Regis University
ePublications at Regis University

Regis University Student Publications

(comprehensive collection) Regis University Student Publications

Spring 2010

Develop Best Practices for Designing Internal Business Database-
Driven Web Applications

Stephen C. Rash
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

b Part of the Computer Sciences Commons

Recommended Citation

Rash, Stephen C., "Develop Best Practices for Designing Internal Business Database-Driven Web
Applications" (2010). Regis University Student Publications (comprehensive collection). 128.
https://epublications.regis.edu/theses/128

This Thesis - Open Access is brought to you for free and open access by the Regis University Student Publications
at ePublications at Regis University. It has been accepted for inclusion in Regis University Student Publications
(comprehensive collection) by an authorized administrator of ePublications at Regis University. For more
information, please contact epublications@regis.edu.

https://epublications.regis.edu/
https://epublications.regis.edu/theses
https://epublications.regis.edu/theses
https://epublications.regis.edu/regiscollege_etds
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/128?utm_source=epublications.regis.edu%2Ftheses%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
College for Professional Studies Graduate Programs
Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

DEVELOP BEST PRACTICES FOR DESIGNING INTERNAL BUSINESS DATABASE-

DRIVEN WEB APPLICATIONS

A THESIS
SUBMITTED ON 21ST OF FEBRUARY, 2010
TO THE DEPARTMENT OF INFORMATION SYSTEMS
OF THE SCHOOL OF COMPUTER & INFORMATION SCIENCES
OF REGIS UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF MASTER OF SCIENCE IN
SOFTWARE ENGINEERING

BY

S Tt O Jar

Stephen C. Rash

APPROVALS

c N'/L'*/
/
i Wher i

Douglas | Hart
) /%sz % 74

Shari Plantz-Masters

Web Application Design Best Practices

Abstract

When developing using newer technology, it is important for smaller information
technology organizations to have universally accepted set of best practices to be able to
successfully complete that type of endeavor. How can these universally accepted set of best
practices be developed? Conducting research on accepted best practices can build the basis for
your theories and assumptions. Next, in the context of your applications, develop an example
application in the newer technology to test your theories and assumptions. Build the application
like a construction project, the initial design is the blueprint, the database is the foundation and

the user interface is the actual building. When you get right down to it, the principals of

simplicity, consistency and user interaction are always best practices in developing applications.

Web Application Design Best Practices il

Acknowledgements

To my wife, Melanie, thank you for giving me the support and encouragement to complete my

degree. | could not have done this without you.

To my children, Carly, Patrick and Kevin, thank you for giving me the time and space | needed
to complete my homework and even putting up with me when | was frustrated, but, most of all,

understanding that this was something | needed to do.

To my parents, Chuck and Mary Kay, thank you both for the assistance and encouragement to

strive for goals like this my entire life.

To my employer, thank you for the financial assistance to get this degree.

To the faculty and staff of Regis University, thank you all for making this learning experience

wonderful for me, for helping me, challenging me and giving me the tools for continued success

in college and out in the workforce.

Web Application Design Best Practices iv

Table of Contents

N o1 = Tod RSP PRTRR I
ACKNOWIEAGEMENTS ...ttt st et e st e e be st e nbeeteeneeaneenree e i
TADIE OF CONTENTS ...ttt bbb bbb e b n e ne e 0\
S) T 0T =TSSP vii
LISE OF TADIES ...ttt b ettt e bbbt b X
Chapter 1 — INTTOTUCTIONc.viiiitiieisi bbbttt 1
Chapter 2 — Review of Literature and RESEAICHccveiiiiiiiiiiiiiee s 3
Chapter 3 — MEthOUOIOGYoviiiiiiiiii bbb 7
Chapter 4 — Project Analysis and RESUILScccveiiiiiiiciiiic e 8
TR U D= o o PR RPPSSROSIN 8
(L= (=7 - Uod T o SR 9
RequIremMents GatNEIINGcooiiiiiiieii e 10

SOUrCe O FEQUITEMENTS. ...t 10

DETINING USE CASES.veiiiiieiieieit ettt bbbttt bbb 12

Defining data elemMENTS.oooiiiiii s 14

Defining VISUAL @IS,c.ooiiiiieie e s 14

[0 Lo N0 1=T 1 7= £ 0] S SS 16
Producing the SCOPe dOCUMENL.ccviiiieiie et 16

Producing the design dOCUMENT.ccouiiiieiie et 16

User design acceptance and Signoff. ... 17

Web Application Design Best Practices v

S TTo 1Y LTS [| o TR TTPPRRTROP 17
INETWOTIK SEEUD ..ttt bbb 17
DatabaSse SELUDeeviiieiieie ettt nra s 19
APPHCALION SELUP....evveerieitiecie ettt ae et e be e e s e e sreeneesnaesreeneeas 19

DatabaSE DBSIGNeiiieie ittt et e e re e ae e e nraere s 20
DAtANASE USEIS ...ttt bbbttt 20
TADIES ..ottt 21
[T [0 [0 o F TSP PSP TP P TR PRURPRO 22
SEOTEA PIOCEAUIES ...ttt et 25

The 100KUp StOred ProCEAUIE.ccvveiiieiecieee e 26
The select Stored ProCEAUIE.cvcveiieie e 28
The Modify Stored ProCeAUIE.ccveivi i 28
FUNCTIONS ...ttt 28
The Code TabIe ... 29

APPIICALION DESIGN ...ttt bbbttt bbb s 29

Layered (N-tier) ArCNITECIUIEc.ooiiiiee s 31
DOMAIN TAYEttt ae e e e beenree s 31
SBIVICE LAY ... ittt 31
BUSINESS TAYET. ...ttt e et aeenree s 33
PreSentation TAYEL.oiciiiie e 33

[T [T o U T RSSO P PSSP 34

Web Application Design Best Practices i

TRE MOTEL ... 37
DOMAIN CIASSES. ...ttt 37

SEIVICE ClASSES. ...ttt bbb 37

BUSINESS CIASSES. ...t 44

THE CONTIONIET ...t 47
Controller Classes (Code Behind).cccoeiieiieiiiie e 47

ULHIEY ClaSSES. o.vviiiieiiieiie ettt et et e et e enneenas 54

TRE WIBW ...ttt bbbt 55

USEI CONIOIS. .ot 56

Cascading Style SNEELS.coveiieiieiie e 62

VAlIALIONS. ...t 64

IMIESSAGING. .vveveerteiteeiteeite ettt st et e et e st e et e s e s te et e e se e s beesbeaseestaeeeareeabeeneeaneenrs 65

P OPUPS. ettt 66

The ConfigUration FIle........cooii e 69
SCREAUIEA TASKS ...ttt sieene s 70
=] o101 1 o PO USSP PO T PSPPI PP 71
Chapter 5 — ProjeCt HISTOMYc.oiuiiiiiiiiieeeee bbbt 72
Chapter 6 — CONCIUSIONSeiiiiiie ettt et e st e e e e e sseeebeesraeebeeas 74

R B B B S .. ettt nnnnnnnnnnn 74

Web Application Design Best Practices vii

List of Figures

Figure 1: USE Case DIAGIAM.couiiaieieieiie ittt nb et b et 13
Figure 2: Use Case NAITALIVE.cocviiiiiieieieiesie st 13
Figure 3: Data Elements Spreadsheet. ... 14
Figure 4: Use Case VISUAl AT,couiiiiieei e 15
Figure 5: Marked-up Use Case Visual Ald.ccoiiiiiiiiiiiiee e 15
Figure 6: Multiple Table SECUTItY SELUP.ccvoiiiiiiiiieee e 19
Figure 7: Application SECUNLY SETUP. ...c.voviiiiiiiiiiisieeee e 20
Figure 8: Data Table STIUCIUIE.oiiiieiee e 22
Figure 9: Log Table STIUCIUIE. ..o 23
Figure 10: Logging Trigger STIUCLUIE.coueiieriiiiiiieiieieeiie ettt 24
Figure 11: LOOKUP StOred PrOCEAUIE.coiiieieieiieeie st 25
Figure 12: Select STOred PrOCEAUIE.coiiieieieie et 26
Figure 13: Modify StOred PrOCEAUIE.c.oiiiieieieee e 27
Figure 14: SCalar FUNCHION.cc.oiiiiiiiiiieieie bbbt 28
Figure 15: Layered ArCNITECTUIE.couiiiiiiiieiieeeee et 31
Figure 16: DOmMAIN LaYEr STFUCLUIE.ciuiiieieieite ittt 32
Figure 17: SErviCe LaYEr STIUCTUIE.ouiiiie ettt 32
Figure 18: BUSINESS LAYET STIUCTUIE.eeuiiiiieieeitesies et 33
Figure 19: Presentation Layer SITUCTUE.cuoiiiiiiiiiieeeeee e 34
Figure 20: Application Design PATeINS.cccoiiiiiiiiiiiieeiee e 36
FIQure 21: DOMAIN ClASS.viuiiiiieiieiie ittt bbbttt bbb 38

FIQUIE 22: FACIONY ClIaSS.c.viiiiiiieiiiciieeee ettt bbbt 39

Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:

Figure 45:

Web Application Design Best Practices viii

IService (Marker INterface) Class.ccoueiieriiiiriieesie e 40
SErVICE INTEITACE CIASS.eivieiieiiiesieee e 40
Service SQL Implementation Class — Modify FUNCLION.cccooiiineiinnieee 41
Service SQL Implementation Class — Select FUNCLION.cccoovviieiiiiiiieicce e 42
Service SQL Implementation Class — Lookup FUNCEION.cccooeiiieniiciiienee, 43
MANAGET CIASS. ... e iveeiteetieie ettt e s e sbe e e sreenneenee s 45
IManager (Marker Interface) Class..........oocuuriiiriieieiiesieee e 45
Manager INErface ClaSS.ccvciiiiiiiieieere s 46
Manager Rules Implementation CIass.ccccuriiiiniieiiseseee s 47
Controller Class — Page LOad.cccouiiiiiiiieieiesese e 48
CoNtroller Class — SECUNILY.oouiiiiiiieieee e 49
Controller Class — NEW FUNCLIONS.couviieiieieiie e 49
Controller Class — Gt FUNCLIONS.oiiiiiieiiieiesie st 51
Controller Class — Set FUNCLIONS.c.cuoiiiiiiieieiesie e 51
Controller Class — Set VIEW STALe.........ccooiiiiiiiiieiescresees e 52
Controller Class — Processing FUNCLIONS.ccooiiiiriiiininiieiieeeeee e 53
Controller Class — Drop-down LISES.ccuieiiiiiiniiisiseseseee e 54
Controller Class — SEarch Grid.ccovveieiieiieie e 55
CoNtroller Class — MESSAGES.c.veveriirieriieiesiieiiete ettt bbb 56
Controller Class — BULLONS.ccviiieiieie e ee e 56
UTHHTY CISS. .ttt bbb 57
View — Search Criteria FIeldS.cooveiiiieiieie e 58
VIEW — SEAICN ACLIONS. ...c.veiiieie et etee sttt e e st ebe e e e eeenee e 58

Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:

Figure 65:

Web Application Design Best Practices ix

VIBW — SAICH GFil. ... 59
VIBW — Data ACTIONS. ..o 60
View — Validation SUMMANY.cooeiiiiiiieiieseeie et 60
VIEW — Data FIBIUS. ..o 61
ViIEeW — HIAdeN FIEIAS.ccviiiiiiei e 61
VIBW — USEI DISPIAY. ... 62
Cascading Sty SNEEL.cueiieiee s 63
Changing a Cascading Style Sheet — BEfOre..........cccooiiiiiiiniiieeeee e 63
Changing a Cascading Style Sheet — AFer. ... 63
ValidAtioN COUE.c.eeviiiitiitieieeee et bbb 64
Validation DISPIAY.cooiiiiiiiceee s 64
MESSAGING COUE. ...ttt bbbt 65
MESSAGING DISPIAY. ..c.vieiiiiiiiiee s 66
Popup Cascading Style SNEEL...........ooi i 67
POPUP VIBW COUR. ...ttt 67
Popup Controller COE.oiiiiiieiee e 68
POPUP DISPIAY. ...ttt 68
Configuration File — Application SEttings.ccceveririiiriiiiieeeee e 69

Configuration File — CONNECLION StriNGS.cvvviiiirieieiesiseeeee e 70

Configuration File — Authentication SEttings.ccccoveiirininieieee e 70

Web Application Design Best Practices X

List of Tables
Table 1: An analysis of the pros and cons of the different sources of requirements. 11
Table 2: An analysis of the pros and cons of the different security architectures. 18
Table 3: An analysis of the pros and cons of the different list storage architectures. 29
Table 4: An analysis of the different design Patterns. ... 35

Table 5: Project hiStOry tIMEIINE.oiiiiee e 73

Web Application Design Best Practices 1

Chapter 1 — Introduction

Small Information Technology (IT) organizations that have recently attempted to develop
database driven, internal web-based business applications to replace outdated windows-based
applications have been unsuccessful. These organizations were unsuccessful because they do not
have a universally accepted set of best practices to use for such development.

Hager, Kibler and Zach (1999) state that those who have used a web application have
seen how “this world-changing technology... is burgeoning” and that “many managers are
struggling with the various ways the concepts and technology can be leveraged to create
corporate Intranets”.

“Companies wanted a way to centrally serve [applications], so some started to use Citrix
Metaframes. .. which were essentially client-server systems with the client running on remote
machines” (Hice, 2008, p. 20). Organizations are moving away from terminal servers (Citrix)
and windows-based applications to internal web applications. Hice (2008) goes on to say that
web applications “are the wave of the future” and that major software vendors are moving
toward web-based systems. Organizations have found that they do not possess the knowledge
base to successfully implement web applications; they are structured differently than old
windows-based applications. Some organizations contract with outside web application
developers to develop systems to help them gain the knowledge of the best practices to design
and implement these types of applications on their own. Unfortunately, even the contractors do
not always possess the knowledge of the best practices; there is often very little consistency in
their approach and methodology. Organizations often cannot take anything the developers create

and apply it to designing and developing new applications internally.

Web Application Design Best Practices 2

The goal of this research is to identify the best practices for developing and implementing
new business applications by creating an example internal web-based application for
organizations to understand and implement the best practices. The focus of this research is
narrow in the context of understanding best practices for a basic business web application with a
database data repository, any narrower, and the research would lose the validity of a real world

problem.

Web Application Design Best Practices 3

Chapter 2 — Review of Literature and Research

The most important step in developing an internal business web-based application is the
actual design. Davidson (2007) said it best:
...would you hire a contractor to build a house and then demand that they start pouring a
foundation the very next day? Even worse, would you demand that it be done without
blueprints or house plans? Hopefully, you answered "no" to both of these. A design is
needed make sure that the house you want gets built, and that the land you are building it
on will not sink into some underground cavern. If you answered yes, | am not sure if
anything I can say will help you. (6)
A good, well thought out foundation can make or break the project. The design process cannot
exist without the most important participants, the system users themselves. It is very important to
get the users involved early and often. Hager, Kibler and Zach (1999) highlight the need to
include the users:
User-centered design (UCD) is a technique for designing interfaces... that includes
continuous and early focus on the users’ tasks and goals. It is the best way to get potential
end users to participate in the designing the interface, leveraging their specific knowledge
as part of the overall process. (p. 58)
Meyers (2004) puts forth an interesting statement about the most important design guideline;
“Make interfaces easy to use correctly and hard to use incorrectly”. He also states that “if a user
makes a mistake when using your interface, it’s your fault” (Meyers, 2004, p. 14). Understanding

how a user will use a system can assist an application developer in designing a system the user

Web Application Design Best Practices 4

will actually use successfully. “[D]esigners need to train themselves to anticipate what clients
might reasonably like to do, and then facilitate that activity” (Meyers, 2004, p. 16).

Design patterns can be very useful in many aspects of designing an application. Fowler
(2003) says that “patterns are half-baked — meaning you always have to finish them yourself and
adapt them to your own environment”. A design pattern is just that, “a model or guide for
something to be made” (“Pattern,” 2009). Patterns can be useful in teaching other, less
experienced, developers and also develop a standard vocabulary so everyone can understand the
overall design (Fowler, 2003, p. 57). The “Model-View-Controller (MVC) is a widely used
software design pattern ...[and] is a useful addition to a toolkit, no matter what language you
choose” (Kotek, 2002, 1 2). MV C is a logical separation between the View; the user interaction
piece, the Model; the business rules and data processing piece and the Controller; the
communication avenue between the Model and View (Kotek, 2002). The most important aspect
of MVC is that because of the disconnected nature, the different pieces can be changed without
affecting the other pieces.

Object-Oriented (OO) Development concepts are essential in designing and developing
web applications. Armstrong (2006) highlights the need to understand OO development
concepts:

Understanding what concepts characterize OO is of paramount importance to both

practitioners in the midst of transitioning to the OO approach and researchers studying

the transition to OO development. How can we hope to achieve the productivity gains
promised by the OO development approach, effectively transition software developers, or
conduct meaningful research toward these goals, when we have yet to identify and

understand the basic phenomena? (p. 124)

Web Application Design Best Practices 5

Armstrong (2006) goes on to state that “an established set of fundamental OO concepts within a
taxonomy may enhance the maturity of the OO development discipline through standardization,
and increase the portability of developers across organizations and environments”. A firm
understanding of OO concepts implemented in an application can assist a designer in
maximizing the scalability, extensibility and usability of the application.

Davidson (2007) states that “the database is the cornerstone of pretty much every
business project” (1 8), data is the key, entering, storing, processing, manipulating and displaying
data for whatever purpose the user wishes. The concept of an evolutionary database design
discussed by Fowler and Sadalage (2003) has some merits, the “design of the system has to
evolve through the various iterations of the software” (f 2). Through tightly controlled change,
the database is allowed to grow and mature throughout the life-cycle of the project (Fowler &
Sadalage, 2003). Automated refactoring is very important in this type of development,
everything is controlled; the database schema and test data is rebuilt to ensure integrity of the
entire system (Fowler & Sadalage, 2003).

Performance is an important part of any database, the better a developer understands that,
the better the application. Chen, Goes, Gupta and Marsden (2004) explored query patterns and
found it is not possible “to find a single database structure that is best under all conditions[, but it
is possible]... to identify database structures that perform robustly”. It is a worthwhile effort to
identify and design for the most robust structure possible.

Fraternali (1999) explains about how data-intensive web applications will cope with the
special requirements:

As has happened in the past with other emerging technologies such as databases and

object-oriented programming languages, methodologies and software tools may greatly

Web Application Design Best Practices

help in mastering the complexity of innovative applications by fostering a correct
understanding and use of a new development paradigm, providing productivity
advantages, and thus reducing the risk inherent in application development and
migration. (p. 228)

These are new types of “hybrid” applications, web application and information system

(Fraternali, 1999).

Web Application Design Best Practices 7

Chapter 3 — Methodology

The research methodology will be that of design science research, building an example
ASP.NET web application driven by a Microsoft SQL Server 2005 database to gain the
knowledge of what are the best practices associated with designing and building those types of
applications.

The example application will be a simple data in / data out type of application with basic
functionality to search for records, select records, add, change and delete records. It will be
constructed as a three-tier architecture, using the Model-View-Controller (MVC) architectural
pattern taking full advantage of Object-Oriented (OO) development concepts. All of the CRUD,
Create, Read, Update, and Delete operations will be handled by Stored Procedures on the
database side. Data change logging will be handled by Insert, Update and Delete triggers on the
data table, inserting values into a specific log table. Application security will be handled by
Active Directory (AD) for domain access and the system users, along with their associated
security levels stored in database tables, used by the web user interface to control what a

particular logged in user can do or see.

Web Application Design Best Practices 8

Chapter 4 — Project Analysis and Results

The example application was designed to replace an existing application that was
cumbersome and time consuming to use, as well as, lacking key functionality and scalability
required by the users to perform their job. The users requested an application that was simpler
and more streamlined; facilitating quick, easy and reliable user interaction. In addition to the user
experience, they also requested enhanced security features as well as increased flexible search
features.

The new Audit Action Tracker (AAT) application will make the user interface simpler
for the end user by taking advantage of Web-based technology. AAT redesigns the storage of
data in a Microsoft SQL Server 2005 database using tables, triggers, procedures and functions to
better manage data and develop reports with Crystal Reports X1 for display in a company-wide
reporting system, BusinessObjects Enterprise XI. This system will meet the functional and
security requirements by managing the data, capturing an audit trail, and making the data more
accessible and reportable.

