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Abstract 

 
When developing using newer technology, it is important for smaller information 

technology organizations to have universally accepted set of best practices to be able to 

successfully complete that type of endeavor. How can these universally accepted set of best 

practices be developed? Conducting research on accepted best practices can build the basis for 

your theories and assumptions. Next, in the context of your applications, develop an example 

application in the newer technology to test your theories and assumptions. Build the application 

like a construction project, the initial design is the blueprint, the database is the foundation and 

the user interface is the actual building. When you get right down to it, the principals of 

simplicity, consistency and user interaction are always best practices in developing applications. 
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Chapter 1 – Introduction 

  

Small Information Technology (IT) organizations that have recently attempted to develop 

database driven, internal web-based business applications to replace outdated windows-based 

applications have been unsuccessful. These organizations were unsuccessful because they do not 

have a universally accepted set of best practices to use for such development. 

Hager, Kibler and Zach (1999) state that those who have used a web application have 

seen how “this world-changing technology… is burgeoning” and that “many managers are 

struggling with the various ways the concepts and technology can be leveraged to create 

corporate Intranets”. 

 “Companies wanted a way to centrally serve [applications], so some started to use Citrix 

Metaframes… which were essentially client-server systems with the client running on remote 

machines” (Hice, 2008, p. 20). Organizations are moving away from terminal servers (Citrix) 

and windows-based applications to internal web applications. Hice (2008) goes on to say that 

web applications “are the wave of the future” and that major software vendors are moving 

toward web-based systems. Organizations have found that they do not possess the knowledge 

base to successfully implement web applications; they are structured differently than old 

windows-based applications. Some organizations contract with outside web application 

developers to develop systems to help them gain the knowledge of the best practices to design 

and implement these types of applications on their own. Unfortunately, even the contractors do 

not always possess the knowledge of the best practices; there is often very little consistency in 

their approach and methodology. Organizations often cannot take anything the developers create 

and apply it to designing and developing new applications internally. 
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The goal of this research is to identify the best practices for developing and implementing 

new business applications by creating an example internal web-based application for 

organizations to understand and implement the best practices. The focus of this research is 

narrow in the context of understanding best practices for a basic business web application with a 

database data repository, any narrower, and the research would lose the validity of a real world 

problem. 
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Chapter 2 – Review of Literature and Research 

 

The most important step in developing an internal business web-based application is the 

actual design.  Davidson (2007) said it best: 

…would you hire a contractor to build a house and then demand that they start pouring a 

foundation the very next day? Even worse, would you demand that it be done without 

blueprints or house plans? Hopefully, you answered "no" to both of these. A design is 

needed make sure that the house you want gets built, and that the land you are building it 

on will not sink into some underground cavern. If you answered yes, I am not sure if 

anything I can say will help you. (¶ 6) 

A good, well thought out foundation can make or break the project. The design process cannot 

exist without the most important participants, the system users themselves. It is very important to 

get the users involved early and often. Hager, Kibler and Zach (1999) highlight the need to 

include the users: 

User-centered design (UCD) is a technique for designing interfaces… that includes 

continuous and early focus on the users’ tasks and goals. It is the best way to get potential 

end users to participate in the designing the interface, leveraging their specific knowledge 

as part of the overall process. (p. 58) 

Meyers (2004) puts forth an interesting statement about the most important design guideline; 

“Make interfaces easy to use correctly and hard to use incorrectly”. He also states that “if a user 

makes a mistake when using your interface, it’s your fault” (Meyers, 2004, p. 14). Understanding 

how a user will use a system can assist an application developer in designing a system the user 
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will actually use successfully. “[D]esigners need to train themselves to anticipate what clients 

might reasonably like to do, and then facilitate that activity” (Meyers, 2004, p. 16).  

Design patterns can be very useful in many aspects of designing an application. Fowler 

(2003) says that “patterns are half-baked – meaning you always have to finish them yourself and 

adapt them to your own environment”. A design pattern is just that, “a model or guide for 

something to be made” (“Pattern,” 2009). Patterns can be useful in teaching other, less 

experienced, developers and also develop a standard vocabulary so everyone can understand the 

overall design (Fowler, 2003, p. 57). The “Model-View-Controller (MVC) is a widely used 

software design pattern …[and] is a useful addition to a toolkit, no matter what language you 

choose” (Kotek, 2002, ¶ 2). MVC is a logical separation between the View; the user interaction 

piece, the Model; the business rules and data processing piece and the Controller; the 

communication avenue between the Model and View (Kotek, 2002). The most important aspect 

of MVC is that because of the disconnected nature, the different pieces can be changed without 

affecting the other pieces.  

Object-Oriented (OO) Development concepts are essential in designing and developing 

web applications. Armstrong (2006) highlights the need to understand OO development 

concepts: 

Understanding what concepts characterize OO is of paramount importance to both 

practitioners in the midst of transitioning to the OO approach and researchers studying 

the transition to OO development. How can we hope to achieve the productivity gains 

promised by the OO development approach, effectively transition software developers, or 

conduct meaningful research toward these goals, when we have yet to identify and 

understand the basic phenomena? (p. 124) 
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Armstrong (2006) goes on to state that “an established set of fundamental OO concepts within a 

taxonomy may enhance the maturity of the OO development discipline through standardization, 

and increase the portability of developers across organizations and environments”. A firm 

understanding of OO concepts implemented in an application can assist a designer in 

maximizing the scalability, extensibility and usability of the application.  

Davidson (2007) states that “the database is the cornerstone of pretty much every 

business project” (¶ 8), data is the key, entering, storing, processing, manipulating and displaying 

data for whatever purpose the user wishes. The concept of an evolutionary database design 

discussed by Fowler and Sadalage (2003) has some merits, the “design of the system has to 

evolve through the various iterations of the software” (¶ 2). Through tightly controlled change, 

the database is allowed to grow and mature throughout the life-cycle of the project (Fowler & 

Sadalage, 2003). Automated refactoring is very important in this type of development, 

everything is controlled; the database schema and test data is rebuilt to ensure integrity of the 

entire system (Fowler & Sadalage, 2003). 

Performance is an important part of any database, the better a developer understands that, 

the better the application. Chen, Goes, Gupta and Marsden (2004) explored query patterns and 

found it is not possible “to find a single database structure that is best under all conditions[, but it 

is possible]… to identify database structures that perform robustly”. It is a worthwhile effort to 

identify and design for the most robust structure possible. 

Fraternali (1999) explains about how data-intensive web applications will cope with the 

special requirements: 

As has happened in the past with other emerging technologies such as databases and 

object-oriented programming languages, methodologies and software tools may greatly 
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help in mastering the complexity of innovative applications by fostering a correct 

understanding and use of a new development paradigm, providing productivity 

advantages, and thus reducing the risk inherent in application development and 

migration. (p. 228) 

These are new types of “hybrid” applications, web application and information system 

(Fraternali, 1999). 
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Chapter 3 – Methodology 

 

The research methodology will be that of design science research, building an example 

ASP.NET web application driven by a Microsoft SQL Server 2005 database to gain the 

knowledge of what are the best practices associated with designing and building those types of 

applications.  

The example application will be a simple data in / data out type of application with basic 

functionality to search for records, select records, add, change and delete records. It will be 

constructed as a three-tier architecture, using the Model-View-Controller (MVC) architectural 

pattern taking full advantage of Object-Oriented (OO) development concepts. All of the CRUD, 

Create, Read, Update, and Delete operations will be handled by Stored Procedures on the 

database side. Data change logging will be handled by Insert, Update and Delete triggers on the 

data table, inserting values into a specific log table. Application security will be handled by 

Active Directory (AD) for domain access and the system users, along with their associated 

security levels stored in database tables, used by the web user interface to control what a 

particular logged in user can do or see.  
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Chapter 4 – Project Analysis and Results 

 

The example application was designed to replace an existing application that was 

cumbersome and time consuming to use, as well as, lacking key functionality and scalability 

required by the users to perform their job. The users requested an application that was simpler 

and more streamlined; facilitating quick, easy and reliable user interaction. In addition to the user 

experience, they also requested enhanced security features as well as increased flexible search 

features. 

The new Audit Action Tracker (AAT) application will make the user interface simpler 

for the end user by taking advantage of Web-based technology. AAT redesigns the storage of 

data in a Microsoft SQL Server 2005 database using tables, triggers, procedures and functions to 

better manage data and develop reports with Crystal Reports XI for display in a company-wide 

reporting system, BusinessObjects Enterprise XI.  This system will meet the functional and 

security requirements by managing the data, capturing an audit trail, and making the data more 

accessible and reportable. 

Initial Design 

Initial design is the cornerstone of any good application, the better the foundation the 

better the implementation and the more that the users will accept it. The more questions that can 

be answered in the beginning, the smoother the actual development will be. In small Information 

Technology (IT) organizations, the developer has to perform all the different jobs in the 

application development life-cycle, becoming the architect, the designer, the coder, the 

documenter, the tester as well as the developer. With all the responsibility falling on the 
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developer to do everything, it is important for the developer to address three areas in the initial 

design phase, user interaction, requirements gathering and documentation. 

User Interaction 

With regard to a business application, the user is the most important element. The 

business application itself is a tool that helps the user do their work more easily and efficiently. 

The user is a wealth of knowledge in what will help them perform their work better. The users 

know what they want or do not want in an application, so it is imperative to involve them in 

every aspect of the design and development process to ensure they will be satisfied with the 

finished product. Hager, Kibler and Zach (1999) said it best: 

Besides the challenges imposed by web technology, the real challenges of web 

applications involve getting the content right so the users can do the work they need to 

and leave satisfied. The only way to get it right is with early and continuous focus on 

users and their tasks. Without user-centered design, applications are almost always 

frustrating to use, forcing many users to leave without doing what they came to do. 

