

execute successfully. 

 

Figure 23. Converted PHP code for transact-post.php insert function 

Recall that in the schema design for MongoDB, the post count was moved to the users 

collection, therefore this field needs to be updated with the MongoDB update command. The 

first parameter for this command corresponds to the WHERE clause in the SQL statement. The 
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second parameter contains the operation to perform, in this case an increment of the post count 

field. Passing ‘true’ as the third parameter in this command specifies that the statement is an 

“upsert” statement. This means that if the user exists, perform an update, and if the user does not 

exist, perform an insert. This functionality means that the INSERT IGNORE statement in the 

MySQL code does not have to be replicated and where two statements were required with SQL, 

only one is required with MongoDB.  

Another point to note here is that with the SQL statement, a number of dummy values are 

required for fields that are not relevant to a new post such as the update_id and date_updated 

fields. Because there is no schema required in the MongoDB database, the document can be 

inserted without these fields at this point and added later if required.  

Updating an existing post. 

Table 18 details the SQL statement from transact-post.php that implements the post 

update functionality. This statement simply updates one post in the forum_posts table with the 

provided subject, update user id, post body and the current date. 

Table 18. SQL Analysis for transact-post.php update function 

File: transact-post.php 

Function: Update existing post 

Function Return Type: N/A 

SQL Statement: UPDATE forum_posts  

SET subject= $_POST['subject'] , 

update_id= $_SESSION['user_id'] , 

body= $_POST['body'] ,  

date_updated=date("Y-m-d H:i:s",time()) 

WHERE id= $_POST['post']; 

SQL Explanation: Update the subject, user id, body and date updated fields for the 
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given post id.  

  

The procedure for converting this statement to use the MongoDB database is similar to 

the update operation to the post count that has been discussed already. Again, the MongoDB 

update command is used, but on this occasion, the $set modifier is used rather than the $inc 

modifier. The fields that need to be updated are added to an array and this array is passed to the 

$set modifier in the update command. The first parameter again corresponds to the where clause 

in the SQL statement. The converted code is shown in Figure 24. 

 

Figure 24. Converted PHP code for transact-post.php update function 

Because of the flexible schema provided by MongoDB, care must be taken when using 

the update command. For instance, if the ‘date_updated’ field in the array above was misspelled 

as ‘date_update’, the update command will still succeed and the document will either have no 

‘date_updated’ field or it will have both a ‘date_updated’ field and a ‘date_update’ field. Any 

queries that use the ‘date_updated’ field would then give unexpected results. 

Another caveat to the update command is that, by default, only the first record that 

matches the criteria gets updated. This is something that is likely to catch out SQL developers. 
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For example, to update the subject field for all posts with topic_id 39037, you expect the 

command below to do this: 

$db->posts->update(array("topic_id"=>39037),  
      array('$set'=>array("subject"=>"New subject"))); 
 

However, this will only update one record. To update all records, a value of true must be 

given as a fourth parameter to the update command: 

$db->posts->update(array("topic_id"=>39037),  
       array('$set'=>array("subject"=>"New subject")), ,true); 

 

Deleting a post. 

Table 19 outlines the SQL required to delete a post. The MongoDB implementation of 

the delete operation is very similar to that required for an insert. The id of the post required to be 

deleted is passed to the MongoDB remove operation, as shown in Figure 25. 

Table 19. SQL Analysis of transact-post.php delete function 

File: transact-post.php 

Function: Delete post  

Function Return Type: N/A 

SQL Statement: DELETE FROM forum_posts  

WHERE id= $_REQUEST['post']; 

SQL Explanation: Delete from the forum_posts table where the id matches the given id.  

 

 

Figure 25. Converted PHP code for transact-post.php delete function 
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Performance and Optimization 

One of the most important aspects of a database system is the speed with which data can 

be retrieved relative to the hardware used to host the databases. This section will present a 

number of performance measurements that have been taken to assess how the NoSQL system 

performs relative to the relational system. These measurements will also be used to try to 

optimize the data retrieval code in the PHP/MongoDB application. 

Hardware setup. 

In order to compare the performance of two or more database systems, it is important to 

ensure that all systems are operating on the same hardware setup and that there is minimal 

external influence on the database that may affect any results taken. Both the MySQL and the 

MongoDB databases were set up on Amazon Elastic Cloud Compute instances with no other 

applications competing for resources. As discussed in Chapter 2, one of the major claims of 

NoSQL databases is their ability to run on basic hardware. To test this claim, a micro instance 

was chosen as the instance type for both the MongoDB server and the MySQL server. This is the 

lowest spec instance type available in Amazon EC2. Its specifications were detailed in the 

previous chapter. 

Method used for measurement taking. 

In order to capture the execution times of the queries in the PHP application, additional 

code was added to each PHP page containing either an SQL or a MongoDB query. At the start 

and end point of each query, a variable was assigned with the current time. The total execution 

time for the query is then the difference between these two variables. An example of this 

implementation is shown in Figure 26. This calculation will capture both the query duration and 

the fetch time required to return the result to the web server. This fetch time is negligible in this 
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case as the information is being transferred across the internal Amazon EC2 high speed network. 

Furthermore, the accuracy of the calculation was verified against results in the MySQL long 

running query log and the MongoDB query log, both of which report the execution time of 

queries in milliseconds. 

 

Figure 26. PHP code to measure MySQL query time 

A threshold of 30 seconds was chosen as the maximum acceptable time for a query to 

execute. This number was chosen because it is a common timeout limit for web requests. If the 

data is not returned within this timeframe, the web server will normally return a timeout error. 

However, in a real life situation, query times of much less than 30 seconds would be required for 

an application such as this. 

Furthermore, these tests do not consider concurrent requests for data as there is only one 

statement executing at a time on the database. In a real world scenario, the database would be 

handling many requests at the same time and the execution times of these tests will likely be 

much longer (or potentially shorter in MySQL as the same query may have been executed by a 

different connection which would leave the query result in the query cache).  

Comparison of MySQL and MongoDB write performance. 

This section will provide a comparison of the write performance of MySQL and 

MongoDB by bulk loading data to both database systems from XML files and measuring the 

execution time for each file.  
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As discussed in Chapter 3, test data was loaded to both the MySQL database and the 

MongoDB database from XML files containing data from the StackExchange network of 

question and answer forums. Data was loaded to the forum_users and forum_posts tables in 

MySQL and to the users and posts collection in MongoDB. All foreign key references were 

disabled in the MySQL database. In order to effectively load the data, the respective XML files 

had to be divided into smaller files of equal size. The posts.xml file was divided in to 336 files of 

25.5MB each, containing approximately 20,000 rows per file. The  users.xml file was divided in 

to 15 files of 14.5MB each, containing approximately 60,000 rows per file.  

 

Figure 27. Comparison of import times for users.xml files 

The import times for both MySQL and MongoDB are shown in Figure 27. The average 

time for MySQL was 611.24 seconds, while the MongoDB average time was 80.72 seconds, 

almost 8 times faster. This test highlights the write advantage that MongoDB has over MySQL. 

For the posts.xml files, the results are even more in favour of MongoDB which gave an average 
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time of only 8.93 seconds per file compared to 248.15 seconds for MySQL. These results are 

shown in Figure 28. 

 

Figure 28. Comparison of import times for posts.xml files 

 

Comparison of MySQL and MongoDB read performance. 

After converting the PHP application, it may be useful to compare the performance of the 

MySQL version of the application to the new version using MongoDB. Of the pages converted, 

the viewforum.php page is the most resource intensive, in terms of retrieving data from the 

database. Therefore this page will be used as the basis for the performance comparison. 

Optimizing the MySQL query in viewforum.php. 

In order to provide a fair reflection on the performance of the MySQL database in 

viewforum.php, a number of optimizations were made with the intention of obtaining the best 

possible query times. Recalling from the SQL Analysis in Table 16, there are two tables involved 

in the query: forum_posts and forum_users. The first step taken to optimize the query is to create 
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indexes on the fields used in the WHERE clause and any fields used for joins, resulting in the 

following indexes: 

• forum_posts: id (PRIMARY KEY), topic_id, forum_id, author_id, date_posted 

• forum_users: id(PRIMARY KEY) 

  The original query for this page uses a temporary table to store the last post date for 

each topic id. This table is then joined to the forum_posts table in order to generate the required 

result set. Joining the temporary table here will be a slow operation unless an index is created on 

the topic_id field in the temporary table. However, creating this index is also a time consuming 

operation and will still impact the overall query time for this result set.  

A better approach to this is to use a view to retrieve the last post date portion of the query 

and then join this view to the forum_posts table instead. The view can utilize the existing indexes 

on the forum_posts table. The definition for this view is given in Figure 29. 

 

Figure 29. Create view statement 

The complete SQL statement is then revised to that shown in Figure 30. 
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Figure 30. Revised SQL query for viewforum.php 

Test specifications. 

In order to compare the read performance of  MySQL and MongoDB, a number of test 

specifications were devised. Each test involved measuring the execution time of the query from 

the viewforum.php page, varying the number of rows in the users and posts tables/collections. 

For each test, the query was executed 10 times and the result was recorded each time. Table 20 

lists the parameters for each test devised. 
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Table 20. Test specifications 

Test No. Count of rows/documents in 

users table/collection 

Count of rows/documents 

in posts table/collection 

1 59998 27253 

2 300000 27253 

3 59998 55661 

4 300000 55661 

5 887373 55661 

6 887373 112594 

7 887373 139799 

8 887373 543553 

 

Performance test results. 

Figure 31 shows the results of the performances tests for Test 1. It can be clearly seen 

here that MongoDB has a lower query time for this read operation with an average time of 1.18 

seconds, compared to 3.23 seconds for MySQL. This is contrary to the read performance results 

presented by Cooper et al (2010) which were generated by the YCSB client. They key difference 

here is the hardware in use; the setup presented here uses significantly lower hardware that used 

in (Cooper et al., 2010). This suggests that MongoDB performs better on lower spec hardware. 
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Figure 31. Results of Test No. 1 

Test no. 2 increases the row count on one side of the join between the users and posts 

table/collection (the users side) but as shown in Figure 32. Results of Test No. 2 this has very 

little effect on query times. 

 

Figure 32. Results of Test No. 2 

However, increasing the number of rows in the posts table/collection has a significant 

negative effect on the performance of the MySQL database, as shown in Figure 33. The limited 
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severe effect on the MySQL instance. The average query time for Test No. 3 is 14.63 seconds, 

while the MongoDB instance is largely unaffected by the increase in data volume, with an 

average query time of 1.1 seconds. 