Initial Design

Initial design is the cornerstone of any good application, the better the foundation the
better the implementation and the more that the users will accept it. The more questions that can
be answered in the beginning, the smoother the actual development will be. In small Information
Technology (IT) organizations, the developer has to perform all the different jobs in the
application development life-cycle, becoming the architect, the designer, the coder, the

documenter, the tester as well as the developer. With all the responsibility falling on the

Web Application Design Best Practices 9

developer to do everything, it is important for the developer to address three areas in the initial
design phase, user interaction, requirements gathering and documentation.
User Interaction
With regard to a business application, the user is the most important element. The
business application itself is a tool that helps the user do their work more easily and efficiently.
The user is a wealth of knowledge in what will help them perform their work better. The users
know what they want or do not want in an application, so it is imperative to involve them in
every aspect of the design and development process to ensure they will be satisfied with the
finished product. Hager, Kibler and Zach (1999) said it best:
Besides the challenges imposed by web technology, the real challenges of web
applications involve getting the content right so the users can do the work they need to
and leave satisfied. The only way to get it right is with early and continuous focus on
users and their tasks. Without user-centered design, applications are almost always
frustrating to use, forcing many users to leave without doing what they came to do.
Obviously this isn’t good for a company’s bottom line. (p. 59)
If users feel they have a voice in designing the application, they will take more pride in working
on it, work harder understanding what they truly need and when it is all finished, will take
ownership in using the application.
Start small with a core group of users, the most knowledgeable and experienced, and then
expand the group to involve more of the user community to get a wider perspective. This will
allow the developer to have a basic understanding and be able to present ideas for feedback from

the user group.

Web Application Design Best Practices 10

Weekly meetings are crucial to the success of the process, providing a forum for users to
see the progress and give feedback. Having an agenda and sticking to it, is a good structure to
help in the design meeting process. Meetings are not value-added if they are constantly off track,
other unrelated topics are introduced or the users are uninterested or otherwise occupied.

Getting the users involved in testing the application or validating a prototype of the
application will give them a better understanding of what they like and do not like and what the
application can do. If the users see it in operation and work with it, they will provide better
feedback to the developer. In most cases, for small IT organizations, it is not practical to build a
prototype, but if pieces of the application, the most representative functionality pieces, can be
built, the users can extrapolate what the other pieces of the application will be like.
Requirements Gathering

Understanding how an application is to be used, who is to use it and what they will be
doing with it is very important for the developer. The developer must have an understanding of
the overall process and the high-level functionality required for a user to perform their work
activities and, once those are understood, they must be able to compile and articulate that
information back to the users in a logical, understandable format, so that the user understands
how the application will look and perform. Developers must understand and determine the
source of requirements to build the application use case diagrams and data elements.

Source of requirements.

There are two main sources of requirements; replacing an existing application and user
developed requirements. . Based on the different sources of requirements, are different

approaches the developer must take to extract the information needed to formulate the initial

Web Application Design Best Practices

11

Table 1: An analysis of the pros and cons of the different sources of requirements. The table

below contains data on the pros and cons of replacing an existing application vs. user

requirements.

Source

Pros

Cons

Replacing an Existing
Application

Users will have a better
understanding of what they like
and do not like in an application
Developers will be able to work
with the existing application to
gain a better understanding of the
user requirements

Both users and developers will
have a common frame of

reference

Users may be fixated on how the
existing application works and
not receptive to process
changes... "this is the way we
have always done it"

Users may feel threatened by a
replacement application in either
workload or employment

The application itself may be too
complex to replicate in whole or

part

User Developed

Requirements

The application is a blank slate,
specific process and work-flow
can be built exactly to the user
specifications

Users will be focused on
functionality and process and
will be free to think outside what
they already know and help
streamline their work
Developers will have the
opportunity to interject new and
simpler processes into the design
that the user may not have

considered

The application is a blank slate,
if the user requirements are too
vague, the process to understand
and refine the design may be a
long process

Developers have to work harder
to understand functionality and
process, more interaction with
the users and more example
development must be done
Based on arbitrary, grandiose
requirements and development
limitations the application itself

may be too complex to build

Web Application Design Best Practices 12

design. When the developer is replacing an existing application, the focus is on how the existing
application works and how the users want to add to or change the functionally to better suit their
needs. The developer must be granted access to the existing application in a test environment and
given user contacts to work help understand the required functionality. As the developer is
working with user identified requirements, the focus is on understanding the vision of the users,
what functionality they require, want and would like to have. The developer must work closely
with the users to constantly refine the ideas into a workable design.

There are advantages and disadvantages to both sources of requirements as shown in
Table 1. There are also different approaches to gathering requirements for both sources of
requirements. The developer must understand these to be able to successfully develop an initial
design. Once the developer has the underlying understanding of the requirements, the building of
the artifacts begins.

Defining use cases.

The use case is the focal point of the initial design, it is the definition of the specific
activity to be preformed and which specific actors will be performing them. The use cases can be
presented in two forms, the use case diagram shown in Figure 1 and the use case narrative shown
in Figure 2.

The use case diagram and the use case narrative most often go together when detailing
the use case design. The use case diagram is a good visual representation of the interaction
between the actor and an application function. The use case narrative is a textual representation

of the interaction between the actor and an application function with more detail.

Web Application Design Best Practices

Audit Action Tracker (AAT)

Maintain
Maintain Security

Codes

Maintain
Locations

Update
Users / References

Maintain
Audits

Maintain
Audit Teams

Upload
Action ltems.

Maintain
Action ltems

Periodic
Email Notifications

System

Audit Action Tracker (AAT)

Use Case [Rev.4 | All Use Cases | en7r200s Jorawn by: Stephen Rash

Figure 1: Use Case Diagram.

Name Maintain Codes

Number 1.0

Description Allow the user to maintain the codelists that populate drop-down lists in the
application.

Author Stephen C. Rash

Date 72009

Actors Admin and Svstem Admin

Pre-conditions 1. Database connection established.

2. User possesses proper security to use case and functions
3. Code Type must alreadv bein the system
Actions 1. Search for Codes
2. SelectCode Record
3. Add Code Records
4. Change CodeRecords
5. Delete Code Records
Post-conditions 1. Changesto Code Record will be logged
Includes None
Extends None
Generalizes None

Figure 2: Use Case Narrative.

13

Web Application Design Best Practices 14

Defining data elements.

Once the use cases are defined, the developer then must delve into more detail about what
specific data elements must be captured. The data elements drive the database design as well as
the actual model, the page and user control design in the application. As shown in Figure 3, a

simple spreadsheet can contain all the pertinent information the developer needs to do the actual

implementation.

Label Name Field Name DB Type Size |Nullable [Primary Key [Foreign Key IX (Unigue) | SP Modify | SP Select |SP Lookup
“Hidden= code_id INT IDENTITY Mo Yes Yes Yes Yes

Code Type code_type id INT Mo thl_code_typejcode_type_id) |Yes Yes Yes Yes

Code code_name VARCHAR 50 |No Yes Yes Yes Yes

Code Dependency |code dep id INT Yes thl_codejcode_id) Yes Yes Yes

Active code_active BIT Mo Yes Yes Yes
<Hidden: code Imod_user |VARCHAR 20 [No Yes Yes

<Hidden= code Imod_date |DATETIME No Yes Yes

<Hidden= code_Imod_type [CHAR 1 [Ne Yes Yes

Figure 3: Data Elements Spreadsheet.

The data element lists will allow the developer to map out the construction of the
database tables, primary and foreign keys, unique index, stored procedures and how they relate
to each other, as well as the application domain objects, implementations and the pages/controls
themselves. It is an important tool to keep updated as a reference to what the pieces should all
look like.

Defining visual aids.

A picture really is worth a thousand words, but only if it is understandable to the
consumer. It is important to present the different functions to the user in a visual form, to show
what the look and feel of the application will be. The user will be able to take that visual aid and
be able to comment and make changes to the overall design of the functions.

Figure 4 is a visual example of a specific use case and how it might be built in the
application; the user can see the navigation, see the different functions available and see how the

data elements will be incorporated into the application.

Web Application Design Best Practices 15

-Audit
/@, ~Action
3o Tracker

Code Maintenance

H Search | IH Save | lj Reset
*Code Type I_;l

*Code |
Dependency I_LI

Code Active ¥

@ KXY PO D

Current User
V1.0.0
TEST

Figure 4: Use Case Visual Aid.

,g, _Actron | _
o Tracker

Code Maintenance

#men | Bowe | e S [} Cenrele fo Top
xtode“fype[?['

*Codea | 7 | C,,thf'}/,ﬂf—ﬁjg

Dapehden:y
Code Active ¥ . C' Je L—”__,———-—’—-7
Kegoired
I C ! VT
Current User ’ S :’W&é
V1.0, ~

Figure 5: Marked-up Use Case Visual Aid.

Web Application Design Best Practices 16

Figure 5 shows the visual aid after it has been marked-up by the users. When the look and
feel of the application has been refined and finalized the developer can start work on a prototype
or example function of the application for the users to see. More revisions may be necessary, but
with a little extra time in the initial design, coding revisions will more likely be minimal.
Documentation

Documentation is very important to a successful project as it allows all the individuals
involved to take time to think out the aspects of the application and write it down so that
everyone has a source for understanding what is required, how it will be produced and that the
responsible individuals approve.

Producing the scope document.

The scope document is a detailed document that defines the justification for “why” the
application is being developed, the high-level usage scenarios, what the application will
exclusively entail and specifically, what it will not. In smaller organizations, this document is the
collaboration between the users and the developers to produce and refine it into something that
all can agree upon.

Producing the design document.

The design document is a compilation of the finalized design artifacts produced by the
developer. The main purpose of this document is for the developer to have something to work
from and also, so any future projects or developers can see how the application was designed and

take away that knowledge.

Web Application Design Best Practices 17

User design acceptance and signoff.

The acceptance and signoff document is user approval to move forward. This could
consist of a single page signed by the user or an email stating the user has reviewed and
approved the initial design and the development work can proceed.

Security Design

The initial design is the blueprint of the application; the security is the gated fence around
the application through which no one passes without authorization. Security is a very important
aspect to any business application large or small, windows or web, you must control who has
access and at what level. The developer must take into consideration many aspects of security,
how many types of individuals will access the application, what level of granularity the security
must be and how the security will be presented to the users. The level of complexity depends
upon the application, from any user having access to the application with access to all functions
to a particular user having access to only particular functions. Internal business applications have
traditionally encompassed all aspects of application security; they stored the user’s passwords
and access levels. More recently, internal business applications have the advantage of being able
to take benefit of network security to control application access. The developer has to build on
the network security to store user and access information in the database to be used to specify
access within the application. There are advantages and disadvantages to both of these security
architectures. Table 2 shows the advantages and disadvantages to both of these security
architectures.

Network Setup
All users that will access the application must have network security credentials. When

the user accesses the network, they automatically have access to the application without having

Web Application Design Best Practices

Table 2: An analysis of the pros and cons of the different security architectures. The table below

contains data on the pros and cons of a traditional application based security vs. network

enabled security.

Security Architecture

Pros

Cons

Traditional
Application Based
Security

Better access control to the
application, all user ids and
passwords are stored in the
database and the application is
more secure

System administrators would be
able to more quickly grant users
access to the application

The user does not need to have
network access to be setup in the

application

More maintenance issues
because all user's passwords are
stored in the application and
must be encrypted

Logon is required each time the
user accesses the application
The user would have to
remember a different password

to access the application

Network Enabled
Security

Seamless security into the
application; the user is
authenticated by network
security and proceeds into the
application

If a user's network security
access is disabled, they would be
disabled in the application at the
same time

Easier user maintenance, ties the
user’s network id to what
security access they require, no

password storage

There is a security risk, if a user
does not lock their computer
when not in the area, so anyone
could access the application AS
that particular user from that
computer

The user is required to have
network security credentials to
access the application

More than a single individual
must be involved in setting up

application access

Web Application Design Best Practices 19

to login again. Seamless access and not having to remember another password is a big advantage
to the users. The security risk to this type of architecture can be mitigated by password protected
screen savers and user training. The advantages outweigh the risks.
Database Setup

The database will contain at least one table that contains the user’s network identification
and their security access. More complex security architecture will contain two or more tables to

hold users, groups and security information.

thl_user thl_group thl_security ibl_user

sy id grp_id o id ol id
LsT_name orp_name T __Jeec grpid cl name
usr_gmp_id arp_comments sec_ctl_id ctl_path
usr_achive orp_active sec_insert
sl Imod_user jarp Imod_User sec_update
usr Imod date jorp_Imed_date sec_delete
usr_|mod_type jarp_Imod_type sac_lmod_user

sec_Imod_date

sec Imod_type

Figure 6: Multiple Table Security Setup.

The database will also contain a stored procedure that accepts parameters for user and
control to return the level of security access.
Application Setup

The application will access the user — security information via a stored procedure in the
database to grant access to the particular page and or user control with its specific insert, change,
delete and search functions. Figure 7 shows the flow of the application security. The application
security is based on the accessed page or control and the network user id. The page or user
control and user id is passed to the database and a security record is returned consisting of the
level of access that user has to that particular control, the including ability of the user to insert,

update or delete records.

Application

Web Application Design Best Practices

Security function

Database

Security Stored
Procedure is run for

20

User accesses the | captures the user id —,L_. the specific user id
page / control and pa::"fl:ﬂﬂtm' : and page / control
I name
|
|
|
|
|
|
Security record is I
Ye returned from ‘—+—
database

Disable all access

Figure 7: Application Security Setup.
Database Design

As the initial design is the blueprint of the application, the security is the fence around the
application, so then it follows that the database is the foundation of the application. The database
development must be the first step in actually building the application. The database has two
main functions, store the data and facilitate the CRUD, Create, Read, Update and Delete
operations.
Database Users

The Achilles heel of security for a database driven web-based application is the double-
hop authentication, client to web server to database server. A simple solution to this issue is to
create database user application id, which has full select, insert, update and delete access to the
tables, as well as execute access to all stored procedures. The application id is used in the

application to connect to the database and perform the operations. Another handy database user

Web Application Design Best Practices 21

is a read-only id, which has only select access to the tables and also has execute access to
selected stored procedures. The read-only id is used in reporting and any external access to the
application data.
Tables
In a database, the table is the most important piece; it is where the data is stored, the
particular data in the table must be unique, consistent and retrievable. The best data table
architecture is as follows:
o A next sequential record key, an integer identity field which is the tables primary
key
o Data type specific fields, the correct data type for the type of data it will be
accepting, every unused bite of data will still take up database space
o Fields accepting null values sparingly, if the field may not have any data
populated, the field should accept null values, but if the field will more likely
have values, the field should not accept null values.
o If the record may be changed by different users, logging should be incorporated
into the table design
o For data integrity, foreign key constraints should be placed on fields where the
values relate to the primary key of other tables
o At least, a unique index should be used, the literal name or unique values captured
in a table
o Grant full select, insert, update and delete permissions to the application user and
grant select only permissions to the read-only user

Figure 8 shows the example SQL code for a data table.

Web Application Design Best Practices

FRECM =sys.objects

WHERE name = 'thl code'
END type = 'O’

DROP TABLE dbo.tbl code

rrr

A&

C. Rash ’
f2009 =
C. Rash =
fza09 &
data records =

,,,

/* Build Data Table */

CEEATE TAEBLE dho.tbl code |
code id INT ILDENWNTITY W
code type id N

woLL, ——— Mext sequential Code record key

code name VARC] N NULL,
code dep id INT NULL Data fields
code lmod user |

code Ilmod date

CONSTERINT fk_code type id FOREIGN ¥EY (code_type id)
REIFERENCES tb_ code _type lcode tﬂpe_id;,

code_act??e BIT NMOT NULI
NULL, Log fields
code lmod | type CHAR(l ;
CONSTRATNT pk_code PRIMARY X ERED (code_id), —— Primary key
CONSTRAINT £k code dep 1d FOREIGN XEY (code dep id) Foreign key(s)
REIFERENCES tb_ code (code id)
50

f’ Zrdexes ®f

qqqqqq

:I- Unique Index

CH dbo. tb-_code -code_t‘pe_-d, cnde_namej

GO

/* Permissions */

GRAWT SELECT, INSERT, UPDATE, DELETE

CN dbo.thl code Permissions for application id
T RLTEFPP

GO

GRANT SELECT

Ol dbo.thl code :I- Permissions for read-only id
TO RATRO

G0

Figure 8: Data Table Structure.

Logging

Logging is an important feature to determine the “who,” “what” and “when” a table

very similarly to the data table and a trigger that executes on a record change in the data table.

22

record was changed. If the table has records that could potentially be updated by different users,

logging is required. The logging feature is simple and consists of a log table which is structured

Web Application Design Best Practices

23

The log table has the exact same fields as the data table, the only differences are that the log table

has no primary key or foreign keys and its unique index is the data table’s primary key field and

the logging fields. The example SQL code for a log table is shown in Figure 9.

Drop Table */f
IF EXISTS

SELECT *

FROM =y=.objects

WHERE name = "'thl code log!'

AND type = 'O’
DRCOP TAELE dbo.tbl code log
GC
,,,
* D ALT =
* T ode log =
* Stephen C. Rash =
® 07/14 =]]
* T Stephen Rash =
TIBPD Q7 /20 5] *
* PORPOSE: Hold=s code log records from thl code. =
= The who, what and when the record was inserted, *
= changed or deleted by use of a Trigger. =

rrrrrrrrrrrrrrrrrrrr

rr

* Build Log Table */
CREATE TAELE dbo.thl
code id INT HO

code type id INT

code name VARC

code_dep id INT NU

code actiwve EI
code lmod user
code lmod date
code_lmod tvpe

GO

f# Indexes */

CREATE UNIQUE INDEX

CH dbo.thl code log
code id,

code lmod user,
code Ilmod date,

code Imod type

GO

JS* Permi=zsion=s */
GRANT SELECT,
CH dbo.tbl code log
TO BATREPP

GO

GRANT SELECT

CH dbo.tbl code log
TGO
GO

AATERD

INSERT,

;cnde_;ng - _
[—:;;3-.56-;: E; LL - Data fields
TN =

U‘__g‘_ ot Log fields

ix_code_unigue
i

Unigue index of
Code record key
and Code log fields

UPLATE, LCELETE
Permissions for application id

:|~ Permissions for read-only id

Figure 9: Log Table Structure.

Web Application Design Best Practices 24

The logging trigger is executed on any insert, update or delete and copies the data table record
exactly and inserts it into the log table. Figure 10 shows the example SQL code for the log

trigger.

name = "tgr code log'
'TR"

DROF TRIGGER dbo.tgr_code log
GO
S#* Build Trigger */

CREATE TRIGGER dbnltg:_code_;og
CH thl code :
AFTER INSERT, UPDATE, DELET Trlgger on Code record
25 insert, update or delete

R R R R R R R R R R R R R R R EE

=1

DATABRASE: AR

RRT
* TRIGGER: tgr code log =
* TRIGGER ON: #

WALALLL D

UFDATED DATE:

* PUORPOSE: Logs events to the thl code. =

R R R R R R R R R R R R R E R R R TR ewewsw® [

iF) RETURN

IF '= 0 RETURN) .

vpe =/ If in the inserted table,

IF E S] lseiect * ._f:l:nm ir._se:ted:: —_ recordis ainsert or
CHSZAT ZNIO the cods_fog change, if not, a delete
SELECT code id = code id,

code type id = code type id,
code name = code name,
code_dep id = code dep id, LOQ an exact copy of
code active = code_act;-.-'e_. - the inserted or ChaHQEd
cnde:;mnd_use: = cade_;mnd_uae:_. Code record
code lmod date = code_lmod date,
code lmod type code lmod type
FRCHM inserted

5]
[
]
5]

INS _ _
SELECT code_id = code_id,

code type id = code type id,
code name = code name,
cnde:dep_"_d = coae_dep_id, Log an exact copy of
code_active = code_active, " the deleted Code record
code lmod user = code lmod user,
code lmod date = code_lmod date,
code lmod type code lmod type
FRCHM deleted —

ERT INTIC thl code log

Figure 10: Logging Trigger Structure.

Web Application Design Best Practices

The logging is simple but effective, the log table, based on the last modification date-time field

in descending order, can show the administrator what changes have been made to the record

throughout its life and what user made the change.

Stored Procedures

The table is the most important piece in a database, but the stored procedures are a very
close second. The stored procedures control the record manipulation and retrieval of data from

the data tables. There are three main types of stored procedures, lookup, select and modify.

AND type = 'P°

DRCF PRCCEDURE dbo.sp_code lookup

GG

JS* Build 5P */

CREATE PROCEDURE dbo.sp code lookup |
@ccde_type_id WVARCHARR (9]
Bcode_name VI
@code_type dep id VAT
Bocode_dep id VA =
Gcode_active CH

} WITH RECCMPILE

xx

T S

FURFCOSE:
R R R PN

/% SBelect Record */

c.code_id,

dbo.fn code_type_ name (c.code_type_id) AS code_type name,
c.code_name,

ISNULL {dbo.fn_ code type name (t.code type dep id}, "'} AS
code_type_ dep name,
ISNULL (dbo.fn_code_name (c.code_dep_id), "'} AS code_dep name,

dbo.fn yes_nofc.code active] AR5 code active name
FROM thl_code c
JOIN thl_code_type t
CH c.code_type_id = t.code_type id
WHERE c.code_type_id LIEE @ccde_type_id

SHULL{t.code_type_dep_id, 0} LIEE @ccde_tgpe_dep_id

END c.code_active LIEKE @ccde_active;

GG

J# Permizsions #*/

GRANT EXECUTE

CH dbc-sp_codE_'-—ookup} Permissions for application and read-only ids
TC ZATALPP, RATRDC

GO

Figure 11: Lookup Stored Procedure.

