
Regis University Regis University

ePublications at Regis University ePublications at Regis University

Regis University Student Publications
(comprehensive collection) Regis University Student Publications

Fall 2007

An Implementation of a Cross-Platform Wireless Router Operating An Implementation of a Cross-Platform Wireless Router Operating

System System

David Hunt
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hunt, David, "An Implementation of a Cross-Platform Wireless Router Operating System" (2007). Regis
University Student Publications (comprehensive collection). 133.
https://epublications.regis.edu/theses/133

This Thesis - Open Access is brought to you for free and open access by the Regis University Student Publications
at ePublications at Regis University. It has been accepted for inclusion in Regis University Student Publications
(comprehensive collection) by an authorized administrator of ePublications at Regis University. For more
information, please contact epublications@regis.edu.

https://epublications.regis.edu/
https://epublications.regis.edu/theses
https://epublications.regis.edu/theses
https://epublications.regis.edu/regiscollege_etds
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/133?utm_source=epublications.regis.edu%2Ftheses%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
College for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

AN IMPLEMENTATION OF A CROSS-PLATFORM

WIRELESS ROUTER OPERATING SYSTEM

By

David Hunt

A professional project paper in partial fulfilment of

the requirements for the degree of

Masters of Science

(Software and Information Systems)

at

National University of Ireland (Galway)

and

Regis University, Colorado.

2007

_________________________ ________________

ii Wireless Router OS Implementation

Certification of Authorship

Student’s Name	 David Hunt

Email	 daveh@climbing.ie

Telephone	 +353 86 8109 704

th Date of Submission	 16 August 2007

Program	 Masters of Science in Software and Information Systems

Title of Submission	 An Implementation of a cross-platform Wireless Router

Operating System

Advisor	 Dr. Desmond Chambers,

National University of Ireland, Galway.

Certification of Authorship: I hereby certify that I am the author of this document and

that any assistance I received in its preparation is fully acknowledged and disclosed in the

document. I have also cited all sources from which I obtained data, ideas or words that

are copied directly or paraphrased in the document. Sources are properly credited

according to accepted standards for professional publications. I also certify that this paper

was prepared by me for the purpose of partial fulfilment of requirements for the Degree

Program.

14
th

August 2007

Student Signature	 Date

mailto:daveh@climbing.ie

Wireless Router OS Implementation iii

Revision History

Version Date Description

0.1 Oct 22 2006 Initial Framework

0.2 July 1 2007 First Draft

0.3 August 6 2007 Final Draft 1

1.0 August 14 2007 Final Revision

Wireless Router OS Implementation iv

Abstract

The aim of this project was to develop an open-source wireless router platform on several

Single Board Computers (SBCs) of different architectures. It is a Linux distribution that

is common to all supported boards, with Ethernet drivers, Wireless drivers, web-interface,

persistent storage of settings, and remote upgrade capability.

v Wireless Router OS Implementation

Acknowledgements

Many thanks to my advisor, Dr. Desmond Chambers, who made the topic selection seem

almost obvious.

Thanks to those from NUI who attended the (very helpful) thesis workshops, and special

thanks to those who travelled all the way to Ireland from Regis, Colorado to attend.

Thanks, Dave, for having such a level head.

Thanks to my parents. I wouldn’t have done it without them.

Most thanks goes to my wife, Therese, and my three daughters, Laura, Rachel and Jessie,

for putting up with my endless hours locked away at my computer.

Wireless Router OS Implementation vi

Definition of Terms

SBC Single Board Computer

SNMP Simple Network Management Protocol

DHCP Dynamic Host Configuration Protocol

GUI Graphical User Interface

SSH Secure SHell

MADWIFI Multimode Atheros Drivers for WIFI

HAL Hardware Abstraction Layer

NVRAM Non Volatile Random Access Memory

TFTP Trivial File Transfer Protocol

MRTG Multi-Router Traffic Grapher

UML User Mode Linux

Wireless Router OS Implementation vii

Table of Contents

1 Introduction... 1

1.1 Statement of Problem.. 1

1.2 Thesis Statement ... 2

1.3 Project Need.. 2

1.4 Project Completion Criteria .. 4

1.5 Project Task Plan .. 6

1.6 Capstone Project Paper Organization ... 7

2 Review of Research .. 8

2.1 Research methods to be used .. 8

2.2 Toolchain Selection .. 8

2.3 Choice of Kernel ... 10

2.4 Wireless Driver Selection ... 11

2.5 Boot Loaders... 12

2.6 Web Front-end .. 12

2.7 Resource requirements.. 13

3 Case Study Implementation .. 16

3.1 Linux Kernel Selection ... 16

3.2 Tool Chain Selection... 16

3.3 Boot Loaders... 18

3.3.1 RedBoot (Gateworks Avila) .. 20

3.3.2 RouterBoot (Routerboard) .. 22

3.3.3 Grub (WRAP) .. 22

3.4 Operating System Framework .. 23

3.5 Wireless Radio Selection .. 24

3.6 Package Integration... 25

3.7 Configuration Front-end ... 26

3.8 Remote Upgrade Functionality ... 28

3.9 Persistent Configuration Storage .. 30

3.10 In-service Usage.. 31

4 Case Study Evaluation .. 34

4.1 Summary of the project... 34

4.2 In-service Usage.. 35

4.3 Included Software Packages ... 36

4.4 Advantages of open-source over commercial... 37

4.4.1 Adaptability... 37

4.4.2 Security ... 38

4.4.3 Suitability for target board ... 39

4.5 Advantages of commercial over open-source... 40

4.6 Case Study Testing Phase ... 41

5 Conclusions... 43

5.1 Case Study Benefits .. 43

5.2 Limitations of the Case Study... 44

5.3 Further developments.. 45

5.4 Validity of Thesis Statement... 46

Wireless Router OS Implementation viii

References... 48

Appendix A - User Interface... 50

A.1 Network Interface Configuration ... 51

A.2 Wireless Configuration .. 53

A.3 System Information.. 56

A.4 Static Routing... 57

A.5 Miscellaneous Features .. 58

A.5.1 Save Settings ... 58

A.5.2 Reboot System .. 59

Appendix B – Source Code... 60

B.1 Source Code Introduction... 60

B21 Routerboard Image Update Script... 60

B.3 Sample web-front end Perl script ... 62

B.4 Sample web-front end Header/Footer code.. 63

B.5 Sample Daemon start/stop script.. 69

Annotated Bibliography.. 70

1 Wireless Router OS Implementation

1 Introduction

1.1 Statement of Problem

Initial research has shown very few cross-platform implementations of wireless

router operating systems. While there are open-source drivers and applications available

for these boards, most of them have only proof-of-concept distributions available. For

example, Mikrotik’s routerboard's reference Debian image is missing basic functionality

such as an editor, and without any persistent storage of configuration changes. Likewise,

the Gateworks Avila board has a Snapgear Linux implementation, but again, no persistent

storage of changes.

There are also sometimes difficulties with existing commercial implementations of

wireless router operating systems, where issues are discovered, but due to the limitations

of resources of the vendor, the problem might go unaddressed for some time. Having

open source alternatives allows issues in the software to be addressed sooner, by those

individuals with the expertise and time available.

Of course, this raises the interesting issue of support - there seems to be a ‘critical

mass’ of a user base, without which the project will lose momentum and fade away, as is

the case with many open-source projects. It is hoped that this project may gain enough

momentum in the local wireless community to become more widely used, and further

developed. There is already interest in the project proposal by some local wireless

communities and local internet service providers.

2 Wireless Router OS Implementation

1.2 Thesis Statement

There are many commercial wireless operating systems available. However, there

are very few available as open-source, and fewer again that cover multiple architectures

and allow easy upgradeability while conserving configuration. This causes problems

where the systems are in inaccessible locations such as on top of large communications

towers, as the system may need to be physically accessed in order to upgrade the

software. Another issue with commercial solutions is that it is difficult to review any

security issues, as the source is not generally available.

The proposed solution is to implement an open-source cross-platform Wireless

Router Operating System using readily available software and drivers, and design and

develop a web-interface and mechanism for examining the existing configuration of the

system, and merging it into the configuration of the upgraded components. The focus will

be on the connectivity configuration, where it is imperative that after an upgrade, the

system is still contactable.

1.3 Project Need

What this project hopes to produce is a viable, usable Linux implementation, with a

set of features that will allow installation of a working wireless operating system on any

of the supported platforms with a minimum amount of difficulty. Basically, flash the CF

or on-board flash, make a few configurations changes, and it should be up-and-running.

3 Wireless Router OS Implementation

The Single Board Computers selected for inclusion in the case study

implementation were:

1. PC Engines WRAP2C (x86) (www.pcengines.ch)

2. Mikrotik Routerboard 532 (mips) (www.mikrotik.com)

3. Gateworks Avila 2348-4 (xscale) (www.gateworks.com)

The existing commercial solutions for wireless routing operating systems have

given the author several years of reliable service in the community broadband scheme in

which he is involved, yet they all have some shortcomings (section 3.10 and section

4.4.2). It is hoped that the implementation of an open-source solution will allow the

author to address any shortcomings, and adapt the solution for a closer fit to the

environment in which it will be used.

Also, there have been some high-profile bugs with particular operating systems

[16] which could have easily been addressed had the operating system been open source,

rather than having to wait for the commercial developers to release a new update to the

software.

4 Wireless Router OS Implementation

1.4 Project Completion Criteria

In order to limit the scope of the case study, some completion criteria needed to be put in

place. These criteria would define the point at which the project development would

come to and end. This is not to say that that the operating system in question would be

complete, but there needed to be an agreed point at which development stopped and the

conclusions of the case study would be documented.

The scope of the project was limited to the following:

•	 Core Functionality

o	 Common Linux Kernel (2.4.x)

o	 Common file system layout

o	 Common boot scripts

o	 Common drivers (where applicable)

•	 Web Interface

o	 IP address, netmasak and gateway for each interface.

o	 Wireless settings, including distance and encryption settings for each

wireless interface.

o	 Routing settings, add/update/delete routes.

o	 Basic firewall settings with iptables.

o	 Feature enable/disable (e.g. switch on/off dhcp daemon, etc.)

o	 Statistics/log viewer.