 

Figure 33. Results of Test No. 3 

Moving on to Test No. 4, the results for MySQL start to go beyond the 30 second 

threshold that have been defined for this test. Results also become extremely inconsistent with 
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a schema change is required for the MySQL instance. On the other hand, MongoDB is still 

capable of supporting this volume of data with results remaining consistent and only a slight 

increase in the average query time to 1.28 seconds. In fact, even with further increases to the row 

count in both the users and posts collection, the average read time for MongoDB stays below the 

threshold of 30 seconds for tests 5 through 8. The results are summarised in Table 21.  
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Table 21. MongoDB read performance results summary 

Test No Average Query Time (seconds) 

4 1.28 

5 1.9 

6 3.5 

7 5.6 

8 7.15 

 

The read performance only begins to degrade when the document count for the posts 

collection reaches 763,768 documents. At this point the query regularly returned the exception 

“too much data for sort() with no index.  add an index or specify a smaller limit”. Therefore, this 

will be considered to be the breaking point for the MongoDB database. There is, however, a way 

to optimise this query to handle this volume of data which will be discussed in the next section. 

MySQL database engine. 

For reference, the MySQL database engine for the forum_users and forum_posts table 

was altered from using InnoDB to MyISAM to assess the effect on the test results. This engine 

has traditionally performed better than InnoDB and this proved to be the case for this particular 

test also. Re-running Test 4 with MyISAM, the MySQL database was able to return data within 

the 30 second timeout limit. However, as Figure 34 shows, the average time was still 

significantly lower than MongoDB. Couple this with the fact that you no longer have foreign key 

support with MyISAM and the trade off does not seem worthwhile. 
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Figure 34. Results of Test No. 4 (Using the MyISAM engine) 

 

Using Map-Reduce for Aggregation. 

As shown in the previous section, SQL queries that use joins and aggregation do not 

transfer well to NoSQL environments in terms of implementing the query. As discussed in 
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Map-Reduce to compare the different approaches and to measure any performance benefits. 
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if there are further processing steps required is required. The map function will iterate over a 
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a count of the posts for each topic_id and the maximum date_posted are required, therefore we 

need the date_posted field in the value part of the map function. Any of the fields can be used to 

count so no additional fields are needed for this. The map function gives its output through the 

emit statement and the format for this output must be specified. The code for the map function is 

shown in Figure 35. It can be seen here that the value part consists of an array that contains a 

date_posted element to hold each of the dates for the given topic_id and a count element which 

will be used to hold the number of replies. A filter can also be included in this function if 

required. The original SQL query looks for all posts where the topic_id is not equal to zero (i.e. 

replies only), so this can be included in the map function also. 

 

Figure 35. Map function from viewforum.php 

Next, the reduce function was created. This function takes the output from the map 

function as its input. It performs the necessary calculations on the data and returns it in the same 

format specified in the emit statement of the map function. The reduce function runs once for 

each row of data it receives from the map function. The values from each row can be accessed 

through the values input parameter. In this particular case, we are looking for the maximum 

date_posted value and a count of the number of values in the date_posted element. To get the 

maximum date, each value is examined through a for loop and some simple logic is implemented 

to find the most recent date. Getting the count is simply a case of incrementing a counter for each 

value found. The implementation of this reduce function can be seen in Figure 36. 
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Figure 36. Reduce function from viewforum.php 

To run the map-reduce functions, a command is executed on the MongoDB server, 

specifying the collection on which to run the command, the map and reduce functions, how the 

output will be stored and an optional query parameter to provide further filtering. This command 

is shown in Figure 37. In this case, the output is stored as a collection called ‘lastPosts’. The 

merge command specifies that if the collection already exists, the output will be merged with this 

existing collection, i.e. if the same key exists the value will be updated, if the key does not exist 

the value will be added to the collection. This command should be executed regularly to ensure 

that the data in the lastPosts collection is as current as possible. Ideally, it should be executed 

every time a new post is entered, or it can be executed on a schedule by a server side task. 

 

Figure 37. Executing the Map-Reduce command 
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The collection will now remain available in our database until it is removed explicitly4 

and can be accessed in the same way as any other collection. Now that the required information 

is contained in a new collection, the viewforum.php code can be modified. The changes are 

shown in Figure 38. Most notably, the two scans of the posts collection have been eliminated and 

replaced with a lookup of the collection produced as a result of implementing the Map-Reduce 

function. As this collection is an aggregation of the data from the posts collection, it will be a 

factor smaller, depending on the ratio of questions to replies. Therefore, the performance of this 

code in theory should be much better than previously.  

 

Figure 38. viewforum.php using Map-Reduce 

                                                 

 

4MongoDB Version 1.8+ 
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The drawback with using this approach however is that the collection may not always be 

current, depending on how frequently the Map-Reduce function is executed. One other point to 

note is that the Map-Reduce output collection can be indexed in the same way as any other 

collection. This is analogous to an indexed view in a relational database system. The next section 

will provide a comparative analysis of the performance gains as a result of these changes 

Performance benefits of using Map-Reduce 

 The results for Test No. 8 earlier in this chapter produced an average read time of 7.15 

seconds. Figure 39 presents the results of this test with and without using Map-Reduce. The 

average query time reduces to 3.82 seconds with the Map-Reduce approach.  

 

Figure 39. Comparison of query times using Map-Reduce 

The key issue here however, is that the output of the Map-Reduce function must be 

updated whenever a new post is entered. With this volume of data, the length of time to execute 

the Map-Reduce function took an average of 537 seconds, calculated over 10 executions of the 

function. This is unlikely to be an acceptable length of time for an application such as this. 
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However, because of the Map-Reduce can deploy functions in parallel, this time would 

dramatically reduce if the data was sharded over several nodes in the cluster. The more nodes 

containing shards of the data, the quicker the execution time of the Map-Reduce function. This is 

where the real benefit of Map-Reduce can be realised. 

 

Chapter Summary 

In this chapter, I have presented how an existing PHP application based on MySQL can 

be converted to use a MongoDB backend. By extracting each of the SQL queries from the 

existing application, each one can be analysed and converted to equivalent PHP code. Complex 

queries involving joins and aggregations are more difficult to create in the MongoDB 

environment and require having to iterate several times over each collection in the query. Map-

Reduce can be used to replicate complex SQL queries, but requires a considerable amount of 

time to execute when hardware resources are limited. 

In contrast, insert, update or delete functions are more straightforward to implement in 

MongoDB and are more susceptible to changes in the schema of the database. In terms of 

performance, I have shown that MongoDB can perform better than MySQL for both write and 

read operations when the capabilities of the hardware are limited.  
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Chapter 5 – Conclusions 

Research Findings 

Transitioning from a relational to a NoSQL environment can result in many benefits for 

an organisation. It is possible to take an existing relational schema and translate the design in to 

an effective NoSQL schema. Document stores are especially well suited for this as their data 

model allows for an almost direct translation: tables map to collections, rows map to documents 

and columns map to fields. Indexes are used in the same way as they would in a relational 

database.  

Some of the benefits that can be realised that this study has shown include: 

• Lower cost; 

• Shorter development and deployment times; 

• Better performance on lower cost hardware; 

• The flexibility to change the schema without affecting client systems. 

The majority of NoSQL databases carry no license fee and can be installed for free, 

which would give a significant cost saving if transitioning from a commercial relational system. 

They also perform well on low cost, low specification hardware. This is a particularly useful trait 

if a company is also transitioning to cloud based services such as Amazon EC2.  

Setting up a NoSQL database in a cluster is also much simpler than deploying an 

equivalent distributed relational database which can reduce overall deployment time for the 

database system. In the case of the MongoDB database used in this study, a total of 3 servers 

were configured in a replica set and this was achieved with the minimal of effort. A simple 

configuration file containing the host name and the replica set name for each member server is 
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all that is required. This file can also be updated on the fly to include new replicas which begin 

replicating data as soon as they are joined to the set. 

The thought process for designing a NoSQL schema needs to be adjusted slightly in order 

to maximise the strengths of the NoSQL model. Where data would have been normalised in a 

relational system to reduce redundancy, often it requires de-normalisation in a NoSQL system 

which will require extra care when dealing with data that may exist in more than one location in 

the database. The reason for this is the difficulty in writing the data access code to return data 

from two or more collections with related fields. The conversion process needs to look at the 

most common SQL queries with table joins that execute on the database and see where tables can 

be consolidated in to one collection to reduce the need for joins in the NoSQL database. An 

example of this was seen in Chapter 3 where three relational tables were consolidated in to one 

collection in the MongoDB schema. 

Adjusting to a new query language instead of SQL can be challenging at first, however, 

in the case of MongoDB, it was not necessarily more difficult to query the database than it would 

be to write an SQL statement to query the relational database. Insert, update and delete 

operations in particular are just as straightforward as their relational counterparts. It was only 

when complex SQL queries were encountered that it became difficult to transfer to a MongoDB 

query. When this situation occurs, it should be seen as a trigger to re-evaluate the schema design 

to look for possible improvements that would reduce the complexity of the query. 

In terms of performance, the NoSQL database returned surprisingly better results than the 

equivalent MySQL design. Despite the limited resources available, it is perfectly viable to 

deploy a large database on the lowest spec hardware available on Amazon’s EC cloud 
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infrastructure. This can result in huge cost reductions to the overall annual cost of a data storage 

system.  

 

Lessons Learned 

One of the most well stated characteristics of NoSQL databases is that they are not ACID 

compliant, in particular that they do not support consistency in the same way as relational 

databases. This actually a misconception. It is true that NoSQL databases predominantly only 

support eventual consistency, however certain NoSQL databases (such as MongoDB and 

Cassandra) can be made to be fully ACID compliant if necessary. Furthermore, this can be set at 

the query level, providing complete customization over the consistency property.  

The more striking difference between NoSQL and relational is in the area of foreign key 

support. Referential integrity is one of the key characteristics of a relational database and this an 

area where one needs to take the most care when transitioning to a NoSQL database. Because of 

the differences in the way in which data is queried, it is often the case where data must be de-

normalised in the NoSQL database in order to create an efficient query. This can lead to issues 

with data redundancy which may not have arisen in a relational system. 

 On a related point, converting to NoSQL may not be a viable option if the application 

contains complex SQL queries. Although Map-Reduce provides a means to create complex 

queries on NoSQL databases, the actual implementation can be significantly more difficult that 

the equivalent SQL query. 

Infrastructure-as-a-service and the cloud is becoming more and more prevalent and it is 

therefore important that a database system is able to perform well in this environment. It was for 

this reason that Amazon EC2 was chosen as the platform for the use case. The NoSQL database 
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performed very well in this environment and was surprisingly more efficient for data retrieval 

than the relational database deployed on the same platform. 