Obviously this isn’t good for a company’s bottom line. (p. 59) 

If users feel they have a voice in designing the application, they will take more pride in working 

on it, work harder understanding what they truly need and when it is all finished, will take 

ownership in using the application. 

Start small with a core group of users, the most knowledgeable and experienced, and then 

expand the group to involve more of the user community to get a wider perspective. This will 

allow the developer to have a basic understanding and be able to present ideas for feedback from 

the user group. 
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Weekly meetings are crucial to the success of the process, providing a forum for users to 

see the progress and give feedback. Having an agenda and sticking to it, is a good structure to 

help in the design meeting process. Meetings are not value-added if they are constantly off track, 

other unrelated topics are introduced or the users are uninterested or otherwise occupied. 

Getting the users involved in testing the application or validating a prototype of the 

application will give them a better understanding of what they like and do not like and what the 

application can do. If the users see it in operation and work with it, they will provide better 

feedback to the developer. In most cases, for small IT organizations, it is not practical to build a 

prototype, but if pieces of the application, the most representative functionality pieces, can be 

built, the users can extrapolate what the other pieces of the application will be like. 

Requirements Gathering 

Understanding how an application is to be used, who is to use it and what they will be 

doing with it is very important for the developer. The developer must have an understanding of 

the overall process and the high-level functionality required for a user to perform their work 

activities and, once those are understood, they must be able to compile and articulate that 

information back to the users in a logical, understandable format, so that the user understands 

how the application will look and perform. Developers must understand and determine the 

source of requirements to build the application use case diagrams and data elements. 

Source of requirements. 

There are two main sources of requirements; replacing an existing application and user 

developed requirements. . Based on the different sources of requirements, are different 

approaches the developer must take to extract the information needed to formulate the initial  



Web Application Design Best Practices 11 

Table 1: An analysis of the pros and cons of the different sources of requirements.  The table 

below contains data on the pros and cons of replacing an existing application vs. user 

requirements. 

 

Source Pros Cons 

Replacing an Existing 

Application  

 Users will have a better 

understanding of what they like 

and do not like in an application 

 Developers will be able to work 

with the existing application to 

gain a better understanding of the 

user requirements 

 Both users and developers will 

have a common frame of 

reference 

 Users may be fixated on how the 

existing application works and 

not receptive to process 

changes... "this is the way we 

have always done it" 

 Users may feel threatened by a 

replacement application in either 

workload or employment 

 The application itself may be too 

complex to replicate in whole or 

part 

User Developed 

Requirements 

 The application is a blank slate, 

specific process and work-flow 

can be built exactly to the user 

specifications 

 Users will be focused on 

functionality and process and 

will be free to think outside what 

they already know and help 

streamline their work 

 Developers will have the 

opportunity to interject new and 

simpler processes into the design 

that the user may not have 

considered 

 The application is a blank slate, 

if the user requirements are too 

vague, the process to understand 

and refine the design may be a 

long process 

 Developers have to work harder 

to understand functionality and 

process, more interaction with 

the users and more example 

development must be done 

 Based on arbitrary, grandiose 

requirements and development 

limitations the application itself 

may be too complex to build 
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design. When the developer is replacing an existing application, the focus is on how the existing 

application works and how the users want to add to or change the functionally to better suit their 

needs. The developer must be granted access to the existing application in a test environment and 

given user contacts to work help understand the required functionality. As the developer is 

working with user identified requirements, the focus is on understanding the vision of the users, 

what functionality they require, want and would like to have. The developer must work closely 

with the users to constantly refine the ideas into a workable design. 

There are advantages and disadvantages to both sources of requirements as shown in 

Table 1. There are also different approaches to gathering requirements for both sources of 

requirements. The developer must understand these to be able to successfully develop an initial 

design. Once the developer has the underlying understanding of the requirements, the building of 

the artifacts begins. 

Defining use cases. 

The use case is the focal point of the initial design, it is the definition of the specific 

activity to be preformed and which specific actors will be performing them. The use cases can be 

presented in two forms, the use case diagram shown in Figure 1 and the use case narrative shown 

in Figure 2.  

The use case diagram and the use case narrative most often go together when detailing 

the use case design. The use case diagram is a good visual representation of the interaction 

between the actor and an application function. The use case narrative is a textual representation 

of the interaction between the actor and an application function with more detail. 
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Figure 1: Use Case Diagram. 

 

Figure 2: Use Case Narrative. 
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Defining data elements. 

Once the use cases are defined, the developer then must delve into more detail about what 

specific data elements must be captured. The data elements drive the database design as well as 

the actual model, the page and user control design in the application. As shown in Figure 3, a 

simple spreadsheet can contain all the pertinent information the developer needs to do the actual 

implementation. 

 

Figure 3: Data Elements Spreadsheet. 

The data element lists will allow the developer to map out the construction of the 

database tables, primary and foreign keys, unique index, stored procedures and how they relate 

to each other, as well as the application domain objects, implementations and the pages/controls 

themselves. It is an important tool to keep updated as a reference to what the pieces should all 

look like. 

Defining visual aids. 

A picture really is worth a thousand words, but only if it is understandable to the 

consumer. It is important to present the different functions to the user in a visual form, to show 

what the look and feel of the application will be. The user will be able to take that visual aid and 

be able to comment and make changes to the overall design of the functions. 

Figure 4 is a visual example of a specific use case and how it might be built in the 

application; the user can see the navigation, see the different functions available and see how the 

data elements will be incorporated into the application. 



Web Application Design Best Practices 15 

 

Figure 4: Use Case Visual Aid. 

 

Figure 5: Marked-up Use Case Visual Aid. 
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Figure 5 shows the visual aid after it has been marked-up by the users. When the look and 

feel of the application has been refined and finalized the developer can start work on a prototype 

or example function of the application for the users to see.  More revisions may be necessary, but 

with a little extra time in the initial design, coding revisions will more likely be minimal. 

Documentation 

Documentation is very important to a successful project as it allows all the individuals 

involved to take time to think out the aspects of the application and write it down so that 

everyone has a source for understanding what is required, how it will be produced and that the 

responsible individuals approve. 

Producing the scope document. 

The scope document is a detailed document that defines the justification for “why” the 

application is being developed, the high-level usage scenarios, what the application will 

exclusively entail and specifically, what it will not. In smaller organizations, this document is the 

collaboration between the users and the developers to produce and refine it into something that 

all can agree upon. 

Producing the design document. 

The design document is a compilation of the finalized design artifacts produced by the 

developer. The main purpose of this document is for the developer to have something to work 

from and also, so any future projects or developers can see how the application was designed and 

take away that knowledge. 
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User design acceptance and signoff. 

The acceptance and signoff document is user approval to move forward. This could 

consist of a single page signed by the user or an email stating the user has reviewed and 

approved the initial design and the development work can proceed. 

Security Design 

The initial design is the blueprint of the application; the security is the gated fence around 

the application through which no one passes without authorization. Security is a very important 

aspect to any business application large or small, windows or web, you must control who has 

access and at what level. The developer must take into consideration many aspects of security, 

how many types of individuals will access the application, what level of granularity the security 

must be and how the security will be presented to the users. The level of complexity depends 

upon the application, from any user having access to the application with access to all functions 

to a particular user having access to only particular functions. Internal business applications have 

traditionally encompassed all aspects of application security; they stored the user’s passwords 

and access levels. More recently, internal business applications have the advantage of being able 

to take benefit of network security to control application access. The developer has to build on 

the network security to store user and access information in the database to be used to specify 

access within the application. There are advantages and disadvantages to both of these security 

architectures. Table 2 shows the advantages and disadvantages to both of these security 

architectures. 

Network Setup 

All users that will access the application must have network security credentials. When 

the user accesses the network, they automatically have access to the application without having  
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Table 2: An analysis of the pros and cons of the different security architectures.  The table below 

contains data on the pros and cons of a traditional application based security vs. network 

enabled security. 

 

Security Architecture Pros Cons 

Traditional 

Application Based 

Security 

 

 Better access control to the 

application, all user ids and 

passwords are stored in the 

database and the application is 

more secure 

 System administrators would be 

able to more quickly grant users 

access to the application 

 The user does not need to have 

network access to be setup in the 

application  

 More maintenance issues 

because all user's passwords are 

stored in the application and 

must be encrypted 

 Logon is required each time the 

user accesses the application 

 The user would have to 

remember a different password 

to access the application 

Network Enabled 

Security 

 Seamless security into the 

application; the user is 

authenticated by network 

security and proceeds into the 

application 

 If a user's network security 

access is disabled, they would be 

disabled in the application at the 

same time 

 Easier user maintenance, ties the 

user’s network id to what 

security access they require, no 

password storage 

 There is a security risk, if a user 

does not lock their computer 

when not in the area, so anyone 

could access the application AS 

that particular user from that 

computer 

 The user is required to have 

network security credentials to 

access the application 

 More than a single individual 

must be involved in setting up 

application access 
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to login again. Seamless access and not having to remember another password is a big advantage 

to the users. The security risk to this type of architecture can be mitigated by password protected 

screen savers and user training. The advantages outweigh the risks. 

Database Setup 

The database will contain at least one table that contains the user’s network identification 

and their security access. More complex security architecture will contain two or more tables to 

hold users, groups and security information. 

 

Figure 6: Multiple Table Security Setup. 

The database will also contain a stored procedure that accepts parameters for user and 

control to return the level of security access. 