MR (8}, Accepts Code search criteria parameters

Returns Top

c.code_name LIKE @code_name Based on the Code
SHULL (c.code_dep id, 0) LIXE @code dep id search criteria

25

Web Application Design Best Practices 26

The lookup stored procedure.

The lookup stored procedure accepts search criteria parameters to return a list of records
to populate the search facility in the application. The search is limited to 200 records for
application performance, if the returned record set is the max, 201, the user will be asked to limit
the search. Conversely, if there are no records returned for the search criteria, the user will be
advised of that as well. The SQL code shown in Figure 11 is an example of a lookup stored

procedure.

FAOM sys.obiects

WHERE name = 'sp code select’
AND type = 'B!
DROF PROCEDURE dho.sp code select

GC
JS* Build SP */
CREATE PROCEDURE dbo.sp code select

Bcode id INT : Accepts a single parameter,
} WITH RECOMPILE the Code record key
AS
/ :
Ll -
= =
* PURPOSE: Selects code table record information. =

f"f!’f"f!”'"f!‘""f!‘""f!"'f!’f"f!’f"f!”'"f!‘""*f""f!"'f!’f"f!”'"f!"'"*f";‘
/* SBelect Becord */
SELECT code id, =
code Eype id,
ccde:nameT
ISHULL {code dep id,0) AS code dep id,
code active, e —FF2% L Return a single Code record
code lmod user,
ccde:med:date,
code Imod type
FROM tbl_code
WHERE code id = @code id; Based on the Code record key
GC
/% Permissions */
GRRNT EXECUTE

ON dbo.sp code select :|~ Permissions for application id

TCO RRTEFF
GO

Figure 12: Select Stored Procedure.

Web Application Design Best Practices

PROCEDURE dbo.sp_code_modify |
fBcode 3id INT,
Bcode | _id INT,

Ecode name VARCHAR(S0),

Gcode de d INT
écude—acﬁ__e 3—T: Accepts a full Code record parameter
@code:'_modiuse: VRRCHAR (20) ,

@code_lmod_date DATE
Bcode lmod type CEAR(1)
WITH RECCMPILE

sp_code_modify i

+

TP D&’ 15/2009 =
* PURP Modifies code table record information. =
/* Declarations */

DECLA! Bhold A5 TABLE (hold id INT):

DECLARE @ret_id AS INT;: B

IF @codei;moait'-;pe = 'D! — [{'D' - Delete

BEGIN

OF bl code- sede_tes :l- Disable Code Log trigger
/* Update Last Mod #/
UPDATE thl_code
SET code lmod uwser = Ecode lmod umser,
coae 'nEd_dat,e = E’-coae 'mEd_dat,e, Update Code Iog fields
Boode lmod type
Based on the Code record key

tgr code log

:|- Enable Code Log trigger

Delete Code record
id; — Based onthe Code record key

Set Deleted Code key
F Bcode_id = 0 — [fcode_id =0 {(New)

ue *
Bcode_id;

B

/* Insert Record */
INSERT INTC tbl_code
CUTPUT inzerted.code id INTC Ghold
SELECT code type id = Ecode type id,
code name = Bcode name, Insert Code record and

code_dep_id = Bcode_dep id, capture the inserted

code_act = Gcode_ac e, code id
code lmod user = Gcode od_uszer, -
= @code_lmod date,
= @code_lmod type;

/* Set Ret /
ECT @ret_id = hold_id FROM Bhold — Set Deleted Code key

U
B

Jpdate Record */
TE thl_code

code type id = Bcode type id,
d m fcode name,

= @cu;eidep id,

T

code_ name =
id

Update Code record

= Gocode lmod date,
|ty = Gcode_lmod type
Bcode id: —— Based onthe Code record key

/ et Ret lue */
SET @ret_id = Geode_id;

Set Deleted Code key

Return Code key

CN dbo.sp_code_modify
TC ARTAFP
GO

:|- Permissions for application id

Figure 13: Modify Stored Procedure.

27

Web Application Design Best Practices 28

The select stored procedure.

The select stored procedure accepts a single parameter, the record key, to return a single
record to populate the data manipulation facility in the application. An example of the SQL code
to build the select stored procedure is shown in Figure 12.

The modify stored procedure.

The modify stored procedure accepts all record parameters and based on the type of
modification to be performed, manipulates the record in the table and then returns the record key
for the messaging facility in the application. Figure 13 shows the example SQL code for a

modify stored procedure.

/ Drop Function #*/f
IF EX 5

LND type = 'FH'

iRCP FUNCTION dbo.fn_code_name

G0

f* Build Functiom */

CREAZ‘ECELTEC?.ZEH_[:?ED.fr._cn:\de_r'_arle { ACCEPTS a sing|e parameter‘
2 5 5
cone_-a -H- the Code record key

} RETURNS WVARCHRR(S0)

£

* A

LI = R

rr

« BRT

N: fn code name

L R O D
LI T

UPD
UFD
PUR value based on id.
BEGIN
/* Return Value */
LEE @code_r‘.ame VARCHAR (50) ;
SET Ecode name = '*
SELECT Bcode name = code name Select Code name value
FROM tbl code B
WHERE code_id = fcode_id; ——— Based onthe Code record key
RETURN Bcode name: Return Code name
ENL
Go

/* Permissions */

GRANT EXECUIE

CN dbao.fn code_name | Permissions for application and read-only ids
IO RATAFF, RATERO

GO

Figure 14: Scalar Function.

Web Application Design Best Practices 29

Functions

The scalar function accepts a single parameter and returns a single descriptive value. The
scalar function is used to decode specific values in the database. The example SQL code for a
scalar function is shown in Figure 14.

The Code Table

Most applications have lists of values that have meaning and populate data records.
Storing of these lists in an application can be architected in two ways: a more traditional
architecture where there are several tables each correlating to a specific list type or a single table
using a type to store all lists. The code table concept is the storing of all lists in a single code
table with an associated code type to differentiate each list and a hierarchical structure to identify
dependencies for use in cascading drop-down lists in the application. There are advantages and
disadvantages to both types of architecture. Table 3 shows the advantages and disadvantages to
both types of architecture.

Which list architecture is the best? That depends on which advantages will best serve the
application and which disadvantages will be the least detrimental. A combination, a hybrid, of
both of these architectures is going to be the best, then the static constrained lists can be
incorporated into the code table and the more complex lists can be separated into different tables.

Application Design

With the initial design being the blueprint, security being the fence, the database being
the foundation , then the user interface becomes the actual building with a well thought out floor
plan, easy for everyone to use and beautiful to look at. Once the database development is
complete, the next step is to build the application. Just like in a construction project, the

development must be from the ground up, it is difficult to start on the fourth floor and work

Web Application Design Best Practices

30

Table 3: An analysis of the pros and cons of the different list storage architectures. The table

below contains data on the pros and cons of a traditional separate table vs. the code table

architecture.

List Architecture

Pros

Cons

Traditional Separate
Table Architecture

The developer has more latitude
to add additional data fields and
use different data types

With separate tables, querying
each list will be based on the
number of records in each table,
not all lists

Logical table names will allow
for quick identification in the

database

The application will be more
complex, multiple points of
entry, one for each list to be
maintained

More development time will be
required in the database to build
the functions to search, select
and update each list table

The application code to drive the
drop-down lists for each list
would be more complicated and
each would have to be built

individually

The Code Table

Architecture

The application will be less
complex, the user would have a
single point of entry to maintain
all codes

Less development time will be
required in the database, once the
functions to search, select and
update a single type of list are
created, those functions can be
reused in the application

The application code to drive the
drop-down list can more easily

be reused in the application

The developer is constrained to
just an id and description, no
other additional information can
be captured unless it is captured
for all codes

With a single table to hold all
codes, the more records, the
slower the querying capabilities
of the application

The user would need to decode
the record in the code table with
the code type to identify the

members of each list

Web Application Design Best Practices 31

down. In application design, the floors equate to the layers of the Layered (n-tier) Architecture:
the ground floor is the Domain Layer, then the Service Layer, next the Business Layer and lastly,
the Presentation Layer.
Layered (n-tier) Architecture

The Layered Architecture is a logical separation of high-level functionality. This type of
architecture lends itself to being maintainable and distributable. It is maintainable because of the
grouping of the similar functions and it is distributable because the different layers can be run on

different physical hardware.

— Presentation Layer (User Interface)

y 1

d Business Layer (Workflow)
v 1
— Service Layer (Persistance)

— Domain Layer (Objects)

Figure 15: Layered Architecture.

Domain layer.

The domain layer contains the actual data classes, or objects, that the different layers use
to move records within the application. The domain layer objects are use in all other layers of the
application. The domain layer structure is shown in Figure 16.

Service layer.

The service layer contains the classes that handle the persistence, the movement of

domain objects to and from the data store. The service layer also hides the specific persistence

Web Application Design Best Practices 32

Solukio o =
= Domain Layer:

FiAl»
Lol Solution 'AAT' (2 projects) Elements that hold the
ﬂ”:'”” Ttems records that move

’ between the different

My Praoject ; :
(3 App_Data layers of the application
LY F,

-« [App_Themes
F- 3 Contrals

f- [d Images

7 [Master Pages
- (25 Model

[Business
& B

fr e I RO

m

"E' ActionItem.vb
18] ActiorItemList, vh
2] AppSecList.vb Domain Layer Classes

&] Update.vb
?_'_'j User.vb
"_Ej Userlist.vb
- [Service
- [[d Pages
{- 4 Styles
B £ Utility
- Default. aspx
- |5 Web,config
[(28 AATTast

frnianl
[s)

Figure 16: Domain Layer Structure.

Service Layer:

Salution 'AAT' (2 projects)
% solution Items

Elements that control
the persistence of the
application and hide

(23 App_Data that technology
& App_Themes ‘
L '_E_] AppSecsveSQLImpl vb
2] AuditSvesQLImplwb Service Layer Classes

LTL I

- "ﬂ SecuribySveSOLImpl vh
: UpdatesycsOLImpl.vb
e 'ﬂ UsersvcSOLImpl.vb
4 Pages

24 sStvles

2 Uility

: Defaulk, aspx

j Weh, config

* (28 AATTest

Figure 17: Service Layer Structure.

Web Application Design Best Practices 33

technology from the business layer, so it can be swapped out with another technology without
affecting the business layer. Figure 17 shows the service layer structure.

Business layer.

The business layer contains the classes that handle the use case workflow, the specific
rules under which the application operates. The business layer is also the main interface point to

the presentation layer. The business layer structure is shown in Figure 18.

Solukion E::-::|:|I|:|rer' - AAT

r z
Business Layer:

= AP

(e 5°'“;i°|”t','""”l't(2 projects} Elements that control

o the use case workflow
My Project and communication

----- % App_Data with the Presentation

----- 2 App_Themes Layer
- 23 Controls L

3l
t 4 Images
]
]

- [Master Pages

18] ActionItemMgrRuletrmpl.vh
i 18] AppSecMgrRulelmpl. vh
AuditMgrRulelmpl.vb Business Layer Classes

SecuribyMarRuleImpl.vb

"f_] UpdateMarRuleImpl.vb
“o 18] UserMgrRulempl.vb

- 3 Domain

- [Service

H- [Pages

- 4 Styles

- £ Utiliey

Default, aspx

‘Web,config

- (8 AATTest

Figure 18: Business Layer Structure.
Presentation layer.

The presentation layer contains all the elements that handle the interaction with the user,
known as the User Interface. The presentation layer displays the visual representation of the
application to the user, accepts inputs and passes those inputs on to the business layer for
processing, then, accepts return messages that the process was either successful or unsuccessful.

Figure 19 shows the presentation layer structure.

Web Application Design Best Practices 34

rPresentatiDn Layer:

Elements that control
the look and feel of the
User Interface (Ul) and
communication with
the Business Layer

7] Assigneelpdate. ascx

=] Referencellpdate, ascx User Controls
- [Assingee with Code Behind
- 3 Aodi
- 4 Lookups
- 3 Security
= E} Images
E| {15 Buttons
e 8 bn_admin, glf

.. e -

i 3 btn _%sp, glf |I'|‘IEIQES
- [Logos

- 4 Messages

- 3 Other

« [Tabs _
- E_‘} Master Pages

o E Site. Master

-
-
-

Master Pages

- 34 Madel
= E_‘} Pages =]
.C\clmm aspx
Security, aspx with Code Behind

b Styles =

Glnbal Css

Style Sheets
Popups.css

b Lkiliksy]
{_&j Conﬁg vb

e Utility Classes
L_j Web,vb

Default, aspx
(2 web. config

- (28 ABTTest

Figure 19: Presentation Layer Structure.
Design Patterns
Design patterns are a structured approach to designing elements of an application to take
advantage of the principals of Object Oriented Programming (OOP). Inheritance, encapsulation
and reuse, just to name a few, even the object and classes themselves are rooted in OOP and used
in design patterns. Table 4 shows the different types of design patterns, how they are used and

where they are used in the application.

Web Application Design Best Practices 35

Table 4: An analysis of the different design patterns. The table below contains data on how

design patterns are used and where in the Layered Architecture they are used.

Design Pattern

What it is used for...

Where it is used...

Model, View,
Controller (MVC)

L]

An overall architectural design pattern
To simplify the communication between the
different elements
To separate like functions:
o Model —the application logic, workflow,
persistence and objects
o View —the User Interface, the graphical
representation of the application
o Controller — the communication between
the View and the Model

Presentation Layer
Business Layer
Service Layer

Domain Layer

Layer Supertype

To dynamically instantiate the rules
implementations by use of the Web.config file
based on the requested manager interface

To provide a common interface between the
Business Layer and Service Layer using the

Factory

Business Layer

Separated Interface

To decouple the higher level Manager or
Service Interface from the actual

implementation logic

Business Layer

Service Layer

Plugin

To encapsulate the interface details and the
implementations

To easily swap out the business rules in the
Business Layer or persistence mechanism in

the Service Layer

Business Layer

Service Layer

Marker (Serializable)

Interface

To provide a common interface to the Service

Interfaces and Manager Interfaces

Business Layer

Service Layer

Web Application Design Best Practices 36

e To dynamically instantiate the persistence e Service Layer
Factory implementations by use of the Web.config file
based on the requested service interface

] e To ensure that only one object is instantiated e Service Layer
Singleton)
in the Factory
Object e To hold the actual data record e Domain Layer

Figure 20 shows how the different design patterns can be employed throughout the application,

to achieve the desired goal of a simple, maintainable and useable application.

- ‘ Domain Layer
2 View
z !
- Ul CodeData Controller ‘
= CodeData
=
§ set 7777‘777 USESI
4 e .
= get I | uses, |
|
_______________________J_____________J | |

Model ‘ | |
Marker Interface Separated Interface
| ==interfaces= =zinterfaces== ‘ I I
3 uses | IManager ICodeManager _ Y = = - - =
B | _ ‘_ — uses |
- wtends
N e . uses
g Ay | Layer Supertype implements Z} Plugin | | |
E Manager CodeMagrRulelmpl | I
@ — ‘— - — - - -1
— net_service() As [Senice - = - = Uses |
T Uses uses | |
S R,
| Marker Interface N/ Separated Interface | |
uses | ssinterfaces== =sirtertaces= ‘ | |
5 IService ICodeSve _——— — = = = —]
2 I _ ‘_ - uses |
- extends
g \Lx /!\ Factory implements ‘Q Plugin ! uses | |
% Factory CodeSveSOLImp ‘ | |
v — ‘— - =k == -
get_serviced As ISenice oy uses |
I
uses .
£ J‘ | v/ Object
e
\ ' | Code
N
, N | | !
g g y--‘ | |
8) | £ e e | | W Object
= Web.config = | -
= = CodeList
z | \

|
Figure 20: Application Design Patterns.
Design patterns assist the developer in standardizing the application; each function will
be built in the same manner. Any other developer working on the application will be able to

follow the methodology and easily integrate additional functions.

Web Application Design Best Practices 37

The Model

The Model is the part of the application that contains the workflow logic and persistence
of the application. The Model consists of the classes that make up the Domain Layer, Service
Layer and Business Layer of the application.

Domain Classes.

Domain classes are very important in Object-Oriented Programming, as they are the
objects themselves. These classes are used throughout the application to move data around as a
consistent record set. The Domain class is based on the table layout in the database; it consists of
the same fields with the same high-level data types, so the first step in creating the object is to
define the fields. Second, the object properties, the communication in and out of the object, must
be defined through gets and sets. Next, the constructors are defined, a default constructor so the
object can be instantiated without being populated and the overloaded constructor which accepts
the values and populates the object. An override to string function is nice to have so the contents
of the object can be viewed in a string format, but it is not necessary. A validation function is
also nice to have to ensure the object is populated correctly, but again not necessary. An example
of an example domain class is shown in Figure 21.

Service Classes.

Service classes handle the communication to the data store. The architecture includes a
Factory class, an IService class, a service interface for each data function and, at least one
service implantation for each data function.

The Factory class shown in Figure 22 is used to dynamically instantiate the persistence
implementation using the service interface through IService. The Factory consists of a default

constructor so it can be instantiated by other classes, a shared get_instance function based on the

Web Application Design Best Practices

Imports Microsoft.VisualBasic
Imports System.Runtime.Serialization

Namespace Domain
<Serializable (}>

Public Class Code

B R R R R R R R R R R R R R R R R

'Variable Declarations

Private int_code id As Integer
Private int_code type_id As Integer
Private str_code name As String
Private int code_dep id As Integer
Private bol code active As Boolean
Private str_code_lmod user As String
Private dte_code lmod _date &s Date
Private str_code Imod_type &s String

Public Property code_id() As Integer
Get
Return int_code_id
End Get
Set (ByVal Value As Integer)
int_code_id = Value

End Set

End Property

Public Property code_lmod type() As String

Get
Return str_code_lmod type
End Get

Set (ByVal Value As String)
str_code_lmod type = Value
End Set

End Property

'Default New Constructor
Public Sub New()

End Sub

'Hew COverloaded Constructor

Public Sub New(ByVal code_id RAs Integer,
ByVal code_type_id As Integer, ByVal code name As String,
ByVal code_dep_id As Integer, ByVal code_active As Boolean,
ByVal code_lmod_user As String, ByVal code_lmod date As
Date, ByVal code_lmod type As S5tring)

int_code_id = code id
int:cnde:t.ypa_id =7cmie_l:ype_id
str_code_name = code_name
int_code_dep_id = code_dep_id
bol_code_active = code_active

str _code lmod user = code lmod user
dte_code_lmod date = code lmod date
str_code_lmod type = code_lmod_tvpe

End Sub

'Gverride ToString
Public Overrides Function ToString() As String

Return [String].Format ("{0}, {1}, {2}, {3}, {4}, {o}, {6},
{7¥", int_code_id, int_sode_type_id, str_code_name,
int_code_dep_id, bol_code_active, str_code_lmod user,
drte_code_lmod date, str_code Imod_type)

End Function

'Validate Cbject
Public Function Validate() As Boolean

If Not IsNumeric(int_code_id) Then
Return False
End If

If str code_lmod type Is Nothing Then
Return False
End If
Return True
End Function

End Class

End Namespace

Figure 21: Domain Class.

- Object Declarations

— Object Properties

Deafult empty constructor

- Overloaded New constructor

- Convert To String function

- Validation function

38

Web Application Design Best Practices 39

Singleton design pattern to ensure that only one Factory is instantiated and a get_service function

to return the service implementation of a given service interface.

Inports
Imports
Imporcs
Inports
Inmportcs

System

System.Text
System.Configuration
System.Collections
System.Collections.Specialized

Imports AAT.Ucility.Config
Imports AAT.Utility.Messaging

Hamespace Service

Pubklic Class Factory

xx
' CLASS:
' CREATED B
' CREATED
' UPDATED BY:
' UPDATED
' PURPOSE:

'"Default Constructor
Public Sub New()
Default New constructor

End Sub

'Singleton design pattern to ensure only one (1) instance of Factory
Private Shared ftry &s New Factory()

Public Shared Function get_instance () As Factory i A
Singleton design pattern
Return ftry

End Function

'Get Service Name
Public Function get_ service (ByVal service name As String) As IService]

Dim tpe &s Type
Dim obj &= Cbject = Nothing
Dim str_svc_type As String

Try
'Try to get Service
Str_sSvc type = get app setting(service_name)
tpe = Type.GetType (str_svc_type)
If tpe IsNot Nothing Then
obj = DirectCast (Rctivator.Createlnstance (tpe), IService)
End If

- get_service function

Catch ex L= Exception
'"Throw General Exception
log_message (ex.Message.ToString, M=zgType.Error)

End Try

Return DirectCast (obj, IService)

End Function

End Class

End Hamespace

Figure 22: Factory Class.