•	 Upgradability

o	 Kernel and root file system remote upgrade

5 Wireless Router OS Implementation

o Migrate IP and Wireless settings across upgrades

• Configuration Settings

o Save in Persistent Storage

o Settings recovery if corrupt.

• In-service Usage

o Installation as part of live wireless environment.

The software packages available on this distribution will be at least as follows:

• Madwifi wireless drivers for Atheros Wireless Devices.

• Web server for configuration front-end.

• OpenSSH for secure logins.

• SNMP for statistics gathering by remote hosts.

• DHCP for easy configuration of clients.

• IpTraf and TCPDump for network debugging.

• IPTables firewalling.

• Quagga routing daemon for various routing protocols.

6 Wireless Router OS Implementation

1.5 Project Task Plan

In order to help implementation, the practical portion of the case study was split

into several stages, which are as follows:

1. The initial task of the project is to choose a tool-chain for building the operating

system. Preliminary research has shown the Buildroot System to be an interesting choice,

as it covers a wide variety of CPU architectures.

2. The choice of kernel is also important, as a stable, well-supported kernel is required. It

is currently thought that a 2.4.x kernel will be used, as there is existing support for each

of the chosen boards by each of the board manufacturers for this kernel.

3. Chose a wireless radio that will give most useful functionality. The Atheros based

radio cards offer most of the functionality needed, and have driver support for Linux in

the form of the Multimode Atheros Drivers (MADWIFI).

4. Build basic operating system on all three boards.

5. Start integrating packages into the buildroot system for easy compiling across

platforms.

6. Design and develop web-front end.

7. Design and develop remote upgrade functionality

8. Design and develop configuration storage and migration software.

9. Test in a live environment, with at least one SBC placed in a waterproof box on a roof,

connecting into an existing Wireless Wide Area Network in the locality. This will give us

an idea of the stability of the new operating system.

10. Develop presentation in preparation of professional project delivery.

7 Wireless Router OS Implementation

1.6 Capstone Project Paper Organization

This paper encompasses five chapters. Chapter 1 introduces the project by identifying the

aim(s)of the paper, the project completion criteria and the project plan. Chapter 2 gives a

comprehensive review of the research that was carried out into multi-platform, open-

source operation systems and the selection of the various components of the case study.

Chapter 3 will detail the case study that was implemented to investigate the thesis

statement, i.e. the cross-platform wireless router operating system, the components

developed as part of that project. Chapter 4 will detail the findings of the implementation

of the project, along with any insight discovered and problems encountered. Chapter 5

will discuss any conclusions, and whether the thesis statement is valid, having

implemented the case study project.

8 Wireless Router OS Implementation

2 Review of Research

2.1 Research methods to be used

The author carried out initial research into the current state of development on cross

platform single-board computers. This research helped the choice of tool-chain (the

development environment) upon which the project was based. Since this is a particularly

practical project, the research component will be small, yet important. The main research

component will be into the best method of migrating configuration settings from one

version of a component to another. It is also important to maintain connectivity in the

case of a mis-configuration, so research will be carried out into the current methodologies

of rolling back changes if particular conditions are met. Some commercial operating

systems offer this feature, but research so far has no open-source methods available.

Once the thesis statement was written, there were several important choices to be made

with regards to putting together the case study. These are detailed in the following

sections of this chapter.

2.2 Toolchain Selection

The author investigated the current state of development of embedded Linux. This

was to see what was available in the open-source embedded Linux area, and also to help

the author decide on the best development system toolchain on which to base the case

study for the capstone project development.

9 Wireless Router OS Implementation

Several development systems were looked at. PeeWeeLinux [21] was a similar

project to the proposed case study, with its main aim being “an ongoing development

effort to provide an environment that makes the configuration and installation of a Linux

operating system on an embedded platform as easy and painless as possible”. This aim is

shared by the author in the development of the case study discussed below.

Unfortunately, the PeeWeeLinux OS (Operating System) is built for x86 platforms only,

a trend that would crop up again and again in existing open-source embedded Linux

solutions. muLinux [22] was another distribution investigated. This was more aimed at

old desktop machines, rather than embedded system, and again was limited to x86

machines. LEAF [23] (Linux Embedded Application Firewall) was another distribution

investigated. As with previous implementations, this was also x86 based. The author had

previous experience with this platform and thought that the development environment

was quite limiting, in that it used a method of UML (User Mode Linux) in which the

programmer developed modifications, making it quite difficult to set up. Also, the

package delivery method of the LEAF environment was thought to be confusing to users,

as was the complex method of storing configuration changes.

With so many implementations limited to x86 architectures, the author looked to

Busybox for a solution. One of the main requirements of the project was that it should be

cross-platform, and this seemed to the author to be an ideal solution. The developers of

Busybox [2] describe it as “The Swiss Army Knife of Embedded Linux”. In looking at

Busybox, the author found that there was a related website called Buildroot, which is “a

set of Makefiles and patches that makes it easy generate a cross-compilation toolchain

and root filesystem for your target Linux system using the uClibc C library”. It included

Wireless Router OS Implementation 10

support for building cross-platform targets (although not together in the same build tree).

This meant that the binaries required for all three target architectures in the case study

could be built using this build system.

2.3 Choice of Kernel

One of the primary attributes of the operating system coming out of the case study

was stability. This helped focus the selection of kernels to those which were already tried

and-tested by the manufacturers of the individual SBCs, and also the wider Linux

community. Upon investigating the reference Linux kernels available for each of the

SBCs chosen, it turned out that each had a reference Linux kernel available, and that the

version of each kernel was quite close. This fitted in with the author’s goals; to use a

tried-and-tested kernel to reduce the amount of work in getting three new kernels working

with so many other unknowns (boot loader, init process, etc), and have a kernel close

enough on the three boards as to make the inclusion of additional features and drivers into

those kernels as straightforward as possible.

Table 1: Kernel Version by Single Board Computer

Board Architecture Kernel Version

Routerboard 532 MIPS 2.4.31

Gateworks XSCALE 2.4.27

Wrap 2C X86 2.4.31

Wireless Router OS Implementation 11

2.4 Wireless Driver Selection

Until 2006, there were two main sets of drivers for wireless cards, those based on

the Hermes chipset, and those based on the Prism chipset. A third chipset emerged in

2003 from Atheros Communications. While the licensing of the Hardware Abstraction

Layer (HAL) was available to commercial organisations for a fee, the open source

community was left lagging behind in support for this chipset. The open-source

community then started the MADWIFI (Multimode Atheros Drivers for WIFI) project.

The author has been following the development of these drivers since 2004, and has

attempted to use these drivers at several stages. Unfortunately these drivers turned out to

be far from usable for application in environments where long distances were used, so

they were never used in earnest by the author until early 2006. The timing was such that

the first official releases of the MADWIFI drivers occurred around the same time as the

proposal for this case study was being developed, at which time research indicated that

several of the blocking issues had been resolved in the driver, finally making it a possible

candidate for use in community wireless networks.

Initial research into the stability of these drivers was carried out, as well as

investigation into the drivers operation on links greater than 50 metres. This investigation

showed that the drivers, even though there were still issues, functioned on links of

approximately 2km. These tests indicated that the MADWIFI drivers were suitable for

inclusion in the case study. The inclusion of the drivers on all three architectures was also

interesting in that the process of compiling the drivers for use on the three architectures

only required minor tweaking into order for them to be built and used.

Wireless Router OS Implementation 12

Investigation was also carried out into the possibility of using some of the older

chipset cards, but while the drivers were available and compiled fine on the three

platforms, the author did not have the hardware available to test these in operation. Also,

since using the Hermes based chipsets at distance (greater than 12km) can be

problematic, the author decided to focus exclusively on the use of the MADWIFI drivers

for the case study, since the support for long-distance links was part of its built-in

functionality.

2.5 Boot Loaders

Since all three boards were supplied with boot loaders by the manufacturers, the

main portion of the work involved with this functionality was to investigate how to get

the kernel loaded and booting on each of the SCBs. This is covered in more detail in

Chapter 3.

2.6 Web Front-end

The main research that went into this area was to find out which web service and

programming language to use. This was to satisfy a flexible development environment for

the GUI (Graphical User Interface) developer, and a small memory footprint when

running on each SBC. While the decision of the web server to use was straightforward, as

a small, lightweight daemon (thttpd) was included in the buildroot system, the choice of

language in which to write the scripts for the back end functionality was more difficult.

There were many choices that could have been used in this case, each with their own

Wireless Router OS Implementation 13

advantages and disadvantages. In the end, it came down to three choices, shell script, Perl

or PHP. Shell script had the advantage of having a very small memory footprint, but

limited functionality. This was ruled out pretty early, as the author did not want to be

limited by the functionality and felt that the modern SBCs could bear the larger memory

footprint of Perl or PHP. Perl and PHP used quite a large amount of memory, but had a

large set of functionality available to the programmer. As part of the research, the author

built a command-line version of PHP for use with thttpd, and also a microPerl binary.

Each had enough functionality to satisfy the requirements for the web-front end, and

since the microPerl binary (~1Mb) was one third the size of the PHP command-line

binary (~3Mb), Perl was chosen as the language with which to develop the front end. On

all other criteria of selection, Perl and PHP seemed very similar; functionality,

availability of external libraries/functions, availability of expertise and ease of

development. One small other reason was involved; the author had more experience in

PHP, and wished to learn more about Perl. Apart from that small reason, memory

footprint was the main deciding factor between Perl and PHP.

2.7 Resource requirements

A mixture of hardware and software requirements was needed. The hardware

selected was based on the most commonly used hardware in the local community

wireless network of the author. In this network, there is a varied selection of PCs, single

board computers, and custom wireless networking hardware, so the author selected three

of the most commonly used boards. The full list of requirements is as follows:

Wireless Router OS Implementation 14

• At least one of each Single board computer of each type:

o PC Engines WRAP2C (x86) (www.pcengines.ch)

o Mikrotik Routerboard 532 (mips) (www.mikrotik.com)

o Gateworks Avila 2348-4 (xscale) (www.gateworks.com)

• Development platform to build kernel for each board.