Application Setup 

The application will access the user – security information via a stored procedure in the 

database to grant access to the particular page and or user control with its specific insert, change, 

delete and search functions. Figure 7 shows the flow of the application security. The application 

security is based on the accessed page or control and the network user id. The page or user 

control and user id is passed to the database and a security record is returned consisting of the 

level of access that user has to that particular control, the including ability of the user to insert, 

update or delete records. 
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Figure 7: Application Security Setup. 

Database Design 

As the initial design is the blueprint of the application, the security is the fence around the 

application, so then it follows that the database is the foundation of the application. The database 

development must be the first step in actually building the application. The database has two 

main functions, store the data and facilitate the CRUD, Create, Read, Update and Delete 

operations. 

Database Users 

The Achilles heel of security for a database driven web-based application is the double-

hop authentication, client to web server to database server. A simple solution to this issue is to 

create database user application id, which has full select, insert, update and delete access to the 

tables, as well as execute access to all stored procedures. The application id is used in the 

application to connect to the database and perform the operations. Another handy database user 
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is a read-only id, which has only select access to the tables and also has execute access to 

selected stored procedures. The read-only id is used in reporting and any external access to the 

application data. 

Tables 

In a database, the table is the most important piece; it is where the data is stored, the 

particular data in the table must be unique, consistent and retrievable. The best data table 

architecture is as follows: 

o A next sequential record key, an integer identity field which is the tables primary 

key 

o Data type specific fields, the correct data type for the type of data it will be 

accepting, every unused bite of data will still take up database space 

o Fields accepting null values sparingly, if the field may not have any data 

populated, the field should accept null values, but if the field will more likely 

have values, the field should not accept null values. 

o If the record may be changed by different users, logging should be incorporated 

into the table design 

o For data integrity, foreign key constraints should be placed on fields where the 

values relate to the primary key of other tables 

o At least, a unique index should be used, the literal name or unique values captured 

in a table 

o Grant full select, insert, update and delete permissions to the application user and 

grant select only permissions to the read-only user 

Figure 8 shows the example SQL code for a data table. 
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Figure 8: Data Table Structure. 

Logging 

Logging is an important feature to determine the “who,” “what” and “when” a table 

record was changed. If the table has records that could potentially be updated by different users, 

logging is required. The logging feature is simple and consists of a log table which is structured 

very similarly to the data table and a trigger that executes on a record change in the data table. 
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The log table has the exact same fields as the data table, the only differences are that the log table 

has no primary key or foreign keys and its unique index is the data table’s primary key field and 

the logging fields. The example SQL code for a log table is shown in Figure 9. 

 

Figure 9: Log Table Structure. 
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The logging trigger is executed on any insert, update or delete and copies the data table record 

exactly and inserts it into the log table. Figure 10 shows the example SQL code for the log 

trigger. 

 

Figure 10: Logging Trigger Structure. 
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The logging is simple but effective, the log table, based on the last modification date-time field 

in descending order, can show the administrator what changes have been made to the record 

throughout its life and what user made the change. 

Stored Procedures 

The table is the most important piece in a database, but the stored procedures are a very 

close second. The stored procedures control the record manipulation and retrieval of data from 

the data tables. There are three main types of stored procedures, lookup, select and modify. 

 

Figure 11: Lookup Stored Procedure. 
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The lookup stored procedure. 

The lookup stored procedure accepts search criteria parameters to return a list of records 

to populate the search facility in the application. The search is limited to 200 records for 

application performance, if the returned record set is the max, 201, the user will be asked to limit 

the search. Conversely, if there are no records returned for the search criteria, the user will be 

advised of that as well. The SQL code shown in Figure 11 is an example of a lookup stored 

procedure. 

 

Figure 12: Select Stored Procedure. 
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Figure 13: Modify Stored Procedure. 
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The select stored procedure. 

The select stored procedure accepts a single parameter, the record key, to return a single 

record to populate the data manipulation facility in the application. An example of the SQL code 

to build the select stored procedure is shown in Figure 12. 

The modify stored procedure. 

The modify stored procedure accepts all record parameters and based on the type of 

modification to be performed, manipulates the record in the table and then returns the record key 

for the messaging facility in the application. Figure 13 shows the example SQL code for a 

modify stored procedure. 

 

Figure 14: Scalar Function. 
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Functions 

The scalar function accepts a single parameter and returns a single descriptive value. The 

scalar function is used to decode specific values in the database. The example SQL code for a 

scalar function is shown in Figure 14. 

The Code Table 

Most applications have lists of values that have meaning and populate data records. 

Storing of these lists in an application can be architected in two ways: a more traditional 

architecture where there are several tables each correlating to a specific list type or a single table 

using a type to store all lists. The code table concept is the storing of all lists in a single code 

table with an associated code type to differentiate each list and a hierarchical structure to identify 

dependencies for use in cascading drop-down lists in the application. There are advantages and 

disadvantages to both types of architecture. Table 3 shows the advantages and disadvantages to 

both types of architecture. 

Which list architecture is the best? That depends on which advantages will best serve the 

application and which disadvantages will be the least detrimental. A combination, a hybrid, of 

both of these architectures is going to be the best, then the static constrained lists can be 

incorporated into the code table and the more complex lists can be separated into different tables. 

Application Design 

With the initial design being the blueprint, security being the fence, the database being 

the foundation , then the user interface becomes the actual building with a well thought out floor 

plan, easy for everyone to use and beautiful to look at. Once the database development is 

complete, the next step is to build the application. Just like in a construction project, the 

development must be from the ground up, it is difficult to start on the fourth floor and work 
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Table 3: An analysis of the pros and cons of the different list storage architectures.  The table 

below contains data on the pros and cons of a traditional separate table vs. the code table 

architecture. 

 

List Architecture Pros Cons 

Traditional Separate 

Table Architecture 

  The developer has more latitude 

to add additional data fields and 

use different data types 

 With separate tables, querying 

each list will be based on the 

number of records in each table, 

not all lists 

 Logical table names will allow 

for quick identification in the 

database  

 The application will be more 

complex, multiple points of 

entry, one for each list to be 

maintained 

 More development time will be 

required in the database to build 

the functions to search, select 

and update each list table 

 The application code to drive the 

drop-down lists for each list 

would be more complicated and 

each would have to be built 

individually  

The Code Table 

Architecture 

 The application will be less 

complex, the user would have a 

single point of entry to maintain 

all codes 

 Less development time will be 

required in the database, once the 

functions to search, select and 

update a single type of list are 

created, those functions can be 

reused in the application 

 The application code to drive the 

drop-down list can more easily 

be reused in the application 

 The developer is constrained to 

just an id and description, no 

other additional information can 

be captured unless it is captured 

for all codes 

 With a single table to hold all 

codes, the more records, the 

slower the querying capabilities 

of the application 

 The user would need to decode 

the record in the code table with 

the code type to identify the 

members of each list 
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down. In application design, the floors equate to the layers of the Layered (n-tier) Architecture: 

the ground floor is the Domain Layer, then the Service Layer, next the Business Layer and lastly, 

the Presentation Layer. 

Layered (n-tier) Architecture 

The Layered Architecture is a logical separation of high-level functionality. This type of 

architecture lends itself to being maintainable and distributable. It is maintainable because of the 

grouping of the similar functions and it is distributable because the different layers can be run on 

different physical hardware. 

 

Figure 15: Layered Architecture. 

Domain layer. 

The domain layer contains the actual data classes, or objects, that the different layers use 

to move records within the application. The domain layer objects are use in all other layers of the 

application. The domain layer structure is shown in Figure 16. 

Service layer. 

The service layer contains the classes that handle the persistence, the movement of 

domain objects to and from the data store. The service layer also hides the specific persistence  
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Figure 16: Domain Layer Structure. 

 

Figure 17: Service Layer Structure. 
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technology from the business layer, so it can be swapped out with another technology without 

affecting the business layer. Figure 17 shows the service layer structure. 

Business layer. 

The business layer contains the classes that handle the use case workflow, the specific 

rules under which the application operates. The business layer is also the main interface point to 

the presentation layer. The business layer structure is shown in Figure 18. 

 

Figure 18: Business Layer Structure. 

Presentation layer. 

The presentation layer contains all the elements that handle the interaction with the user, 

known as the User Interface. The presentation layer displays the visual representation of the 

application to the user, accepts inputs and passes those inputs on to the business layer for 

processing, then, accepts return messages that the process was either successful or unsuccessful. 

Figure 19 shows the presentation layer structure.
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Figure 19: Presentation Layer Structure. 

Design Patterns 

Design patterns are a structured approach to designing elements of an application to take 

advantage of the principals of Object Oriented Programming (OOP). Inheritance, encapsulation 

and reuse, just to name a few, even the object and classes themselves are rooted in OOP and used 

in design patterns. Table 4 shows the different types of design patterns, how they are used and 

where they are used in the application. 
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Table 4: An analysis of the different design patterns.  The table below contains data on how 

design patterns are used and where in the Layered Architecture they are used. 

 

Design Pattern What it is used for… Where it is used… 

Model, View, 

Controller (MVC) 

 An overall architectural design pattern 

 To simplify the communication between the 

different elements 

 To separate like functions: 

o Model – the application logic, workflow, 

persistence and objects 

o View – the User Interface, the graphical 

representation of the application 

o Controller – the communication between 

the View and the Model 

 Presentation Layer 

 Business Layer 

 Service Layer 

 Domain Layer 

Layer Supertype 

 To dynamically instantiate the rules 

implementations by use of the Web.config file 

based on the requested manager interface  

 To provide a common interface between the 

Business Layer and Service Layer using the 

Factory 

 Business Layer 

Separated Interface 

 To decouple the higher level Manager or 

Service Interface from the actual 

implementation logic  

 Business Layer 

 Service Layer 

Plugin 

 To encapsulate the interface details and the 

implementations 

 To easily swap out the business rules in the 

Business Layer or persistence mechanism in 

the Service Layer 

 Business Layer 

 Service Layer 

Marker (Serializable) 

Interface 

 To provide a common interface to the Service 

Interfaces and Manager Interfaces 

 Business Layer 

 Service Layer 
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Factory 

 To dynamically instantiate the persistence 

implementations by use of the Web.config file 

based on the requested service interface 

 Service Layer 

Singleton 
 To ensure that only one object is instantiated 

in the Factory 

 Service Layer 

Object  To hold the actual data record  Domain Layer 

 

Figure 20 shows how the different design patterns can be employed throughout the application, 

to achieve the desired goal of a simple, maintainable and useable application. 