The IService class is a marker, or serializable, interface and its purpose is to be a

common interface to the service interfaces. It is an empty interface which is inherited by the

service interfaces. Figure 23 shows an example IService class.

Web Application Design Best Practices 40

Imports Microscoft.VisualBasic
Imports System
Imports System.Collections.Generic

Namespace Service

Public Interface IService

' CLASS: IBervice *
' CREATED BY: Stephen C. Rash =
' CRERTED DATE: 07/07/2009 #
' UPDATED BY: Stephen C. Rash #
' UPDATED DATE: 07/07/200% *
' FURPOSE: Serwvice superclass =
I R R R R N R R R R N R N R R R RN R R N R

End Interface

End Hamespace

Figure 23: I1Service (Marker Interface) Class.

The service interface classes are used to instantiate the methods used by the service
implementation, so the implementation technology is invisible to the Factory and the higher
levels in the model. The service interface classes have modify, select and lookup functions that
equate to the same functions in the service implementation. An example of a service interface

class is shown in Figure 24.

Inmports Microsoft.VisualBasic
Inports Syatem

Imports System.Collections
Inmports AAT.Domain

Namespace Service

Public Interface ICodeSvc

-
1 ®

i} C‘ AT D *

' UBDATED : . ¥ «

' UPDATED 07/20/2008 w

' PURPOSE: rfaces the Code obisct. *

T L L L L TR ——————

"Modify Code

Function modify code (ByVal code As Code) As Integer —— Mod|fy Code method

"Select Code
Function select code(ByVal code_id A= Integer) As Code

Select Code method

'"Lookup Code
Function lookup_code (ByVal code list As Codelist) As List({Of CodeList) — Lookup Code method

End Interface

End Namespace

Figure 24: Service Interface Class.
The service implementation classes are where the actual persistence technology resides

which is used to move data in and out of the data store. In the example application, a Microsoft

Imports
Imports
Imports
Imports
Imports
Imports
Imports
Imports
Imports
Imports

Microsoft.V
System
System.Coll
System.Coll
System.Data
System.Data
System.Text
BAT.Utility
BAT.Utility
LAT.Domain

NHamespace Service

Web Application Design Best Practices

isualBasic

ections
ections.Generic

.5glClient

.Config
Messaging

Public Class CodeSvcSQLImpl

Inplements

CLAS5: Co

B

UFDATED B

PFURFOSE:

"Modify Cod
Private Fun
Inpleme

CREATED DA

UFDATED DA

ICodeSve

deSveSQLImpl =

¥: Stephen C. Rash o
07/20/2009 =

¥: Stephen C. Rash *
07/28/2009 #

S5QL Implementation of the Code cbkiect. o

e
ction modify code (ByVal code 4As Code) As Integer
nts ICodeSvc.modify code

Dim cn A= New SglConnection(get_connection(})

Dim cmd

A=z Hew SglCommand

Dim int_return As Integer = 0

Try
cn.

cmd.

cmd

cmd.
cmd.
cmd.

<

cmd.Parameters.AddWithValue ("@code_name™, code.code_name)

If

Els

End

cmd.Parameters.AddWithValue ("Gcode_active", code.code_active)

cmd

Connection = cn

Cpen) :l— Open SAL connection

.CommandText = get_app setting("CodeModify") — Return SQL stored procedure name

CommandType = CommandType.StoredProcedure
Parameters.AddWithValue ("fcode id", code.code id)
Parameters.AddWithValue t"@code:t,ype_id", -
ode.code_type_id)

code.code dep id = 0 Then
cmd . Parameters.AddWithValue ("Gcode_dep id",
System.DBNull.Value)
e
cmd.Parameters.AddWithValue ("@code_dep id",
code.code_dep id)
If

.Parameters.AddWithValue ("@code lmod user™,

code.code_lmod user)

cmd

.Parameters.AddWithValue { ”@code_lrmd_date",

code.code_lmod date)

cmd

.Parameters.AddWithValue ("@code lmod type",

code.code_lmod type)

Build and populate
- SQL stored procedure
parameters

Execute Code Modify SQL stored

int_return = Convert.ToInt32 (cmd.ExecuteScalar()) — procedure and return the Code Id

Catch ex As SglException
int_return = ex.Number * -1
log_message (ex.Message.ToString, MsgType.Error)

of the modified Code record

Catch and log error messages

Catch ex As Exception
int_return = -1
log_message (ex.Message.ToString, Msglype.Error)

Finally

cn.Claose ()

cmd

End Try

Return int_return

.Dispose ()]‘ Clean-up tasks

End Function

Return Code Id of record or error code

Figure 25: Service SQL Implementation Class — Modify Function.

41

Web Application Design Best Practices 42

SQL server is the data store, the modify, select and lookup functions will equate to their
corresponding stored procedures in the database. The modify function will implement the modify
function from the service interface. The function first opens a connection to the SQL database,
creates the SQL command and gets the specific modify stored procedure name. Then the
function builds and populates the stored procedure parameters in the SQL command based on the
passed in object. Next, the modify function executes the SQL command and accepts the return
integer value. Any exceptions in that process are captured and stored as the return value then
logged to the web server. Once all the processing is complete, the function closes the SQL
connection, disposes the SQL command and returns the stored value. Figure 25 shows the

modify function of an example service implementation.

'Select Code
Private Function select_code (BEyVal code_id As Integer) As Code
Implements ICode3vc.select_code

Dim code As New Code ()

Dim cn As New SglConnection(get_connection())
Dim cmd As Hew SglCommand

Dim dr &= SglDataBReader = Nothing

Try
cn.Cpen () .
omd. Connection = on :|— Open SQL connection
cmd.CommandText = get_app_ setting("CodeSelect") — Return SQL stored procedﬁre name
cmd.CommandType = CommandIype.StoredProcedure
cmd.Parameters.AddWithValue ("@code_id", code_id) — Build and populate
4 . Reades () SQL stored procedure
r = cmd.ExecuteReader =
While dr.Read paran1eter

code.code_id = dr("code_id")
code.code_type_id = dr("code_type_id")
code.code name = dr ("code name”) Execute Code Select SQL stored
code.code_dep_id = dr("code_dep id") - procedure and put the returned
code.code_active = dr("code_active” Code record into a Code object
code.code_lmod user dr("code lmod user"
code.code_lmod date dr ("code_ lmod date")
code.code_lmod type dr("code lmod type")
End While

Catch ex As SglException
log_message (ex.Message.ToString, MsgType.Error)

Catch and log error messages
Catch ex As Exception
log_message (ex.Message.ToString, MsgType.Error)

Finally

cn.Claose ()
cmd. Dispose () Clean-up tasks
dr.Close()

End Try

Return the Code record

Return code

End Function

Figure 26: Service SQL Implementation Class — Select Function.

Web Application Design Best Practices 43

'Lookup Code
Private Function lookup code (ByVal code list As Codelist) As
List (0f Codelist) Implements ICodeSve.lookup code

Dim 1st_code As New List (0f Codelist)

Dim cn As New SglConnection(get_connection())
Dim cmd As New SglConmmand

Dim dr &= SglDataReader = Nothing

Try
cn.Open () .
cmd.Connection = cn]— Oan SQL connection
cmd . CommandText = get_app_setting ("CodeLookup") — Return SQL stored procedure name

cnd . CommandType = CommandType.StoredProcedure

cmd . Parameters.addWithValue ("@ccde_type_xd" .
code_list.code_type_nams)

cmd.Parameters.AddWithValue (”@code_na_r:e ",
code_list.code_name)

cmd.Parameters.AddWithValue ("@code_type dep_id", Build and populate

code list.code_ type dep name) SQL stored pl’OCBdi.II'B
cmd.Parameters.hddWithValue ("Gcode dep id", garameters

code list.code dep name)
cmd.Parameters . AddWithValue (”@ccdeiactive"

code list.code active)

dr = cmd.ExecuteReader ()
While dr.Read
lst_code.Add(New CodeList(_
dr ("code_3id"),

Execute Code Lookup SQL stored

dr("code_type mame"), _ procedure and put the returned
dr ("code_name"), _ Code records into a list of CodeList
dr ("code type dep name"), _

dr("code_dep name"), Ob]BCtS

dr("code_active_ name ”J_)J
End While

Catch ex As SglException
log_message (ex.Message.ToString, MsgType.Error)

Catch ex As Exception
log_message (ex.Message.ToString, MagType.Error)

:|~ Catch and log error messages

Finally

cn.Close ()

cmd.Dispose () } Clean-up tasks
dr.Close ()

End Try

Return the Code list

Return lst code

End Function
End Class

End Namespace

Figure 27: Service SQL Implementation Class — Lookup Function.

The select function implements the select function from the service interface. The select
function opens a connection to the SQL database, creates the SQL command, gets the specific
select stored procedure name and builds the SQL data reader to accept the return from the
database. Next, the function builds and populates the stored procedure parameter, the specific
passed in record key, in the SQL command. Then, the function executes the SQL command to
populate the return record into the SQL data reader, which, in turn, populates the object. Any

exceptions in that process are captured and logged to the web server. Finally, the function closes

Web Application Design Best Practices 44

the SQL connection, disposes the SQL command, closes the SQL data reader and returns the
object. An example of the select function of a service implementation is shown in Figure 26.

The lookup function implements the lookup function from the service interface. The
function first opens a connection to the SQL database, creates the SQL command, gets the
specific select stored procedure name and builds the SQL data reader to accept the return from
the database. Second, the lookup function builds and populates the stored procedure parameter,
the specific passed in object, in the SQL command. Then, the function executes the SQL
command to populate the return records into the SQL data reader, which, in turn, populates the
list of objects. Any processing exceptions are captured and logged to the web server. Once all the
processing is complete, the function closes the SQL connection, disposes the SQL command,
closes the SQL data reader and returns the list of objects. Figure 27 shows the lookup function of
an example service implementation.

Business Classes.

The Business classes handle the use case workflow. The architecture includes a Manager
class, an IManager class, a manager interface for each data function and, at least, one manager
implantation for each data function.

The Manager class shown in Figure 28 is used as a communication point to the
controllers: it dynamically instantiates the rules implementation using the manager interface
through IManager and communicates with the Factory to instantiate the proper service
implementation. The Manager consists of a default constructor so it can be instantiated by other
classes, a shared get_service function to instantiate the Factory, then use its get_service function
to return the implementation of a given interface and a get_manager function to return the

manager implementation of a given manager interface.

Web Application Design Best Practices 45

Imports Microsoft.VisualBasic
Imports System

Imports System.Collections.Generic
Imports AART.Utility.Config

Imports AAT.Utility.Messaging
Imports AAT.Service

Imports AAT.Business

Mamespace Business
Public Class Manager

" CLASS5: Manager h

UFDATED
TUFDRTED
PURPCOSE: Manager, to create an instance of an object. s

'Default Constructor
Private Sub Hew()

Default New constructor
End Sub

"Get Service
Public Shared Function get_service (ByVal service name As 5tring)
ks IService

Dim ftry As New Factory() get_service function
Return ftry.get_service (service name)

End Function

'Get Manager Name
Public Shared Function get_manager (ByVal manager name As 5tring)
&4s IManager

Dim tpe As Type
Dim obj_mgr Az Object = Nothing
Dim str_mgr_type As 5tring = Nothing

Str_mgr type = get app setting (manager name)
tpe = Type.GetType (Str mgr type)

If tpe IsNot Nothing Then | get_n1anager
ob]_mgr = DirectCast (Activator.Createlnscance(tpe), IManager) function
End If

Catch ex As Exception
Throw General Exception
log_message (ex.Message.ToString, MsgType.Error

End Try
Return DirectCast (obj_mgr, IManager)

End Function

End Class

End Namespace

Figure 28: Manager Class.

Imports Microsoft.VisualBasic
Imports System
Imports System.Collections.Generic

Namespace Business

Public Interface IManager

Pk kR R

' CLAS5: IManager w*
' CREATED BY: Steph C. Rash =
' 2009 *
" C. Rash =
* UPDATED DATE: /2009 *
' PURPOSE: Manager superclass. bl
B R R R R R R R

End Interface

End Hamespace

Figure 29: IManager (Marker Interface) Class.

Web Application Design Best Practices 46

The IManager class is a marker, or serializable, interface and its purpose is to be a
common interface to the manager interfaces. It is an empty interface which is inherited by the
manager interfaces. Figure 29 shows an example IManager class.

The manager interface classes are used to instantiate the methods used by the
implementation. The manager interface classes have modify, select and lookup functions that
equate to the same functions in the manager implementation. An example of a manager

interfaces class is shown in Figure 30.

Imports Micro=zoft.Vi=ualBas=ic
Imports System

Imports System.Collections
Imports AAT.Comain

Namespace Business
Puklic Interface ICods=Mgr

Inheri
L

xx

* % ¥ ¥ ¥ %

LR L T

'"Modify Code
Function modify_code (ByVal code As Code) As Integer —— WModify Code method

'Select Code
Function select code (BEyVal code_id As Integer) As Code

Select Code method

'Lockup Code
Function leokup_code (ByVal code_list As Codelist) As List{Of Codelist) — Lookup Code method

End Interface

End Namespace

Figure 30: Manager Interface Class.
The manager implementation classes are where the use case workflow resides, which is
used to control how the methods are executed. The manager implementation is architected with a
call to the manager to get the particular service implementation, a function which implements the
corresponding function from the manager interface and executes the corresponding service

implementation. Figure 31 is an example of a manager implementation class.

Imports
Imports
Inports
Imports
Imports
Inports
Inports
Inports

Web Application Design Best Practices

Microsoft.VisualBasic
Sy=tem

Syztem.Collections
Sy=ztem.Collection=.Generic
System.Text
AAT.Ttility.Me==aging
AAT.Domain

AAT.Sexvice

Namespace Business

Public Class CodeMgrRuleImpl

End

xx

' CLAS5: CodeMgrRul *
' CRERTED E¥: 5 =
' CRERTED DRTE: | #
' UPDATED BY: 3t *
' UFDATED =
of the Code object. *

R R R R R R KRR KRR AR R RRAEEREER

'Get Service

Dim code_svc Rz ICodeSvc =

DirectCast (Hanager.get_service (GetType (ICodeSvc) .Hame), ICodeSve) | Get Service

'Modify Code

Private Function modify code (ByVal code As Code) As Integer
Implements ICodeMgr.modify code
Return code svc.modify code (code)

End Function

'Select Code .

Private Function =select code (EyVal code_id hs Integer) RAs Code
Implements ICodeMgr.select code
Return code svc.select_code(code id)

End Function

'Lookup Code

Private Function lookup code (ByVal code_list &4s CodeLi=t) As

Li=c (0Of Codelist) Implements ICodeMgr.lookup code

Return code svc.lookup code(code li=t)

End Function —

Class

End Namespace

The Controller

Figure 31: Manager Rules Implementation Class.

- Modify Code method

- Select Code method

- Lookup Code method

47

The controller is the point of communication between the user interface, the view and the

processing, the model in the application. All user commanded actions flow through the controller

and the results of those actions are returned to the user by the controller. The controller handles

the instantiation of communication channels, user security, object gets and sets, population of

lists and grids as well as the actual processing of the user requests.

Controller Classes (Code Behind).

The controller communicates with the business layer by way of the managers. The first

step must be to instantiate the communication paths to the managers. Next, the load of the page

Web Application Design Best Practices 48

calls the security facility, builds any drop-down lists and sets the initial state of the user interface.

Figure 32 shows the page load portion of an example controller class.

Imports Microsoft.VisualBasic

Imports Infragistics.Web.UI.LayoutControls
Imports AAT.
-Business

.Otility.Mes=aging
Imports AAT.
Imports AAT.
Otility.Config

Imports AAT
Imports AAT

Imports AAT

Partial Publ

Domain

v.S5ecurity
v.General

ic Class CodeData

Inherits System.Web.UI.UserControl
,,

odelata

: 10/27/2009
Code Data Controller.

””””””””””””””””””””””””””””””””””””

"Get Managers

Dim app_sec_mgr As IAppSecHgr =
irectCast (Manager.get_manager (GetType (IAppSecMgr) .Name), IAppSecMgr)

Dim code mgr As ICodeMgr =)
Di:ectEast[Managez.get_managez[GetT}pe[ICodeng].Name], ICodeMgr) InStanﬂat6|wanagers

Dim code_ type mgr As ICodeTypeMgr =
irectCast (Manager.get_manager (GetType (ICodeTypeMgr) .Name) ,

ICodeTypeMgr)

"Page Load
Protected Sub Page_ Load(ByVal sender As Chject, ByVal e As
System.Eventirgs) Handles Me.Load

If Not Page.IsPostBack Then

'Security
app_security ()

'Search

populate_ddl code_type_ id{)
populate ddl_ search active()
new_code_search()

'Data
new code dataf{)

End If

End Sub

On initial load, run security, any initial
- drop-down list populations and set the new
state for both the search and the data

Figure 32: Controller Class — Page Load.

The security function makes a call to return the level of access the current user has to the

particular control. Once the values are returned, they are held in security fields on the control

itself for use in setting the view state, allowing the user access to the fields and actions of that

control. If the current user has no access to the control, the security fields are set to allow no

access to any field or action on the control. The security portion of an example controller class is

shown in Figure 33.

Web Application Design Best Practices

#Region "Security”

Protected Sub app security()

1st_app_sec As New List(Of AppSecList)
im app_sec_list As New AppSecList

"Get Search Criteria
.8pp_user = get_current_user(}
.app_page = "%" Set security search criteria,

.app_path = RppRelativeVirtualPath.ToString current logged on user and
.app_insert = False

app_sec_list.app_update = False current COI‘ItI’Ol path
app_sec_list.app_delete = False
‘Get List Return security from the
ilst_app_sec = app_sec_mgr.lookup app_sec{app_sec list) —— database into alist of
security
If 1st_app sec.Count = 0 Then
hdn_sec_insert.Text = False
hdn sec update.Text = False . .
hdn sec delete.Text = False If the list of security has records,
Elze update the security fields on the
ispﬁec,%iﬂt = lst_app sec.Item(G) control with the corresponding
n_sec_insert.Text = app sec_list.app insert i P :
hdn_sec update.Text = app sec_list.app update securlty. if not default no securlty
hdn_sec_delete.Text = app sec_list.app delete
End If
End Sub

#End Region

$§Region

End

Figure 33: Controller Class — Security.

"Functions"

h Code
new code_ search()

"Fields

ddl search code type id.SelectedValue = "§"

r.xr.:seaxch:code:nameTTexr. = nn]— Setinitial state of search fields
ddl search code active.SelectedValue = "7

'Message

Ibl_gv_message.Text = "V

img_gv_message.Visible = False Set the initial state of the search grid message
Ibl_gv_message.Visible = False

"GridvView
gv_code.Visible = False

Hide the empty search grid

Sub

Data Code
ate Sub new_code_data()

"Hew Record

ddl code type id.SelectedIndex = 0

r.xr.:code:nameTTexr. ="

opulate_ddl_code_dep id(ddl_code_type_id.SelectedValue

Efpddl code dep la_zggms_imu;t >=—1n§hgn ! Set initial state of the data fields
ddl code dep id.SelectedIndex = 0

End If

cbx_code_active.Checked = True

'Hidden

hdn_code_id.Text = 0

hdn code lmod user.Text = "Hew" L "
hdn code lmod date.Text = Now() Set the initial state of the record key and log fields

hdn code lImod type.Text = "H"

‘Message
Ibl_data_message.Text = "7

img data_message.Visible = False :|— Set the initial state of the data message
Ipl data message.Visible = False

"Set View State

set_view_state() ——————08 Setthe control view state based on user security
‘Unselect Index . . .)
gv_code.SelectedIndex = -1 —— Remove any item selection in the search grid

Sub

Figure 34: Controller Class — New Functions.

49

Web Application Design Best Practices 50

The initial or new state of the view must be set, with any defaulted values and any
displayed or hidden controls. This initial state is also used by the application when the user wants
to clear the contents and return to the initial state. Figure 34 shows the new function portion of
an example controller class.

Get functions shown in Figure 35 populate an object with the user entered values and
pass the object back to the requesting function. The get functions also handle any data translation
or clean up while building the objects.

Figure 36 shows the set functions populate the field values with those from an object
provided. The set functions also handle any data translation or clean up populating the fields
from the object.

The view state uses security to enable fields and display buttons the user has access to or
disable fields and hide buttons the user does not. Figure 37 shows the view state functions.