• Buildroot system to build common root filesystem.

• Source code control system.

• Capability for writing image onto Compact Flash cards.

• Several Atheros wireless cards (802.11a/b/g).

• Various Antennae.

Figure 1 The three target platform boards

The author acquired one of each of the three target single board computers, which

can be seen in the photograph above, with the WRAP2C on the left, the Routerboard 532

Wireless Router OS Implementation 15

in the centre, and the Gateworks Avila on the right. The Compact flash card can be seen

on the centre board only, as the socket is on the underneath on the other two boards. Also

shown on the centre board is a CM9 miniPCI wireless radio card. The empty miniPCI

sockets can also be seen on the other boards.

Because this is an open-source project, all notes are kept in a Wiki website at

www.me2000.net to help others interested in the project to keep up with changes and

modifications. It is also an ideal way for these other users to report bugs, and request new

features. One disadvantage of Wiki’s is the amount of spam attacks aimed at these types

of project. There were several dozen attacks during 2007, resulting in the author to be

forced to configure the Wiki to be read-only. Investigation will have to be done in the

future into how to make a more secure community portal for the project.

Wireless Router OS Implementation 16

3 Case Study Implementation

3.1 Linux Kernel Selection

The choice of kernel is also important, as a stable, well-supported kernel is

required. A 2.4.x Linux kernel was selected, as there is existing support for each of the

chosen boards by each of the board manufacturers for this kernel. For some of the

selected Single Board Computers, this selection would be dictated by the latest version of

the kernel supported by the board manufacturers. In some cases, a kernel was available

from the board manufacturer already patched with the board-specific hardware drivers.

The Kernel version selection for each SBC is shown in Table 2 below.

Table 2: Kernel Version by Single Board Computer

Board Architecture Kernel Version

Routerboard 532 MIPS 2.4.31

Gateworks XSCALE 2.4.27

Wrap 2C X86 2.4.31

The versions were kept as close together as possible, as this would make building

common applications across all the platforms easier.

3.2 Tool Chain Selection

A tool-chain was needed for the project that allowed development of applications

for all three architectures. While investigating Busybox, the multi-call binary that is used

Wireless Router OS Implementation 17

in many embedded systems, it was shown to be able to emulate a basic init process,

which could possibly be a good basis for an operating system. A sister website of the

Busybox system was the Buildroot system which has a mechanism for compiling

toolchains for various target platforms based on simple menu selections.

Figure 2 Selection of architecture using the Buildroot System

Investigation was carried out into building a rudimentary rootfs filesystem which

was loaded by the kernel and the init process started. Because the busybox multi-call

binary uses the buildroot system, which had been enhanced to provide an initial ramdisk

and init process, it seemed the ideal candidate on which to base the project. Another

major advantage of the Buildroot System it its ability to cover a wide variety of CPU

architectures.

Wireless Router OS Implementation 18

One minor inconvenience is that the Buildroot system is designed so as to provide a

build toolchain for a particular architecture, which meant creating a separate Buildroot

environment for each of the three boards in the case study. This meant that there was a

greater chance of a mismatch in the environment settings allowing an error of

mismatched functionality on the three platforms. The kernel configuration for each

platform was also separate, so care was needed to ensure that the same configuration

settings were used for each kernel build. For example, there are several configuration

changes required in order to have full functionality built into the kernel to support the

IPTables firewall. These configuration changes to the kernel had to be made on all three

kernels so that the functionality was consistent across all three boards.

3.3 Boot Loaders

Because the boot loader is different on each SBC (as shown in Table 3), research

was needed to look into getting the kernels and root filesystems loaded into each board in

a consistent manner. This was achieved by partitioning three compact flash cards in such

a way as to facilitate easiest integration into the pre-existing default boot loaders on each

SBC.

Table 3: Boot Loader by Single Board Computer

SBC Boot Loader

Mikrotik RouterBoard 532 RouterBoot

Gateworks Avila 2348-4 RedBoot

PCEngines WRAP2c Grub

Wireless Router OS Implementation 19

This gives an overview of the steps needed to get the commonly configured kernel

and filesystem to boot on each platform. Each board has a Compact Flash socket, and it

was possible on each board to configure it to boot a Compact Flash card when present in

that socket.

Figure 3 Compact Flash Card

The intention was to get a common filesystem to all platforms once the system

was booted. This consists of a root file system mounted as a Ram Disk, and partition on

the Compact Flash card mounted as /boot (for persistent storage). In most cases, the

kernel file is called zImage, and the compressed root file system is called rootfs.gz, a

gnuzipped image of the rootfs. In all cases a 32Mb Compact Flash card was used.

Wireless Router OS Implementation 20

Figure 4 Compact Flash Adapter

The Compact Flash was prepared using a Linux laptop, where the Compact Flash

card was inserted into the PCMCIA slot using a PCMCIA to Compact Flash adapter. This

allows us to partition the card make file systems on it, mount the file systems, and copy

files onto it. We can also write data into specific sectors, as is required on the

RouterBoard platform.

For the boot loader configurations outlined below, more detailed instructions are

available for the commands used on each board, with the configuration of the different

bootloaders. See www.me2000.net for more information.

3.3.1 RedBoot (Gateworks Avila)

RedBoot [8] is quite a sophisticated boot loader, in that there are many features to

facilitate the developer in booting from a variety of sources, be it a TFTP server, the

internal flash memory, or a Compact Flash card. For most of the duration of this project,

the TFTP server was chosen, as it was convenient to build the kernel or root file system,

and re-boot the target board, which would then pick up the latest kernel image or root file

Wireless Router OS Implementation 21

system image. In the case of the Compact Flash card, a simple RedBoot script was saved

in the SBC’s NVRAM, which tells RedBoot to load two files into memory and jump to

the start point of one of them (the kernel). The following paragraphs describe how the

kernel and root file system were placed on the Compact Flash card to facilitate loading by

the RedBoot loader.

The Compact Flash card was initially partitioned with one partition, using a laptop

running Linux, and the Compact Flash card inserted in a CompactFlash to PCMCIA

adapter, and formatted with an e2fs filesystem. Once the filesystem is created, we can

now mount the filesystem and copy on the kernel and the compressed root filesystem.

As supplied, the Gateworks Avila 2348-4 does not contain an operating system. We

need to specify a configuration for RedBoot so that it will load the correct boot image

into memory and start it. Redboot is aware of ext2 filesystems, so we can simply tell

redboot to load the zImage file into one location in memory, load the rootfs.gz file into

another section of memory, then jump to the start address of the kernel. This is achieved

by storing a 3-line boot script in the boards non-volatile storage, which tells Redboot

where to load the kernel and root filesystem from, and then where to jump to start

executing the kernel.

Wireless Router OS Implementation 22

3.3.2 RouterBoot (Routerboard)

The router board comes with the RouterOS operating system installed, so the

settings on the board need to be changed to force booting from the new operating system

on the Compact Flash.

Preparation of the compact flash card is slightly different to the Avila, in that the

RouterBoot boot loader loads the first partition it finds into memory, and jumps to its

start address. This bootloader also requires that the compressed root filesystem is

embedded into the kernel image as an extended elf module. This is achieved by using the

“objcopy” tool as part of the script that builds the zImage file for copying onto the first

partition of the compact flash card.

The default configuration of the RouterBoard is to boot the on-board operating

system, RouterOS. We need to change this behavior so as to boot the operating system on

the Compact Flash card. This is achieved by interrupting the boot process with a serial

cable and terminal program, and changing the default boot device of the board.

3.3.3 Grub (WRAP)

The Wrap board is probably the most straightforward of all three boards in the

case study, as it is x86 based, and boots by default from the compact flash card, so no

boot parameters needed to be changed in the bios of the SBC. The WRAP board contains

a very simple bootstrap loader, which allows us to install a slightly more sophisticated

bootloader to load the Linux kernel and root filesystem. There are many boot loaders

Wireless Router OS Implementation 23

available for x86 based systems, but one of the most popular is the GRUB bootloader.

This was chosen simply because of the author’s experience with it in the past as a simple,

no-nonsense bootloader for use with PCs and x86 based SBCs.

In this case, a single ext2 filesystem was created on the compact flash card, and

then the partition had the grub bootloader installed using the ‘grub-install’ tool. This

created the MBR (master boot record) on the compact flash, and installed the default

scripts for booting the system. After some slight modifications of these scripts to default

the console to the serial port (there is no graphics output on a WRAP board), the root

filesystem and Linux kernel were copied on, and the system booted.

3.4 Operating System Framework

Once all three boards were booted up to the stage of successfully running the init

process, the operating system framework could now be developed. This included the

basic scripts to mount the filesystems and start up the critical daemons that are necessary

for the basic operation of the system. Since all three systems were now at a common

stage, with an init process starting, the scripts that were to be developed could be used

across all three platforms without modification.

One of the more critical scripts is the rcS script, which loops through the contents

of the /etc/init.d directory and executes each script with a ‘start’ parameter. All the scripts

in this directory are written to start a service or daemon, or to load some operating system

drivers, such as the Madwifi drivers for the 802.11b radio cards. The order of the script

Wireless Router OS Implementation 24

execution is based on the 3 characters at the start of the filename with S00 scripts being

executed first, and S99 scripts being executed last, and all scripts in between being

executed in numerical order. This is common with many Linux distributions. The initial

rcS scripts is specified in the inittab file, which gives the init process a list of tasks to

carry out on initial boot. These tasks include mounting the filesystems, remounting the

root filesystem as read/write, eventually executing the rcS script which starts all the

daemons, and finally starting a ‘getty’ process on the serial port to allow console logins.

These scripts were common across all three boards.

3.5 Wireless Radio Selection

The Atheros based radio cards offer most of the functionality needed, and have

driver support for Linux in the form of the Multimode Atheros Drivers (MADWIFI). As

mentioned earlier, the first official release of the MADWIFI drivers happened about the

time that the case study was started, but during the testing phase, there were still some

bugs to be addressed. It was necessary for the author to investigate a particular bug so

that the drivers would allow the radio card to associate with the existing access points in

the locality. This bug caused the MADWIFI drivers to be unable to associate with any

access points based on the Hermes chipset (originally manufactured by Lucent

Technologies). The author discovered an open issue on the MADWIFI issue tracker

database [25], and after several weeks, one of the driver developers submitted a patch that

resolved the issue. The patch was applied to the case study version of the drivers, and

testing could progress. This patch was included in the next official release of the drivers.