 

Figure 20: Application Design Patterns. 

Design patterns assist the developer in standardizing the application; each function will 

be built in the same manner. Any other developer working on the application will be able to 

follow the methodology and easily integrate additional functions. 
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The Model 

The Model is the part of the application that contains the workflow logic and persistence 

of the application. The Model consists of the classes that make up the Domain Layer, Service 

Layer and Business Layer of the application. 

Domain Classes. 

Domain classes are very important in Object-Oriented Programming, as they are the 

objects themselves. These classes are used throughout the application to move data around as a 

consistent record set. The Domain class is based on the table layout in the database; it consists of 

the same fields with the same high-level data types, so the first step in creating the object is to 

define the fields. Second, the object properties, the communication in and out of the object, must 

be defined through gets and sets. Next, the constructors are defined, a default constructor so the 

object can be instantiated without being populated and the overloaded constructor which accepts 

the values and populates the object. An override to string function is nice to have so the contents 

of the object can be viewed in a string format, but it is not necessary. A validation function is 

also nice to have to ensure the object is populated correctly, but again not necessary. An example 

of an example domain class is shown in Figure 21. 

Service Classes. 

Service classes handle the communication to the data store. The architecture includes a 

Factory class, an IService class, a service interface for each data function and, at least one 

service implantation for each data function. 

The Factory class shown in Figure 22 is used to dynamically instantiate the persistence 

implementation using the service interface through IService. The Factory consists of a default 

constructor so it can be instantiated by other classes, a shared get_instance function based on the  
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Figure 21: Domain Class. 
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Singleton design pattern to ensure that only one Factory is instantiated and a get_service function 

to return the service implementation of a given service interface. 

 

Figure 22: Factory Class. 

The IService class is a marker, or serializable, interface and its purpose is to be a 

common interface to the service interfaces. It is an empty interface which is inherited by the 

service interfaces. Figure 23 shows an example IService class. 
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Figure 23: IService (Marker Interface) Class. 

The service interface classes are used to instantiate the methods used by the service 

implementation, so the implementation technology is invisible to the Factory and the higher 

levels in the model. The service interface classes have modify, select and lookup functions that 

equate to the same functions in the service implementation. An example of a service interface 

class is shown in Figure 24. 

 

Figure 24: Service Interface Class. 

The service implementation classes are where the actual persistence technology resides 

which is used to move data in and out of the data store. In the example application, a Microsoft  
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Figure 25: Service SQL Implementation Class – Modify Function. 
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SQL server is the data store, the modify, select and lookup functions will equate to their 

corresponding stored procedures in the database. The modify function will implement the modify 

function from the service interface.  The function first opens a connection to the SQL database, 

creates the SQL command and gets the specific modify stored procedure name. Then the 

function builds and populates the stored procedure parameters in the SQL command based on the 

passed in object. Next, the modify function executes the SQL command and accepts the return 

integer value. Any exceptions in that process are captured and stored as the return value then 

logged to the web server. Once all the processing is complete, the function closes the SQL 

connection, disposes the SQL command and returns the stored value. Figure 25 shows the 

modify function of an example service implementation. 

 

Figure 26: Service SQL Implementation Class – Select Function. 
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Figure 27: Service SQL Implementation Class – Lookup Function. 

The select function implements the select function from the service interface.  The select 

function opens a connection to the SQL database, creates the SQL command, gets the specific 

select stored procedure name and builds the SQL data reader to accept the return from the 

database. Next, the function builds and populates the stored procedure parameter, the specific 

passed in record key, in the SQL command. Then, the function executes the SQL command to 

populate the return record into the SQL data reader, which, in turn, populates the object. Any 

exceptions in that process are captured and logged to the web server. Finally, the function closes 
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the SQL connection, disposes the SQL command, closes the SQL data reader and returns the 

object. An example of the select function of a service implementation is shown in Figure 26. 

The lookup function implements the lookup function from the service interface.  The 

function first opens a connection to the SQL database, creates the SQL command, gets the 

specific select stored procedure name and builds the SQL data reader to accept the return from 

the database. Second, the lookup function builds and populates the stored procedure parameter, 

the specific passed in object, in the SQL command. Then, the function executes the SQL 

command to populate the return records into the SQL data reader, which, in turn, populates the 

list of objects. Any processing exceptions are captured and logged to the web server. Once all the 

processing is complete, the function closes the SQL connection, disposes the SQL command, 

closes the SQL data reader and returns the list of objects. Figure 27 shows the lookup function of 

an example service implementation. 

Business Classes. 

The Business classes handle the use case workflow. The architecture includes a Manager 

class, an IManager class, a manager interface for each data function and, at least, one manager 

implantation for each data function. 

The Manager class shown in Figure 28 is used as a communication point to the 

controllers: it dynamically instantiates the rules implementation using the manager interface 

through IManager and communicates with the Factory to instantiate the proper service 

implementation. The Manager consists of a default constructor so it can be instantiated by other 

classes, a shared get_service function to instantiate the Factory, then use its get_service function 

to return the implementation of a given interface and a get_manager function to return the 

manager implementation of a given manager interface. 



Web Application Design Best Practices 45 

 

Figure 28: Manager Class. 

 

Figure 29: IManager (Marker Interface) Class. 
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The IManager class is a marker, or serializable, interface and its purpose is to be a 

common interface to the manager interfaces. It is an empty interface which is inherited by the 

manager interfaces. Figure 29 shows an example IManager class. 

The manager interface classes are used to instantiate the methods used by the 

implementation. The manager interface classes have modify, select and lookup functions that 

equate to the same functions in the manager implementation. An example of a manager 

interfaces class is shown in Figure 30. 

 

Figure 30: Manager Interface Class. 

The manager implementation classes are where the use case workflow resides, which is 

used to control how the methods are executed. The manager implementation is architected with a 

call to the manager to get the particular service implementation, a function which implements the 

corresponding function from the manager interface and executes the corresponding service 

implementation. Figure 31 is an example of a manager implementation class. 
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Figure 31: Manager Rules Implementation Class. 

The Controller 

The controller is the point of communication between the user interface, the view and the 

processing, the model in the application. All user commanded actions flow through the controller 

and the results of those actions are returned to the user by the controller. The controller handles 

the instantiation of communication channels, user security, object gets and sets, population of 

lists and grids as well as the actual processing of the user requests.  

Controller Classes (Code Behind). 

The controller communicates with the business layer by way of the managers. The first 

step must be to instantiate the communication paths to the managers. Next, the load of the page 



Web Application Design Best Practices 48 

calls the security facility, builds any drop-down lists and sets the initial state of the user interface. 

Figure 32 shows the page load portion of an example controller class. 

 

Figure 32: Controller Class – Page Load. 

The security function makes a call to return the level of access the current user has to the 

particular control. Once the values are returned, they are held in security fields on the control 

itself for use in setting the view state, allowing the user access to the fields and actions of that 

control. If the current user has no access to the control, the security fields are set to allow no 

access to any field or action on the control. The security portion of an example controller class is 

shown in Figure 33. 
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Figure 33: Controller Class – Security. 

 
 

Figure 34: Controller Class – New Functions. 
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The initial or new state of the view must be set, with any defaulted values and any 

displayed or hidden controls. This initial state is also used by the application when the user wants 

to clear the contents and return to the initial state. Figure 34 shows the new function portion of 

an example controller class.  

Get functions shown in Figure 35 populate an object with the user entered values and 

pass the object back to the requesting function. The get functions also handle any data translation 

or clean up while building the objects. 

Figure 36 shows the set functions populate the field values with those from an object 

provided. The set functions also handle any data translation or clean up populating the fields 

from the object.  

The view state uses security to enable fields and display buttons the user has access to or 

disable fields and hide buttons the user does not. Figure 37 shows the view state functions. 

Actions are set in processing functions shown in Figure 38, so they can be called from 

within the control. There is a corresponding processing function to each button on the view. 

To limit values a user can select in the system, drop-down lists are populated from the 

database. The drop-down lists are populated from a list returned based on criteria provided. The 

list population functions are shown in Figure 39. 

The search facility is a simple grid populated based on the search criteria provided by the 

user. There are limitations in the number of records that can be successfully returned, the grids 

are limited to 200 records for processing. If the returned record set is outside the acceptable 

limits, a message is displayed for the user. The search grid is paging enabled, so the index must 

be captured as the user moves through the pages. Selected values are populated in the data area 
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and, based on the record key, provided to the refresh processing function. The search grid 

population functions are shown in Figure 40. 

 

Figure 35: Controller Class – Get Functions. 

 

Figure 36: Controller Class – Set Functions. 
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Figure 37: Controller Class – Set View State. 

The user is displayed messages about the processing of the data. Both an icon and literal 

message text are displayed based on the type of message. Figure 41 shows the user messaging 

functions. Buttons are the actual actions the user can perform from the view. For the most part, 

the button calls the corresponding processing function, but some have a simple validation to 

ensure a record key exists before processing. The button functions are shown in Figure 42. 
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Figure 38: Controller Class – Processing Functions. 
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Figure 39: Controller Class – Drop-down Lists. 