Actions are set in processing functions shown in Figure 38, so they can be called from
within the control. There is a corresponding processing function to each button on the view.

To limit values a user can select in the system, drop-down lists are populated from the
database. The drop-down lists are populated from a list returned based on criteria provided. The
list population functions are shown in Figure 39.

The search facility is a simple grid populated based on the search criteria provided by the
user. There are limitations in the number of records that can be successfully returned, the grids
are limited to 200 records for processing. If the returned record set is outside the acceptable
limits, a message is displayed for the user. The search grid is paging enabled, so the index must

be captured as the user moves through the pages. Selected values are populated in the data area

Web Application Design Best Practices

and, based on the record key, provided to the refresh processing function. The search grid

population functions are shown in Figure 40.

'Get Code List
Private Function get_code list(} As Codelist

=t A= New CodelList

Dim code I Instantiate CodeList object

t.code_id = 0
. t.code_type name = ddl search code_type id.SelectedValue
If txt_search code_name.Text <> "" Then

code_list.code_name = "%" & txt_search code name.Text & "%" PopLﬂatethe CodelList

Else . .

code list.code name = "§" "ZLL B ob]ectvwﬂ1the user
End If - entered search criteria
code_list.code_type_dep name = "¥"
code t.code dep name = "%V
code: _st.code:actzve = ddl_search_code_active.SelectedValue

Return code_list —— Returnthe CodeList object
End Function

'Get Code Data
Private Function get_code data() As Code

Dim code As New Code Instantiate Code object

code.code_id = hdn_code_id.Text =

code.code_type_id = ddl code type_id.SelectedValue

code.code_name = txt_code_name.Text

If ddl code dep id.SelectedValue <> "" Then
code.code dgp id = ddl code dep id.SelectedValue

Elze - - - - - Populate the Code object with the
code.code_dep_id = 0 user entered Code record data

End If

code.code active = cbx code active.Checked

code.code:lmod_usez = Edn_cade_lmod_usez.Text

code.code_lmod date = hdn code_lmod date.Text

code.code_lmod type = hdn code_lmod type.Text .

Return code

Return the Code object

End Function

Figure 35: Controller Class — Get Functions.

'*Set Code Data
Frivate Sub set_code_data (ByVal code Az Code)

hdn _code_id.Text = code.code_id
ddl_code_type id.SelectedValue = code.code_type_ id
txt_code_name.Text = code.code_name

If code.code type id <> 0 Then Populate the Code data fields with

ddl_code_dep_id.SelectedValue = code.code_dep id | R .
Znd Tf the Code information returned from

chx_code_active.Checked = code.code_active the database
hdn code_lmod user.Text = code.code_lmod user
hdn_code_lmod date.Text = code.code_lmod date
hdn code_lmod type.Text = code.code_lmod type

End Sub

Figure 36: Controller Class — Set Functions.

51

Web Application Design Best Practices 52

"Set View State
Frivate Sub set_view state()

'Save Button
If (hdn_sec insert.Text = True
and hdn code id.Text = 0]
cr (hdn zec update Text = True _
And hdn code_id.Text <> 0) Then
btn_save.Visibie = True
Else
btn save.Visible = False
End If

'New Button

If hdn sec insert.Text = True Then
img_new.Visible = True
btn_new.Viszible = True

Else
img new.Visible = False
btn:new.Visible = False
End If

| Setthe state of the buttons based
"Refresh Button oh the user's security

If (hdn_ szec update.Text = True
COr hdn_sec insert.Text = Trbe] _
And hdn_code id.Text <> 0 Then
img_refresh.Vis;bie = True
btn refresh.Visible = True
Elsze
img refresh.Visible = False
btn_refresh.Visible = False
End If

'Delete Button
If hdn_sec delete.Text = True
And hdn code id.Text <> 0 Then
img_delete. Visible = True

btn_delete.Vi = True
Else
img delete.Visible = False
btn:deiete.v; ikle = False
End If -
*Fields
If (hdn sec insert.Text = True]

And hdn code_id.Text = 0}
Cr (hdn sec update Text = True
And hdn code_id.Text <> 0] Then
ddl_code_type_. _d Enabled = True
txt_code name.Enabled = True
ddl code dep id.Enabled = True | Setthe state of the Code data
cbx_code_active.Enabled = True fields based on the user's security
Else
ddl_code_type_id.Enabled = False
txt_code_name.Enabled = False
ddl code _dep id.Enabled = False
cbx_code_acti?e.Enabied = False
End If —

End Sub

Figure 37: Controller Class — Set View State.

The user is displayed messages about the processing of the data. Both an icon and literal
message text are displayed based on the type of message. Figure 41 shows the user messaging
functions. Buttons are the actual actions the user can perform from the view. For the most part,
the button calls the corresponding processing function, but some have a simple validation to

ensure a record key exists before processing. The button functions are shown in Figure 42.

'Search Code
Private Sub search code(

Web Application Design Best Practices

populate_gv_code() —— Populate the search grid view

End Sub

'Refresh Code
Private Sub refresh code()

Dim code As New Code Instantiate Code

'Select code
code = code_mgr.select code(hdn_code_id.Te

"Get Code Dependency
If code.code_type id <> 0 Then

populate ddl code dep id{code.code typ
Else - - - - -
ddl_code_dep_id.Enabled = False
End If

'Set Code
zet_code_data (code)

Set the Code data

'Mezzage

ibl_data message.Text = ""

img data_message.V. le = False
1bl_data message.Visible = False

'Set View State
set_view_state()
End Sub

'Modify
Private

Code
Sub modify code (ByVal type As ModTIype)
Dim

Dim
Dim

int_ret A= Integer = 0
code A=z New Code
str_msg As String

Instantiate Code

"Get Code
code =
'Set Last Mod
code.code_ lmod user = get_current_useri]"
code.code_lmod date = Now()
If type = ModType.Delete Then
code.code_lmod type = "D"
str_msg = "Delete"
lse
If code.code_id = 0 Then
code.code_lmod type = "IV
str_msg = "Insert”

=]

Else
code.code_lmod type = "U"
str_msg = "Update”
End If —
End If
'Modify
int_ret = code mgr.modify code(code) —

'"Complete Message
If int ret > 0 Then
If type <» ModType.Delete Then
hdn code id.Text = int ret
ref;esh_Eode[] -
Else
new code data()
popGlate:gv_codeH
End If
sStr_msg = sStr_msg & " Successful."
data message (MsgType.Info, str_msg
Elze
Str_msg = sStr_msg & " FATLED: ™ & get_
data message (MsgType.Error, str_msg)
End If

Sub

object

Populate the Code object with the return from

**) — the database based on the Code record key

id
= Reset drop-down list or disable

fields with the returned Code object

:I— Reset the state of the data message

Set the control view state based on user security

object

get_code_data(} —— Populate the Code object with the Code data fields

Set the log fields based on the current
- user, current dateftime and the origin of
the modification call

Send the Code record to the database and get returned
Code record key or error code

Display a message to the
user if the operation was

- successful, a Code record
key was returned or failed,
an error code was returned

app_ setting{int_ret)

Figure 38: Controller Class — Processing Functions.

53

Web Application Design Best Practices

'Populate Code Type DDL
Private Sub populate_ddl code_type_id()

End Sub

"Populate Code Dependency DDL
Private Sub populate ddl code dep id(ByVal str_code_type As String)

Instantiate the CodeList, CodeType and
list of CodeList objects

im code_list As New Codelist

Dim 1st_code A=z New List(0f Codelist)
im code_ type Az New CodeType

=]

'Get Code Type Data Populate the CodeType object
code_type = code_type_mgr.select_code_type (Str_code_type) with the return from the database
based onthe code type field

"Build Selection
code_list.code_id = O
code_list.code_type name = code type.code type_dep id

code list.code name = %" Populate the CodeList object with
code_list.code_type_dep_name = "3" the criteria for the drop-down list

code_list.code_dep name = "%"

code_list.code_active = "i"

‘Ger List Populate the list of CodeList object with the
1st_code = code_mgr.lookup_code (code_list) —— return from the database based onthe

. . CodeList object
'Populate List
ddl code dep id.DataSource = lst code
ddl_code_dep_id.DataTextField = "code name" Populate the drop-down list with the
ddl_code_dep id.DataValueField = "code_ id" returned list of CodeList object
ddl code_dep id.DataBind()

If l1st_code.Count > O Then

_ ddl code dep id.Enabled = True Enable or disable based on count of the

rlise - . .
ddl_code_dep_id.Enabled = False list of Code List object

End If

End Sub

'"Refresh on Change
Protected Sub ddl_ code_type_ id SelectedIndexChanged (ByVal sender As
Cbject, ByVal e A=z EventArgs) Handles
ddl code_type_id.SelectedIndexChanged
Repopulate the drop-down list

opulate ddl code dep id(ddl code type id.SelectedValue) —— .
pep - = _dep_id{ddl VRS ! on change in code type

End Sub

"Populate Code Rctive DDL
Private Sub populate ddl search actiwve(

ddl search code_active.Items.Add (New ListItem("Active Only", "1"))} Manually add values to
ddl search code active.Items.Add (New ListItem("Inactive Cnly", "0")) .
- - - a drop-down list

ddl_search code_active.Items.Add(New ListItem("<ALL>", "%"))

End Sub

Figure 39: Controller Class — Drop-down Lists.

The controller is architected in a simple way to facilitate the seamless communication

between the view and the model.

Utility Classes.

54

The utility classes are used to hold global functions that allow for reuse. The functions within the

utility classes are shared, so they can be used by any of the controllers to perform common or

repetitive functions. Figure 43 shows an example utility class.

The View

Web Application Design Best Practices

'Populate Code Grid View
Private Sub populate_gv_code ()

Dim lst_sode As New Liat(Of Codeliat) :l— Instantiate the CodeList and list of CodeList objects

Dim code_list As New Codelist

*Get Search Criteria

coge_list = get_code_list() —— Populate the CodeList object with the Code search criteria
Populate the list of CodeList object with

— the return from the database based on the
CodeList object

'Get List
lat_code = code mgr.lockup code (code_list

'Set Grid Values / Messages
If l=t_code.Count = ¢ Then
img gv_message.V ble = True
1bl gv mezzage.V. ble = True
ibl_gv _message.Text = "No Re '
gv_code.Vizible = False =
ElseIf lst_code.Count = 201 Then
img_gv_measage.V. le = True
ibl gv me3zage.V e 1
1b1:gv:meeaage.3ext = "Too Many Records to Return,
lease Limit Search!™
gv_code.Viaible = False

If there are no records in the list of
— CodelList, display a grid message that
there are no records returned

If there are exactly 201 records in the
— list of CodelList, display a grid
message to limit search

Else, hide the grid message and
- display the search grid with the
search results

gv_code.DataSource = 1

gv code.Columnsz (1) .Vi

gv code.DataBind{()

gv code.Columnsa (1) .Vizible = False 'Hide Hey Field
End If —

'"Unselect Index))))
gv_coce.SelectecIngex = -1 —— Remove any item selection in the search grid
End Sub

'Code Grid View Paging

Priwvate Sub gv code PageIndexChanging{ByVal zender A=z Object, ByVal e As
Sy:tem.ﬁeb.UE.Weonnt: 13 .GridViewPageEventhrgs) Handles
gv_code.PagelndexChanging

'Change Page Index
gv_code.Pagelndex = e.NewPageIndex

Set the new page index

'"Repopulate Grid View
populate_gv_code ()

Repopulate the search grid view
End Sub

'Code Grid View Selection
Frotected Sub gv_code_SelectedIndexChanged (SyVal sender As Chject,
ByVal & As EventArgs) Handles gv_code.SelectecIndexChanged

"Get Selected Hey

- . . Set the Code record key with the
hdn code_id.Text = gv_code.SelectedRow.Cells (1) .Text

selected Code record key
"Refresh Data

refresh_coce() —— Refresh the Code record

End Sub

Figure 40: Controller Class — Search Grid.

55

The view is the user interface, the representation of the application presented to the users.

The view is where the user performs tasks necessary to their specific job function. The view

consists of the master pages, pages, user controls, as well as, images and cascading style sheets

that control the look and feel to the user.

Web Application Design Best Practices

2tz Messages
ate Sub data_message (ByVal msg_type As MsgType, ByVal msg_text As
String)

'Set Message
1bl_data message.Text = msg_text — Setthe data message text with the passed string

'Set Images / Text
If msg_type = MsgType.Error Then

img_data_message.ImageUrl = "~/Images/Messages/msg_warning.gi
_data_message.CssClass = "msg-negative™
ElseIf Ty = M b W
seIf msg_type = Msglype.War Setthe data message

img data message.ImageUrl = "~/Images/Messages/msg caution.gif® _
1bl_data_message.CssClass = "msg-negative” - image and data
Elself msg type = MsgType.Info Then message text style
img_data message.ImageUrl = "~/Images/Messages/msg_information.gif" based on the
data message.CssClass = "msg-positive”
1self msg type = MagType.Question Then message type
img data message.ImageUrl = mages/Messages/msg_guestion.gif®
1pl_data message.CssClass = "msg-neutr

]

End If

splay Message
img_data_message.V
1bl_data_message.V = True

e

:I— Display the data message image and data message text

End Sub

#End Region

Figure 41: Controller Class — Messages.

#Region "Buttons"
'Search Button
Protected Sub btn_search Click(ByVal sender As Cbject, ByVal e As
System.Web.UI.ImageClickEventArgs) Handles btn_search.Click

ar Grid Message

gv_message.Text =
le = False Reset the state of the search grid message

mg_gv_message.Vi
gv_message.Visible = False

search_code() —— Search for Codes
End Sub
'Reset Search

Protected Sub btn_reset_Click(ByVal sender As Object, ByVal e As
System.Web.UI.ImageClickEventArgs) Handles btn_reset.Click

new_code_search() — Reset Code search criteria
End Sub
'Save Button

Protected Sub btn_save_Click(ByVal sender As Object, ByVal e As
System.Web.UI.ImageClickEventArgs) Handles btn_save.Click

modify_code (ModType.Save) — Modify the Code record with a type of Save
End Sub
'New Button

Protected Sub btn_new
System.Web.UI.ImageC

ck{ByVal sender As Object, ByVal
ckEventArgs) Handlesz btn new.C

new_code_data() —— Resetthe Code data fields
End Sub
'Refresh Button

Protected Sub btn_refresh Cl
System.Web.UI.ImageClickEventArgs) Handles btn_refresh.C

ck{ByVal sender ks Cbject, ByVal e &As
Kk

'Exit if not a wvalid key
If hdn_code_id.Text = 0 Then

E Sub If the Code record key is not 0, new record then
Else refresh the Code record
refresh code{()
End If
End Sub

'Delete Button
Protected Sub btn delete | ck(ByVal sender As Cbject, ByV
System.Web.UI.ImageClickEventArgs) Handles btn delete.Cl

"Exit if not a wvalid key
If hdn_code_id.Text = 0 Then
it Sub If the Code record key is not 0, new record then

Elze " .
modify_code (ModType. Delete) modify the Code record with a type of Delete
End If
End Sub

#End Region

Figure 42: Controller Class — Buttons.

56

Web Application Design Best Practices 57

Imports Microsoft.VisualBasic
Namespace UTility

Public Class Config

'Get Environment
Fublic Shared Function get_environment ()} As String

Dim str_env As S5tring = get_app setting("Environment™) Returns the specific Environment
Return str_env setting value

End Function

'Get Version

Fublic Shared Function get_version{) As String
Dim str_env As String = get_app setting("Version") Returns the specific Version
Return str_env set‘ting value

End Function

'Get Connection String
Public Shared Function get_connection()} A= String

Dim str_env As String = get_environment () Returns the connection string
Dim =tr conn A= String = .

Conf;guzanion}{anagez.ConnectionStzings (str_env).ToString bas_ed on the Environment
Return str_conn setting value

End Function

'Get Implementation Name
Fublic Shared Function get_app_ setting(ByVal str_name As String) As
String

Dim settings As NameValueCollection = Returns a general setting value based on
ConfigurationManager.AppSettings dink
Return settings.Get (str_name) apassedin key name

End Function
End Class

End Namespace

Figure 43: Utility Class.
User Controls.
The user control is the main piece of the view. The user functions are encapsulated in
user controls to allow for reuse, and contain all the functionality of the application. The example
application is data driven, so each function must allow for the basic data functions to search,

insert, update and delete data records.

The first part of the user control is a search facility to accept user input to limit the

returned subset of records. Example search criteria fields’ code is shown in Figure 44.

Web Application Design Best Practices

<%@ Control
Language="vb"
AutoE rtWireup="false"
Cod "CodeData.ascx.vbh"

Inherits="AAT.CodeData"

>

<table>
<tr>»
<td align="left" colspan="2">
<h3>Code Maintenance</h3>
</ftd>
</tr>

Displayed header

<tLr»
<td align="right">»
<asp:label
id="1bl search code name" Search label with style class

1at="server” defined
z3Clazz="field-nonrequired">Code</asp:label>

</td>
<td align="left">
<asp:TextBox
ig="txt_search code_name"

runat="server"” Search field
MaxLength="50"
Width="200px"></asp:TextBox>
</ftd>
</tr>

Figure 44: View — Search Criteria Fields.

58

Next, Figure 45 shows the search action buttons that affect the search and reset the search criteria

fields if necessary. Any search related messages are displayed to the user.

<tr>
<td align="center™ colspan="27>

<asp:ImageButton
id="btn_search"
runat="server"
Imagel: "~/Images/Buttons/btn_search.gif"
CausesValidation="False" />

<aszp:Inmage

id="img reset"
runat="server"
ImageUrl="~/Images/Buttons/btn_xsp.gif" /> —

<asp:ImageButton
id="btn_reset"”
runat="server"
CausesValidation="False"
ImageUrl="~/Images/Buttons/btn_reset.gif” />

Search button

- Spacerimage

Search reset button

</td»
</tr>
<tr>
<td align="center" colspan="2">
<asp:Image -

ID="img gv_message”

runat="server"

ImageUrl="~/Images/Meszages/msg_caution.gif" />
<asp:Label

ID="1bl_ gv_message"

runat="server"

CzzClasz="m=sg-negative">»</azp:Label> —_—

Search grid message image

— Search grid message text

</td>»
</tr>

Figure 45: View — Search Actions.

Web Application Design Best Practices 59

The search grid displays the returned records from the database in such a way that the user can
select the record needed. By selecting a record, the data is populated in the data area for

modification. Figure 46 shows code for the search grid controls.

<tr>
<td align="center" colspan="2"3>

<asp iView

="gv_code"
t="zerver"

— Search grid definition

enerateColumns="False"> —

<PagerSettings Mode="NextPreviocousFirstLast"™
FirstPageImageUrl="~/Images/Other/page_ first.gif"
FirztPageText="
LastPageImagel "~/Images/Other/page_last.gif" Search gﬁd pager
LastPageText="Last" - tinds
NextPageImageUrl="~/Images/COther/page_next.gif" se 9

PageText="Next"

sPageIimagelUrl="~/Inages/COther/page previous.gif"

=PageText="Previous" />
<RowStyle Cs3s3Class="grid-row"™ /> 1

<Columns>

gif®

foadertexr TCoas /> Search grid returned
<asp:BoundField —
DataField="code_type name" columns
ext="Code Type"™ />
id

DataField="code_active"”
HeaderText="Active"
S
</Columns> |
<FooterStyle CzsClass="grid-footer™ /> = Search grid styles
<PagerSty C=sCl mgri ger™ /»
<SelectedRowStyle Cs3sClass="grid-selected" />
<HeaderStyle Cs=Class="grid-header" /> .
</asp:GridView>
</td>
</tr>
<trx»

<td align="center" colspan="2"> -
<hr style="color:Maroon; size:1; height: 1px;" /> Line to S?pﬂrate search from
data sections

</td>
</tr>

Figure 46: View — Search Grid.
The data action buttons are next. Figure 47 shows the code to setup of the action buttons. They
facilitate the inserting, updating or deleting of the selected data record. Any data related
messages are displayed to the user. The validation summary displays a literal message to the user
when there are data field validation errors. The validation summary code is shown in Figure 48.

The data fields hold the data record information to be manipulated by the user. They are

Web Application Design Best Practices

displayed as a label and a field. Any validations are attached to the field to display when a

validation error occurs. The code for the data fields is shown in Figure 49.