Wireless Router OS Implementation 25

3.6 Package Integration

For the purpose of the case study, the following packages were compiled and added

to the root filesystem, along with scripts to start any daemons necessary.

•	 MicroPerl – A cut down version of the Perl package. Includes only the perl

binary, no Perl modules were included to save space.

•	 Thttpd – a small http daemon.

•	 IPTraf, TCPdump and iftop – Network utilitities for sniffing and debugging

network traffic.

•	 OpenSSH for secure logins.

•	 Net-SNMP for statistics gathering by remote hosts.

•	 DHCP for easy configuration of clients.

•	 IpTraf and TCPDump for network debugging.

•	 IPTables firewalling.

•	 Quagga routing daemon for various routing protocols.

Integration of most of the above packages required modifications to the build

scripts in order for them to be built under the three environments for the various target

architectures. The MADWIFI drivers, for example, needed to be modified to use the

buildroot binaries in places, as the makefiles were hardcoded to use the operating systems

Wireless Router OS Implementation 26

binaries (on the path) rather then the cross-compiling versions for the particular CPU

architecture. Once a build was successful, the author produced a patch by comparing the

original source with the modified source. By then placing this patch in the relevant

directory, the package could then be downloaded in its original form from the internet,

patched, and built without errors under the Buildroot system. These patches were short-

lived, as the next version of the MADWIFI source had already had these patches applied

in the source, negating the need to patch during build.

3.7 Configuration Front-end

The web front-end was developed to implement the basic web-based user interface,

allowing the user to set the basic settings needed to get the system on a wireless or wired

network, and functioning as a router. The areas covered by the front end are:

• TCP/IP settings,

• Wireless settings (for Atheros cards)

• Static routing table modification

• System information, such as log files.

Wireless Router OS Implementation 27

Figure 5 Web front-end screenshot

The screenshot above shows the basic layout of the type of user interface used.

Upon the user selection the relevant section from the menu, they are then presented with

a series of input gadgets. The fields are pre-filled with the current settings, allowing easy

viewing of existing settings before a change is made. The interface makes use of some of

the more advanced features available in the MADWIFI drivers for the wireless settings,

such as transmit power and distance settings, allowing links to be tuned to be optimal for

Wireless Router OS Implementation 28

a particular link distance between routers. This feature had been unstable but this was

addressed in early 2006, making the MADWIFI drivers finally usable on long distance

outdoor links. Appendix A contains screen shots and descriptions of the front-end

functionality developed as part of the case-study.

The Web interface proved to require the most intensive development, and also

proved to be very portable across all three platforms. This is due to the fact that the same

version of the web server and perl binary was used across all platforms in the case study.

Functionality developed on one platform could be seamlessly copied across all three

boards.

3.8 Remote Upgrade Functionality

Upgrading the Kernel and root file system is straightforward for all platforms, as

the common file system was established; allowing common scripts to copy the images

onto the local file system of the router, comparing md5 checksums to ensure image

integrity. Common settings are maintained across upgrades, due to method of storage of

particular files onto persistent storage, before reboot, and restoring of those settings over

the defaults at a particular stage in the boot process. This feature was used several times

during the in-service usage period to upgrade the software, and worked well. At no time

was it required to physically access the SBC. As the amount of upgrades goes up in

extended roll-out, then the chance of an interruption in the process increases, thereby

increasing the chance of a corruption on the operating system.

Wireless Router OS Implementation 29

One of the potential problem areas is just after the md5 checksum is performed on

the new image, as it is being written to the compact flash card in preparation for the

reboot. If there is a problem in writing the image to compact flash, in some instances this

can be trapped and some problems circumvented, but in the case of a power loss during

the image write, physical access to the card will be needed to restore it to a functioning

condition. This has been seen by the author on a number of occasions over the last 5

years where interruptions in upgrading software or saving settings has caused the

operating system to stop responding after a reboot, necessitating a time-consuming visit

to a remote site to recover the system.

It is imperative that effort is focused on this particular area to take the project into

the future. Every function call, every write to flash, every file transfer and every

configuration change must have its return code checked to ensure that no corrupt data is

being written that might cause the system to become unresponsive after a re-boot.

The remote upgrade facility was developed based on the wget utility, which allows

the scripted downloading of files from a remote web server. This remote web server is a

repository of operating system images and is similar for all three platforms. Along with

each image, there is an associated file containing the md5 checksum of the image. This is

set up as part of the release process of each image. When the script to update the

firmware on the SBC is called, two files are downloaded from the server - the image file,

and the md5 checksum file. When the download of these files are complete, the md5

checksum is re-calculated, and compared against the md5 checksum in the downloaded

checksum file. If these two checksums compare favourably, then there is an extremely

Wireless Router OS Implementation 30

high probability that the downloaded image is the same as the one on the remote server. It

is only after these checks are complete that the operating system image is written to the

flash of system. The settings file is left unaffected so that the same settings are used after

rebooting, and connectivity will be restored, eliminating the need for local access to the

system after reboot.

One area for improvement in the future is to introduce a patching mechanism that

would involve extracting the existing settings where necessary, patch the relevant files

with the extra configuration settings required for any applications that need new settings,

and re-packaging those settings suitable for loading by the operating system when a

reboot is requested. The current scheme will suffice for most upgrades, and has served

the author well for the duration of the development of the case study. The script for

updating the flash memory on the Routerboard is shown in Appendix B.

3.9 Persistent Configuration Storage

The persistent storage of the configuration settings was straightforward once the

common partition (/boot) was available on all three platforms. The persistent storage

currently consists of creating a tar file of the contents of the /etc directory, along with the

password file for the thttpd daemon (which is stored elsewhere). The tar file is created in

/tmp, and once created, is copied onto the /boot partition on the compact flash storage.

At boot time, the default /etc directory is extracted from the rootfs.gz file, the init

process is started, and one of the very first scripts to be executed in the /etc/init.d

Wireless Router OS Implementation 31

directory is the script to extract the /boot/settings.tar file on top of the default /etc,

overwriting the default files with the files modified by the user interface or manually

edited by the user. The script that creates this settings.tar file is called savesettings.sh, and

may be called directly on the command line, or by clicking the relevant button on the web

front end.

3.10 In-service Usage

For the purposes of testing the system in a live environment, a full wireless node

was constructed. This required the following hardware (photographs below):

• WRAP2C single board computer

• Two Atheros wireless cards

• Waterproof box (IP56 rating)

• Mounting brackets

• Two pigtails for connecting antennae to wireless cards

• 2.4 GHz directional antenna

• 2.4 GHz omni-directional antenna

• 3metre steel pole

• Chimney lashing kit

• Cat 5 cable from SBC to inside residence.

• Power-Over-Ethernet (POE) kit

• 18v power supply

Wireless Router OS Implementation 32

This equipment was assembled into a functioning wireless node, and installed on

the authors’ residence in April 2007. The equipment was configured to connect into the

existing wireless network in the locality, a community broadband network which has

been in existence since 2001. The case-study operating system was loaded onto the SBC

and put into commission for testing. Some live network traffic was re-directed to go

through this node for long-term testing purposes.

Figure 6 Live installation example

This has turned out to be rather successful, and has had very little downtime since

installation in April 2007. The only downtime (in the order of minutes, rather than hours)

was due to configuration changes and rebooting. Statistics are being gathered by the

central server and graphed using MRTG [20]. These statistics include both throughput

graphs and wireless SNR graphs. SNR graphs via SNMP are commonly problematic with

commercial wireless routing operating systems such as Staros [15] and RouterOS [4], as

Wireless Router OS Implementation 33

the wireless signal levels are often not exposed by the SNMP daemon. The open-source

advantage is obvious here, as the author was easily able to extent the existing SNMP

functionality to include these statistics.

The author also looked into porting the operating system to a standard PC, and with

very little modification was able to boot the system on an old Pentium II Dell Optiplex

desktop system. This PC was capable of running a CM9 radio card, and has been installed

in the attic of a neighbour’s residence, providing them with broadband since August

2006. Its current uptime is 79 days, with the last reboot being caused by an electricity

supply outage in the area.

Wireless Router OS Implementation 34

4	 Case Study Evaluation

4.1 Summary of the project

The author succeeded in developing an operating system based on the

Busybox/Buildroot systems, across three CPU architectures. These three operating

systems had practically all of the packages described in the initial expectations, and could

be easily configured via the web interface, and have those changes saved in persistent

storage. Several SBCs in the authors section of a community wireless network were

upgraded to use this operating system, and have given very good service since they were

installed.

While the author believes that the case study was successful in meeting the initial

project expectations of developing an open-source, cross platform operating system for

three different CPU architectures, the future of the project could go several directions.

1.	 Take the existing scripts and current snapshot of the makefiles and build

scripts and store them in a repository, allowing anyone to check them out and

build a particular snapshot of the operating system.

2.	 Approach the Buildroot team and suggest enhancements to their existing

structure to include extensions to fill in the gaps to becoming a fully bootable

ram file system, using hardware specific scripts dependent on the menu

selections made by the user at build time.

Wireless Router OS Implementation 35

Of the above two options, the author feels that the first option is the easier, because

it is under the control of the few developers who have the most need to develop a cross-

platform wireless routing operating system. However, at the same time, the author feels

that the second option is the better one, as there is a wide community of developers

already involved in the Buildroot system, and it seems to be so close to the full bootable

file system that the development team may be open to suggestions in that direction.

4.2 In-service Usage

The in-service usage has proved very successful, with very little downtime since

the system was installed in April 2007. The software has proved to be very stable,

providing service as long as power was applied. In fact, power was probably the one

place where service suffered, in that there were several days where the electricity supplier

brought down the power supply for essential maintenance in the area. This could easily

be circumvented by using some low power uninterruptible power supplies on the ADSL

modem and the SBC on the author’s residence, as these pieces of equipment draw very

lop power (under 15 watts each), and would last for several hours on a standard 20

minute 200 watt UPS.