The controller is architected in a simple way to facilitate the seamless communication 

between the view and the model. 

Utility Classes. 

The utility classes are used to hold global functions that allow for reuse. The functions within the 

utility classes are shared, so they can be used by any of the controllers to perform common or 

repetitive functions. Figure 43 shows an example utility class. 



Web Application Design Best Practices 55 

 

Figure 40: Controller Class – Search Grid. 

The View 

The view is the user interface, the representation of the application presented to the users. 

The view is where the user performs tasks necessary to their specific job function. The view 

consists of the master pages, pages, user controls, as well as, images and cascading style sheets 

that control the look and feel to the user.  
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Figure 41: Controller Class – Messages. 

 

Figure 42: Controller Class – Buttons. 
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Figure 43: Utility Class. 

User  Controls. 

The user control is the main piece of the view. The user functions are encapsulated in 

user controls to allow for reuse, and contain all the functionality of the application. The example 

application is data driven, so each function must allow for the basic data functions to search, 

insert, update and delete data records. 

 
The first part of the user control is a search facility to accept user input to limit the 

returned subset of records. Example search criteria fields’ code is shown in Figure 44. 
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Figure 44: View – Search Criteria Fields. 

Next, Figure 45 shows the search action buttons that affect the search and reset the search criteria 

fields if necessary. Any search related messages are displayed to the user. 

 

Figure 45: View – Search Actions. 
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The search grid displays the returned records from the database in such a way that the user can 

select the record needed. By selecting a record, the data is populated in the data area for 

modification. Figure 46 shows code for the search grid controls. 

 

Figure 46: View – Search Grid. 

The data action buttons are next. Figure 47 shows the code to setup of the action buttons. They 

facilitate the inserting, updating or deleting of the selected data record. Any data related 

messages are displayed to the user. The validation summary displays a literal message to the user 

when there are data field validation errors. The validation summary code is shown in Figure 48. 

The data fields hold the data record information to be manipulated by the user. They are 
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displayed as a label and a field. Any validations are attached to the field to display when a 

validation error occurs. The code for the data fields is shown in Figure 49. 

 

Figure 47: View – Data Actions. 

 

Figure 48: View – Validation Summary. 
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Figure 49: View – Data Fields. 

Hidden fields hold any data for processing or security that the application needs to hold, but not 

display to the user. Figure 50 shows the code for the hidden field setup. 

 

Figure 50: View – Hidden Fields. 
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Figure 51 shows the view displayed to the user is simple and clean with everything laid out in a 

logical way. 

 

Figure 51: View – User Display. 

All together, the view is what the user will see and use to work with the application; if it is not 

straight forward; easy to use and understand, it will not be a successful application. 

Cascading Style Sheets. 

Cascading style sheets are a global way to control the look and feel of the application. 

Building the style of the application in a common place to be pulled anywhere it is needed, is an 

advantage; if the style changes, that change can be made in one location and affects the entire 

application. Example code for creating a cascading style sheet is shown in Figure 52. 
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Figure 52: Cascading Style Sheet. 

If the styles of the required and non-required fields change in the application, they can be 

easily modified in one location. Figure 53 shows code and example the before the change. 

Change the style sheet class and the change is effective on all the required and non-required 

fields without having to go to each one and make the change there. Figure 54 shows code and 

example the after the change. 

 

Figure 53: Changing a Cascading Style Sheet – Before. 

 

Figure 54: Changing a Cascading Style Sheet – After. 
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Validations. 

To ensure valid data is entered in the application, field validations are necessary. Visual 

Studio has delivered validation controls that are easy to use and give the user instant feedback at 

the point of entry. There are two parts to the validation: a validation summary, which displays 

the literal validation message and, the specific validation, which assesses a particular data field 

for validity. The example code for setting up validations is shown in Figure 55. 

 

Figure 55: Validation Code. 

 
 

Figure 56: Validation Display. 
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If there is a validation error, the validation summary is displayed and the field is highlighted that 

does not meet the validation criteria. Figure 56 shows the validation display. 

Messaging. 

It is important to inform the user about processing successes and failures. The messaging 

feature allows the user to see when the process is complete and, if it was successful, or if there 

was an error. The messaging facility also masks the particular error message returned and 

displays a more useful message to the user. Figure 57 shows the code for setting up messing. 

 

Figure 57: Messaging Code. 
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Based on the message type, the icon and message text are displayed in such a way the user 

knows if the processing was successful or if it failed. Examples of the display of the messages is 

shown in Figure 58. 

 

Figure 58: Messaging Display. 

Popups. 

A modal popup window can be very useful for displaying a message that a user has to 

acknowledge or to do external processing prior to continuing. The example application uses the 

modal popup window to lookup values in the system to assign to the parent control. There are 

many third-party built controls that can be used, but have a lot of processing overhead to deal 

with. A simple modal popup can be built within the context of the existing tools.  

To create the simple modal popup, a cascading style sheet for the popup and modal styles 

must be created. Figure 59 shows the cascading style sheet code for the simple popup. Next, 

panels for both the modal and popup must be created. The modal panel has no content; it is just a 

barrier between the original screen and the popup, so no processing can be accomplished on the 

original window without first closing the popup. The popup has the content to be processed. 

Code to create and display the simple popup is shown in Figure 60. 
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Figure 59: Popup Cascading Style Sheet. 

 

Figure 60: Popup View Code. 
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By making both the modal and popup panels visible, the popup is the only item on the screen 

that can be accessed. By returning the values from the popup and hiding both the modal and 

popup panels, the original screen is active and has the selected values. Figure 61 shows the code 

to return values from the popup and hide the panels. The display to the user is simple, the popup, 

the modal panel between it and the original screen. The display of what the simple popup looks 

like is shown in Figure 62. 

 

Figure 61: Popup Controller Code. 

 

Figure 62: Popup Display. 
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The Configuration File 

The configuration file, the web.config file, is a file that resides outside the application 

where variables can be assigned and changed without having to republish the application. There 

are three main areas that are used in the configuration file: the application settings, the 

connection strings and the authentication section. 

The application settings are value pairs stored in the file, which can be changed if 

necessary to change the returned value to the system. All the processing specific values are 

stored here, system specific used for display in the application, service and business 

implementations used in processing and any other variables that could change, such as: database 

stored procedure names, file locations and even literal error messages. Figure 63 shows the 

example application setting value pairs held in the configuration file.  

 

Figure 63: Configuration File – Application Settings. 
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Connection strings to the database instances are held in the configuration file and could 

be changed, if the need arose. Multiple instances can be controlled by an application setting as to 

which one to use. Figure 64 shows the value pairs of connection strings. 

 

Figure 64: Configuration File – Connection Strings. 

Based on the architecture, the authentication variables need to be set. The application will 

impersonate the user, so the application does not have to pass the user credentials. The 

authentication string information is shown in Figure 65. 

 

Figure 65: Configuration File – Authentication Settings. 

Scheduled Tasks 

There are occasions that there will be some processing done outside the normal 

processing in the application. In the case of the example application, periodic e-mail notifications 

are generated. On those occasions where processing outside the application is necessary, a 

Windows Service is the best way to handle that type of processing. The Windows Service 

executes on a set timeframe, processes and waits for the next execution. 
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Reporting 

Reporting is a very important aspect of any business application, as it is important to be 

able to get information back out of the application. There are reporting applications that can be 

implemented to gain reporting functionality, which would have to be built into an application. In 

the case of the example application, reporting is handled in an external reporting application 

where scheduling, security and a single point of reporting can be leveraged. 
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Chapter 5 – Project History 

 

The example application, Audit Action Tracker, was designed and developed over a four 

month period of time. The project was broken down into five phases: documentation, design, 

construction, testing and implementation.  

The documentation phase consisted of working with the users to formulate the initial 

application design, documenting that initial design, getting the user approval and developing the 

project plan. The documentation consisted of a combined scope and design document, as well as, 

the approval to proceed with the project. 

The design phase consisted of working with the users to refine the initial design into a 

detailed design. Use cases, screen mockups and data elements were created and refined to a point 

where the developer and users could agree upon navigation and content of the application. 

The construction phase consisted of each element of the application being built. Database 

elements were constructed first, tables, triggers, functions and stored procedures, as well as, the 

data migration plan based on the detailed design. Next the model elements were constructed; the 

domain, service and business layers were built based on the detailed design. Lastly, the user 

interface elements, the view and controller pieces were constructed. 

The testing phase allowed the users to test the navigation and the particular functions to 

ensure they worked correctly. This phase also gave the users a chance to make minor changes to 

the system to better suit their needs. The developer in the testing phase had the opportunity to 

take the testing results and the change requests and make the necessary modifications to the 

application to better satisfy the needs of the users. 
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Table 5: Project history timeline.  The table below contains a list of the phases and tasks and the 

periods of time that were taken to complete each task. 