<tr>

<td align="center™ colspan="2">

<asp: ImageButton

id="btn save"
runat="szerver"
CausesValidation="Irue"
ImageUrl="~/Images/Buttons/btn_save.gif"
dationGroup="Code" />
<asp:Image

id="img_new"

runat="server"

ImageUrl="~/Images/Buttons/btn_xsp.gif"
<asp:ImageButton

id="btn new"

runat="server"

Cause dation="Falsze"

ImageUrl="~/Images/Buttons/btn_new.gif" />
<asp:Image

id="img refresh"

runat="server"

ImageUrl="~/Images/Buttons/btn_xsp.gif" />
<asp:ImageButton

id="btn_ refresh"

runat="server"

Cause dation="False"

ImageUrl="~/Images/Buttons/btn_refresh.gif" />
<aszp:Image

id="img delete"

runat="server"

ImageUrl="~/Images/Buttons/btn_xsp.gif" />
<asp:ImageButton

id="btn_delete"

runat="server"

CausesValidation="False"”

ImageUrl="~/Images/Buttons/btn_delete.gif"™ />

i

</td>
</tr»
<tr>
<td align="center™ colspan="2">

img data message"
runat="server"”
ImagelUrl="~/Images/Messages/msg_information.gif"
<asp:Label

[

1 _data message"
at="zerver"™
zzClazs="msg-negative"></aszp:Label>

</td»
</tr>»
Figure 47: View — Data Actions.
<tr>
<td align="left" colspan="2">
<aszp:ValidationSummary
ID="v=m data"
runat="server"
CssClass="msg-validation”
HeaderText="The following errors were encountered:"
ValidationGroup="Code" />
</td>»
</tr>

/>

- Save button

— Spacer image

- New record button

— Spacer image

— Data refresh button

— Spacerimage

- Delete button

- Data message image

- Date message text

Validation summary with
validation group defined

Figure 48: View — Validation Summary.

60

Web Application Design Best Practices

<tr>
<td align="right">
</td>
<td align="left">
<asp:TextBox
="hdn_code id"
runat="server" Hidden Code key field
Vi "False"™
BackColor="§FFFF99"></asp:TextBox>
</td>
</tr>

<td align="right":>»
<asp:label
id="1bl_code type_id" Data field label with style
runat=rserver?® class defined
CzsClass="field-regquired">Code Type</asp:label>
</td>
<td align="left">
<asp:DropDownlList
id="ddl code type_ id"
runat="server"
LutoPostBack="True"></asp:DropDownList>
<asp FRac_m:_redF;_a;dVa;:.dar.ox Data field validation
id="rfv code type id" . .
cunat—"serverm™ | control, linked to specific
ErrorMezsage="Code Type iz Reguired!"” data field with validation
date="ddl code_type_ id" group defined
ValidationGroup="Code">*</asp:RequiredFieldValidator>

Data field (drop-down list)

</td>
</tr>

Figure 49: View — Data Fields.

61

Hidden fields hold any data for processing or security that the application needs to hold, but not

display to the user. Figure 50 shows the code for the hidden field setup.

<Tr>
<td colspan="2" align="center®>
<asp:TextBox
id="hdn_code_lmod_user"
runat="server"
Visil "False"
BackColor="4#FFFF99"</asp:TextBox>
<azp:TextBox
id="hdn_code_lmod date"
at="server"”
Vigible="Falze"
BackColor="#FFFF99"></asp:TextBox>
<azsp:TextBox
id="hdn code lmod type"
at="server"”
7izihle="Falze"”
BackColor="4FFFF20"></asp:TextBox>

Hidden log user field

Hidden log date field

Hidden log type field

</tdx>

<ftr>
<tr>

<td colspan="2" align="center"r

<asp:TextBox
id="hdn sec insert"

at="server™ - Hidden insert security field
7izihle="Falze"”

BackColor="$CCFFCC"></azsp:TextBox>
<asp:TextBox

id="hdn_sec_update”
unat="server"”

Hidden update security field

BackColor="4#CCFFCC"></asp:TextBox>
<asp:TextBox

id="hdn_sec delete”

runat="server® - Hidden delete security field
e="False"
BackColor="#CCFFCC"></asp:TextBox>

</tdr
</tr>
</table>

Figure 50: View — Hidden Fields.

Web Application Design Best Practices 62

Figure 51 shows the view displayed to the user is simple and clean with everything laid out in a

logical way.
LA
j“':g-." ..Aud:t
Logo from Site.Master — ﬂ‘; Action
3 % Tracker
Tabs from Admin.aspx —
Displayed header — | Code Maintenance
Code Type |<ALL> vl N
Search labels Code | - Search criteria fields
| Active |<ALL> vl |
search | _JReset ———— Search actions
Code Type Code Active
,/ Business Unit | KM Canada Yes
| Business unit | kM coz Yes
. . . ./ Business Unit | KM Corporate Yes
DISpIayéng ?Zarclh G.I'Id ,/ Business Unit | KM Natural Gas Pipelines | Yes
an hno'd Ispraying | Business Unit | KM Power Yes
search gridn oF ,/ Business Unit | KM Product Pipelines Yes
| Business Unit | KM Terminals Yes
,/ Division Canadian Mainline Mo
,/ Division Express Canada Yes
,/ Division Express US Yes
>
Seporator
Data actions ——— Q Save | _Inew | Refresh ‘ x Delete i i i
Displaying processing
(\) Insert Successful. iy ge and not displaying
~ - - - validation summary
Code Tvpe IELISIHESS Unit 'l
Cod .
Data labels — Code | — Data fields
Code Dependency l_;l
Active W
@ Reports | O Portal E pAudits | @Securit_v —— Buttons from Admin.aspx

STEPHEN RASH
Version: {T59)

:|— User and Version from Site.Master

Figure 51: View — User Display.
All together, the view is what the user will see and use to work with the application; if it is not
straight forward; easy to use and understand, it will not be a successful application.
Cascading Style Sheets.
Cascading style sheets are a global way to control the look and feel of the application.
Building the style of the application in a common place to be pulled anywhere it is needed, is an
advantage; if the style changes, that change can be made in one location and affects the entire

application. Example code for creating a cascading style sheet is shown in Figure 52.

text-decoration:none;

Web Application Design Best Practices 63

Controls the style of any link or "a’ HTML tags

body
) background-color: white;
£ ly: werdana, helvetica, arial; N N
3 normal: Controls the style of any 'body’ HTML tags

font-size: small;

color: navy;
}
table

border—style: none; Controls the style of any 'table’ HTML tags

td

font-£

amily: verdana, helvetica, arial; :I- Controls the style of any table detail or 'td' HTML tags

font-zize: 10pt:

hl,h2,h3,h4,

font-weight: bold; :I— Controls the style of any header, "h1’,'h2", 'h3', 'hd’ or 'h5' HTML tags

color:

hS5

Maroon;

Figure 52: Cascading Style Sheet.

If the styles of the required and non-required fields change in the application, they can be

easily modified in one location. Figure 53 shows code and example the before the change.

Change the style sheet class and the change is effective on all the required and non-required

fields without having to go to each one and make the change there. Figure 54 shows code and

example the after the change.

-field-reguired Required = Navy text (default), underlined

/*color: maroon;*/

text-decoration: underline;
f*font-3 1

Q Save | |_] Hew

Code Type IBusumss Unit VI

.field-nonrequired Nonrequired = Maroon text Code |
color: maroon; Code Dependencyl 'l
text-align: right; .

- L Active W

vertical-align: middle;

Figure 53: Changing a Cascading Style Sheet — Before.

.field-required Required = Maroon text, underline and italic

color: maroon;
text-decoration: underline;
eit =H

.field-nonrequired Nonrequired = Navy text (default) Code |

/*color:

vertical

H Save | |_] Hew

Code Type |Business Unit 'I

maroon;*/ I— Code Dependency 'I
right;

—align: middle; Active ¥

Figure 54: Changing a Cascading Style Sheet — After.

Web Application Design Best Practices 64

Validations.

To ensure valid data is entered in the application, field validations are necessary. Visual
Studio has delivered validation controls that are easy to use and give the user instant feedback at
the point of entry. There are two parts to the validation: a validation summary, which displays
the literal validation message and, the specific validation, which assesses a particular data field

for validity. The example code for setting up validations is shown in Figure 55.

<tr>

<td align="left" colszpan="2">
idationSummary
vem data"

runat="server" Validation summary with
CzsClazs="msg-validation™ validation group defined
HeaderText="The following errors were encountered:"”
ValidationGroup="Code"™ /»
</td>
<ftr»
<tr>

<td align="right">
<asp:label
id="1bl code_name"
runat="server"
CzzClass="field-required">Code</asp:label>
</td>
<td align="left">
<azp:TextBox
id="txt_code_name"
"zerver"

: 200px"></aszp:TextBox>
ravelrdstor Data field validation
riv_code_name" . .
runat="servern control, linked to specific
ErrorMezsage="Code iz Reguired!" data field with validation

date="txt_ code_name" group defined
roup="Code">*</asp:RequiredFieldValidator>

Figure 55: Validation Code.

Il save | [new — Validation occurs on clicking the save button

The following errors were encountered: o o .
The validation summary is displayed with the

+ Code is Required! literal validation message

Code Type IBusinEBS Unit 'l

Codel
Code Dependencyl 'l
Active W

___ The particular field that did not meet the validation
is highlighted

Figure 56: Validation Display.

Web Application Design Best Practices 65

If there is a validation error, the validation summary is displayed and the field is highlighted that

does not meet the validation criteria. Figure 56 shows the validation display.

Messaging.

It is important to inform the user about processing successes and failures. The messaging

feature allows the user to see when the process is complete and, if it was successful, or if there

was an error. The messaging facility also masks the particular error message returned and

displays a more useful message to the user. Figure 57 shows the code for setting up messing.

'"Modify
int_ret = code_mgr.modify code (code)

'Complete Message
If int_ret > 0 Then
If type <> ModTIype.Delete Then
hdn_code_id.Text = int_ret
refresh_code ()
Else
new_code_data ()
populate_gv_code()
End If
Str_msg = str_msg & " Successful."”
data message (MzgType.Info, str_msg
Else
Str_msg = str_msg & " FAILED:
data message (MsgType.Error, str_msg)
End If

End Sub

"Data Messages

Private Sub data message (ByVal msg_type As MsgTvpe,

String)

'Set Meszzage

" & get_app setting(int_ret)

___ Sendthe Code record to the database and get returned
Code record key or error code

Display a message to the
user if the operation was

- successful, a Coderecord
key was returned or failed,
an error code was returned

ByVal msg_text As

1bl data message.Text = msg_text — Setthe data message text with the passed string

'Set Images / Text
If m=g_type = MsgType.Error Then

img_data message.ImageUrl = "~/Images/Messages/msg_warning.gif"
ibl_data message.CssClass = "msg-negative”
ElseIf m=g_type = MsgType.Warning Then
img_data message.Imagelrl = "~fZmagesfMessagesfmsg_caution.gif" $Etthe data message
1bl_data message.CssClass = "msg-negative” image and data

ElseIf msg_type = MsgType.Info Then

- message text style

img_data message.ImageUrl = "~/Images/Meszsages/msg_information.gif" based on the
1bl_data messzage.CszsClass = "msg-positive”

ElzeIf m=g_type = MagIype.Question Then n1essaQEtype
img_data message.ImageUrl = "~/Images/Messages/msg_guestion.gif”
ibl _data message.CssClass = "mag-neutral"

End If —

"Display Message
img_data message.Visible
1kl _data_ message.Visible

True
True

End Sub

$End Region

:|— Display the data message image and data message text

Figure 57: Messaging Code.

Web Application Design Best Practices 66

Based on the message type, the icon and message text are displayed in such a way the user
knows if the processing was successful or if it failed. Examples of the display of the messages is

shown in Figure 58.

HSave E j}lew | SRefresh | XDeIete

If Code record key is returned from the

@u date S ful. —_]
pdate Successiu database, the operation was successful

Code Type IELISiHESS Unit =
Code |KM Power

Code Dependencyl %
Active ¥

.ﬂsave | jNew
If an error code is returned from the database,
9 Insert FAILED: Cannot Insert a Duplicate Record! | — the operation failed and a specific error
message is displayed
Code TygelElusmess Unit = 9 play

Code |KM Power

Code Dependencyl T
Active

Figure 58: Messaging Display.

Popups.

A modal popup window can be very useful for displaying a message that a user has to
acknowledge or to do external processing prior to continuing. The example application uses the
modal popup window to lookup values in the system to assign to the parent control. There are
many third-party built controls that can be used, but have a lot of processing overhead to deal
with. A simple modal popup can be built within the context of the existing tools.

To create the simple modal popup, a cascading style sheet for the popup and modal styles
must be created. Figure 59 shows the cascading style sheet code for the simple popup. Next,
panels for both the modal and popup must be created. The modal panel has no content; it is just a
barrier between the original screen and the popup, so no processing can be accomplished on the
original window without first closing the popup. The popup has the content to be processed.

Code to create and display the simple popup is shown in Figure 60.

.popup
{

background-color: White;

radding-top: Spx;
g-right: 5px;
ng-kbottom: 5px;
padding-left: Sp=x;
border—-color: Navy;
border-width: 1px;
border—-styl solid;

text-align: center;
pozition: fixed;
left: 5%;
top: 5%;
z-index: 2;

¥

.modal

{
background-color: White;
filter: alpha(opacity :
opacity: 0.5;
border-color: White;
border-width: 1lp=x;
border-style: solid;
text-align: center;
width: 100%;
height: 100%;
poziticon: fixed;
left: 1px;
top: 1lpx;
z-index: 1;

¥

Web Application Design Best Practices

— Popup background is a solid white

— Padding is 5px all around

~ Border is a single solid Navy color line
Textis centered in the popup

- Popup position is fixed, 5% from the top-left corner

The vertical position (z-index) is 2, always on top

s50); [~ Modal background is a see-through white

~ Borderis a single solid white line

Text is centered in the panel
~ Modal panel covers entire screen

- Position is fixed, 1px from the top-left corner

The vertical position (z-index) is 1, always in the middle

Figure 59: Popup Cascading Style Sheet.

<aszp:Panel
ID="pnl_modal"
runat="server"”
CssClass="modal"
HorizontalAlign="Center"
Vizible="false">

</asp:Panel>

<aszp:Panel

Ij="pnl_employee_lookup"'_

runat="server"”
CzzClazz="popup”
HorizontalAlign="Center"
Visible="false">»

<ucl:Employees ID="Employeesl" runat="server" />

- Modal panel with no content, referencing the modal style

— Popup panel, referencing the popup style

Conditional">

</asp:UpdatePanel: — Popup content

<table>
<tr>
<td>
<aszp:UpdatePanel
ID="upd employee lookup"
runat="server"”
UpdateMode="
<ContentTemplate>
</ContentTemplate>
</td>
</tr>
<tr>

<td align="center"

<asp:ImageButton
ID="btn_ employee_return”
runat="server"”
CausesValidation="False"

Imagelrl="
</td>
</tr>
</table>
</asp:Panel>

>

~/Images/Buttons/btn_return.gif" />

Figure 60: Popup View Code.

67

Web Application Design Best Practices 68

By making both the modal and popup panels visible, the popup is the only item on the screen
that can be accessed. By returning the values from the popup and hiding both the modal and
popup panels, the original screen is active and has the selected values. Figure 61 shows the code
to return values from the popup and hide the panels. The display to the user is simple, the popup,
the modal panel between it and the original screen. The display of what the simple popup looks

like is shown in Figure 62.

'Lookup Employee
Protected Sub btn lookup usr user Click(ByVal sender A= Chject, ByVal e
As System.Web.UIL.ImageClickEventArgs) Handles btn_ lookup_ usr_ user.Click

pnl _modal.Visible = True .
pnl employes lookup.Visible — True :l— Display the modal panel and popup panel

End Sub
'Return Employee

Protected Sub btn employee return Click(ByVal sender As Chject, ByVal e
A=z System.Web.UI.ImageClickEventRrgs) Handles btn_employee return.Click

lkp_usr user.Text = Employeesl.hold empl user - .
txt_usr_name.Text = Employeesl.hold empl name]— Return emploVee user and name information

1 1 lookup.Visible = Fal -
izl—ﬂﬁa?’s:;ig;e Bl o :l— Hide the modal panel and popup panel

End Sub

Figure 61: Popup Controller Code.

S R A TP Y

8,
:f. .' Employee Lookup ___ Popup panel, displaying content, z-index of 2
‘;\ o (always on top)
Last Name |
| = Firet Name l— Modal panel, see-through white,
------------------------- ___ z-index of 1 (always in the middle) to
Up{ preferred Name | disallow the user to access the
#8 search |] Reset underlying original screen
Fr -T('x
. *1': Return :%
o — Original screen, z-index of 0 (always on the bottom)

4 Change |] Reset

Figure 62: Popup Display.

Web Application Design Best Practices 69

The Configuration File

The configuration file, the web.config file, is a file that resides outside the application
where variables can be assigned and changed without having to republish the application. There
are three main areas that are used in the configuration file: the application settings, the
connection strings and the authentication section.

The application settings are value pairs stored in the file, which can be changed if
necessary to change the returned value to the system. All the processing specific values are
stored here, system specific used for display in the application, service and business
implementations used in processing and any other variables that could change, such as: database
stored procedure names, file locations and even literal error messages. Figure 63 shows the

example application setting value pairs held in the configuration file.

<?xml version="1.0"%>
<configuration>

<appSettings>

<!--5¥YSTEM-->»

<add key="Debug" wvalue="False" />

<!--value="True"/>-->

<add key="Version" value="(T62)" /> - System specific values
y="BuildDate"™ walue="10/21/2009 4:54 PM MST" />
Environment™ value="Test"™ /> —
AL LINKS-->
y="Security"™ wvalue="~/Pages/Security.aspx" />
y="Admin" value="~/Pages/Admin.aspx"™ />
lue="~/Pages/Audit.aspx" />
Azsignee™ value="~/Pages/Assignee.aspx" /> L Internal page link values and
to external sites link values

value="http://report/businesscbjects/main.aspx" />
<add key="Portal"™

value="http://portal/ehs/apps/aat/default.aspx" />
<!--3ERVICES-->
<add key="ICodeTypeSvc" value="AAT.Service.CodeTypeSvcSQLImpl™ />

<add key="ICode3vc" value="AAT.Service.CodeSvc3QLImpl"™ /> Service implementation
oee values based on service
<add key="IUser3vc" value="AAT.Service.User5vciSQLImpl"™ /> interface

<add key="IAppSecSvc" value="AAT.Service.AppSecSvcSQLImpl"™ /> 1

<!--RULES—->

<add key="ICodeTypeMgr" wvalue="AAT.Business.CodeTypeMgrRuleImpl™ /> - - .
<add key="ICodeMgr" wvalue="AAT.Busineszsz.CodeMgrRuleImpl" /> Business |mp|ementat|on
e I values based on business
<add key="IOserMgr" value="AAT.Business.UserMgrRuleImpl™ /> interface

<add key="IAppSecMgr” value="RAT.EBusineszs.hAppSecMgrRuleImpl”™ /> -

<!--PROCEDURES--> —

<add key="CodeTypeSelect" wvalue="sp_code_type_select” i

<add key="CodeTypeLookup"™ value="sp code_type_lookup" /> Database stored procedure

values
<add key="UserLookup" value="sp_user_lookup" i

<add key="AppSecLookup" value="sp app sec_lookup" /> -
<!--UPLCAD FILE LOCATION:

<add key="TestPath" value="\\test\RAT Uploads\" />]_ :
<add key="ProdPath" value="\\prod\AAT Uploads\" /> Upload file location values

<! --ERR! MESSAGES-->
<add key="-2601" wvalue="Cannot Insert a Duplicate Record!" /> Translated error code values
<add key="-4864" wvalue="Upload File Format Incorrect!" /> based on SCIL error code

</appSettings>

Figure 63: Configuration File — Application Settings.

Web Application Design Best Practices 70

Connection strings to the database instances are held in the configuration file and could
be changed, if the need arose. Multiple instances can be controlled by an application setting as to

which one to use. Figure 64 shows the value pairs of connection strings.

<connectionStrings>
<!--TEST-->
<add name="Test"
providerName="System.Data.SglClient"” Test database connections string
connectionString="Data Source=test\test;User
ID=RATAPP; Pwd=XEXXXXXXX;Initial Catalog=RAAT;" />
<!--PROD-->
<add name="Prod"
providerName="System.Data.S5glClient"™
connectionString="Data Source=prodi\prod;User
ID=RATAPP; Pwd=XEXXXXXXX;Initial Catalog=RAAT;" />
</connectionStrings>

Production database connection string

Figure 64: Configuration File — Connection Strings.
Based on the architecture, the authentication variables need to be set. The application will
impersonate the user, so the application does not have to pass the user credentials. The

authentication string information is shown in Figure 65.

<system.web>

<=
The <azuthentication’ section enables configuration
of the security authentication mode used by
ASP.NET to identify an incoming user.
-5

<authentication mode="Windows" /> Authentication mode is Windows and
<identity impersonate="true" /> identity impersonate must be true

<fzystemn.web>

</configuration:»

Figure 65: Configuration File — Authentication Settings.
Scheduled Tasks
There are occasions that there will be some processing done outside the normal
processing in the application. In the case of the example application, periodic e-mail notifications
are generated. On those occasions where processing outside the application is necessary, a
Windows Service is the best way to handle that type of processing. The Windows Service

executes on a set timeframe, processes and waits for the next execution.