As far as the software is concerned, no reboots were needed due to processes

hanging, or due to lost connectivity.

Wireless Router OS Implementation 36

4.3 Included Software Packages

There were slight changes in the initial package list as planned at the start of

implementation. It was planned to use the OpenSSH package, but it’s resulting size was

considered to be too much compared to the dropbear implementation of what turns out to

be very similar functionality, an ssh client and server. Dropbear is roughly 145K, where

ssh is roughly 700K (including the OpenSSL library). Another package that was not

implemented on all three platforms was IPTraf, which is a curses-based IP traffic

monitoring tool. While it compiled without problems under the buildroot toolchain, it

failed to function as expected on the Gateworks Avila platform and the Routerboard

platform. Initial (brief) investigation seems to point at some non-standard keyboard

handling routines that only function correctly on the X86 platform.

Apart from the issues with the packages mentioned above, very few problems

were encountered when building the following packages for all three boards.

• Madwifi wireless drivers for Atheros Wireless Devices.

• Web server for configuration front-end.

• SNMP for statistics gathering by remote hosts.

• DHCP for easy configuration of clients.

• IPTables firewalling.

• Quagga routing daemon for various routing protocols.

Wireless Router OS Implementation 37

4.4 Advantages of open-source over commercial

4.4.1 Adaptability

In recent years, when implementing wireless networks as part of community

broadband schemes, the author has encountered problems when trying to monitor

statistics of some commercially available operating systems, particularly when it comes

to signal levels of the radio cards. For example, StarOS will show the Signal Levels of

associated clients on the text-based UI, but does not make that data available via SNMP.

Using an open-source solution allows developers to extend the existing functionality of

the SNMP daemon to provide whatever pieces of information they want to monitor. In

the implementation of the case study for this capstone paper, the SNMP daemon was

extended to provide wireless signal levels and signal-to-noise ratio to an authorized

SNMP client. The resulting graphs of a 24-hour period can be seen in Figure 7 below.

Wireless Router OS Implementation 38

Figure 7 Graphs of Traffic and Wireless Signal Levels

The advantage of being able to modify an operating system to provide important

statistics is critical in areas where these statistics can be used to predict failure or

downtime, or in areas where the data will help analyse bottlenecks or problem areas. At

the time of writing, signal levels were not available via SNMP from two of the most

popular commercial wireless router operating systems.

4.4.2 Security

The Verisign website contains details [16] of a vulnerability which was discovered

in StarOS [15] in 2003. This vulnerability is believed to be in the StarOS Operating

system since its initial development. This vulnerability would probably have been

discovered much sooner (possibly years sooner) had the source been open to peer review.

Wireless Router OS Implementation 39

With open source software, the code can be peer reviewed, and any vulnerabilities

discovered can be addressed. This, of course, is provided someone goes to the trouble of

peer reviewing or looking for vulnerabilities, and issue which is covered in the following

section entitled “Support”.

Hopeman et. al. [14] concludes: “In the long run, openness of the source will

increase its security”. While there may be an initial period of increased vulnerability due

to the immaturity of a given system, this will be replaced by increased security as the

system matures. They go on to say: “Open source allows users to make a more informed

choice about the security of a system, based on their own or on independent judgment”.

This is a very relevant area to the reasons behind implementing this case study. A

wireless routing platform needs to be secure, to prevent unauthorized access to the data

passing through it. It is my conviction that an open-source solution will offer increased

security over a closed-source solution, or at the very least leave it open for improvement

by whoever sees the need to improve it.

4.4.3 Suitability for target board

Some commercial operating systems [15][4] are designed with the same image to

be run on several different types of hardware platform, from a small SBC with limited

memory to a more powerful board with plenty of resources. This may mean that the less

powerful board is not performing as well as it should because of unnecessary software

running on the board using valuable resources. An open source solution gives the

flexibility to completely disable un-needed daemons, or even add functionality into the

Wireless Router OS Implementation 40

user interface to disable them. If the target board is very limited in resources, entire

packages can be left off the Compact Flash image, reducing the footprint further.

4.5 Advantages of commercial over open-source

One of the main advantages of commercial solutions over their open-source

equivalent is the issue of support. In the 5 years in which the author has been involved in

open source software for wireless community projects, there is very little in the way of

submitted enhancements or bug fixes for the software that has been produced by the

community. This is probably down to several factors.

1.	 The narrow scope of the software. Because the community of network builders is

small, there are not a great number of developers available that are capable of

contributing to the project.

2.	 Many communities feel the need to develop their own hand-rolled solution, or

even simply accept the limitations of existing commercial solutions. It is quite

straightforward to build a small x86 version of Linux that is portable across many

x86-based PC platforms.

3.	 The infrastructure of the project. Work still needs to be done on making the build

system of this particular project easy to check out and get started with. Currently,

the scripts that were developed as part of the case study are stored in a separate

repository to the central Buildroot system, and there is no easy way of

synchronising them. This may discourage new developers from partaking in the

Wireless Router OS Implementation 41

project. It needs to be very simple to check out all the code, and start building the

system, ready to make enhancements or fixes.

4.6 Case Study Testing Phase

In order to prove the viability of this new operating system, the author undertook

several tests to ensure that the functionality was acceptable from various points of view.

Probably the most important aspect was the ability of the OS to route traffic wirelessly at

a speed comparable to the commercial operating systems. Upon setting up the initial test

rig, the bug discussed in section 3.8 was discovered, which did not allow association with

Hermes chipset access points. This was a blocking issue, as most of the access points in

the locality used this type of chipset. Thankfully, a solution was found by the MADWIFI

developers, and testing could proceed. Once associations could take place, the author

found that the speed was comparable to the commercial operating systems at 2.4 GHz

(802.11b), giving approximately 700KB/sec transfer rates. The drivers also compared

favourably at 5.8GHz (802.11a), giving approximately 2.5MB/sec transfer rates.

Unfortunately, the drivers could not compete with the proprietary modes available in

some commercial operating systems such as the NSTREME mode available in RouterOS,

which uses two antennas at each end to give a full duplex connection, dramatically

increasing the throughput. The author believes that it is unlikely that the open-source

drivers will see these accelerated modes in the near future, as these protocols are closed-

source.

The author also used the case study operating system in a live environment

(discussed in section 3.10), which made an SBC available for broadband access on a

Wireless Router OS Implementation 42

segment of the local community broadband scheme. Due to time constraints in the case

study, only limited testing was carried out on this installation, but the uptime was very

good, and did not give any problems, even with several remote users logging in to view

the graphical user interface from time to time. There are still many features that were

added onto the installation such as automatic routing and firewall functionality, and while

these features are enabled, lack of time limited the amount of testing that could be

performed on them.

There was also an earlier version of the case study operating system which had a

more limited set of packages, but this was in a heavy traffic environment routing traffic

between two residences on the local network backbone. This installation has given no

problems since it was installed in late 2006, and shows that the basic operating system

and wireless drivers are certainly stable enough for use in a community broadband

wireless environment.

Wireless Router OS Implementation 43

5 Conclusions

The primary goal of the case study was to show that it was possible to develop a cross-

platform open-source wireless router operating system. The author believes that this has

been successfully achieved, and in the following sections will discuss the conclusions

drawn from the case study implementation.

5.1 Case Study Benefits

One of the most interesting conclusions drawn from the development of the case

study is how close the open-source community is to having a menu driven, cross-platform

operating system generator. The current Buildroot system goes as far as building the

applications with the relevant toolchain and placing them in a root file system directory

structure, ready to be built into a file system image used to boot into the operating

system. What that Buildroot system does not contain is an agreed set of scripts with

which to boot the operating system, or a set of device nodes in the /dev directory. The

Buildroot system could be extended to fill these gaps, and the users would end up with a

ready made operating system for any of the supported hardware platforms.

This Buildroot “operating system generator” would seem to be of great benefit to

the academic community, where students choose to implement some functionality on

embedded systems. The Buildroot system is very close to give the student a ready-to-go

development system in which the basic operating system can be built with relatively little

effort, allowing them to focus on the task at hand, such as adding external sensors,

Wireless Router OS Implementation 44

monitoring software, etc., or whatever the student has selected as their embedded system

project.

5.2 Limitations of the Case Study

The author feels that the case study was a good choice for the investigation into the

viability of developing an open-source cross-platform wireless router operating system.

Having a live installation in a real-world environment was very satisfying. However, it

may have been advantageous to get more installations live by getting more people

involved in the testing.

Focussing on one particular wireless card is a cause for concern. This limits the

operating system to systems that are capable of hosting that particular radio card. Many

older PCs cannot host the particular radio card used (CM9), so this rules out the use of

many old PCs that people may wish to recycle by using as a router in their attic. Using a

Wiki for the notes is a potential risk, as the author has lost count of the number of times

that it has been defaced. Luckily, no information was deleted, just links to external sites

added. This is a problem in that if a page was changed slightly, it is possible that the

administrators may not notice. The Wiki may be replaced in the future with something

more secure. More research will be carried out in that area.

Wireless Router OS Implementation 45

5.3 Further developments

The author plans to use the case study as the basis of the community network in a

small part of rural Ireland where traditional ADSL is not available. The first step has been

taken, with one node live (at the author’s home), but this will be extended rapidly from

September 2007 onwards. Many of the 30 nodes in the network in question use a mix of

operating systems, including an old open-source implementation that the author was

involved in. The nodes with the older open-source versions will be replaced first, as it has

been seen from the case study that the new software has many advantages, especially the

web front-end for configuration.

It is debatable that existing sites with commercial operating systems will have their

software replaced. Most of these sites are functioning adequately, and the author feels

that it may cause problems to significantly change something that currently does not have

any reliability issues. Sites that are more easily accessible are more likely candidates to

be upgraded, and based on the performance of these nodes, a decision will then be taken

as to whether to upgrade the more inaccessible nodes. This period will probably be of the

order of 6 months.

In the near future, support for a wider variety of hardware will be added, such as

Ethernet cards, wireless radio cards, etc. Many older PCs cannot boot with CM9 radio

cards due to hardware incompatibilities. Extending the driver support will allow these

PCs to use alternative radio cards, allowing them to be recycled more easily by using

them as routers in people’s attics.