 

Summary of Contributions 

This study has attempted to give an insight in to the different types of NoSQL 

technologies that exist in the market today and the types of applications that these systems are 

currently being used for. It is the intention of the research to enlighten the reader to the 

possibility of transitioning from an existing relational environment to a NoSQL environment and 

to show that this can be particularly beneficial in certain areas. The use case outlined in Chapter 

3 and Chapter 4 is intended to prove that an application based on a relational back-end can be 

converted to use a NoSQL back-end if the right approach is taken.  

 

Future Research 

NoSQL is a very new and exciting technology that can have many different applications. 

This study has looked at only one particular use case and this research could be extended to take 

into account other types of applications that are built on relational back-ends. Any high volume 

OLTP type systems could potentially transfer to a NoSQL environment to provide better 

scalability, availability and at a lower cost.  

The area of performance testing that was touched on in the analysis chapter is an area that 

warrants an entire study in itself. This paper compared the performance of a NoSQL database 

with a relational database under very specific conditions. All tests were made in isolation and did 

not take into account concurrency issues. Different types of workloads could also be considered 

to give a better picture of the performance characteristics of each system.  
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Appendix A 

Selected PHP Source Code for MySQL database access 

index.php 

<?php 
require_once 'conn.php'; 
require_once 'functions.php'; 
require_once 'header.php'; 
 
$sql = <<<EOS 
  SELECT f.id as id, f.forum_name as forum,  
    f.forum_desc as description, 
    count(forum_id) as threads, u.name as forum_mod 
  FROM forum_forum f 
  LEFT JOIN forum_posts p 
  ON f.id = p.forum_id 
  AND p.topic_id=0 
  LEFT JOIN forum_users u 
  ON f.forum_moderator = u.id 
  GROUP BY f.id 
EOS; 
$result = mysql_query($sql) 
  or die(mysql_error()); 
if (mysql_num_rows($result) == 0) { 
  echo "    <br>\n"; 
  echo "    There are currently no forums to view.\n"; 
} else { 
  echo "<table class=\"forumtable\" cellspacing=\"0\" "; 
  echo "cellspacing=\"0\"><tr>"; 
  echo "<th class=\"forum\">Forum</th>"; 
  echo "<th class=\"threadcount\">Threads</th>"; 
  echo "<th class=\"moderator\">Moderator</th>"; 
  echo "</tr>"; 
  $rowclass = ""; 
  while ($row = mysql_fetch_array($result)) { 
    $rowclass = ($rowclass == "row1"?"row2":"row1"); 
    echo "<tr class=\"$rowclass\">"; 
    echo "<td class=\"firstcolumn\"><a href=\"viewforum.php?f=" .  
         $row['id'] . "\">"; 
    echo $row['forum'] . "</a><br>"; 
    echo "<span class=\"forumdesc\">" . $row['description']; 
    echo "</span></td>"; 
    echo "<td class=\"center\">" . $row['threads'] . "</td>"; 
    echo "<td class=\"center\">" . $row['forum_mod'] . "</td>"; 
    echo "</tr>\n"; 
  } 
  echo "</table>"; 
} 
 
require_once 'footer.php'; 
?> 
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viewforum.php 

require_once 'conn.php'; 
require_once 'functions.php'; 
require_once 'http.php'; 
if (!isset($_GET['f'])) redirect('index.php'); 
require_once 'header.php'; 
 
$forumid = $_GET['f']; 
$forum = getForum($forumid); 
 
echo breadcrumb($forumid, "F"); 
if (isset($_GET['page'])) { 
  $page = $_GET['page']; 
} else { 
  $page = 1; 
} 
$limit = $admin['pageLimit']['value']; 
if ($limit == "") $limit = 25; 
$start = ($page - 1) * $admin['pageLimit']['value']; 
 
 
 
 
$sql = "SELECT SQL_CALC_FOUND_ROWS 
         t.id as topic_id, t.subject as t_subject,  
         u.name as t_author, count(p.id) as numreplies,  
         t.date_posted as t_posted, v.postdate as re_posted  
        FROM  
       forum_users u  
       JOIN forum_posts t  
       ON t.author_id = u.id  
       LEFT JOIN v_replies v 
       ON t.id = v.topic_id  
       LEFT JOIN forum_posts p  
       ON p.topic_id = t.id  
       WHERE t.forum_id = 4 
       AND t.topic_id = 0  
       GROUP BY t.id     
       ORDER BY re_posted DESC 
       LIMIT $start, $limit"; 
 
$time_start = microtime(true); 
$result = mysql_query($sql) 
  or die(mysql_error() . "<br>" . $sql); 
   
$time_end = microtime(true); 
$time = $time_end - $time_start; 
echo "Data Retrieved. Took " . $time . "seconds <br>"; 
 
$numrows = mysql_num_rows($result); 
echo "Numrows: " . $numrows . "<br>"; 
if ($numrows == 0) { 
  $msg = "There are currently no posts.  Would you " . 
         "like to be the first person to create a thread?"; 
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  $title = "Welcome to " . $forum['name']; 
  $dest = "compose.php?forumid=" . $forumid; 
  $sev = "Info"; 
  $message = msgBox($msg,$title,$dest,$sev); 
  echo $message; 
} else { 
  if (isset($_SESSION['user_id'])) { 
    echo topicReplyBar(0, $_GET['f'], "right"); 
  } 
  echo "<table class=\"forumtable\" cellspacing=\"0\" "; 
  echo "cellpadding=\"2\"><tr>"; 
  echo "<th class=\"thread\">Thread</th>"; 
  echo "<th class=\"author\">Author</th>"; 
  echo "<th class=\"replies\">Replies</th>"; 
  echo "<th class=\"lastpost\">Last Post</th>"; 
  echo "</tr>"; 
  $rowclass = ""; 
  while ($row = mysql_fetch_array($result)) { 
    $rowclass = ($rowclass == "row1"?"row2":"row1"); 
    if ($row['re_posted'] == "") { 
      $lastpost = $row['t_posted']; 
    } else { 
      $lastpost = $row['re_posted']; 
    } 
    if ((isset($_SESSION['user_id'])) and 
        ($_SESSION['last_login'] < $lastpost)) { 
      $newpost = true; 
    } else { 
      $newpost = false; 
    } 
    echo "<tr class=\"$rowclass\">"; 
    echo "<td class=\"thread\">" . ($newpost?NEWPOST."&nbsp;":""); 
    echo "<a href=\"viewtopic.php?t="; 
    echo $row['topic_id'] . "\">" . $row['t_subject'] . "</a></td>"; 
    echo "<td class=\"author\">" . $row['t_author'] . "</td>"; 
    echo "<td class=\"replies\">" . $row['numreplies'] . "</td>"; 
    echo "<td class=\"lastpost\">" . $lastpost . "</td>"; 
    echo "</tr>\n"; 
  } 
  echo "</table>"; 
  echo paginate($limit); 
  echo "<p>" . NEWPOST . " = New Post(s)</p>"; 
} 
 
 
require_once 'footer.php'; 
 

functions.php 

<?php 
 
function getForum($id) { 
  $sql = "SELECT forum_name as name, forum_desc as description, " . 
         "forum_moderator as forum_mod ". 
         "FROM forum_forum ". 
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         "WHERE id = " . $id; 
  $result = mysql_query($sql) 
    or die(mysql_error() . "<br>" . $sql); 
  $row = mysql_fetch_array($result); 
  return $row; 
} 
 
function getForumID($topicid) { 
  $sql = "SELECT forum_id FROM forum_posts WHERE id=$topicid"; 
  $result = mysql_query($sql) 
    or die(mysql_error() . "<br>" . $sql); 
  $row = mysql_fetch_array($result); 
  return $row['forum_id']; 
} 
 
function breadcrumb($id, $getfrom="F") { 
  $sep = "<span class=\"bcsep\">"; 
  $sep .= " &middot; "; 
  $sep .= "</span>"; 
  if ($getfrom == "P") { 
    $sql = "SELECT forum_id, subject FROM forum_posts " . 
           "WHERE id = " . $id; 
    $result = mysql_query($sql) 
      or die(mysql_error() . "<br>" . $sql); 
    $row = mysql_fetch_array($result); 
    $id = $row['forum_id']; 
    $topic = $row['subject']; 
  } 
  $row = getForum($id); 
  $bc = "<a href=\"index.php\">Home</a>$sep"; 
  switch ($getfrom) { 
    case "P": 
      $bc .= "<a href=\"viewforum.php?f=$id\">".$row['name'] . 
            "</a>$sep" . $topic; 
      break; 
 
    case "F": 
      $bc .= $row['name']; 
      break; 
  } 
 return "<h4 class=\"breadcrumb\">" . $bc . "</h4>"; 
} 
 
function showTopic($topicid, $showfull=TRUE) { 
  global $conn; 
  global $userid; 
  global $limit; 
 