 

Phase Task End Date End Date 

Documentation Create Project Short Form 7/2/2009 7/13/2009 
 Create Project Plan 7/13/2009 7/13/2009 
 Documentation Sign-off 7/13/2009 7/13/2009 
Design Design SQL Database 7/20/2009 7/27/2009 
 Design Legacy Data Migration 7/28/2009 7/29/2009 
 Design ASP.NET Web Pages 7/30/2009 8/7/2009 
 Design Crystal XI Reports 8/10/2009 8/13/2009 
 Design Complete 8/13/2009 8/13/2009 
Construction Construct SQL Database 8/20/2009 8/21/2009 
 Construct Legacy Data Migration 8/24/2009 8/25/2009 
 Construct ASP.NET Web Pages 8/26/2009 8/31/2009 
 Construct Crystal XI Reports 9/1/2009 9/2/2009 
 Construction Complete 9/2/2009 9/2/2009 
Testing Test Legacy Data Migration 9/9/2009 9/9/2009 
 Test Admin Functions 9/10/2009 9/17/2009 
 Test User Functions 9/18/2009 9/25/2009 
 Test Database Functions 9/28/2009 10/5/2009 
 Test Notifications 10/6/2009 10/7/2009 
 Rework Discrepancies Found 10/8/2009 10/21/2009 
 Testing Sign-off 10/21/2009 10/21/2009 
Implementation  Implement SQL Database 11/2/2009 11/2/2009 
 Implement Legacy Data Migration 11/2/2009 11/2/2009 
 Implement ASP.NET Web Pages 11/2/2009 11/2/2009 
 Implement Crystal XI Reports 11/2/2009 11/2/2009 
 Implementation Sign-off 11/2/2009 11/2/2009 

 

The implementation phase consisted of the actual implementation of the new application 

into the production environment. Putting all the pieces together, building the database, 

conducting the data migration and publishing the web application to the production web server. 

Table 5 shows a breakdown by phase and task the project timeline. 
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Chapter 6 – Conclusions 

 

The most important set of best practices for developing database driven, internal web-

based business applications are principals, the principals of simplicity, consistency and user 

interaction. These principals drive the nuts and bolts of developing the application. In developing 

the example application, these principals presented themselves time after time. 

Simplicity – finding the most concise way to do something, to make it easy to understand 

and use. In business applications, simple is just better. There is no need to add elements that are 

not necessary, just give the users what they need to satisfy their requirements and little more. 

Consistency – doing the same task the same way each time, building the same function 

the same way each time and making the application look the same from function to function. The 

user will see consistency in the user interface, but the most important aspect of application 

consistency is in the construction that the user will never see. There should be a common theme, 

common naming convention and a common design philosophy. This commonality or consistency 

will help in the maintenance of the application and add additional functionality, as well as, 

helping other developers understand how the application is architected. 

User interaction – giving users a voice in the development, they know what they need in 

a business application and they are going to have to ultimately use the application as a tool to 

make their work easier. Without the users and their requirements, there would be no need for the 

developer. Building a relationship between the user and developer is important; any development 

is a team effort. 
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Now for the nuts and bolts; exactly how to develop a database-driven, internal web-based 

business application from the ground up. The practices, themselves, employ simplicity, 

consistency and user interaction. 

The initial design is very important, get the users involved early in the initial design 

phase as their knowledge is extremely important and they know what they need and want in an 

application. Communication is paramount, meetings, visual aids and documentation. Constantly 

working together with the key group; ensuring that everyone understands the design and has a 

chance to voice their opinions. The point of this phase is to refine the application on paper before 

even one line of code is written. Throughout the process the users must validate the ongoing 

work, since they should be able to identify any issues or rethink functionality before major 

rework would be required. The users must be able to test in the same way as they would use the 

application to identify workflow issues. 

In a database driven application, the database is the basis for the design. All elements 

flow from the database, tables should equate to objects and stored procedures should equate to 

service implementations. The database should take advantage of self incrementing record keys, 

primary and foreign keys to preserve data integrity, simple logging techniques for audit purposes 

and simplify and reuse database objects where possible. 

The use of design patterns in the application allows the development to be done more 

quickly and keep overall consistency in the architecture, which translates to maintainability and 

scalability in the future. The Model View Controller (MVC) design pattern takes a small step 

away from simplicity, but makes up for it in consistency. Understanding that, the developer 

should use it in a limited form. There are clear advantages to the single point of integration that 

the Factory and Layer Supertype patterns give the developer. The Separated Interface and Plugin 
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patterns allow for hiding technology and the ability to swap that technology out without having 

to rewrite the application. 

Once again, the principals of simplicity and consistency are very important in the user 

interface. Presenting a simple consistent look and feel to the application is very important for the 

user interaction, as well as, the maintenance of the application. Clutter free windows, simple 

popup windows and controls, in addition to the ability to globally change the look and feel of the 

application, make the user experience more favorable. Presenting field validation messages 

before any processing takes place is very helpful to the user. Clearly displaying processing 

messages; both successful and understandable failure messages, assists the user in understanding 

the processing happening behind the scenes in the application.  

Therefore, the best practices for designing and implementing a database driven, internal 

web-based business application are themselves simple. Get the users involved throughout the 

process, design the database as the basis to the rest of the application, build the application with 

commonality and maintainability in mind and, lastly, make the user interface clear and easy to 

use, that is the ultimate goal. 
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Appendix A 

Design Document 
 
Project Name:  Audit Action Tracker (AAT) 
  
Author Stephen C. Rash 
Date July 13, 2009 
 
Revision & Sign-off Sheet 
 
Change Record 

Date Author Version Change Reference 
7/2/2009 Stephen C. Rash 1.0 Initial Document Development 
7/6/2009 Stephen C. Rash 1.1 Updates 
7/9/2009 Stephen C. Rash 1.2 App Name Change / Updates 
7/13/2009 Stephen C. Rash 1.3 Finalize 

 
Reviewers 

Name Position Date Approval 
John Doe Manager-EHS 7/15/2009  
    
    

 
Estimated Hours 
Estimated hours for this project are between 250-300 hours. 
 
Objective & Scope 
The current Action Tracking System (ATS) functionality is outdated, cumbersome and 
time consuming for the users. ATS lacks the functionality and scalability required by the 
users to perform their job.  The users want a system that is simpler and more 
streamlined which facilitates quick and easy user interaction, has enhanced security 
features and has better report generation features. 
 
The objective of this project is to design a replacement application for ATS, which 
consists of three separate Visual Basic 6 applications, ATS, ATSUpload and ATSAuto.  
The new Audit Action Tracker (AAT) application will make the user interface simpler for 
the end user by taking advantage of Web-based (ASP.NET) technology, redesign the 
storage of data (MSSQL 2005 database) using tables, triggers, procedures and views to 
better manage data and develop reports (Crystal Reports XI) for display in our company 
wide reporting system (BusinessObjects Enterprise XI).  This system will meet the 
functional and security requirements by managing the data, capturing an audit trail, and 
making the data more accessible and reportable.   
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Functional Requirements 
The AAT application will contain the following functionality: 

1. Security 
a. Based on the user logging in, the system will search the Corporate 

Directory to find the user’s structure and determine what data the user will 
be able to view and to what level of access (Add, Change, Read-Only) the 
user will have. 

b. Also based on the user logging in, the system will determine if the user 
falls into the Admin or a TeamLead groups to allow additional system 
functions. 

c. There will be 4 types of user access: 
i. Admin – System Administrators (NT Group). 
ii. TeamLead – Audit Team Leaders (NT Groups by Functional 

Group). 
iii. Assignees – Individual responsible for the Action Item (Action Item 

Record). 
iv. ReadOnly – The Location Managers and Supervisors and Manages 

above the Location Manager and Action Item Assignees. 
 

2. Locations 
a. Location information will be housed in a database table. 
b. Location name, state and city information will be entered. 
c. Location will be associated with a Business Unit, Region and Division. 
d. System audit information will be housed in a database table and 

generated by triggers on the Location table. 
 

3. Audits 
a. Audit information will be housed in a database table. 
b. Audit name, audit start and end dates will be entered. 
c. Audit will be associated to a Location. 
d. Facility Manager will be selected. 
e. Audit Team Leader will be captured by login credentials. 
f. Audit Team Members will be selected. 
g. Audit Team Leader will complete Audit records. 
h. System audit information will be housed in a database table and 

generated by triggers on the Audit table. 
 

4. Action Items 
a. Action Item information will be housed in a database table. 
b. Audit Team Leader will Upload or manually add/change Action Item 

records. 
c. Action Item findings, references, due date and Assignee will be entered. 
d. Assignee will change/complete Action Item records. 
e. System notification to Assignee when added to an Action Item.  
f. System audit information will be housed in a database table and 

generated by triggers on the Action Item table. 
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5. System Notifications 

a. Generate periodic notifications to Assignee, Assignee’s Supervisor and 
Assignee’s Supervisor’s Supervisor 

 
Detailed Design 
The design of the AAT application will consist of a database (tables, triggers, 
procedures and views), Web-based users interface (ASP.NET with VB code behind) 
and reports (Crystal Reports XI accessed via BusinessObjects Enterprise): 
 
Audit Maintenance 

 
 



Web Application Design Best Practices 82 

 (1) Audit Search Grid User Control 
 A data grid to display the Audits for a particular Audit Lead or user in the Corporate Directory 

Hierarchy 
 Should display audit_name, audit_loc_name, audit_start_date, audit_end_date and 

audit_complete 
 Selected item should open and populate Audit Maintenance by audit_id 
 Data Grid only visible if Current User is in Audit Lead or Audit Admin 

 
(4) Location Select User Control 

 A User Control to search for and select a single Location 
 
(5) Date Select User Control 

 A User Control to display a calendar and select a date (Required)  
 
(6) User Select User Control 

 A User Control to search for and select a single User (user id) from the Corporate Directory 
 

Audit Team 

 
 
(9) Audit Team Grid 

 Display users of the Audit Team based on audit_id 
 Audit Team Member can be deleted from grid 

 
(6) User Select User Control 

 A User Control to search for and select a single User (user id) from the Corporate Directory 
 



Web Application Design Best Practices 83 

Action Item Upload 
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Action Item Maintenance 
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(2) Action Item Grid User Control 
 A data grid to display the Action Items for a particular Audit Lead / Assignee or user in the 

Corporate Directory Hierarchy. 
 Should display item_name, item_priority, item_due_date and item_complete 
 Selected item should open and populate Action Item Maintenance by item_id. 