Wireless Router OS Implementation 46

5.4 Validity of Thesis Statement

The author stated in the thesis statement of this paper that it should be possible to

develop an open-source cross-platform wireless router operating system with specific

criteria. The author feels that those criteria have been met, in that a fully functioning

operating system has been produced for the three target boards, and is currently installed

in live installations and is of benefit to the wireless community in which the author is

involved.

There were some problems encountered, such as the inability of the first release of

the wireless drivers to associate with most of the access points in the locality, but this was

eventually addressed by the driver developers. This raises an interesting question: had

these drivers been commercially developed, would a solution have been released any

quicker? The author believes that this is very difficult to quantify, as it depends a lot on

the ability of the developers to react and produce quality solutions regardless on whether

they are commercially driven or open-source advocates.

In order to gain most benefit out of the case study, it seems to the author that the

best way to proceed is to feed back the knowledge gained back into the Buildroot

community, and help get that system to a stage where an operating system can be build

for a target platform with the minimum of effort. This would probably be far more

advantageous than attempting to maintain a branch of that system specifically for the

Wireless Router OS Implementation 47

local wireless community, where the knowledge gained may well be lost. The wider the

range of developers involved in the project, the more likely it is to survive into the future.

To conclude, the author feels that the case study was a success, the thesis statement

holds up, and also raises some interesting questions. What to do next? Is open-source

‘better’ than closed-source? How do we quantify ‘better’? Some of these questions will

undoubtedly keep the software community busy for many years to come.

Wireless Router OS Implementation 48

References

[1] Buildroot Embedded Linux Website - http://buildroot.uclibc.org/ - Accessed 25th

September 25, 2006. No published date.

[2] BusyBox: The Swiss Army Knife of Embedded Linux http://www.busybox.net-

Accessed 25th September 25, 2006. No published date.

[3] Gateworks Corporation Website - http://www.gateworks.com/- Accessed 25th

September 25, 2006. No published date.

[4] Mikrotik Website - http://www.mikrotik.com/- Accessed 25th September 25, 2006.

No published date.

[5] PC Engines - Embedded PC Design - http://www.pcengines.ch/- Accessed 25th

September 25, 2006. No published date.

[6] ME2000 Wireless Router Node System - http://www.me2000.net- Accessed 25th

September 25, 2006. No published date.

[7] Vonk. C.J.S. (2005) - Secure Internet Appliance for Small Office / Home Office
th HOWTO – Retrieved on 19 April 2006 from http://users.gotsky.com/cvonk/linux/siso/

th [8] Redboot Website - RedBoot Debug and Bootstrap Firmware – Accessed 18 March

2007 from http://www.ecoscentric.com/ecos/redboot.shtml

th
[9] thttpd website - tiny/turbo/throttling HTTP server - Accessed 18 March 2007 from

http://www.acme.com/software/thttpd/

th
[10] IrishWAN community website – Accessed 18 March 2007 from

http://www.irishwan.ie

th
[11] GNU GRUB – GRand Unified Bootooader website - Accessed 7 May 2007 from

http://www.gnu.org/software/grub/

[12] Hoepman, J. and Jacobs, B. 2007. Increased security through open source. Commun.

ACM 50, 1 (Jan. 2007), 79-83.

th [13] XORP project website – Open Source IP Router - Accessed 7 May 2007 at

http://www.xorp.org

[14] Quagga project website – Quagga Routing Software Suite, GPL licensed IPv4/IPv6
th

routing software. - Accessed 7 May 2007 at http://www.quagga.net/

Wireless Router OS Implementation 49

th [15] Valemount Website – StarOS Operating System – Accessed on 10 May 2007 at

http://www.staros.com/

[16] VeriSign Website – StarOS Static Provate Key Usage Vulnerability – Accessed on
th

10 May 2007 at http://www.verisign.com/security-intelligence-service/current

intelligence/vulnerability-advisories/2003/86.html

[17] Lehrbaum (2000, July). Using Linux in Embedded and Real-Time Systems. Linux

Journal Volume 2000 , Issue 75

[18] Herlien (1998). Linux in an Embedded Communications Gateway. Linux Journal

Volume 1998 , Issue 54

[19] Mockus, A., Fielding, R. T., and Herbsleb, J. 2000. A case study of open source

software development: the Apache server. In Proceedings of the 22nd international

Conference on Software Engineering (Limerick, Ireland, June 04 - 11, 2000). ICSE '00.

ACM Press, New York, NY, 263-272.

th
[20] Oetiker. T.- MRTG – The Multi Router Traffic Grapher – Retrieved on 9 July 2007

from http://oss.oetiker.ch/mrtg/

[21] PeeWeeLinux – A Small Linux Distribution for Embedded Application – Retrieved
th

on 11 July 2007 from http://www.peeweelinux.com/

th
[22] muLinux - Minimalistic Linux distribution - Retrieved on 11 July 2007 from

http://mulinux.dotsrc.org/

th [23] LEAF – Linux Embedded Appliance Firewall - Retrieved on 11 July 2007 from

http://leaf.sourceforge.net/

th [24] MadWIFI Drivers website - Retrieved on 11 July 2007 from

http://www.madwifi.org

th
[25] MadWIFI |Issue Tracker Database - Retrieved on 6 August 2007 from

http://madwifi.org/ticket/698

Wireless Router OS Implementation 50

Appendix A - User Interface

It was felt that it is very important to make the basic configuration of the router as simple

as possible, so a web-based interface was developed. This interface allows configuration

of the basic network and wireless settings, including static IP addressing, wireless radio

configuration and static routing, as well as showing information about the current status

of the system.

The interface is implemented using thttpd [9], a turbo/tiny/throttling HTTP server and a

series of Perl and shell scripts. Limited use is made of CSS style sheets within the

HTML. The Perl implementation is Microperl, a cut-down version of Perl specifically

designed for embedded systems with a small memory footprint.

Wireless Router OS Implementation 51

A.1 Network Interface Configuration

The current network interface information is available by selecting the interfaces option

on the main menu.

Network Interface Information

Selecting a particular interface from the interfaces sub-menu allows the user to configure

the settings.

Wireless Router OS Implementation 52

Network Interface Configuration

Wireless Router OS Implementation 53

A.2 Wireless Configuration

The current wireless configuration information is available by selecting the wireless

option on the main menu.

Selecting a particular interface from the wireless sub-menu allows the user to configure

the settings for a particular radio card.

Wireless Router OS Implementation 54

Wireless configuration

The configuration options available are:

• ESSID

• Nickname

• Encryption Key (64-bit or 128-bit WEP in ASCII or HEX)

Wireless Router OS Implementation 55

•	 Selection of Master (access point), Managed (client), or ad-hoc modes of

operation.

•	 Channel selection (depends on band active on radio card)

•	 Base device (Madwifi driver attribute of each radio, generally best left alone)

•	 Link distance (important for long distance links)

•	 Transmit Power (important for staying within the allowed power limits)

•	 Bit-rate adjust

•	 Band (802.11a/b/g, 802.11a, 802.11b or 802.11g)

•	 Antenna Mode (diversity, or selection of one of the two antenna ports, important

for systems with one large directional antenna per radio)

Wireless Router OS Implementation 56

A.3 System Information

System Information

Wireless Router OS Implementation 57

A.4 Static Routing

Wireless Router OS Implementation 58

A.5 Miscellaneous Features

The web-front end includes a copy of the putty.exe binary which is a secure shell

terminal program for windows. This allows the user to log in via ssh in order to carry out

advanced configuration that may not be available via the web front end. Also available is

the ability to save the chanced settings to persistent storage, and reboot the system.

A.5.1 Save Settings

When any configuration changes are made via the web interface, the “Save Settings”

menu option will appear in the utilities menu. This gives the user to save the changed

settings to persistent storage. This option simply uses the “tar” utility to create an archive

of critical configuration files on the system and copies it to the filesystem on the Compact

Flash card. Early in the boot sequence, the system looks for this archive and extracts it,

where the settings will then override the “factory” defaults. These settings will also

survive a kernel upgrade and a root filesystem upgrade.

Wireless Router OS Implementation 59

A.5.2 Reboot System

The user may wish to apply new configuration settings, or reboot after a kernel or root

filesystem upgrade. The “Reboot System” menu option will allow the user to reboot the

system, booting into the new operating system or configuration. A confirmation message

is displayed to ensure that a reboot is not executed accidentally.

Reboot Confirmation

Wireless Router OS Implementation 60

Appendix B – Source Code

B.1 Source Code Introduction

Only sample source code segments are shown to demonstrate concepts. The author did

not feel it was necessary to include all source code developed as part of the case study. Of

course, should the full source code be required, it is available upon request.

B21 Routerboard Image Update Script

The following script is used for upgrading the kernel on the routerboard. A brief

summary is as follows:

• Clean up any previous upgrades

• Get kernel image

• Get kernel image checksum

• Ensure checksup ok against downloaded kernel image

• Write kernel image into relevant place on CF card

#!/bin/sh

#

This script gets the remote kernel/rootfs file along with it's md5sum,

generates a local md5sum.

If the two checkums compare fafourably, the image is written onto the

first partition of the CF.

#

Dave Hunt, April 2007.

#

FD=/boot

URL=${1}

if [-f ${FD}/vmlinux] ; then

/bin/rm ${FD}/vmlinux

fi

if [-f ${FD}/local.md5] ; then

/bin/rm ${FD}/local.md5

Wireless Router OS Implementation 61

fi

if [-f ${FD}/remote.md5] ; then

/bin/rm ${FD}/remote.md5

fi

wget http://10.4.2.9/pub/me2000/vmlinux.rb532 -O${FD}/vmlinux

/usr/bin/wget ${URL} -O${FD}/vmlinux

if [-f ${FD}/vmlinux] ; then

echo "Received Image File."

else

echo "*** ERROR: Could not get image file, aborting."

exit 1

fi

wget http://10.4.2.9/pub/me2000/vmlinux.rb532.md5 -O${FD}/remote.md5

/usr/bin/wget ${URL}.md5 -O${FD}/remote.md5

if [-f ${FD}/remote.md5] ; then

echo "Received Image File checksum."

else

echo "*** ERROR: Could not get image file checksum, aborting."

exit 1

fi

/usr/bin/md5sum ${FD}/vmlinux >>${FD}/local.md5

/usr/bin/diff -q ${FD}/remote.md5 ${FD}/local.md5

if [$? == 0] ; then

echo "Image file md5 checksum OK."

else

echo "*** ERROR: New image file corrupt. Aborting update."

exit 1

fi

if [-f ${FD}/vmlinux] ; then

echo "Writing image to Compact Flash..."