  echo breadcrumb($topicid, "P"); 
  if (isset($_GET['page'])) { 
    $page = $_GET['page']; 
  } else { 
    $page = 1; 
  } 
  if ($limit == "") $limit = 25; 
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  $start = ($page - 1) * $limit; 
  if (isset($_SESSION['user_id'])) { 
    echo topicReplyBar($topicid, getForumID($topicid), "right"); 
  } 
  $sql = "SELECT SQL_CALC_FOUND_ROWS ". 
           "p.id, p.subject, p.body, p.date_posted, " . 
           "p.date_updated, u.name as author, u.id as author_id, " . 
           "u.signature as sig, c.count as postcount, " . 
           "p.forum_id as forum_id, f.forum_moderator as forum_mod, " . 
           "p.update_id, u2.name as updated_by " . 
         "FROM forum_forum f " . 
         "JOIN forum_posts p " . 
         "ON f.id = p.forum_id " . 
         "JOIN forum_users u " . 
         "ON u.id = p.author_id " . 
         "LEFT JOIN forum_users u2 " . 
         "ON u2.id = p.update_id " . 
         "LEFT JOIN forum_postcount c " . 
         "ON u.id = c.user_id " . 
         "WHERE (p.topic_id = $topicid OR p.id = $topicid) " . 
         "ORDER BY p.topic_id, p.date_posted ". 
         "LIMIT $start,$limit"; 
  $result = mysql_query($sql, $conn) 
    or die(mysql_error() . "<br>" . $sql); 
  $pagelinks = paginate($limit); 
  if (mysql_num_rows($result) == 0) { 
    $msg = "There are currently no posts.  Would you " . 
           "like to be the first person to create a thread?"; 
    $title = "No Posts..."; 
    $dest = "compose.php?forumid=" . $forumid; 
    $sev = "Info"; 
    $message = msgBox($msg,$title,$dest,$sev); 
    echo $message; 
  } else { 
    echo "<table class=\"forumtable\" cellspacing=\"0\" "; 
    echo "cellpadding=\"2\"><tr>"; 
    echo "<th class=\"author\">Author</th>"; 
    echo "<th class=\"post\">Post</th>"; 
    echo "</tr>"; 
    $rowclass = ""; 
    while ($row = mysql_fetch_array($result)) { 
      $lastupdate = ""; 
      $editlink = ""; 
      $dellink = ""; 
      $replylink = "&nbsp;"; 
      $pcount = ""; 
      $pdate = ""; 
      $sig = ""; 
      if ($showfull) { 
        $body = $row['body']; 
        if (isset($_SESSION['user_id'])) { 
          $replylink = "<a href=\"compose.php?forumid=" . 
            $row['forum_id'] . "&topicid=$topicid&reid=" . $row['id'] . 
            "\" class=\"buttonlink\">REPLY</a>&nbsp;"; 
        } else { 
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          $replylink = ""; 
        } 
        if ($row['update_id'] > 0) { 
        $lastupdate = "<p class=\"smallNote\">Last updated: " . 
             $row['date_updated'] . " by " . 
             $row['updated_by'] . "</p>"; 
        } 
        if (($userid == $row['author_id']) or 
            ($userid == $row['forum_mod']) or 
            ($_SESSION['access_lvl'] > 2)) { 
          $editlink = "<a href=\"compose.php?a=edit&post=".$row['id']. 
            "\" class=\"buttonlink\">EDIT</a>&nbsp;"; 
          $dellink = "<a href=\"transact-affirm.php?action=deletepost&". 
            "id=" . $row['id'] . 
            "\" class=\"buttonlink\">DELETE</a>&nbsp;"; 
        } 
        $pcount = "<br><span class=\"textsmall\">Posts: " . 
          ($row['postcount']==""?"0":$row['postcount']) . "</span>"; 
        $pdate = $row['date_posted']; 
        $sig = ($row['sig'] != ""?"<p class=\"sig\">". 
               bbcode(nl2br($row['sig'])):"")."</p>"; 
      } else { 
        $body = trimBody($body); 
      } 
      $rowclass = ($rowclass == "row1"?"row2":"row1"); 
      echo "<tr class=\"$rowclass\">"; 
      echo "<td class=\"author\">" . $row['author']; 
      echo $pcount; 
      echo "</td><td class=\"post\"><p>"; 
      if (isset($_SESSION['user_id']) 
          and ($_SESSION['last_login'] < $row['date_posted'])) { 
        echo NEWPOST . " "; 
      } 
      if (isset($_GET['page'])) { 
        $pagelink = "&page=" . $_GET['page']; 
      } else { 
        $pagelink = ""; 
      } 
      echo "<a name=\"post" . $row['id'] . 
           "\" href=\"viewtopic.php?t=" . $topicid .$pagelink ."#post". 
           $row['id'] . "\">".POSTLINK."</a>"; 
      if (isset($row['subject'])) { 
        echo " <strong>" . $row['subject'] . "</strong>"; 
      } 
      echo "</p><p>" . bbcode(nl2br(htmlspecialchars($body))) . "</p>"; 
      echo $sig; 
      echo $lastupdate; 
      echo "</td></tr>"; 
      echo "<tr class=\"$rowclass\"><td class=\"authorfooter\">"; 
      echo $pdate . "</td><td class=\"threadfooter\">"; 
      echo $replylink; 
      echo $editlink; 
      echo $dellink; 
      echo "</td></tr>\n"; 
    } 
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    echo "</table>"; 
    echo $pagelinks; 
    echo "<p>".NEWPOST." = New Post&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;"; 
    echo POSTLINK." = Post link (use to bookmark)</p>"; 
  } 
} 
 
function isParent($page) { 
  $currentpage = $_SERVER['PHP_SELF']; 
  if (strpos($currentpage, $page) === false) { 
    return FALSE; 
  } else { 
    return TRUE; 
  } 
} 
 
function topicReplyBar($topicid,$forumid,$pos="right") { 
  $html = "<p class=\"buttonBar" . $pos . "\">"; 
  if ($topicid > 0) { 
    $html .= "<a href=\"compose.php?forumid=$forumid" . 
             "&topicid=$topicid&reid=$topicid\" " . 
             "class=\"buttonlink\">Reply to Thread</a>"; 
  } 
  if ($forumid > 0) { 
    $html .= "<a href=\"compose.php?forumid=$forumid\" " . 
             "class=\"buttonlink\">New Thread</a>"; 
  } 
  $html .= "</p>"; 
  return $html; 
} 
 
function userOptionList($level) { 
  $sql = "SELECT id, name, access_lvl " . 
         "FROM forum_users " . 
         "WHERE access_lvl=" . $level . " " . 
         "ORDER BY name"; 
  $result = mysql_query($sql)  
    or die(mysql_error()); 
 
  while ($row = mysql_fetch_array($result)) { 
    echo "<option value=\"". $row['id'] . "\">" . 
         htmlspecialchars($row['name']) . "</option>"; 
  } 
} 
 
function paginate($limit=10) { 
  global $admin; 
 
  $sql = "SELECT FOUND_ROWS();"; 
  $result = mysql_query($sql)  
    or die(mysql_error()); 
  $row = mysql_fetch_array($result); 
  $numrows = $row[0]; 
  $pagelinks = "<div class=\"pagelinks\">"; 
  if ($numrows > $limit) { 
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    if(isset($_GET['page'])){ 
      $page = $_GET['page']; 
    } else { 
      $page = 1; 
    } 
    $currpage = $_SERVER['PHP_SELF'] . "?" . $_SERVER['QUERY_STRING']; 
    $currpage = str_replace("&page=".$page,"",$currpage); 
 
    if($page == 1){ 
      $pagelinks .= "<span class=\"pageprevdead\">&lt; PREV</span>"; 
    }else{ 
      $pageprev = $page - 1; 
      $pagelinks .= "<a class=\"pageprevlink\" href=\"" . $currpage . 
                    "&page=" . $pageprev . "\">&lt; PREV</a>"; 
    } 
 
    $numofpages = ceil($numrows / $limit); 
    $range = $admin['pageRange']['value']; 
    if ($range == "" or $range == 0) $range = 7; 
    $lrange = max(1,$page-(($range-1)/2)); 
    $rrange = min($numofpages,$page+(($range-1)/2)); 
    if (($rrange - $lrange) < ($range - 1)) { 
      if ($lrange == 1) { 
        $rrange = min($lrange + ($range-1), $numofpages); 
      } else { 
        $lrange = max($rrange - ($range-1), 0); 
      } 
    } 
 
    if ($lrange > 1) { 
      $pagelinks .= ".."; 
    } else { 
      $pagelinks .= "&nbsp;&nbsp;"; 
    } 
    for($i = 1; $i <= $numofpages; $i++){ 
      if ($i == $page) { 
        $pagelinks .= "<span class=\"pagenumdead\">$i</span>"; 
      } else { 
        if ($lrange <= $i and $i <= $rrange) { 
          $pagelinks .= "<a class=\"pagenumlink\" " . 
                        "href=\"" . $currpage . "&page=" . $i .  
                        "\">" . $i . "</a>"; 
        } 
      } 
    } 
    if ($rrange < $numofpages) { 
      $pagelinks .= ".."; 
    } else { 
      $pagelinks .= "&nbsp;&nbsp;"; 
    } 
 
    if(($numrows - ($limit * $page)) > 0){ 
      $pagenext = $page + 1; 
      $pagelinks .= "<a class=\"pagenextlink\" href=\"" . $currpage . 
                    "&page=" . $pagenext . "\">NEXT &gt;</a>"; 
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    } else { 
      $pagelinks .= "<span class=\"pagenextdead\">NEXT &gt;</span>"; 
    } 
  } else { 
    $pagelinks .= "<span class=\"pageprevdead\">&lt; " . 
                  "PREV</span>&nbsp;&nbsp;"; 
    $pagelinks .= "<span class=\"pagenextdead\"> " . 
                  "NEXT &gt;</span>&nbsp;&nbsp;"; 
  } 
  $pagelinks .= "</div>"; 
  return $pagelinks; 
} 
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Appendix B 

Selected PHP Source Code for MongoDB Database Access 

index.php 

<?php 
require_once 'mongo_conn.php'; 
require_once 'functions.php'; 
require_once 'header.php'; 
 
global $m; 
global $db; 
 
$forum_row = array(); 
 
$users_coll = new MongoCollection($db, 'users'); 
$forum_coll = new MongoCollection($db, 'forum'); 
 
// Find all forums 
$cursor = $forum_coll->find(); 
 
// For each forum in the collection, get the number of threads 
// from the posts collection and the moderator from the users collection. 
// Construct a new array with the required fields. 
foreach($cursor as $forum){ 
 // Get count of threads in the forum 
 $threads = $db->command( 
      array( 
        "distinct" => "posts", 
        "key" => "topic_id",  
        "query" => array("forum_id"=>$forum['_id']) 
      ) 
 ); 
 
 // Get the moderator name 
 $moderator = $users_coll-
>findOne(array("_id"=>(int)$forum['moderator'])); 
  
 // Construct the row 
 $row = array("forum_id"=>$forum['_id'], "forum"=>$forum['forum'],  
   "forum_description"=>$forum['description'], 
   "forum_moderator"=>$moderator['name'],  
   "threads"=>count($threads['values'])); 
  
 // Push the row on to an array 
 array_push($forum_row, $row); 
} 
 
 
if (empty($cursor)) { 
  echo "    <br>\n"; 
  echo "    There are currently no forums to view.\n"; 
} else { 
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  echo "<table class=\"forumtable\" cellspacing=\"0\" "; 
  echo "cellspacing=\"0\"><tr>"; 
  echo "<th class=\"forum\">Forum</th>"; 
  echo "<th class=\"threadcount\">Threads</th>"; 
  echo "<th class=\"moderator\">Moderator</th>"; 
  echo "</tr>"; 
  $rowclass = ""; 
  foreach ($forum_row as $rows){ 
   $rowclass = ($rowclass == "row1"?"row2":"row1"); 
   echo "<tr class=\"$rowclass\">"; 
 
    echo "<td class=\"firstcolumn\"><a href=\"viewforum.php?f=" .  
         $rows['forum_id'] . "\">"; 
    echo $rows['forum'] . "</a><br>"; 
    echo "<span class=\"forumdesc\">" . $rows['forum_description']; 
    echo "</span></td>"; 
    echo "<td class=\"center\">" . $rows['threads'] . "</td>"; 
 echo "<td class=\"center\">" . "" . "</td>"; 
    echo "<td class=\"center\">" . $rows['forum_moderator'] . "</td>"; 
 echo "<td class=\"center\">" . "" . "</td>"; 
  } 
  echo "</table>"; 
} 
 
require_once 'footer.php'; 
?> 

 

viewforum.php (not using Map-Reduce) 