  
(5) Date Select User Control 

 A User Control to display a calendar and select a date (Required)  
 
(6) User Select User Control 

 A User Control to search for and select a single User (user id) from the Corporate Directory 
 
Code Maintenance 

 
 
 (7) Code Search Grid 

 A grid to search for and select codes 
 Should display code_type_id, code_name and code_active 
 Selected item should open and populate Code Maintenance by code_id. 
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Location Maintenance 

 
 
(8) Location Grid 

 A grid to search for and select locations 
 Should display loc_name, loc_city, loc_zip and loc_active 
 Selected item should open and populate Code Maintenance by loc_id. 
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Audit Table Maintenance 

 
 
Audit Team Lead User Update (From User -> To User) 

(6) User Select User Control (From) 
 A User Control to search for and select a single User (user id) from the Corporate Directory 

 
(6) User Select User Control (To) 

 A User Control to search for and select a single User (user id) from the Corporate Directory 
 
Audit Location Manager User Update (From User -> To User) 

(6) User Select User Control (From) 
 A User Control to search for and select a single User (user id) from the Corporate Directory 

 
(6) User Select User Control (To) 

 A User Control to search for and select a single User (user id) from the Corporate Directory 
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Action Item Table Maintenance 

 
 
Action Item Assignee User Update (From User -> To User) 

(6) User Select User Control (From) 
 A User Control to search for and select a single User (user id) from the Corporate Directory 

 
(6) User Select User Control (To) 

 A User Control to search for and select a single User (user id) from the Corporate Directory 
 
 
Database (Tables) 
Name Description 
tbl_code_type Holds code type information, what code relates to what list for use in 

the system 
tbl_code_audit Holds code audit data, who, what and when the code record was 

inserted, changed or deleted by use of Triggers 
tbl_code Holds code specific information 
tbl_location_audit Holds location audit data, who, what and when the location record 

was inserted, changed or deleted by use of Triggers 
tbl_location Holds location data, the specific location where the audit is preformed 
tbl_audit_audit Holds 'audit' audit data, who, what and when the audit record was 

inserted, changed or deleted by use of Triggers 
tbl_audit Holds audit data, audit specific information, the where the audit was 

preformed, who preformed it and who is the responsible manager 
tbl_audit_team_audit Holds audit team audit data, who, what and when the audit team 

record was inserted, changed or deleted by use of Triggers 
tbl_audit_team Holds audit team data, what person(s) conducted the audit. 
tbl_action_item_load Holds action item upload data, temporary load information to be 

verified and loaded into the action item table 
tbl_action_item_audit Holds action item audit data, who, what and  when the action item 

record was inserted, changed or deleted by use of Triggers 
tbl_action_item Holds action item data, event header detail lines... the type of waste 

to dispose of 
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Database (Triggers) 
Name Description 
tgr_code_ins Logs inserts to the code table 
tgr_code_upd Logs updates to the code table 
tgr_code_del Logs deletes from the code table 
tgr_location_ins Logs inserts to the location table 
tgr_location_upd Logs updates to the location table 
tgr_location_del Logs deletes from the location table 
tgr_audit_ins Logs inserts to the audit table 
tgr_audit_upd Logs updates to the audit table 
tgr_audit_del Logs deletes from the audit table 
tgr_audit_team_ins Logs inserts to the audit team table 
tgr_audit_team_upd Logs updates to the audit team table 
tgr_audit_team_del Logs deletes from the audit team table 
tgr_action_item_ins Logs inserts to the action item table 
tgr_action_item_upd Logs updates to the action item table 
tgr_action_item_del Logs deletes from the action item table 

 
Database (Procedures) 
Name Description 
sp_code_type_sel Selects code type table record information 
sp_code_sel Selects code table record information 
sp_code_ins Inserts code table record information 
sp_code_upd Updates code table record information 
sp_location_sel Selects location table record information 
sp_location_ins Inserts location table record information 
sp_location_upd Updates location table record information 
sp_audit_opn Sets the Status to 'OPEN' on audit table record information 
sp_audit_upd Updates certain fields on audit table record information 
sp_action_item_opn Sets the Status to 'OPEN' on action item table record information 
sp_action_item_upd Updates certain fields on action item table record information 
sp_audit_sel Selects audit table record information 
sp_audit_ins Inserts audit table record information 
sp_audit_upd Updates audit table record information 
sp_corp_dir_sel Selects Corporate Directory record information 
sp_audit_team_sel Selects audit team table record information 
sp_audit_team_ins Inserts audit team table record information 
sp_audit_team_upd Updates audit team table record information 
sp_audit_team_del Deletes audit team table record information 
sp_action_item_load_sel Selects action item load table record information 
sp_action_item_load_ins Inserts action item load table record information 
sp_action_item_load_upd Updates action item load table record information 
sp_action_item_load_del Deletes action item load table record information 
sp_action_item_load_xfer Selects action item load table record information 
sp_action_item_sel Selects action item table record information 
sp_action_item_ins Inserts action item table record information 
sp_action_item_upd Updates action item table record information 
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Database (Views) 
Name Description 
vw_all_audit_data Selects All types of Audits data for reporting 
vw_audit_audit_data Selects Audit type of Audit data for reporting 
vw_assessment_audit_data Selects Assessment of Audit type data for reporting 
vw_security_audit_data Selects Security type of Audit data for reporting 
vw_psm_audit_data Selects PSM type of Audit data for reporting 
vw_all_action_data Selects All types of Action Items data for reporting 
vw_audit_action_data Selects Audit type of Action Item data for reporting 
vw_assessment_action_data Selects Assessment type of Action Item data for reporting 
vw_security_action_data Selects Security type of Action Item data for reporting 
vw_psm_action_data Selects PSM type of Action Item data for reporting 

 
Database (Groups) 
Name Description 
AAT_SysAdmin System Administrators 
AAT_AuditLead Audit Team Leaders 
AAT_AssmtLead Assessment Team Leaders 
AAT_SecLead Security Team Leaders 
AAT_PSMLead PSM Team Leaders 

 
Reports 
Name Parameters 
All Detail Data Date Range, Business Unit, Region, Division, Open/Completed 
Audit Detail Data Date Range, Business Unit, Region, Division, Open/Completed 
Assessment Detail Data Date Range, Business Unit, Region, Division, Open/Completed 
Security Detail Data Date Range, Business Unit, Region, Division, Open/Completed 
PSM Detail Data Date Range, Business Unit, Region, Division, Open/Completed 
All Detail Data Due Date Range, Priority, Open/Completed 
Audit Detail Data Due Date Range, Priority, Open/Completed 
Assessment Detail Data Due Date Range, Priority, Open/Completed 
Security Detail Data Due Date Range, Priority, Open/Completed 
PSM Detail Data Due Date Range, Priority, Open/Completed 
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Testing Scenarios  
Test the following web-based AAT application functionality: 

1. Code Maintenance  
a. Search for an existing record 

i. Code Search page opens 
ii. Parameters limit search 
iii. Search returns results 
iv. Returns resulting record to the Code Maintenance page 

b. Add a record 
i. Required fields must be filled in to Save 
ii. Inserts entire record into the database 
iii. Inserts ‘ADD’ record into the Code Audit table – Admin 

c. Change a record 
i. Required fields must be filled in to Save 
ii. Updates correct record into the database 
iii. Inserts ‘CHG’ record into the Code Audit table – Admin 

 
2. Location Maintenance 

a. Search for an existing record 
i. Location Search page opens  
ii. Parameters limit search 
iii. Search returns results 
iv. Returns resulting record to the Location Maintenance page 

b. Add a record 
i. Required fields must be filled in to Save 
ii. Inserts entire record into the database 
iii. Inserts ‘ADD’ record into the Location Audit table – Admin 

c. Change a record 
i. Required fields must be filled in to Save 
ii. Updates correct record into the database  
iii. Inserts ‘CHG’ record into the Location Audit table – Admin 

 
3. Audit Table Maintenance 

a. Re-open Audit Records 
i. Generates Notification that the Audit record was Changed (See #9) 
ii. Status field on the Audit record is set to ‘OPEN’ 
iii. Inserts ‘CHG’ record into the Audit Audit table – Admin 

b. Update Audit Records 
i. Generates Notification that the Audit record was Changed (See #9) 
ii. Field data matching Criteria is changed 
iii. Inserts ‘CHG’ record into the Audit Audit table – Admin 

c. Delete Audit Records 
i. Generates Notification that the Audit/Action Item records were 

Deleted (See #9) 
ii. Deletes Audit and all associated Action Item records from the 

database 
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iii. Inserts ‘DEL’ record into the Audit/Action Item Audit tables – Admin 
 

4. Action Item Table Maintenance 
a. Re-open Action Item Records 

i. Generates Notification that  the Action Item record was Changed 
(See #9) 

ii. Status field on the Action Item record is set to ‘OPEN’ 
iii. Inserts ‘CHG’ record into the Action Item Audit table – Admin 

b. Update Action Item Records 
i. Generates Notification that  the Action Item record was Changed 

(See #9) 
ii. Field data matching Criteria is changed 
iii. Inserts ‘CHG’ record into the Action Item Audit table – Admin 

c. Delete Action Item Records 
i. Generates Notification that the Action Item record was Deleted 

(See #9) 
ii. Deletes Action Item record from the database 
iii. Inserts ‘DEL’ record into the Action Item Audit table – Admin 