/bin/dd if=${FD}/vmlinux of=/dev/cfa1

echo "Cleaning up."

/bin/rm ${FD}/vmlinux

echo "Update Successful."

else

echo "Error getting image file. Exiting."

fi

Wireless Router OS Implementation 62

B.3 Sample web-front end Perl script

The following script shows the common structure of the web-front end files. Most of the

web front-end scripts follow this structure. Initially, they call the header() function to

draw the header, menus, etc. Then a function to do the work specific to that screen, then

finish off the script with a call to the footer function.

#!/usr/bin/perl

#

use commonfuncs;

use hfuncs;

use assoc;

header();

print "<h1>Wireless Info</h1>\n";

print "<pre>\n";

iwconfig();

print "</pre>\n";

footer();

Wireless Router OS Implementation 63

B.4 Sample web-front end Header/Footer code

The following code is taken from hfuncs.pm which is a perl module containing functions

related to drawing the header and the footer of all web pages output as part of the web

front-end of the case study. This file contains two main functions,- header() and footer().

header() draws the menus, which are context sensitive depending on which screen is

currently displayed. Also, extra menu options appear if the settings have been changed,

drawing the users attention to the fact that the settings need to be saved to persistent

storage.

#!/usr/bin/perl

#

sub ltrim($)

{

my $string = shift;

$string =~ s/^\s+//;

return $string;

}

1;

sub header {

print <<EMBEDDED_HTML;

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

<title>ME2000v3</title>

<link rel="stylesheet" href="/emx_nav_left.css" type="text/css">

<script type="text/javascript">

<!-
var time = 3000;

var numofitems = 7;

function menu(allitems,thisitem,startstate){

callname= "gl"+thisitem;

Wireless Router OS Implementation 64

divname="subglobal"+thisitem;

this.numberofmenuitems = 4;

this.caller = document.getElementById(callname);

this.thediv = document.getElementById(divname);

this.thediv.style.visibility = startstate;

}

function ehandler(event,theobj){

for (var i=1; i<= theobj.numberofmenuitems; i++){

var shutdiv =eval("menuitem"+i+".thediv");

shutdiv.style.visibility="hidden";

}

theobj.thediv.style.visibility="visible";

}

function closesubnav(event){

if ((event.clientY <48)||(event.clientY > 107)){

for (var i=1; i<= numofitems; i++){

var shutdiv =eval('menuitem'+i+'.thediv');

//shutdiv.style.visibility='hidden';

}

}

}

function netmode()

{

if(document.form1.mode[1].checked){

//window.open('wep1.html','','toolbar=no,location=no,scrollbars=yes,widt

h=760,height=600');

document.form1.channel.disabled = true;

document.form1.all("chn").disabled = true;

document.form1.nmode.value = "Master1";

} else {

//window.open('wep2.html','','toolbar=no,location=no,scrollbars=yes,widt

h=760,height=600');

document.form1.channel.disabled = false;

document.form1.all("chn").disabled = false;

document.form1.nmode.value = "Master2";

}

if(document.form1.mode[0].checked){

document.form1.nmode.value = "Master";

}

if(document.form1.mode[1].checked){

document.form1.nmode.value = "Managed";

}

if(document.form1.mode[2].checked){

document.form1.nmode.value = "Ad-hoc";

}

}

function do_band()

{

if(document.form1.band[0].checked){

document.form1.nband.value = "0";

}

if(document.form1.band[1].checked){

document.form1.nband.value = "1";

Wireless Router OS Implementation 65

}

if(document.form1.band[2].checked){

document.form1.nband.value = "2";

}

if(document.form1.band[3].checked){

document.form1.nband.value = "3";

}

}

function do_antenna()

{

if(document.form1.antenna[0].checked){

document.form1.nantenna.value = "0";

}

if(document.form1.antenna[1].checked){

document.form1.nantenna.value = "1";

}

if(document.form1.antenna[2].checked){

document.form1.nantenna.value = "2";

}

}

function encmode()

{

if(document.form1.encryption.checked){

document.form1.EncryptionSettings.disabled = false;

} else {

document.form1.EncryptionSettings.disabled = true;

}

}

// -->

</script>

</head>

<body onmousemove="closesubnav(event);">

<div class="skipLinks">skip to: page content | links on this page | site

navigation | footer (site information)

</div>

<div id="masthead">

<h1 id="siteName">ME2000 V3 </h1>

<div id="utility">

Utility Link | Putty | Reboot System

EMBEDDED_HTML

if (-f "/tmp/settings_changed.flag") {

print (" | Save Settings<img

src=\"/warning.gif\" alt=\"Settings have changed since last save.\">");

}

print <<EMBEDDED_HTML;

</div>

<div id="globalNav">

 <img

alt="" src="/glbnav_right.gif" height="32" width="4" id="gnr">

<div id="globalLink">

<a href="/cgi-bin/ifconfig.pl" id="gl1" class="glink"

onmouseover="ehandler(event,menuitem1);">interfaces

Wireless Router OS Implementation 66

<a href="/cgi-bin/iwconfig.pl" id="gl2" class="glink"

onmouseover="ehandler(event,menuitem2);">wireless

<a href="#" id="gl3" class="glink"

onmouseover="ehandler(event,menuitem3);">system

<a href="/cgi-bin/route.pl" id="gl4" class="glink"

onmouseover="ehandler(event,menuitem4);">routing

</div>

<!--end globalLinks-->

<form id="search" action="">

<input name="searchFor" type="text" size="10">

search

</form>

</div>

<!-- end globalNav -->

<div id="subglobal1" class="subglobalNav">

EMBEDDED_HTML

#

Generate the menus for ip settings for the relevant interfaces

#

$ifaces = `/sbin/ifconfig -a`;

@ifaces = split (/\n/,$ifaces);

foreach (@ifaces) {

if (index ($_, "Ethernet") ne -1)

{

@line = split (/ /,$_);

print "<a href=\"/cgi

bin/interface.pl?iface=$line[0]\">$line[0] settings | \n";

}

}

print <<EMBEDDED_HTML;

</div>

<div id="subglobal2" class="subglobalNav">

EMBEDDED_HTML

#

Generate the menus for wireless settings for the relevant interfaces

#

$ifaces = `cat /proc/net/wireless`;

@ifaces = split (/\n/,$ifaces);

foreach (@ifaces) {

@line = split (/\|/,$_);

if (($line[0] =~ "Inter-") || ($line[0] =~ " face ")) {

$line[0] = "";

} else {

@line = split (/:/,$_);

$line[0] = ltrim ($line[0]);

print "<a href=\"/cgi

bin/wireless.pl?iface=$line[0]\">$line[0] settings | \n";

}

Wireless Router OS Implementation 67

}

print <<EMBEDDED_HTML;

</div>

<div id="subglobal3" class="subglobalNav">

wireless info |

memory info |

cpu info |

sensor info

</div>

<div id="subglobal4" class="subglobalNav">

EMBEDDED_HTML

@ifaces = `ifconfig -a | grep Ethernet | cut -f1 -d' '`;

foreach (@ifaces) {

print "$_ settings |";

}

print <<EMBEDDED_HTML;

</div>

</div>

<!-- end masthead -->

<div id="pagecell1">

<!--pagecell1-->

<p>

</p>

<p>

</p>

<div id="content">

EMBEDDED_HTML

}

1;

sub footer {

print <<EMBEDDED_HTML;

</div>

<div id="siteInfo">

About ME2000 | ©2006

Dave Hunt</div>

</div>

<!--end pagecell1-->

<script type="text/javascript">

<!-
var menuitem1 = new menu(7,1,"hidden");

var menuitem2 = new menu(7,2,"hidden");

var menuitem3 = new menu(7,3,"hidden");

var menuitem4 = new menu(7,4,"hidden");

var menuitem5 = new menu(7,5,"hidden");

var menuitem6 = new menu(7,6,"hidden");

var menuitem7 = new menu(7,7,"hidden");

// -->

</script>

</body>

</html>

Wireless Router OS Implementation 68

EMBEDDED_HTML

}

1;

Wireless Router OS Implementation 69

B.5 Sample Daemon start/stop script

This script is an example of the start/stop script for a deamon that is started at boot time,

and stopped at shutdown. As is standard across many flavours of linux, there is a script in

the /etc/init.d directory that takes a ‘start’ or ‘stop’ parameter. These scripts are called at

boot and shutdown to ensure clean operation of those daemons. The script shown is for

the thttpd daemon, which is the web-server daemon used in the case study. The ‘start’

parameter causes wrapper script that keeps the daemon running to be started, and the

‘stop’ parameter causes the daemon to be killed.

#!/bin/sh

#

thttpd.sh - startup script for thttpd on FreeBSD

#

This goes in /usr/local/etc/rc.d and gets run at boot-time.

case "$1" in

start)

if [-x /sbin/thttpd_wrapper] ; then

echo -n " thttpd"

/sbin/thttpd_wrapper &

fi

;;

stop)

kill -USR1 `cat /var/run/thttpd.pid`

;;

*)

echo "usage: $0 { start | stop }" >&2

exit 1

;;

esac

Wireless Router OS Implementation 70

Annotated Bibliography

[1] Buildroot Embedded Linux Website - http://buildroot.uclibc.org/ - Accessed 25th

September 25, 2006. No published date.

The Buildroot system is the basis of the operating system developed as part of the

case study. The Buildroot website was an invaluable resource for the framework

around which the operating system was built. It contains a subversion repository for

many buildroot specific makefiles and patches, which allow easy inclusion of

specific packages into the operating system. Also included is documentation on how

to add new packages (such as the wireless card drivers) so that the operating system

can be customized to suite the case study’s target situation.