Web Application Design Best Practices 71

Reporting
Reporting is a very important aspect of any business application, as it is important to be
able to get information back out of the application. There are reporting applications that can be
implemented to gain reporting functionality, which would have to be built into an application. In
the case of the example application, reporting is handled in an external reporting application

where scheduling, security and a single point of reporting can be leveraged.

Web Application Design Best Practices 72

Chapter 5 — Project History

The example application, Audit Action Tracker, was designed and developed over a four
month period of time. The project was broken down into five phases: documentation, design,
construction, testing and implementation.

The documentation phase consisted of working with the users to formulate the initial
application design, documenting that initial design, getting the user approval and developing the
project plan. The documentation consisted of a combined scope and design document, as well as,
the approval to proceed with the project.

The design phase consisted of working with the users to refine the initial design into a
detailed design. Use cases, screen mockups and data elements were created and refined to a point
where the developer and users could agree upon navigation and content of the application.

The construction phase consisted of each element of the application being built. Database
elements were constructed first, tables, triggers, functions and stored procedures, as well as, the
data migration plan based on the detailed design. Next the model elements were constructed; the
domain, service and business layers were built based on the detailed design. Lastly, the user
interface elements, the view and controller pieces were constructed.

The testing phase allowed the users to test the navigation and the particular functions to
ensure they worked correctly. This phase also gave the users a chance to make minor changes to
the system to better suit their needs. The developer in the testing phase had the opportunity to
take the testing results and the change requests and make the necessary modifications to the

application to better satisfy the needs of the users.

Web Application Design Best Practices 73

Table 5: Project history timeline. The table below contains a list of the phases and tasks and the

periods of time that were taken to complete each task.

Phase Task End Date End Date
Documentation Create Project Short Form 7/2/2009 7/13/2009
Create Project Plan 7/13/2009 7/13/2009
Documentation Sign-off 7/13/2009 7/13/2009
Design Design SQL Database 7/20/2009 7/27/2009
Design Legacy Data Migration 7/28/2009 7/29/2009
Design ASP.NET Web Pages 7/30/2009 8/7/2009
Design Crystal XI Reports 8/10/2009 8/13/2009
Design Complete 8/13/2009 8/13/2009
Construction Construct SQL Database 8/20/2009 8/21/2009
Construct Legacy Data Migration 8/24/2009 8/25/2009
Construct ASP.NET Web Pages 8/26/2009 8/31/2009
Construct Crystal XI Reports 9/1/2009 9/2/2009
Construction Complete 9/2/2009 9/2/2009
Testing Test Legacy Data Migration 9/9/2009 9/9/2009
Test Admin Functions 9/10/2009 9/17/2009
Test User Functions 9/18/2009 9/25/2009
Test Database Functions 9/28/2009 10/5/2009
Test Notifications 10/6/2009 10/7/2009
Rework Discrepancies Found 10/8/2009 10/21/2009
Testing Sign-off 10/21/2009 10/21/2009
Implementation Implement SQL Database 11/2/2009 11/2/2009
Implement Legacy Data Migration | 11/2/2009 11/2/2009
Implement ASP.NET Web Pages 11/2/2009 11/2/2009
Implement Crystal X1 Reports 11/2/2009 11/2/2009
Implementation Sign-off 11/2/2009 11/2/2009

The implementation phase consisted of the actual implementation of the new application
into the production environment. Putting all the pieces together, building the database,
conducting the data migration and publishing the web application to the production web server.

Table 5 shows a breakdown by phase and task the project timeline.

Web Application Design Best Practices 74

Chapter 6 — Conclusions

The most important set of best practices for developing database driven, internal web-
based business applications are principals, the principals of simplicity, consistency and user
interaction. These principals drive the nuts and bolts of developing the application. In developing
the example application, these principals presented themselves time after time.

Simplicity — finding the most concise way to do something, to make it easy to understand
and use. In business applications, simple is just better. There is no need to add elements that are
not necessary, just give the users what they need to satisfy their requirements and little more.

Consistency — doing the same task the same way each time, building the same function
the same way each time and making the application look the same from function to function. The
user will see consistency in the user interface, but the most important aspect of application
consistency is in the construction that the user will never see. There should be a common theme,
common naming convention and a common design philosophy. This commonality or consistency
will help in the maintenance of the application and add additional functionality, as well as,
helping other developers understand how the application is architected.

User interaction — giving users a voice in the development, they know what they need in
a business application and they are going to have to ultimately use the application as a tool to
make their work easier. Without the users and their requirements, there would be no need for the
developer. Building a relationship between the user and developer is important; any development

is a team effort.

Web Application Design Best Practices 75

Now for the nuts and bolts; exactly how to develop a database-driven, internal web-based
business application from the ground up. The practices, themselves, employ simplicity,
consistency and user interaction.

The initial design is very important, get the users involved early in the initial design
phase as their knowledge is extremely important and they know what they need and want in an
application. Communication is paramount, meetings, visual aids and documentation. Constantly
working together with the key group; ensuring that everyone understands the design and has a
chance to voice their opinions. The point of this phase is to refine the application on paper before
even one line of code is written. Throughout the process the users must validate the ongoing
work, since they should be able to identify any issues or rethink functionality before major
rework would be required. The users must be able to test in the same way as they would use the
application to identify workflow issues.

In a database driven application, the database is the basis for the design. All elements
flow from the database, tables should equate to objects and stored procedures should equate to
service implementations. The database should take advantage of self incrementing record keys,
primary and foreign keys to preserve data integrity, simple logging techniques for audit purposes
and simplify and reuse database objects where possible.

The use of design patterns in the application allows the development to be done more
quickly and keep overall consistency in the architecture, which translates to maintainability and
scalability in the future. The Model View Controller (MVC) design pattern takes a small step
away from simplicity, but makes up for it in consistency. Understanding that, the developer
should use it in a limited form. There are clear advantages to the single point of integration that

the Factory and Layer Supertype patterns give the developer. The Separated Interface and Plugin

Web Application Design Best Practices 76

patterns allow for hiding technology and the ability to swap that technology out without having
to rewrite the application.

Once again, the principals of simplicity and consistency are very important in the user
interface. Presenting a simple consistent look and feel to the application is very important for the
user interaction, as well as, the maintenance of the application. Clutter free windows, simple
popup windows and controls, in addition to the ability to globally change the look and feel of the
application, make the user experience more favorable. Presenting field validation messages
before any processing takes place is very helpful to the user. Clearly displaying processing
messages; both successful and understandable failure messages, assists the user in understanding
the processing happening behind the scenes in the application.

Therefore, the best practices for designing and implementing a database driven, internal
web-based business application are themselves simple. Get the users involved throughout the
process, design the database as the basis to the rest of the application, build the application with
commonality and maintainability in mind and, lastly, make the user interface clear and easy to

use, that is the ultimate goal.

Web Application Design Best Practices 77

References

Armstrong, D. J. (2006, Feb.). The quarks of object-oriented development. Communications of
the ACM, 49(2), 123-128. d0i:10.1145/1113034.1113040.

Chen, A. N. K., Goes, P.B., Gupta, A., & Marsden, J. R. (2004, June). Database design in the
modern organization—identifying robust structures under changing query patterns and
arrival rate conditions. Decision Support Systems, 37(3), 435-447.

Davidson, L. (2007, Feb. 26). Ten common database design mistakes. Retrieved from
http://www.simple-talk.com/sql/database-administration/ten-common-database-design-
mistakes/

Fowler, M. (2003). Patterns. IEEE Software, 20(2), 56-57. doi:10.1109/MS.2003.1184168.

Fowler, M., Sadalage, P. (2003, Jan.). Evolutionary database design. Retrieved from
http://www.martinfowler.com/articles/evodb.htmi

Fraternali, P. (1999, Sept.). Tools and approaches for developing data-intensive web
applications: a survey. ACM Computing Surveys (CSUR) archive. 31(3), 227-263.
doi:10.1145/331499.331502.

Hager, D., Kibler, C., & Zack, L. (1999, May). The basics of user-friendly web design. Journal
for Quality & Participation, 22(3), 58-61. Retrieved from Academic Search Premier
database.

Hice, R. (2008, November). Surrounded: The web is inescapable. Scientific Computing, 25(6),
18-20. Retrieved from Academic Search Premier database.

Kotek, B. (2002, Oct. 30). MVC design pattern brings about better organization and code reuse.

Retrieved from http://articles.techrepublic.com.com/5100-10878_11-1049862.html

Web Application Design Best Practices 78

Meyers, S. (2004). The most important design guideline? IEEE Software, 21(4), 14-16.
doi:10.1109/MS.2004.29.

Pattern. (2009). Retrieved from http://dictionary.reference.com/browse/pattern

Web Application Design Best Practices 79

Appendix A
Design Document

Project Name: Audit Action Tracker (AAT)

Author Stephen C. Rash
Date July 13, 2009

Revision & Sign-off Sheet

Change Record

Date Author Version | Change Reference
7/2/2009 Stephen C. Rash 1.0 Initial Document Development
7/6/2009 Stephen C. Rash 11 Updates
7/9/2009 Stephen C. Rash 1.2 App Name Change / Updates
7/13/2009 | Stephen C. Rash 1.3 Finalize

Reviewers
Name Position Date Approval
John Doe Manager-EHS 7/15/2009

Estimated Hours
Estimated hours for this project are between 250-300 hours.

Objective & Scope

The current Action Tracking System (ATS) functionality is outdated, cumbersome and
time consuming for the users. ATS lacks the functionality and scalability required by the
users to perform their job. The users want a system that is simpler and more
streamlined which facilitates quick and easy user interaction, has enhanced security
features and has better report generation features.

The objective of this project is to design a replacement application for ATS, which
consists of three separate Visual Basic 6 applications, ATS, ATSUpload and ATSAuto.
The new Audit Action Tracker (AAT) application will make the user interface simpler for
the end user by taking advantage of Web-based (ASP.NET) technology, redesign the
storage of data (MSSQL 2005 database) using tables, triggers, procedures and views to
better manage data and develop reports (Crystal Reports Xl) for display in our company
wide reporting system (BusinessObjects Enterprise XI). This system will meet the
functional and security requirements by managing the data, capturing an audit trail, and
making the data more accessible and reportable.

Web Application Design Best Practices 80

Functional Requirements
The AAT application will contain the following functionality:
1. Security

a.

C.

Based on the user logging in, the system will search the Corporate
Directory to find the user’s structure and determine what data the user will
be able to view and to what level of access (Add, Change, Read-Only) the
user will have.
Also based on the user logging in, the system will determine if the user
falls into the Admin or a TeamLead groups to allow additional system
functions.
There will be 4 types of user access:
I. Admin — System Administrators (NT Group).
ii. TeamLead — Audit Team Leaders (NT Groups by Functional
Group).
iii. Assignees — Individual responsible for the Action Item (Action Item
Record).
iv. ReadOnly — The Location Managers and Supervisors and Manages
above the Location Manager and Action Item Assignees.

2. Locations

a

b.
C.
d.

3. Audits

S@roo0oTy

Location information will be housed in a database table.

Location name, state and city information will be entered.

Location will be associated with a Business Unit, Region and Division.
System audit information will be housed in a database table and
generated by triggers on the Location table.

Audit information will be housed in a database table.

Audit name, audit start and end dates will be entered.

Audit will be associated to a Location.

Facility Manager will be selected.

Audit Team Leader will be captured by login credentials.

Audit Team Members will be selected.

Audit Team Leader will complete Audit records.

System audit information will be housed in a database table and
generated by triggers on the Audit table.

4. Action Items

a.
b.

~® oo

Action Item information will be housed in a database table.

Audit Team Leader will Upload or manually add/change Action Item
records.

Action Item findings, references, due date and Assignee will be entered.
Assignee will change/complete Action Item records.

System notification to Assignee when added to an Action Item.

System audit information will be housed in a database table and
generated by triggers on the Action Item table.

Web Application Design Best Practices 81

5. System Notifications
a. Generate periodic notifications to Assignee, Assignee’s Supervisor and

Assignee’s Supervisor's Supervisor

Detailed Design

The design of the AAT application will consist of a database (tables, triggers,
procedures and views), Web-based users interface (ASP.NET with VB code behind)
and reports (Crystal Reports Xl accessed via BusinessObjects Enterprise):

Audit Maintenance

Locati0n|

Complete I_;‘

ﬁ Search

N R P R A Y

HSaue | -__?Re.-set | \/ Complete

*Audit Type I_;‘
*Audit |
*Location | Q 4
*Start Dalel— = ()
*End Datel— = 6)

*Audit Lead] ©
*Location Manager | Q@ ®
=l
Comments
=

Current User
V1.0.0

Web Application Design Best Practices 82

(1) Audit Search Grid User Control
e A data grid to display the Audits for a particular Audit Lead or user in the Corporate Directory
Hierarchy
e Should display audit_name, audit_loc_name, audit_start_date, audit_end_date and
audit_complete
Selected item should open and populate Audit Maintenance by audit_id
Data Grid only visible if Current User is in Audit Lead or Audit Admin

(4) Location Select User Control
s A User Control to search for and select a single Location

(5) Date Select User Control
e A User Control to display a calendar and select a date (Required)

(6) User Select User Control
s A User Control to search for and select a single User (user id) from the Corporate Directory

Audit Team
® % Audit

10,

/'é;‘:... Action
2w T racker

B

E Audit Team Maintenance
I -)

|

HSave | ._jReset | XDelete

*Member | @, (6)

Current User
V1.0.0

(9) Audit Team Grid
e Display users of the Audit Team based on audit_id
e Audit Team Member can be deleted from grid

(6) User Select User Control
s A User Control to search for and select a single User (user id) from the Corporate Directory

Web Application Design Best Practices 83

Action Item Upload

/@‘.‘, Action
3w Tracker

p| Action ltem Upload
2 *Filel Browse... |

n_'ﬂ Upload

Current User
V1.0.0

Web Application Design Best Practices 84

Action ltem Maintenance
% % Audit

a% " oa0, r:
}';":... Action
%% lracker

Action ltem Maintenance

D
v Priority [1 =]
Complete m
search

N |

|

'&‘Saue | ._jReset | »./Complete

*Assigned To | @ ®
*Priority | 1 'I
*Due Date (5)

=

*Finding
=
=l

*Recommended Action
=
=l

*Corrective Action
=
=

*Regulation
=

*Reference Type I_LI

=

*Reference
=

Current User
V1.0.0

Web Application Design Best Practices

(2) Action Item Grid User Control

e A data grid to display the Action Items for a particular Audit Lead / Assignee or user in the
Corporate Directory Hierarchy.

e Should display item_name, item_priority, item_due_date and item_complete
e Selected item should open and populate Action Item Maintenance by item_id.

(5) Date Select User Control
e A User Control to display a calendar and select a date (Required)

(6) User Select User Control
s A User Control to search for and select a single User (user id) from the Corporate Directory

Code Maintenance

Audit
i Action
. Tracker

ot
p H

-
ol

%

@
(£

Code Maintenance

Code Type m
Cnde|
H Search

N R | R [Y

|

{7

RERRErE

H Save | -_j Reset

*Code Type m
“Cnde|

Dependency I_LI
Code Active ¥

Current User
V1.0.0

(7) Code Search Grid
s Agrid to search for and select codes
e Should display code_type_id, code_name and code_active
e Selected item should open and populate Code Maintenance by code_id.

85

Web Application Design Best Practices 86

Location Maintenance

Audit
3 Action
% |racker

-
ol

& o
[

R
(43

‘-

Location Maintenance

Lacaticnl

State FProvincel "l

ﬁ Search

L S
N R A R S

BESRENNA
=3

[H Save | ._j Reset

*Location I
*Business Unit I_LI
*Region E
*Division |_;|
*Country I_;,

*Address 1 |

Address 2 |

Address 3 |
“City |

*State / Province E
*Postal Code I

Location Active

Current User
V1.0.0

(8) Location Grid
e A grid to search for and select locations
e Should display loc_name, loc_city, loc_zip and loc_active
e Selected item should open and populate Code Maintenance by loc_id.

Audit Table Maintenance

% "
® % Audit
}'3;:.‘ Action
%% lracker
‘g| Audit Table Maintenance
Q From Audit Lead | Q6
0 To Audit Lead I & (5)
% :{ Change
D
[= From Manager | Q ()
(.3 _ To Manager | @, (6
— :ﬂ, Change

Current User
V1.0.0

Audit Team Lead User Update (From User -> To User)
(6) User Select User Control (From)

Web Application Design Best Practices

87

* A User Control to search for and select a single User (user id) from the Corporate Directory

(6) User Select User Control (To)

e A User Control to search for and select a single User (user id) from the Corporate Directory

Audit Location Manager User Update (From User -> To User)

(6) User Select User Control (From)

e A User Control to search for and select a single User (user id) from the Corporate Directory

(6) User Select User Control (To)

e A User Control to search for and select a single User (user id) from the Corporate Directory

Web Application Design Best Practices 88

Action Item Table Maintenance
% % Audit

% e .
;é":... Action
& Tracker
g| Action ltem Table Maintenance
Q From Assignee | &, (6)
o) To Assigneel Q (6
% E{Change
D
)

Current User
V1.0.0

Action Item Assignee User Update (From User -> To User)
(6) User Select User Control (From)
* A User Control to search for and select a single User (user id) from the Corporate Directory

(6) User Select User Control (To)
s A User Control to search for and select a single User (user id) from the Corporate Directory

Database (Tables)

| Name | Description

tbl_code_type Holds code type information, what code relates to what list for use in
the system

tbl_code_audit Holds code audit data, who, what and when the code record was
inserted, changed or deleted by use of Triggers

tbl_code Holds code specific information

tbl_location_audit Holds location audit data, who, what and when the location record
was inserted, changed or deleted by use of Triggers

tbl_location Holds location data, the specific location where the audit is preformed

tbl_audit_audit Holds 'audit' audit data, who, what and when the audit record was
inserted, changed or deleted by use of Triggers

tbl_audit Holds audit data, audit specific information, the where the audit was
preformed, who preformed it and who is the responsible manager

tbl_audit_team_audit Holds audit team audit data, who, what and when the audit team
record was inserted, changed or deleted by use of Triggers

tbl_audit_team Holds audit team data, what person(s) conducted the audit.

tbl_action_item_load Holds action item upload data, temporary load information to be
verified and loaded into the action item table

tbl_action_item_audit Holds action item audit data, who, what and when the action item
record was inserted, changed or deleted by use of Triggers

tbl_action_item Holds action item data, event header detail lines... the type of waste

to dispose of

Database (Triggers)

Web Application Design Best Practices 89

| Name

Description

tgr_code_ins
tgr_code_upd
tgr_code_del
tgr_location_ins
tgr_location_upd
tgr_location_del
tgr_audit_ins
tgr_audit_upd
tgr_audit_del
tgr_audit_team_ins
tgr_audit_team_upd
tgr_audit_team_del
tgr_action_item_ins
tgr_action_item_upd
tgr_action_item_del

Database (Procedures)

Logs inserts to the code table

Logs updates to the code table

Logs deletes from the code table

Logs inserts to the location table

Logs updates to the location table
Logs deletes from the location table
Logs inserts to the audit table

Logs updates to the audit table

Logs deletes from the audit table

Logs inserts to the audit team table
Logs updates to the audit team table
Logs deletes from the audit team table
Logs inserts to the action item table
Logs updates to the action item table
Logs deletes from the action item table

| Name | Description
sp_code_type_sel Selects code type table record information
sp_code_sel Selects code table record information
sp_code_ins Inserts code table record information
sp_code_upd Updates code table record information

sp_location_sel
sp_location_ins
sp_location_upd
sp_audit_opn
sp_audit_upd
sp_action_item_opn
sp_action_item_upd
sp_audit_sel
sp_audit_ins
sp_audit_upd
sp_corp_dir_sel
sp_audit_team_sel
sp_audit_team_ins
sp_audit_team_upd
sp_audit_team_del
sp_action_item_load_sel
sp_action_item_load_ins
sp_action_item_load_upd
sp_action_item_load_del
sp_action_item_load_xfer
sp_action_item_sel
sp_action_item_ins
sp_action_item_upd

Selects location table record information

Inserts location table record information

Updates location table record information

Sets the Status to 'OPEN' on audit table record information
Updates certain fields on audit table record information
Sets the Status to 'OPEN' on action item table record information
Updates certain fields on action item table record information
Selects audit table record information

Inserts audit table record information

Updates audit table record information

Selects Corporate Directory record information

Selects audit team table record information

Inserts audit team table record information

Updates audit team table record information

Deletes audit team table record information

Selects action item load table record information

Inserts action item load table record information

Updates action item load table record information

Deletes action item load table record information

Selects action item load table record information

Selects action item table record information

Inserts action item table record information

Updates action item table record information

Database (Views)