<?php 
require_once 'mongo_conn.php'; 
require_once 'functions.php'; 
require_once 'http.php'; 
if (!isset($_GET['f'])) redirect('index.php'); 
require_once 'header.php'; 
global $m; 
global $db; 
 
$forumid = $_GET['f']; 
$forum = getForum($forumid); 
 
 
set_time_limit(600); 
 
echo breadcrumb($forumid, "F"); 
if (isset($_GET['page'])) { 
  $page = $_GET['page']; 
} else { 
  $page = 1; 
} 
$limit = $admin['pageLimit']['value']; 
if ($limit == "") $limit = 25; 
$start = ($page - 1) * $admin['pageLimit']['value']; 
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$posts_coll = new MongoCollection($db, 'posts'); 
$users_coll = new MongoCollection($db, 'users'); 
 
 
// Build the array with the required information 
$thread_row = array(); 
 
$time_start = microtime(true); 
 
$posts = $posts_coll->find(array("topic_id"=>0, "forum_id"=>(int)$forumid),  
 array("subject"=>true, "author_id"=>true, "topic_id"=>true, 
"date_posted"=>true)) 
  ->sort(array("date_posted"=>-1)) 
  ->limit($limit)->skip($start); 
 
// For each of these posts, find the author, the number of child posts  
// and the date of the most recent post 
foreach($posts as $post){ 
  $post_dates = array(); // array to hold the reply dates 
  $author = $users_coll-
>findOne(array("_id"=>$post['author_id']),  
      array("name"=>true)); 
  $replies = $posts_coll->find(array("topic_id"=>$post['_id']))-
>count(); 
  $reply_dates = iterator_to_array($posts_coll-
>find(array("topic_id"=>$post['_id']),  
      
 array("date_posted"=>true))); 
   
  $last = count($reply_dates) - 1; 
   
  if ($last < 0){ // No replies, therefore last post date = 
date_posted 
   $lastPost = date("d-M-Y h:i:s", $post['date_posted']-
>sec); 
  } 
  elseif ($last == 0) { // One reply, therefore last post date = 
$post_dates[date_posted]    
   foreach ($reply_dates as $i => $row) 
   { 
   $lastPost = date('d-M-Y h:i:s', $row['date_posted']-
>sec);    
   } 
  } 
  else { // Multiple replies, therefore determine the max 
date_posted of the replies 
   foreach ($reply_dates as $i => $dates) 
   { 
    array_push($post_dates, $dates['date_posted']-
>sec);   
   } 
   $lastPost = date('d-M-Y h:i:s' , max($post_dates));  
  } 
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  // Construct a new array from the retrieved info 
  $row = array("_id"=>$post['_id'], "subject"=>$post['subject'], 
"author"=>$author['name'],  
   "replies"=>$replies, "date_posted"=>$lastPost, 
"topic_id"=>$post['topic_id']); 
   
  array_push($thread_row, $row);  
} 
 
$time_end = microtime(true); 
$time = $time_end - $time_start; 
echo "Data Retrieved. Took " . $time . "seconds <br>"; 
  
if ($numrows == 0) { 
  $msg = "There are currently no posts.  Would you " . 
         "like to be the first person to create a thread?"; 
  $title = "Welcome to " . $forum['name']; 
  $dest = "compose.php?forumid=" . $forumid; 
  $sev = "Info"; 
  $message = msgBox($msg,$title,$dest,$sev); 
  echo $message; 
} else { 
  if (isset($_SESSION['user_id'])) { 
    echo topicReplyBar(0, $_GET['f'], "right"); 
  } 
  echo "<table class=\"forumtable\" cellspacing=\"0\" "; 
  echo "cellpadding=\"2\"><tr>"; 
  echo "<th class=\"thread\">Thread</th>"; 
  echo "<th class=\"author\">Author</th>"; 
  echo "<th class=\"replies\">Replies</th>"; 
  echo "<th class=\"lastpost\">Last Post</th>"; 
  echo "</tr>"; 
  $rowclass = ""; 
 
  foreach($thread_row as $row) { 
    $rowclass = ($rowclass == "row1"?"row2":"row1"); 
    if ((isset($_SESSION['user_id'])) and 
        ($_SESSION['last_login'] < $lastpost)) { 
      $newpost = true; 
    } else { 
      $newpost = false; 
    } 
    echo "<tr class=\"$rowclass\">"; 
    echo "<td class=\"thread\">" . ($newpost?NEWPOST."&nbsp;":""); 
    echo "<a href=\"viewtopic.php?t="; 
 echo $row['_id'] . "\">" . $row['subject'] . "</a></td>"; 
    echo "<td class=\"author\">" . $row['author'] . "</td>"; 
    echo "<td class=\"replies\">" . $row['replies'] . "</td>"; 
    echo "<td class=\"lastpost\">" . $row['date_posted'] . "</td>"; 
    echo "</tr>\n"; 
  } 
  echo "</table>"; 
  echo paginate($limit, $numrows); 
  echo "<p>" . NEWPOST . " = New Post(s)</p>"; 
} 
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require_once 'footer.php'; 
?> 
 
 

viewforum.php (using Map-Reduce) 

<?php 
require_once 'mongo_conn.php'; 
require_once 'functions.php'; 
require_once 'map-reduce_functions.php'; 
require_once 'http.php'; 
if (!isset($_GET['f'])) redirect('index.php'); 
require_once 'header.php'; 
global $m; 
global $db; 
 
$forumid = $_GET['f']; 
$forum = getForum($forumid); 
 
echo breadcrumb($forumid, "F"); 
if (isset($_GET['page'])) { 
  $page = $_GET['page']; 
} else { 
  $page = 1; 
} 
$limit = $admin['pageLimit']['value']; 
if ($limit == "") $limit = 25; 
$start = ($page - 1) * $admin['pageLimit']['value']; 
 
set_time_limit(600); 
 
$posts_coll = new MongoCollection($db, 'posts'); 
$users_coll = new MongoCollection($db, 'users'); 
 
// Build the array with the required information 
$thread_row = array(); 
 
$time_start = microtime(true); 
 
// Get the threads whose topic_id = 0 (the parent post in a thread) 
$posts = $posts_coll->find(array("topic_id"=>0, "forum_id"=>(int)$forumid),  
        
 array("subject"=>true, "author_id"=>true,    
        
 "topic_id"=>true, "date_posted"=>true)) 
         -
>sort(array("date_posted"=>-1)) 
         -
>limit($limit)->skip($start); 
 
// For each of these posts, find the author and the number of child posts 
foreach($posts as $post){ 
  $author = $users_coll-
>findOne(array("_id"=>$post['author_id']),  
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 array("name"=>true)); 
 
  // Get the last post date and the number of replies 
information 
  // from the lastPosts collection which is produced as a result 
  // of running the MapReduce function      
  $threadInfo = $db->lastPosts-
>findOne(array("_id"=>$post['_id'])); 
   
  if (is_null($threadInfo)){ 
   $replies = 0; 
   $lastPost = date("d-M-Y h:i:s", $post['date_posted']-
>sec); 
  } 
  else { 
   $replies = $threadInfo['value']['count']; 
   $lastPost = date("d-M-Y h:i:s", 
$threadInfo['value']['date_posted']->sec); 
  } 
 
  // Construct a new array from the retrieved info 
  $row = array("subject"=>$post['subject'], 
"author"=>$author['name'],  
   "replies"=>$replies, "date_posted"=>$lastPost, 
"topic_id"=>$post['topic_id']); 
   
  array_push($thread_row, $row);  
} 
 
 
$time_end = microtime(true); 
$time = $time_end - $time_start; 
echo "Data Retrieved. Took " . $time . "seconds <br>"; 
  
if ($numrows == 0) { 
  $msg = "There are currently no posts.  Would you " . 
         "like to be the first person to create a thread?"; 
  $title = "Welcome to " . $forum['name']; 
  $dest = "compose.php?forumid=" . $forumid; 
  $sev = "Info"; 
  $message = msgBox($msg,$title,$dest,$sev); 
  echo $message; 
} else { 
  if (isset($_SESSION['user_id'])) { 
    echo topicReplyBar(0, $_GET['f'], "right"); 
  } 
  echo "<table class=\"forumtable\" cellspacing=\"0\" "; 
  echo "cellpadding=\"2\"><tr>"; 
  echo "<th class=\"thread\">Thread</th>"; 
  echo "<th class=\"author\">Author</th>"; 
  echo "<th class=\"replies\">Replies</th>"; 
  echo "<th class=\"lastpost\">Last Post</th>"; 
  echo "</tr>"; 
  $rowclass = ""; 
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  foreach($thread_row as $row) { 
    $rowclass = ($rowclass == "row1"?"row2":"row1"); 
    if ((isset($_SESSION['user_id'])) and 
        ($_SESSION['last_login'] < $lastpost)) { 
      $newpost = true; 
    } else { 
      $newpost = false; 
    } 
    echo "<tr class=\"$rowclass\">"; 
    echo "<td class=\"thread\">" . ($newpost?NEWPOST."&nbsp;":""); 
    echo "<a href=\"viewtopic.php?t="; 
 echo $row['_id'] . "\">" . $row['subject'] . "</a></td>"; 
    echo "<td class=\"author\">" . $row['author'] . "</td>"; 
    echo "<td class=\"replies\">" . $row['replies'] . "</td>"; 
    echo "<td class=\"lastpost\">" . $row['date_posted'] . "</td>"; 
    echo "</tr>\n"; 
  } 
  echo "</table>"; 
  echo paginate($limit, $numrows); 
  echo "<p>" . NEWPOST . " = New Post(s)</p>"; 
} 
 
 
require_once 'footer.php'; 
?> 
 
 

functions.php 

function getForum($id) { 
 global $m; 
 global $db; 
 
 $coll = new MongoCollection($db, 'forum'); 
 $doc = $coll->findOne(array("_id" => $id)); 
 
 return $doc; 
} 
 
function getForumID($topicid) { 
// Description: Returns the forum id for a given topic id 
// Parameters: 
// $topicid - the id of the thread 
 
  
//  $sql = "SELECT forum_id FROM forum_posts WHERE id=$topicid"; 
//  $result = mysql_query($sql) 
//    or die(mysql_error() . "<br>" . $sql); 
//  $row = mysql_fetch_array($result); 
//  return $row['forum_id']; 
 
 global $m; 
    global $db; 
 