[2] BusyBox: The Swiss Army Knife of Embedded Linux http://www.busybox.net-

Accessed 25th September 25, 2006. No published date.

With Buildroot as the basis for the operating framework, the BusyBox website

provided the basis for many of the basic operating system binaries. Everything from

the init process to many of the more commonly used binaries, ls, pwd, etc. are

provided by busybox. The website gives details of each utility available, and how to

include these in the target build.

[3] Gateworks Corporation Website - http://www.gateworks.com/- Accessed 25th

September 25, 2006. No published date.

The Gateworks Corporation website is the home website of the manufacturer of one

of the target boards used in the case study. It contains details of the various boards,

should the case study be extended in the future to include more target boards. A

ready-patched linux kernel is also available, greatly easing the implementation of

the case study on that particular board. It also contains instructions on how to join

the Avila mailing list, which was an invaluable resource in helping resolve some

issues during the implementation of the case study.

[4] Mikrotik Website - http://www.mikrotik.com/- Accessed 25th September 25, 2006.

No published date.

The Mikrotik website is the home website of the manufacturere of another of the

target boards used in the case study. It contains many useful faqs on the board in

question (RB532), and a sample linux kernel for loading onto the board. While this

kernel was not very feature rich, it was an invaluable starting point in getting the

initial case-study operating system running on the board. The website also contains

useful documentation on the boot loader used on the RB532 board, and instructions

on how to load new operating systems onto either the built in flash memory, or an

external Compact Flash card.

Wireless Router OS Implementation 71

[5] PC Engines - Embedded PC Design - http://www.pcengines.ch/- Accessed 25th

September 25, 2006. No published date.

This is a link to another single board computer manufacturer website who’s board

was used as part of the case study. As with the others, this contained a reference

linux kernel for use on the board, along with instructions on how to get it running.

This was another invaluable resource while implementing the case study.

[6] ME2000 Wireless Router Node System - http://www.me2000.net- Accessed 25th

September 25, 2006. No published date.

ME2000 was the name given to the operating system developed as part of the case

study, and the ME2000 website was where many of the daily notes were logged,

any problems encountered and any solutions discovered were recorded on the

ME2000 wiki pages. Also some thoughts on the direction of the capstone paper

were recorded to help the author’s thought process through the case study

implementation.

[7] Vonk. C.J.S. (2005) - Secure Internet Appliance for Small Office / Home Office
th

HOWTO – Retrieved on 19 April 2006 from http://users.gotsky.com/cvonk/linux/siso/

This HOWTO gives instructions on how to implement an operating system on one

of the target platforms in the case study, the WRAP 2c single board computer.

Rather than supplying a turnkey, ready-made solution, it shows how to develop an

operating system from scratch for the WRAP board, and was a good starting point

for implementing the case study on all three boards selected. It also helped with

parts of the operating system not covered in any of the other websites, such as the

character and block device nodes in the /dev directory.

th
[8] Redboot Website - RedBoot Debug and Bootstrap Firmware – Accessed 18 March

2007 from http://www.ecoscentric.com/ecos/redboot.shtml

Each single board computer had a different boot loader. On the Gateworks board,

it’s recommended bootloader was Redboot, and this website contains information

on the Redboot boot loader. It gives examples on how to use the tftp features for

loading the kernel and compressed filesystem into memory from a remote tftp

server across the network, as well as how to burn those files onto the internal flash

memory or onto an external Compact Flash card.

th
[9] thttpd website - tiny/turbo/throttling HTTP server - Accessed 18 March 2007 from

http://www.acme.com/software/thttpd/

The http daemon chosen for the implementation of the case study was the thttpd

daemon, mainly because of it’s compact size. The thttpd website lists the daemons

Wireless Router OS Implementation 72

features, as well as a comparison chart with many other http daemons. It’s binary

size is approximately 50Kbytes, with many other daemons being 500K or larger. In

an embedded system, size is important, and although it may not be as feature-rich as

a web-server like apache, it was considered suitable for use in the case study.

th
[10] IrishWAN community website – Accessed 18 March 2007 from

http://www.irishwan.ie

The IrishWAN community website is a source of information on wireless

networking, and was one of the main inspirations behind the case study. The

experience and knowledge gained as part of that community over the last several

years has helped the author see the need for research into the area of open source

operating systems and the possibility of producing an operating system that could

be customized to that community’s needs, while also allowing peer review of it’s

security aspects.

th
[11] GNU GRUB – GRand Unified Bootooader website - Accessed 7 May 2007 from

http://www.gnu.org/software/grub/

This is the main website for the boot loader used on one of the single board

computers in the case study. The WRAP board boots similar to a PC, so it looks for

a Master Boot Record on the Compact Flash card and then loads the bootstrap

program. Grub was selected as the boot loader on the wrap because of it’s

popularity in the Linux world. The website contains instructions on how to install it

on a hard drive, but it was very similar to implement on a Compact Flash card once

it was mounted in a Linux laptop.

[12] Hoepman, J. and Jacobs, B. 2007. Increased security through open source. Commun.

ACM 50, 1 (Jan. 2007), 79-83.

The author discusses the increased security in a system when open source is used.

One of the main points of the article is that

“Open source enables users to evaluate the security by themselves, or

to hire a party of their choice to evaluate the security for them. Open

source even enables several different and independent teams of people

to evaluate the security of the system.”

This peer-review of a system helps alleviate fears that there are hidden security

holes or compromised passwords in a system, as the source is there for anyone to

investigate.

http://portal.acm.org.dml.regis.edu/ft_gateway.cfm?id=1188921&type=pdf&coll=P

ortal&dl=GUIDE&CFID=21824199&CFTOKEN=89871550

th [13] XORP project website – Open Source IP Router - Accessed 7 May 2007 at

http://www.xorp.org

Wireless Router OS Implementation 73

XORP is an open source IP router operating system. The XORP Vision is to

develop an operating system that appeals to researchers, educators, application

writers and equipment vendors alike. While this may seem similar to the operating

system developed as part of the case study, the goals are slightly different. The case

study implementation as part of this capstone project is multi-platform, to allow a

wide variety if hardware to be used in a wireless networking environment. XORP’s

aim is a wider user base, but on x86 based hardware only.

[14] Quagga project website – Quagga Routing Software Suite, GPL licensed IPv4/IPv6
th

routing software. - Accessed 7 May 2007 at http://www.quagga.net/

Because the case study is to form part of a large wireless operating system, it is

important to have a selection of routing daemons available. Quagga is the most up

to-date of the routing daemon suites, having been branched from the popular Zebra

routing daemon. Quagga contains routing daemons to handle OSPF, BGP, and RIP,

as well as the Zebra routing manager daemon. The Quagga website contains

documentation on each of these daemons, their use, and their configuration.

th
[15] Valemount Website – StarOS Operating System – Accessed on 10 May 2007 at

http://www.staros.com/

The Valemount Website contains information on the StarOS operating system,

which is a commercial (closed-source) operating system in wide use in the wireless

networking community. Although StarOS uses several open-source components, the

source code to the operating system itself is not available. The website details the

many fearures available and is a good basis for comparison between a commercial

solution and the open-source solution developed as part of the case study.

[16] VeriSign Website – StarOS Static Provate Key Usage Vulnerability – Accessed on
th 10 May 2007 at http://www.verisign.com/security-intelligence-service/current

intelligence/vulnerability-advisories/2003/86.html

The VeriSign website contains information regarding a vulnerability discovered in

the StarOS operating system. The author feels that in situations like these that the

operating system should be open to peer-review to help tighten up security, and

avoid situations like this occurring.

[17] Lehrbaum (2000, July). Using Linux in Embedded and Real-Time Systems. Linux

Journal Volume 2000 , Issue 75

In this article, the author compares the options for embedded systems developers,

and why Linux is becoming more and more important in that field. Real Time

Operating System (RTOS) vendors are struggling to keep up with new chipset

developments, and some ‘heavier’ operating systems are not suited to embedded

environments. The main relevant point in this article is that the operating system is

Wireless Router OS Implementation 74

open source, and so lends itself to modification should the need arise. Also, the

choice of Linux variants means the developer can chose a distribution that suits

them. The author founded LinuxDevices.com, and would probably be biased

towards Linux as the choice for embedded systems.

http://portal.acm.org.dml.regis.edu/ft_gateway.cfm?id=349542&type=html&coll=p

ortal&dl=ACM&CFID=1895080&CFTOKEN=21357233

[18] Herlien (1998). Linux in an Embedded Communications Gateway. Linux Journal

Volume 1998 , Issue 54

This article describes the reasons behind choosing Linux over several other

operating systems for an embedded communications gateway. One main

contributing factor was the cost of alternatives, but also because of the robustness

and available of tools and drivers. It also mentions the portability of the Linux to a

wide variety of embedded devices. The conclusions of this article show Linux to be

a reliable choice for an embedded system, and the fact that significant cost savings

are to be had over commercial alternatives. The Author developed their own

embedded system for use in the company in which he was employed, and seems

reasonable as an unbiased reference.

http://portal.acm.org.dml.regis.edu/ft_gateway.cfm?id=327500&type=html&coll=p

ortal&dl=ACM&CFID=1895080&CFTOKEN=21357233

[19] Mockus, A., Fielding, R. T., and Herbsleb, J. 2000. A case study of open source

software development: the Apache server. In Proceedings of the 22nd international

Conference on Software Engineering (Limerick, Ireland, June 04 - 11, 2000). ICSE '00.

ACM Press, New York, NY, 263-272.

Mockus et. al. look at a successful example of open source development, the

Apache Web Server. One of the concluding hypotheses are particularly relevant to

the case study in this capstone project:

“OSS developments exhibit very rapid responses to customer problems.”

The author feels that this is of particular importance to the reason behind the case

study implementation, as the ability of developers to react quickly in an open source

environment may allow quicker response than commercial organisations who may

have other priorities.

http://portal.acm.org/citation.cfm?doid=337180.337209

	An Implementation of a Cross-Platform Wireless Router Operating System
	Recommended Citation

	Microsoft Word - dhunt_capstone.doc