Web Application Design Best Practices

90

| Name

Description

vw_all_audit_data
vw_audit_audit_data

vwW_assessment_audit_data

vW_security audit_data
vwW_psm_audit_data
vw_all_action_data
vw_audit_action_data

VW_assessment_action_data

VW_security action_data
VW_psm_action_data

Database (Groups)

Selects All types of Audits data for reporting

Selects Audit type of Audit data for reporting

Selects Assessment of Audit type data for reporting
Selects Security type of Audit data for reporting

Selects PSM type of Audit data for reporting

Selects All types of Action Items data for reporting
Selects Audit type of Action Item data for reporting
Selects Assessment type of Action Item data for reporting
Selects Security type of Action Item data for reporting
Selects PSM type of Action Item data for reporting

| Name

Description

AAT_SysAdmin
AAT_AuditLead
AAT_AssmtLead
AAT_Seclead

System Administrators
Audit Team Leaders
Assessment Team Leaders
Security Team Leaders

AAT_PSMLead PSM Team Leaders
Reports
| Name Parameters
All Detail Data Date Range, Business Unit, Region, Division, Open/Completed

Audit Detail Data
Assessment Detail Data
Security Detail Data
PSM Detail Data

All Detail Data

Audit Detail Data
Assessment Detail Data
Security Detail Data
PSM Detail Data

Date Range, Business Unit, Region, Division, Open/Completed
Date Range, Business Unit, Region, Division, Open/Completed
Date Range, Business Unit, Region, Division, Open/Completed
Date Range, Business Unit, Region, Division, Open/Completed
Due Date Range, Priority, Open/Completed
Due Date Range, Priority, Open/Completed
Due Date Range, Priority, Open/Completed
Due Date Range, Priority, Open/Completed
Due Date Range, Priority, Open/Completed

Web Application Design Best Practices 91

Testing Scenarios
Test the following web-based AAT application functionality:
1. Code Maintenance
a. Search for an existing record
i. Code Search page opens
ii. Parameters limit search
iii. Search returns results
iv. Returns resulting record to the Code Maintenance page
b. Add arecord
I. Required fields must be filled in to Save
ii. Inserts entire record into the database
iii. Inserts ‘ADD’ record into the Code Audit table — Admin
c. Change arecord
I. Required fields must be filled in to Save
ii. Updates correct record into the database
iii. Inserts ‘CHG’ record into the Code Audit table — Admin

2. Location Maintenance
a. Search for an existing record
i. Location Search page opens
ii. Parameters limit search
iii. Search returns results
iv. Returns resulting record to the Location Maintenance page
b. Add arecord
i. Required fields must be filled in to Save
ii. Inserts entire record into the database
iii. Inserts ‘ADD’ record into the Location Audit table — Admin
c. Change arecord
i. Required fields must be filled in to Save
ii. Updates correct record into the database
iii. Inserts ‘CHG’ record into the Location Audit table — Admin

3. Audit Table Maintenance
a. Re-open Audit Records
i. Generates Notification that the Audit record was Changed (See #9)
ii. Status field on the Audit record is set to ‘OPEN’
iii. Inserts ‘CHG’ record into the Audit Audit table — Admin
b. Update Audit Records
i. Generates Notification that the Audit record was Changed (See #9)
ii. Field data matching Criteria is changed
iii. Inserts ‘CHG’ record into the Audit Audit table — Admin
c. Delete Audit Records
i. Generates Notification that the Audit/Action Item records were
Deleted (See #9)
ii. Deletes Audit and all associated Action Item records from the
database

Web Application Design Best Practices 92

iii. Inserts ‘DEL’ record into the Audit/Action Item Audit tables — Admin

4. Action Item Table Maintenance
a. Re-open Action Item Records
I. Generates Notification that the Action Item record was Changed
(See #9)
il. Status field on the Action Item record is set to ‘OPEN’
iii. Inserts ‘CHG’ record into the Action Item Audit table — Admin
b. Update Action Item Records
i. Generates Notification that the Action Item record was Changed
(See #9)
ii. Field data matching Criteria is changed
iii. Inserts ‘CHG’ record into the Action Item Audit table — Admin
c. Delete Action Item Records
i. Generates Notification that the Action Item record was Deleted
(See #9)
ii. Deletes Action Item record from the database
iii. Inserts ‘DEL’ record into the Action Item Audit table — Admin

5. Audit Maintenance
a. Search for an existing record
i. Audit Search page opens
ii. Parameters limit search
iii. Search returns results
iv. Returns resulting record to the Audit Maintenance page
b. Add arecord
i. Inserts entire record into the database
ii. Inserts ‘ADD’ record into the Audit Audit table — Admin
c. Change arecord
i. Updates correct record into the database
ii. Inserts ‘CHG’ record into the Audit Audit table — Admin
d. Complete a record
i. Updates correct record into the database
ii. Inserts ‘CHG’ record into the Audit Audit table — Admin
e. Add Audit Team members (See #6)
f. Upload associated Action Item records (See #7)

6. Audit Team Maintenance (Add, Change and Delete Records)
a. Add arecord
I. Audit Team Add page opens
ii. Parameters limit search
ili. Search returns results
iv. Inserts entire record into the database
v. Inserts ‘ADD’ record into the Audit Team Audit table — Admin
b. Delete a record
i. Deletes correct record into the database

Web Application Design Best Practices 93

ii. Inserts ‘DEL’ record into the Audit Team Audit table — Admin

7. Action Item Upload

a. Upload a file
I. Browse for formatted MS Excel upload file
ii. Inserts all file contents into the Action Item Load table

b. Resolve any errors
i. Identify any error fields
ii. Update and save any error fields

c. Add all records
i. Inserts entire record into the database
ii. Inserts ‘ADD’ record into the Action Iltem Audit table — Admin

8. Action Iltem Maintenance
a. Search for an existing record
i. Action Item Search page opens
ii. Parameters limit search
iii. Search returns results
iv. Returns resulting record to the Action Item Maintenance page
b. Add arecord
I. Generates Notification that the Action Item record was Added (See
#9)
ii. Inserts entire record into the database
iii. Inserts ‘ADD’ record into the Action Iltem Audit table — Admin
c. Change arecord
i. Generates Notification that the Action Item record was Changed
(See #9)
ii. Updates correct record into the database
iii. Inserts ‘CHG’ record into the Action ltem Audit table — Admin
d. Complete a record
I. Generates Notification that the Action Item record was Completed
(See #9)
ii. Updates correct record into the database
iii. Inserts ‘CHG’ record into the Action Item Audit table — Admin

9. Notifications
a. Notification was generated
b. Notification was e-mailed to correct individuals
c. Notification was copied to the AAT mailbox

Web Application Design Best Practices 94

Annotated Bibliography

Armstrong, D. J. (2006, Feb.). The quarks of object-oriented development. Communications of
the ACM, 49(2), 123-128. do0i:10.1145/1113034.1113040.

The author took an in depth look at Object-Oriented Development (OO) as to why it has
not lived up to its potential. The author asserts that there are still issues with
understanding the basic concepts of OO and how they fit into a coherent scheme.
Armstrong outlined the quarks of OO by defining and giving the reader some background
on the major concepts of OO; inheritance, object, class, encapsulation, method, message
passing, polymorphism and abstraction. Armstrong then examined the OO taxonomy and
how the concepts fit together to create an approach into two constructs; Structure
(Abstraction, Class, Encapsulation, inheritance and Object) and Behavior (Message
Passing, Method and Polymorphism). Structure is focuses on the relationships between
the classes and objects and also how they are structured. Behavior focuses on the object
actions within the system. The author then explains why there has been no consensus on
the concepts of OO because there are no set of standards established to aid in the learning
of OO. This was a very good article for a reader who was unsure of the concepts and
structure of OO. The concepts were defined very well and how they fit together was also
explained in such a way that would be understandable. The author was knowledgeable
and seemed to understand how to explain the concepts to others.

Chen, A. N. K., Goes, P.B., Gupta, A., & Marsden, J. R. (2004, June). Database design in the
modern organization—identifying robust structures under changing query patterns and
arrival rate conditions. Decision Support Systems, 37(3), 435-447.

The authors illustrate that there are many variables to selecting the best database design
to satisfy a specific need, there is no one solution that would fit under all conditions. The
authors present their approach to understanding the best design for a given database, their
approach consisted of five steps; construct a feasible database; measure processing times
for each query type; identify top performers; evaluate the top performers with additional
performance measures to identify robust performers; evaluate the robust performers
across complexity levels to make selections. The authors laid out their example database
application environment; the tables and how they relate as well as keys and data sizing.
The example database testing was comprehensive and used a query pattern to evaluate 5
components on both non-congested and congested systems. The authors were able to
evaluate and select potential good performers using their five steps to determine robust
performers. This article was written at a high-level, it was understandable to someone
who had little prior knowledge of the subject but was not very useful in understanding
how to replicate the process.

Web Application Design Best Practices 95

Cook, R. (2007, June 19). Securing the endpoints: The 10 most common internal security threats.
Retrieved June. 17, 2009, from the C1O.com web site:
http://www.cio.com/article/120101/Securing_the_Endpoints_The_Most_Common_Intern
al_Security_Threats

The author looks at the top ten most common security threats to internal networks. The
analysis was done based on endpoints; any device connected to the corporate network,
desktops, laptops, PDAs and cell phones. The ten major problem areas are, USB
Devices: anyone who can get access to a network asset, can download or upload from a
USB drive and there is little security in place to stop that. Peer-to-Peer File Sharing:
unauthorized programs allowing file sharing through a secure network. Antivirus
Problems: companies not updating their antivirus software often and on a regular basis.
Outdated Microsoft Service Packs: companies not keeping their vendor supplied software
current. Missing Security Agents: security agents not being installed which can alert
companies as to network traffic, missing company assets or verify that software patches
have been installed. Unauthorized Remote-Control Software: software that can allow
someone possibly outside the network to access and control an internal network asset.
Media Files: unauthorized audio and video files can contain hidden malicious programs.
Unnecessary Modems: an unsecured modem is a direct pathway into a company’s
network. Unauthorized or Unsecured Synchronization Software: software that
synchronizes different devices can potentially transfer sensitive company data without the
user even knowing it. Wireless Connectivity: most laptop computers have a built in
wireless access, which could be used for malicious purposes. It is important to control as
many of these security threats as you can, you will never be able to eliminate all of them,
but you should strive to attain as close to that as you can. This was a very interesting and
thought provoking article, it really opened my eyes to the security threats that are very
commonly used.

Davidson, L. (2007, Feb. 26). Ten common database design mistakes. Retrieved June. 15, 2009,
from the Red Gate Software web site: http://www.simple-talk.com/sql/database-
administration/ten-common-database-design-mistakes/

The author outlines the ten most common mistakes in designing databases and gives
examples and real world insight into the problem. Poor design/planning; the database is
the cornerstone of most projects, so every aspect must be thought out before a line of
code is written. Ignoring normalization; a single table cannot do it all, break the data
down into as small a logical group as you can for performance and ease of development.
Poor naming standards; consistency and readability are the keys, name it what it is and be
consistent across the application. Lack of documentation; good standards are only part of
it, document aspects so someone else can understand how the system works, it just might
be you who needs a refresher. One table to hold all domain values; break them up into
smaller logical groups, it is more difficult, but worth the time for maintainability. Using
identity/guid columns as your only key; an identity field should be used in conjunction
with a natural key, something a user could understand. Not using SQL facilities to protect
data integrity; base rules such as nullability should be implemented in the database, any
aspects that are rigid and will not change. Not using stored procedures to access data;

Web Application Design Best Practices 96

stored procedures insulate the database layer from the users and assist in maintainability,
encapsulation, security and performance. Trying to build generic objects; be specific,
there are performance concerns to trying to be too generic. Lack of testing; test the
database piece by piece to ensure it is working, it is harder to troubleshoot and correct
further down the line. This was a very well written article, full of real world examples
from an author who is both passionate and knowledgeable on the subject.

Fowler, M. (2003). Patterns. IEEE Software, 20(2), 56-57. doi:10.1109/MS.2003.1184168.

Fowler states his reasons for using design patterns. Patterns are a good way to assist the
designer in solving problems in a controlled manor, solving recurring problems with
common solutions and designing in a consistent structured way. Patterns are a tool to
assist in solving a problem; they themselves are not a solution. Implementing patterns in
libraries is not advisable, the pattern may be hard to find and understand; developers
move from language to language the pattern by itself would be more useful and the
library can implement a pattern, but it is up the developer on how to use it. Experts might
find patterns unnecessary, they might not learn anything new, but they can be a good tool
to teach others and have a common vocabulary so everyone can understand with little
explanation. Pattern overuse is a problem; if a pattern does not contribute it should be
removed. The author has a great deal of experience in this field and his insights are
displayed in this article. The article is a good piece to understand the important aspects
of design patterns.

Fowler, M., Sadalage, P. (2003, Jan.). Evolutionary database design. Retrieved June 19, 20009,
from the Martin Fowler web site: http://www.martinfowler.com/articles/evodb.html

The authors put forth some very interesting ideas about evolutionary database design.
The first aspect was dealing with change; the design is an on-going process, is iterative in
nature and the designer might run through many life-cycles over the life of the project.
The authors also highlighted the fact that they not solved all the problems of evolutionary
databases. This approach involves several practices, DBAs collaborate closely with
developers; constant communication is very important. Everybody gets their own
database instance; developers get their own sandbox to play in that will not affect anyone
else. Developers frequently integrate into a shared master; development work flows
frequently to the master from which all work flows back down. A database consists of
schema and test data; the actual database and standardized test data so all developers test
with the same subset of data. All changes are database refactorings; control the changes,
change all aspects so nothing becomes disconnected. Automate the refactorings; script all
changes so they can be consistently applied. Automatically update all database
developers; push the changes from the master to the developers automatically so
everyone has the same database to develop on and no developer is disconnected from the
others. Clearly separate all database access code; have a clearly defined data access layer
in the application, invisible to changes in the actual database. The authors also
highlighted variations to this design, keeping multiple database lineages; in more
complex applications multiple versions of the database may need to be maintained. You
don't need a DBA; most of the work can be done by developers. The authors also stated it

Web Application Design Best Practices 97

is important to automate as much of the repetitive tasks as can be. This was a very
interesting article; it presented a new way of looking at database design and outlined best
practices for that type of development.

Fraternali, P. (1999, Sept.). Tools and approaches for developing data-intensive web

Hager,

applications: a survey. ACM Computing Surveys (CSUR) archive. 31(3), 227-263.
d0i:10.1145/331499.331502.

The author outlined web-application development in terms of software engineering,
architectural and applicative issues. Process: the development lifecycle of the application,
consisting of the following steps: requirements analysis, conceptualization, prototyping
and validation, design, implementation and finally evolution and maintenance. Models,
Languages, and Notation: characterized by three major design dimensions: structure,
navigation and presentation. Reuse: the ability to reuse an object at any level in the
development cycle. Architecture: the physical arrangement of the application and its
access. Usability: the presentation and navigation as well as the flexibility and proactive
nature of the application. The author also outlined the current development tools. Visual
Editors and Site Managers: a visual way to write the underlying web code. Web-enabled
Hypermedia Authoring Tools: similar to visual editors, but from a different origin for
developing off-line code. Web-DBPL Integrators: database driven development tools.
Web Form Editors, Report Writers, and Database Publishing Wizards: using traditional
database design concepts and development tools to create data-intensive applications
Web applications. Multiparadigm Tools: a combination of the previously mentioned
visual and database driven tools. Model-Driven Web Generators: use conceptual
modeling and code generation techniques to the development of Web applications.
Middleware, Search Engines, and Groupware: middleware is the communication piece
between the web application and the database, search engines are logical navigation of
the application and groupware provide access, collaboration and workflow. The author
then evaluated the relationship between what was termed as “state-of-the-practice
solutions” and relevant areas along with the research prospective. Fraternali also
discussed in detail five research projects in data-intensive Web development. The author
then discussed his background research in the areas of modeling notation, processes and
other design tools. This was a very good article, there was a considerable amount of
pertinent information as well as referential and background to the study. The research
was comprehensive and the author’s conclusions were sound and well formulated.

D., Kibler, C., & Zack, L. (1999, May). The basics of user-friendly web design. Journal
for Quality & Participation, 22(3), 58-61. Retrieved June 20, 2009, from Academic
Search Premier database.

The authors discuss the challenges and techniques around creating Web applications in a
user-centered approach. The advantages to Web applications also cause some problems;
multiple browser compatibility, network connectivity and individual user browser
customizations. The users must be involved in the design, without that involvement the
application may be frustrating and not useful for users. Setting goals as to when the
application is complete and can move into production with the understanding that it is not

Web Application Design Best Practices 98

perfect, but through feedback the application will improve. The designer must also know
who they are designing the application for; what they should know, what their
experiences have been, what they do in their job, what they expect from the application
and what other applications have they used that may be helpful. Once the user has been
understood, the actual tasks the application will perform are analyzed. With the task
information the process can start; build a prototype and work with the users, research
how others solved similar issues, walkthrough the design with the users to get feedback,
build the applications and allow a subset of users to test it and finally, distribute the
application to the entire population and survey them for feedback. This was a very good
article; the authors knew their subject matter and presented it well. | found some useful
tips on web application design.

Hice, R. (2008, November). Surrounded: The web is inescapable. Scientific Computing, 25(6),

Kotek,

18-20. Retrieved June 20, 2009, from Academic Search Premier database.

The author started out with an amusing anecdote to illustrate how users are constantly
connected to others by the cell phone. Hice continues on to explain through the use of
cell phones and internet access on commercial airlines how more and more applications
are becoming Web-based or Web-enabled. The author highlights how applications are
migrating from PC or client/server based to Web-based. Companies started looking at
centralizing applications using Citrix Mataframes to make them Web-available; the
application was just running on a remote computer. Early attempts at Web-enabled
applications meaning they still required software to be loaded on the workstation and
server were written in HyperText Markup Language (HTML); they were just not as good
a user interface as the applications they were replacing. More recently with the advent of
eXtensible Markup Language (XML) and Web services the applications are truly
becoming Web-based; better functionality and usability as a user interface. A good
thought provoking article highlighting the trends of applications moving from PC or
client/server based to fully Web-based.

B. (2002, Oct. 30). MVC design pattern brings about better organization and code reuse.
Retrieved June 16, 2009, from the TechRepublic web site:
http://articles.techrepublic.com.com/5100-10878_11-1049862.html

The author explains how MV C works to by enforcing the separation of the different
aspects of the application into; the model, the view and the controller with each handling
a different set of tasks. The view does very little processing, it just handles the input from
the users and returns the output. The controller interprets requests from the view and
routes them to the appropriate portion of the model to complete the request. The model is
the business logic and communication to the data storage which returns natural data to the
controller and on to the view. The author also explains why MVC is an important design
pattern for web applications. Multiple views can access a single model, because the view
and model are disconnected, the views can be swapped out with no changes to the model.
Changes to data access and business rules can be made easier within the model and
changes there will be invisible to the controller and the view. The concept of a controller
is also powerful, it connects the two independent pieces together, so either one can

Web Application Design Best Practices 99

change without affecting the other, it allows for reusability of the different pieces in the
model and view. The author highlighted the drawbacks of the MV C pattern. MVC is
complex and requires a great deal of planning and attention to detail. MVVC might not be
worth the trouble for small or even medium sized applications. This article was a good
overview of the MV C design pattern. The author spoke to the subject with knowledge
and understanding. | however disagree with the assertion that MVC is too much trouble
for small or medium applications, if you understand the implementation, the advantages
of the highly separated system outweigh the extra work in implementing MVC.

Meyers, S. (2004). The most important design guideline? IEEE Software, 21(4), 14-16.
d0i:10.1109/MS.2004.29.

In this article the author emphasized many good practices for designing and developing
good user interfaces. His underlying idea is to “make interfaces easy to use correctly and
hard to use incorrectly.” Meyers states that it is the responsibility of the designer to make
the interface user friendly and if they do not, it is their fault if anything goes wrong, not
the user. The designer must design the interface to not allow the user to make mistakes.
The author asserts that using drop-down lists to only allow the user to select valid values,
but this is not always the ideal, it might cause more errors than it solves. The designer
must consider all the ways a user could misuse the interface in considering a design.
Another aspect to good design is releasing and destroying object no longer needed. Clean
up will help with performance and keep the interface running smoothly. The author had a
very good understanding of designing user interfaces. The article showed how important
the actual design portion of development truly is, and that it is the ultimate responsibility
of the designer to make the interface useable and perform well.

	Develop Best Practices for Designing Internal Business Database-Driven Web Applications
	Recommended Citation

	Web Application Design Best Practices