 $db->resetError(); 
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 $coll = new MongoCollection($db, 'posts'); 
 $doc = $coll->findOne(array("_id" => $topicid)); 
  
 $result = $db->lastError(); 
  
 if ($result['err'] == null ) { 
 return $doc['forum_id']; 
 } 
 else { 
  var_dump($result); 
  die("MongoDB Error: " . $result['err']); 
 } 
  
} 
 
 
function breadcrumb($id, $getfrom="F") { 
// Description: Returns a breadcrumb list of previous pages 
// starting from the Home page down to the post level. 
// e.g. Home . My Fourm . Thread Title 
// Parameters:  
// $m - the mongodb connection 
// $id - the id of the current post 
// $getfrom - the breadcrumb level, either F for Forum or P for Post 
     
 
  global $m; 
  global $db; 
   
  // Define the seperator  
  $sep = "<span class=\"bcsep\">"; 
  $sep .= " &middot; "; 
  $sep .= "</span>"; 
 
  $db->resetError(); 
 
  // if we are at the post level then we need to get the thread name and link 
to it 
  if ($getfrom == "P") { 
     $coll = new MongoCollection($db, 'posts'); 
  $doc = $coll->findOne(array("_id" => (string)$id)); 
   
   $id = $doc['forum_id']; 
   $topic = $doc['subject']; 
 
  } 
  $row = getForum($id); 
 
  $bc = "<a href=\"index.php\">Home</a>$sep"; 
  switch ($getfrom) { 
    case "P": 
      $bc .= "<a href=\"viewforum.php?f=$id\">".$row['forum_name'] . 
            "</a>$sep" . $topic; 
      break; 
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    case "F": 
      $bc .= $row['forum']; 
      break; 
  } 
 return "<h4 class=\"breadcrumb\">" . $bc . "</h4>"; 
} 
 
function showTopic($topicid, $showfull=TRUE) { 
  global $conn; 
  global $userid; 
  global $limit; 
  global $m; 
  global $db; 
 
  echo breadcrumb($topicid, "P"); 
  if (isset($_GET['page'])) { 
    $page = $_GET['page']; 
  } else { 
    $page = 1; 
  } 
  if ($limit == "") $limit = 25; 
  $start = ($page - 1) * $limit; 
  if (isset($_SESSION['user_id'])) { 
    echo topicReplyBar($topicid, getForumID($topicid), "right"); 
  } 
 
  $coll_posts = new MongoCollection($db, 'posts'); 
  $query_1 = array("_id" => $topicid); 
  $posts_doc_cursor = $coll_posts->find($query_1); 
  $posts_result = iterator_to_array($posts_doc_cursor); 
   
  $numrows = $coll_posts->find($query_1)->count(); 
  
  $coll_forum = new MongoCollection($db, 'forum'); 
  $query_2 = array("_id" => getForumID($topicid)); 
  $forum_doc = $coll_forum->find($query_2); 
   
  $pagelinks = paginate($limit, $numrows); 
  if ($posts_doc_cursor->count() == 0) { 
    $msg = "There are currently no posts.  Would you " . 
           "like to be the first person to create a thread?"; 
    $title = "No Posts..."; 
    $dest = "compose.php?forumid=" . $forumid; 
    $sev = "Info"; 
    $message = msgBox($msg,$title,$dest,$sev); 
    echo $message; 
  } else { 
    echo "<table class=\"forumtable\" cellspacing=\"0\" "; 
    echo "cellpadding=\"2\"><tr>"; 
    echo "<th class=\"author\">Author</th>"; 
    echo "<th class=\"post\">Post</th>"; 
    echo "</tr>"; 
    $rowclass = ""; 
    while ($posts_result) { 
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      $lastupdate = ""; 
      $editlink = ""; 
      $dellink = ""; 
      $replylink = "&nbsp;"; 
      $pcount = ""; 
      $pdate = ""; 
      $sig = ""; 
      if ($showfull) { 
        $body = $posts_result['body']; 
        if (isset($_SESSION['user_id'])) { 
          $replylink = "<a href=\"compose.php?forumid=" . 
            $posts_result['forum_id'] . "&topicid=$topicid&reid=" . 
$posts_result['_id'] . 
            "\" class=\"buttonlink\">REPLY</a>&nbsp;"; 
        } else { 
          $replylink = ""; 
        } 
        if (($userid == $posts_result['author_id']) or 
            ($userid == $posts_result['forum_mod']) or 
            ($_SESSION['access_lvl'] > 2)) { 
          $editlink = "<a 
href=\"compose.php?a=edit&post=".$posts_result['id']. 
            "\" class=\"buttonlink\">EDIT</a>&nbsp;"; 
          $dellink = "<a href=\"transact-affirm.php?action=deletepost&". 
            "id=" . $posts_result['id'] . 
            "\" class=\"buttonlink\">DELETE</a>&nbsp;"; 
        } 
        $pcount = "<br><span class=\"textsmall\">Posts: " . 
          ($posts_result['postcount']==""?"0":$row['postcount']) . "</span>"; 
        $pdate = $posts_result['date_posted']; 
      } else { 
        $body = trimBody($body); 
      } 
      $rowclass = ($rowclass == "row1"?"row2":"row1"); 
      echo "<tr class=\"$rowclass\">"; 
      echo "<td class=\"author\">" . $posts_result['author']; 
      echo $pcount; 
      echo "</td><td class=\"post\"><p>"; 
      if (isset($_SESSION['user_id']) 
          and ($_SESSION['last_login'] < $row['date_posted'])) { 
        echo NEWPOST . " "; 
      } 
      if (isset($_GET['page'])) { 
        $pagelink = "&page=" . $_GET['page']; 
      } else { 
        $pagelink = ""; 
      } 
      echo "<a name=\"post" . $posts_result['id'] . 
           "\" href=\"viewtopic.php?t=" . $topicid .$pagelink ."#post". 
           $posts_result['id'] . "\">".POSTLINK."</a>"; 
      if (isset($row['subject'])) { 
        echo " <strong>" . $row['subject'] . "</strong>"; 
      } 
      echo "</p><p>" . bbcode(nl2br(htmlspecialchars($body))) . "</p>"; 
      echo $sig; 
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      echo $lastupdate; 
      echo "</td></tr>"; 
      echo "<tr class=\"$rowclass\"><td class=\"authorfooter\">"; 
      echo $pdate . "</td><td class=\"threadfooter\">"; 
      echo $replylink; 
      echo $editlink; 
      echo $dellink; 
      echo "</td></tr>\n"; 
    } 
    echo "</table>"; 
    echo $pagelinks; 
    echo "<p>".NEWPOST." = New Post&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;"; 
    echo POSTLINK." = Post link (use to bookmark)</p>"; 
  } 
} 
 
function isParent($page) { 
  $currentpage = $_SERVER['PHP_SELF']; 
  if (strpos($currentpage, $page) === false) { 
    return FALSE; 
  } else { 
    return TRUE; 
  } 
} 
 
function topicReplyBar($topicid,$forumid,$pos="right") { 
  $html = "<p class=\"buttonBar" . $pos . "\">"; 
  if ($topicid > 0) { 
    $html .= "<a href=\"compose.php?forumid=$forumid" . 
             "&topicid=$topicid&reid=$topicid\" " . 
             "class=\"buttonlink\">Reply to Thread</a>"; 
  } 
  if ($forumid > 0) { 
    $html .= "<a href=\"compose.php?forumid=$forumid\" " . 
             "class=\"buttonlink\">New Thread</a>"; 
  } 
  $html .= "</p>"; 
  return $html; 
} 
 
function userOptionList($level) { 
  $sql = "SELECT id, name, access_lvl " . 
         "FROM forum_users " . 
         "WHERE access_lvl=" . $level . " " . 
         "ORDER BY name"; 
  $result = mysql_query($sql)  
    or die(mysql_error()); 
 
  while ($row = mysql_fetch_array($result)) { 
    echo "<option value=\"". $row['id'] . "\">" . 
         htmlspecialchars($row['name']) . "</option>"; 
  } 
} 
 
function paginate($limit=10, $numrows) { 
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  global $admin; 
 
  $pagelinks = "<div class=\"pagelinks\">"; 
  if ($numrows > $limit) { 
    if(isset($_GET['page'])){ 
      $page = $_GET['page']; 
    } else { 
      $page = 1; 
    } 
    $currpage = $_SERVER['PHP_SELF'] . "?" . $_SERVER['QUERY_STRING']; 
    $currpage = str_replace("&page=".$page,"",$currpage); 
 
    if($page == 1){ 
      $pagelinks .= "<span class=\"pageprevdead\">&lt; PREV</span>"; 
    }else{ 
      $pageprev = $page - 1; 
      $pagelinks .= "<a class=\"pageprevlink\" href=\"" . $currpage . 
                    "&page=" . $pageprev . "\">&lt; PREV</a>"; 
    } 
 
    $numofpages = ceil($numrows / $limit); 
    $range = $admin['pageRange']['value']; 
    if ($range == "" or $range == 0) $range = 7; 
    $lrange = max(1,$page-(($range-1)/2)); 
    $rrange = min($numofpages,$page+(($range-1)/2)); 
    if (($rrange - $lrange) < ($range - 1)) { 
      if ($lrange == 1) { 
        $rrange = min($lrange + ($range-1), $numofpages); 
      } else { 
        $lrange = max($rrange - ($range-1), 0); 
      } 
    } 
 
    if ($lrange > 1) { 
      $pagelinks .= ".."; 
    } else { 
      $pagelinks .= "&nbsp;&nbsp;"; 
    } 
    for($i = 1; $i <= $numofpages; $i++){ 
      if ($i == $page) { 
        $pagelinks .= "<span class=\"pagenumdead\">$i</span>"; 
      } else { 
        if ($lrange <= $i and $i <= $rrange) { 
          $pagelinks .= "<a class=\"pagenumlink\" " . 
                        "href=\"" . $currpage . "&page=" . $i .  
                        "\">" . $i . "</a>"; 
        } 
      } 
    } 
    if ($rrange < $numofpages) { 
      $pagelinks .= ".."; 
    } else { 
      $pagelinks .= "&nbsp;&nbsp;"; 
    } 
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    if(($numrows - ($limit * $page)) > 0){ 
      $pagenext = $page + 1; 
      $pagelinks .= "<a class=\"pagenextlink\" href=\"" . $currpage . 
                    "&page=" . $pagenext . "\">NEXT &gt;</a>"; 
    } else { 
      $pagelinks .= "<span class=\"pagenextdead\">NEXT &gt;</span>"; 
    } 
  } else { 
    $pagelinks .= "<span class=\"pageprevdead\">&lt; " . 
                  "PREV</span>&nbsp;&nbsp;"; 
    $pagelinks .= "<span class=\"pagenextdead\"> " . 
                  "NEXT &gt;</span>&nbsp;&nbsp;"; 
  } 
  $pagelinks .= "</div>"; 
  return $pagelinks; 
} 
  



TRANSITIONING FROM RELATIONAL TO NOSQL 124 

 

 

Appendix C 

PHP Source Code for MySQL Data Import 

import_users.php 

function getForum($id) { 
 global $m; 
 global $db; 
 
 $coll = new MongoCollection($db, 'forum'); 
 $doc = $coll->findOne(array("_id" => $id)); 
 
 return $doc; 
} 
 
function getForumID($topicid) { 
// Description: Returns the forum id for a given topic id 
// Parameters: 
// $topicid - the id of the thread 
 
  
//  $sql = "SELECT forum_id FROM forum_posts WHERE id=$topicid"; 
//  $result = mysql_query($sql) 
//    or die(mysql_error() . "<br>" . $sql); 
//  $row = mysql_fetch_array($result); 
//  return $row['forum_id']; 
 
 global $m; 
    global $db; 
 
 $db->resetError(); 
 
 $coll = new MongoCollection($db, 'posts'); 
 $doc = $coll->findOne(array("_id" => $topicid)); 
  
 $result = $db->lastError(); 
  
 if ($result['err'] == null ) { 
 return $doc['forum_id']; 
 } 
 else { 
  var_dump($result); 
  die("MongoDB Error: " . $result['err']); 
 } 
  
} 
 
 
function breadcrumb($id, $getfrom="F") { 
// Description: Returns a breadcrumb list of previous pages 
// starting from the Home page down to the post level. 
// e.g. Home . My Fourm . Thread Title 
// Parameters:  
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// $m - the mongodb connection 
// $id - the id of the current post 
// $getfrom - the breadcrumb level, either F for Forum or P for Post 
     
 
  global $m; 
  global $db; 
   
  // Define the seperator  
  $sep = "<span class=\"bcsep\">"; 
  $sep .= " &middot; "; 
  $sep .= "</span>"; 
 
  $db->resetError(); 
 
  // if we are at the post level then we need to get the thread name and link 
to it 
  if ($getfrom == "P") { 
     $coll = new MongoCollection($db, 'posts'); 
  $doc = $coll->findOne(array("_id" => (string)$id)); 
   
   $id = $doc['forum_id']; 
   $topic = $doc['subject']; 
 
  } 
  $row = getForum($id); 
 
  $bc = "<a href=\"index.php\">Home</a>$sep"; 
  switch ($getfrom) { 
    case "P": 
      $bc .= "<a href=\"viewforum.php?f=$id\">".$row['forum_name'] . 
            "</a>$sep" . $topic; 
      break; 
 
    case "F": 
      $bc .= $row['forum']; 
      break; 
  } 
 return "<h4 class=\"breadcrumb\">" . $bc . "</h4>"; 
} 
 
function showTopic($topicid, $showfull=TRUE) { 
  global $conn; 
  global $userid; 
  global $limit; 
  global $m; 
  global $db; 
 
  echo breadcrumb($topicid, "P"); 
  if (isset($_GET['page'])) { 
    $page = $_GET['page']; 
  } else { 
    $page = 1; 
  } 
  if ($limit == "") $limit = 25; 
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  $start = ($page - 1) * $limit; 
  if (isset($_SESSION['user_id'])) { 
    echo topicReplyBar($topicid, getForumID($topicid), "right"); 
  } 
 
  $coll_posts = new MongoCollection($db, 'posts'); 
  $query_1 = array("_id" => $topicid); 
  $posts_doc_cursor = $coll_posts->find($query_1); 
  $posts_result = iterator_to_array($posts_doc_cursor); 
   
  $numrows = $coll_posts->find($query_1)->count(); 
  
  $coll_forum = new MongoCollection($db, 'forum'); 
  $query_2 = array("_id" => getForumID($topicid)); 
  $forum_doc = $coll_forum->find($query_2); 
   
  $pagelinks = paginate($limit, $numrows); 
  if ($posts_doc_cursor->count() == 0) { 
    $msg = "There are currently no posts.  Would you " . 
           "like to be the first person to create a thread?"; 
    $title = "No Posts..."; 
    $dest = "compose.php?forumid=" . $forumid; 
    $sev = "Info"; 
    $message = msgBox($msg,$title,$dest,$sev); 
    echo $message; 
  } else { 
    echo "<table class=\"forumtable\" cellspacing=\"0\" "; 
    echo "cellpadding=\"2\"><tr>"; 
    echo "<th class=\"author\">Author</th>"; 
    echo "<th class=\"post\">Post</th>"; 
    echo "</tr>"; 
    $rowclass = ""; 
    while ($posts_result) { 
      $lastupdate = ""; 
      $editlink = ""; 
      $dellink = ""; 
      $replylink = "&nbsp;"; 
      $pcount = ""; 
      $pdate = ""; 
      $sig = ""; 
      if ($showfull) { 
        $body = $posts_result['body']; 
        if (isset($_SESSION['user_id'])) { 
          $replylink = "<a href=\"compose.php?forumid=" . 
            $posts_result['forum_id'] . "&topicid=$topicid&reid=" . 
$posts_result['_id'] . 
            "\" class=\"buttonlink\">REPLY</a>&nbsp;"; 
        } else { 
          $replylink = ""; 
        } 
        if (($userid == $posts_result['author_id']) or 
            ($userid == $posts_result['forum_mod']) or 
            ($_SESSION['access_lvl'] > 2)) { 
          $editlink = "<a 
href=\"compose.php?a=edit&post=".$posts_result['id']. 
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            "\" class=\"buttonlink\">EDIT</a>&nbsp;"; 
          $dellink = "<a href=\"transact-affirm.php?action=deletepost&". 
            "id=" . $posts_result['id'] . 
            "\" class=\"buttonlink\">DELETE</a>&nbsp;"; 
        } 
        $pcount = "<br><span class=\"textsmall\">Posts: " . 
          ($posts_result['postcount']==""?"0":$row['postcount']) . "</span>"; 
        $pdate = $posts_result['date_posted']; 
      } else { 
        $body = trimBody($body); 
      } 
      $rowclass = ($rowclass == "row1"?"row2":"row1"); 
      echo "<tr class=\"$rowclass\">"; 
      echo "<td class=\"author\">" . $posts_result['author']; 
      echo $pcount; 
      echo "</td><td class=\"post\"><p>"; 
      if (isset($_SESSION['user_id']) 
          and ($_SESSION['last_login'] < $row['date_posted'])) { 
        echo NEWPOST . " "; 
      } 
      if (isset($_GET['page'])) { 
        $pagelink = "&page=" . $_GET['page']; 
      } else { 
        $pagelink = ""; 
      } 
      echo "<a name=\"post" . $posts_result['id'] . 
           "\" href=\"viewtopic.php?t=" . $topicid .$pagelink ."#post". 
           $posts_result['id'] . "\">".POSTLINK."</a>"; 
      if (isset($row['subject'])) { 
        echo " <strong>" . $row['subject'] . "</strong>"; 
      } 
      echo "</p><p>" . bbcode(nl2br(htmlspecialchars($body))) . "</p>"; 
      echo $sig; 
      echo $lastupdate; 
      echo "</td></tr>"; 
      echo "<tr class=\"$rowclass\"><td class=\"authorfooter\">"; 
      echo $pdate . "</td><td class=\"threadfooter\">"; 
      echo $replylink; 
      echo $editlink; 
      echo $dellink; 
      echo "</td></tr>\n"; 
    } 
    echo "</table>"; 
    echo $pagelinks; 
    echo "<p>".NEWPOST." = New Post&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;"; 
    echo POSTLINK." = Post link (use to bookmark)</p>"; 
  } 
} 
 
function isParent($page) { 
  $currentpage = $_SERVER['PHP_SELF']; 
  if (strpos($currentpage, $page) === false) { 
    return FALSE; 
  } else { 
    return TRUE; 
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  } 
} 
 
function topicReplyBar($topicid,$forumid,$pos="right") { 
  $html = "<p class=\"buttonBar" . $pos . "\">"; 
  if ($topicid > 0) { 
    $html .= "<a href=\"compose.php?forumid=$forumid" . 
             "&topicid=$topicid&reid=$topicid\" " . 
             "class=\"buttonlink\">Reply to Thread</a>"; 
  } 
  if ($forumid > 0) { 
    $html .= "<a href=\"compose.php?forumid=$forumid\" " . 
             "class=\"buttonlink\">New Thread</a>"; 
  } 
  $html .= "</p>"; 
  return $html; 
} 
 
function userOptionList($level) { 
  $sql = "SELECT id, name, access_lvl " . 
         "FROM forum_users " . 
         "WHERE access_lvl=" . $level . " " . 
         "ORDER BY name"; 
  $result = mysql_query($sql)  
    or die(mysql_error()); 
 
  while ($row = mysql_fetch_array($result)) { 
    echo "<option value=\"". $row['id'] . "\">" . 
         htmlspecialchars($row['name']) . "</option>"; 
  } 
} 
 
function paginate($limit=10, $numrows) { 
  global $admin; 
 
  $pagelinks = "<div class=\"pagelinks\">"; 
  if ($numrows > $limit) { 
    if(isset($_GET['page'])){ 
      $page = $_GET['page']; 
    } else { 
      $page = 1; 
    } 
    $currpage = $_SERVER['PHP_SELF'] . "?" . $_SERVER['QUERY_STRING']; 
    $currpage = str_replace("&page=".$page,"",$currpage); 
 
    if($page == 1){ 
      $pagelinks .= "<span class=\"pageprevdead\">&lt; PREV</span>"; 
    }else{ 
      $pageprev = $page - 1; 
      $pagelinks .= "<a class=\"pageprevlink\" href=\"" . $currpage . 
                    "&page=" . $pageprev . "\">&lt; PREV</a>"; 
    } 
 
    $numofpages = ceil($numrows / $limit); 
    $range = $admin['pageRange']['value']; 
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    if ($range == "" or $range == 0) $range = 7; 
    $lrange = max(1,$page-(($range-1)/2)); 
    $rrange = min($numofpages,$page+(($range-1)/2)); 
    if (($rrange - $lrange) < ($range - 1)) { 
      if ($lrange == 1) { 
        $rrange = min($lrange + ($range-1), $numofpages); 
      } else { 
        $lrange = max($rrange - ($range-1), 0); 
      } 
    } 
 
    if ($lrange > 1) { 
      $pagelinks .= ".."; 
    } else { 
      $pagelinks .= "&nbsp;&nbsp;"; 
    } 
    for($i = 1; $i <= $numofpages; $i++){ 
      if ($i == $page) { 
        $pagelinks .= "<span class=\"pagenumdead\">$i</span>"; 
      } else { 
        if ($lrange <= $i and $i <= $rrange) { 
          $pagelinks .= "<a class=\"pagenumlink\" " . 
                        "href=\"" . $currpage . "&page=" . $i .  
                        "\">" . $i . "</a>"; 
        } 
      } 
    } 
    if ($rrange < $numofpages) { 
      $pagelinks .= ".."; 
    } else { 
      $pagelinks .= "&nbsp;&nbsp;"; 
    } 
 
    if(($numrows - ($limit * $page)) > 0){ 
      $pagenext = $page + 1; 
      $pagelinks .= "<a class=\"pagenextlink\" href=\"" . $currpage . 
                    "&page=" . $pagenext . "\">NEXT &gt;</a>"; 
    } else { 
      $pagelinks .= "<span class=\"pagenextdead\">NEXT &gt;</span>"; 
    } 
  } else { 
    $pagelinks .= "<span class=\"pageprevdead\">&lt; " . 
                  "PREV</span>&nbsp;&nbsp;"; 
    $pagelinks .= "<span class=\"pagenextdead\"> " . 
                  "NEXT &gt;</span>&nbsp;&nbsp;"; 
  } 
  $pagelinks .= "</div>"; 
  return $pagelinks; 
} 
 
 

import_posts.php 

<?php 
//require_once 'conn-ec2.php'; 
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require_once 'conn.php'; 
require_once 'http.php'; 
require_once 'functions.php'; 
require_once 'ChromePhp.php'; 
 
set_time_limit(900); 
$time_start = microtime(true); 
 
 
for ($counter=1;$counter<5;$counter+=1) { 
 $url = "Stack_Overflow_122011/posts" . $counter . ".xml"; 
 $xml = simplexml_load_file($url); //puts the xml contents in to an 
array like structure 
  
 //to loop through values 
 foreach($xml->row as $row) 
 { 
  ///////////////////////////////////////////////// 
 /* **posts**.xml         
        - Id           
        - PostTypeId         
           - 1: Question (?) 
           - 2: Answer (?) 
        - ParentId (only present if PostTypeId is 2)     
        - AcceptedAnswerId (only present if PostTypeId is 1) 
        - CreationDate *        
        - Score  
        - ViewCount 
        - Body *          
        - OwnerUserId *         
        - LastEditorUserId *        
        - LastEditorDisplayName="Rich B"  
        - LastEditDate="2009-03-05T22:28:34.823"      
        - LastActivityDate="2009-03-11T12:51:01.480"  
        - CommunityOwnedDate="2009-03-11T12:51:01.480"  
        - ClosedDate="2009-03-11T12:51:01.480"  
        - Title= *         
        - Tags=  
        - AnswerCount  
        - CommentCount  
        - FavoriteCount 
                
                
  */ 
     /////////////////////////////////////////////////////// 
   
  $id = $row["Id"]; 
  $date_posted = $row["CreationDate"]; 
  $date_updated = $row["LastEditDate"]; 
  $body = mysql_real_escape_string($row["Body"]); 
  $author_id = $row["OwnerUserId"]; 
  $update_id = $row["LastEditorUserId"]; 
  if ($row["Title"]==""){ 
   $subject = "No Subject"; 
  } 
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  else{ $subject = mysql_real_escape_string($row["Title"]);} 
  if ($row["PostTypeId"]==1){ 
   $topic_id = 0; 
  } 
  else { 
   $topic_id = $row["ParentId"]; 
  } 
 
  $forum_id = 4; 
   
  $sql = "INSERT INTO forum_posts " . 
             
"(id,topic_id,forum_id,author_id,update_id,date_posted,date_updated,subject,b
ody) " . 
          "VALUES ('" . $id . "','" . $topic_id . "','" . 
$forum_id . "','" . 
    $author_id . "','" . $update_id . "','" . 
$date_posted . "','" . 
    $date_posted . "','" . $subject . "','" . $body 
. "')"; 
  
      
  if (!mysql_query($sql, $conn)){ 
   if (mysql_errno()== 1064){ 
    ChromePhp::error('Syntax Error'); 
    ChromePhp::log("STRING", $row["Body"]); 
    ChromePhp::log("FIXED_STRING", 
mysql_real_escape_string($row["Body"])); 
   } 
   die(mysql_error() . "<br>" . $sql); 
  } 
   
 } 
 $time_end = microtime(true); 
 $time = $time_end - $time_start; 
 echo "Import of file " . $url . " to MySQL complete. Took " . $time . 
"seconds <br>"; 
} 
?> 
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Appendix D 

PHP Source Code for MongoDB Data Import 

import_users.php 

<?php 
require_once 'http.php'; 
require_once 'functions.php'; 
require_once 'ChromePhp.php'; 
require_once 'mongo_conn-ec2.php'; 
 
 
 
global $m; 
global $db; 
 
set_time_limit(600); 
 
$collection = $db->users; 
 
for ($counter=1;$counter<2;$counter+=1) { 
 $url = "Stack_Overflow_122011/users_" . $counter .".xml"; 
 $xml = simplexml_load_file($url); //puts the xml contents in to an 
array like structure 
 
   
 $time_start = microtime(true); 
  
 //to loop through values 
 foreach($xml->row as $row) {   
 /*    - **users**.xml   DB Field 
        - Id *     id 
        - Reputation  
        - CreationDate *   date_joined 
        - DisplayName *   name 
        - EmailHash *   email 
        - LastAccessDate *  last_login   
        - WebsiteUrl *   signature 
        - Location 
        - Age  
        - AboutMe  
        - Views  
        - UpVotes  
        - DownVotes 
         passwd = 
autoGenerate(randomNumber) 
        
 access_lvl = (1 | 2 | 3) 
          
  
 */ 
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  $id = (int)$row["Id"]; 
  $date_joined = new MongoDate(strtotime($row["CreationDate"])); 
  $name = (string)$row["DisplayName"]; 
  $email = (string)$row["EmailHash"]; 
  $last_login = new 
MongoDate(strtotime($row["LastAccessDate"])); 
  $signature = (string)$row["WebsiteUrl"]; 
  $passwd = generatePassword(rand(5,20), 8); 
  $access_lvl = rand(1,3); 
  
  try { 
  $arr = array('_id' => $id, 'name' => $name, 'date_joined' => 
$date_joined, 'email' => $email, 
      'last_login' => $last_login, 
'signature' => $signature, 'password' => $passwd,  
      'access_lvl' => $access_lvl, 
'post_count' => 0); 
 
  $db->users->insert($arr, true); 
   
  } 
  catch (MongoCursorException $mce){ 
   echo "error message: ".$mce->getMessage()."\n"; 
      echo "error code: ".$mce->getCode()."\n"; 
  } 
  catch (Exception $e) { 
   var_dump($e->getMessage()); 
   var_dump($arr); 
   logToFile($logfile, $e->getMessage()); 
    
  }   
   
 } 
 $time_end = microtime(true); 
 $time = $time_end - $time_start; 
 echo "Import of file " . $url . " complete. Took " . $time . "seconds 
<br>"; 
} 
?> 
 
 

import_posts.php 

<?php 
require_once 'http.php'; 
require_once 'functions.php'; 
require_once 'ChromePhp.php'; 
include 'mongo_conn-ec2.php'; 
 
global $m; 
global $db; 
 
$collection = $db->posts; 
 
for ($counter=3;$counter<5;$counter+=1) { 
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 $url = "Stack_Overflow_122011/posts" . $counter . ".xml"; 
 $xml = simplexml_load_file($url); //puts the xml contents in to an 
array like structure 
 $logfile = "log/import_posts-mongo_" . date("Ymdhis", mktime()) . 
".log"; 
  
 $time_start = microtime(true); 
 set_time_limit(600); 
  
 foreach($xml->row as $row) { 
  ///////////////////////////////////////////////// 
 /* **posts**.xml         
        - Id *          
        - PostTypeId *        
           - 1: Question (?) 
          - 2: Answer (?) 
        - ParentId (only present if PostTypeId is 2)     
        - AcceptedAnswerId (only present if PostTypeId is 1) 
        - CreationDate *        
        - Score  
        - ViewCount 
        - Body *          
        - OwnerUserId *         
        - LastEditorUserId *        
        - LastEditorDisplayName="Rich B"  
        - LastEditDate="2009-03-05T22:28:34.823"      
        - LastActivityDate="2009-03-11T12:51:01.480"  
        - CommunityOwnedDate="2009-03-11T12:51:01.480"  
        - ClosedDate="2009-03-11T12:51:01.480"  
        - Title= *         
        - Tags=  
        - AnswerCount  
        - CommentCount  
        - FavoriteCount 
                
                
  */ 
     /////////////////////////////////////////////////////// 
      
   
  $id = (string)$row["Id"]; 
  $date_posted = new MongoDate(strtotime($row["CreationDate"])); 
  $date_updated = new 
MongoDate(strtotime($row["LastEditDate"])); 
  $body = (string)$row["Body"]; 
  $author_id = (string)$row["OwnerUserId"]; 
  $update_id = (string)$row["LastEditorUserId"]; 
  if ($row["Title"]==""){ 
   $subject = "No Subject"; 
  } 
  else{ $subject = (string)$row["Title"];} 
  if ($row["PostTypeId"]==1){ 
   $topic_id = 0; 
  } 
  elseif ($row["PostTypeId"]==2) { 
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   $topic_id = (string)$row["ParentId"]; 
  }  
  $forum_id = 4; 
  
  try { 
    
   $arr = array('_id' => $id, 'date_posted' => 
$date_posted, 'date_updated' => $date_updated, 'body' => $body, 
       'author_id' => 
$author_id, 'update_id' => $update_id, 'subject' => $subject,  
       'topic_id' => $topic_id, 
'forum_id' => $forum_id); 
 
   
   ($db->posts->insert($arr));    
   
  } 
  catch (MongoCursorException $mce){ 
   echo "error message: ".$mce->getMessage()."\n"; 
      echo "error code: ".$mce->getCode()."\n"; 
  } 
  catch (Exception $e) { 
   var_dump($e->getMessage()); 
   var_dump($arr); 
   logToFile($logfile, $e->getMessage()); 
    
  } 
   
   
 } 
 $time_end = microtime(true); 
 $time = $time_end - $time_start; 
 echo "Import of file " . $url . " complete. Took " . $time . "seconds 
<br>"; 
} 
?> 
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