 
5. Audit Maintenance 

a. Search for an existing record 
i. Audit Search page opens  
ii. Parameters limit search 
iii. Search returns results 
iv. Returns resulting record to the Audit Maintenance page 

b. Add a record 
i. Inserts entire record into the database 
ii. Inserts ‘ADD’ record into the Audit Audit table – Admin 

c. Change a record 
i. Updates correct record into the database 
ii. Inserts ‘CHG’ record into the Audit Audit table – Admin 

d. Complete a record 
i. Updates correct record into the database 
ii. Inserts ‘CHG’ record into the Audit Audit table – Admin 

e. Add Audit Team members (See #6) 
f. Upload associated Action Item records (See #7) 

 
6. Audit Team Maintenance (Add, Change and Delete Records) 

a. Add a record 
i. Audit Team Add page opens 
ii. Parameters limit search 
iii. Search returns results 
iv. Inserts entire record into the database 
v. Inserts ‘ADD’ record into the Audit Team Audit table – Admin 

b. Delete a record 
i. Deletes correct record into the database 
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ii. Inserts ‘DEL’ record into the Audit Team Audit table – Admin 
 

7. Action Item Upload  
a. Upload a file 

i. Browse for formatted MS Excel upload file 
ii. Inserts all file contents into the Action Item Load table 

b. Resolve any errors 
i. Identify any error fields 
ii. Update and save any error fields 

c. Add all records 
i. Inserts entire record into the database 
ii. Inserts ‘ADD’ record into the Action Item Audit table – Admin 

 
8. Action Item Maintenance 

a. Search for an existing record 
i. Action Item Search page opens 
ii. Parameters limit search 
iii. Search returns results 
iv. Returns resulting record to the Action Item Maintenance page 

b. Add a record 
i. Generates Notification that the Action Item record was Added (See 

#9) 
ii. Inserts entire record into the database 
iii. Inserts ‘ADD’ record into the Action Item Audit table – Admin 

c. Change a record 
i. Generates Notification that the Action Item record was Changed 

(See #9) 
ii. Updates correct record into the database 
iii. Inserts ‘CHG’ record into the Action Item Audit table – Admin 

d. Complete a record 
i. Generates Notification that the Action Item record was Completed 

(See #9) 
ii. Updates correct record into the database 
iii. Inserts ‘CHG’ record into the Action Item Audit table – Admin 

 
9. Notifications 

a. Notification was generated 
b. Notification was e-mailed to correct individuals 
c. Notification was copied to the AAT mailbox 
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The author took an in depth look at Object-Oriented Development (OO) as to why it has 
not lived up to its potential. The author asserts that there are still issues with 
understanding the basic concepts of OO and how they fit into a coherent scheme. 
Armstrong outlined the quarks of OO by defining and giving the reader some background 
on the major concepts of OO; inheritance, object, class, encapsulation, method, message 
passing, polymorphism and abstraction. Armstrong then examined the OO taxonomy and 
how the concepts fit together to create an approach into two constructs; Structure 
(Abstraction, Class, Encapsulation, inheritance and Object) and Behavior (Message 
Passing, Method and Polymorphism). Structure is focuses on the relationships between 
the classes and objects and also how they are structured. Behavior focuses on the object 
actions within the system. The author then explains why there has been no consensus on 
the concepts of OO because there are no set of standards established to aid in the learning 
of OO. This was a very good article for a reader who was unsure of the concepts and 
structure of OO. The concepts were defined very well and how they fit together was also 
explained in such a way that would be understandable. The author was knowledgeable 
and seemed to understand how to explain the concepts to others. 

 
Chen, A. N. K., Goes, P.B., Gupta, A., & Marsden, J. R. (2004, June). Database design in the 

modern organization—identifying robust structures under changing query patterns and 
arrival rate conditions. Decision Support Systems, 37(3), 435-447. 

 
The authors illustrate that there are many variables to selecting the best database design 
to satisfy a specific need, there is no one solution that would fit under all conditions. The 
authors present their approach to understanding the best design for a given database, their 
approach consisted of five steps; construct a feasible database; measure processing times 
for each query type; identify top performers; evaluate the top performers with additional 
performance measures to identify robust performers; evaluate the robust performers 
across complexity levels to make selections. The authors laid out their example database 
application environment; the tables and how they relate as well as keys and data sizing. 
The example database testing was comprehensive and used a query pattern to evaluate 5 
components on both non-congested and congested systems. The authors were able to 
evaluate and select potential good performers using their five steps to determine robust 
performers. This article was written at a high-level, it was understandable to someone 
who had little prior knowledge of the subject but was not very useful in understanding 
how to replicate the process. 
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Cook, R. (2007, June 19). Securing the endpoints: The 10 most common internal security threats. 
Retrieved June. 17, 2009, from the CIO.com web site: 
http://www.cio.com/article/120101/Securing_the_Endpoints_The_Most_Common_Intern
al_Security_Threats 

 
The author looks at the top ten most common security threats to internal networks. The 
analysis was done based on endpoints; any device connected to the corporate network, 
desktops, laptops, PDAs and cell phones.  The ten major problem areas are, USB 
Devices: anyone who can get access to a network asset, can download or upload from a 
USB drive and there is little security in place to stop that. Peer-to-Peer File Sharing: 
unauthorized programs allowing file sharing through a secure network. Antivirus 
Problems: companies not updating their antivirus software often and on a regular basis. 
Outdated Microsoft Service Packs: companies not keeping their vendor supplied software 
current. Missing Security Agents: security agents not being installed which can alert 
companies as to network traffic, missing company assets or verify that software patches 
have been installed. Unauthorized Remote-Control Software: software that can allow 
someone possibly outside the network to access and control an internal network asset. 
Media Files: unauthorized audio and video files can contain hidden malicious programs. 
Unnecessary Modems: an unsecured modem is a direct pathway into a company’s 
network. Unauthorized or Unsecured Synchronization Software: software that 
synchronizes different devices can potentially transfer sensitive company data without the 
user even knowing it. Wireless Connectivity: most laptop computers have a built in 
wireless access, which could be used for malicious purposes. It is important to control as 
many of these security threats as you can, you will never be able to eliminate all of them, 
but you should strive to attain as close to that as you can. This was a very interesting and 
thought provoking article, it really opened my eyes to the security threats that are very 
commonly used. 

 
Davidson, L. (2007, Feb. 26).  Ten common database design mistakes. Retrieved June. 15, 2009, 

from the Red Gate Software web site: http://www.simple-talk.com/sql/database-
administration/ten-common-database-design-mistakes/ 
 
The author outlines the ten most common mistakes in designing databases and gives 
examples and real world insight into the problem. Poor design/planning; the database is 
the cornerstone of most projects, so every aspect must be thought out before a line of 
code is written. Ignoring normalization; a single table cannot do it all, break the data 
down into as small a logical group as you can for performance and ease of development.  
Poor naming standards; consistency and readability are the keys, name it what it is and be 
consistent across the application. Lack of documentation; good standards are only part of 
it, document aspects so someone else can understand how the system works, it just might 
be you who needs a refresher. One table to hold all domain values; break them up into 
smaller logical groups, it is more difficult, but worth the time for maintainability. Using 
identity/guid columns as your only key; an identity field should be used in conjunction 
with a natural key, something a user could understand. Not using SQL facilities to protect 
data integrity; base rules such as nullability should be implemented in the database, any 
aspects that are rigid and will not change. Not using stored procedures to access data; 
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stored procedures insulate the database layer from the users and assist in maintainability, 
encapsulation, security and performance. Trying to build generic objects; be specific, 
there are performance concerns to trying to be too generic. Lack of testing; test the 
database piece by piece to ensure it is working, it is harder to troubleshoot and correct 
further down the line. This was a very well written article, full of real world examples 
from an author who is both passionate and knowledgeable on the subject. 

 
Fowler, M. (2003). Patterns. IEEE Software, 20(2), 56-57. doi:10.1109/MS.2003.1184168. 

 
Fowler states his reasons for using design patterns. Patterns are a good way to assist the 
designer in solving problems in a controlled manor, solving recurring problems with 
common solutions and designing in a consistent structured way. Patterns are a tool to 
assist in solving a problem; they themselves are not a solution. Implementing patterns in 
libraries is not advisable, the pattern may be hard to find and understand; developers 
move from language to language the pattern by itself would be more useful and the 
library can implement a pattern, but it is up the developer on how to use it. Experts might 
find patterns unnecessary, they might not learn anything new, but they can be a good tool 
to teach others and have a common vocabulary so everyone can understand with little 
explanation. Pattern overuse is a problem; if a pattern does not contribute it should be 
removed. The author has a great deal of experience in this field and his insights are 
displayed in this article.  The article is a good piece to understand the important aspects 
of design patterns. 

 
Fowler, M., Sadalage, P. (2003, Jan.). Evolutionary database design. Retrieved June 19, 2009, 

from the Martin Fowler web site: http://www.martinfowler.com/articles/evodb.html 
 
The authors put forth some very interesting ideas about evolutionary database design. 
The first aspect was dealing with change; the design is an on-going process, is iterative in 
nature and the designer might run through many life-cycles over the life of the project. 
The authors also highlighted the fact that they not solved all the problems of evolutionary 
databases. This approach involves several practices, DBAs collaborate closely with 
developers; constant communication is very important. Everybody gets their own 
database instance; developers get their own sandbox to play in that will not affect anyone 
else. Developers frequently integrate into a shared master; development work flows 
frequently to the master from which all work flows back down. A database consists of 
schema and test data; the actual database and standardized test data so all developers test 
with the same subset of data. All changes are database refactorings; control the changes, 
change all aspects so nothing becomes disconnected. Automate the refactorings; script all 
changes so they can be consistently applied. Automatically update all database 
developers; push the changes from the master to the developers automatically so 
everyone has the same database to develop on and no developer is disconnected from the 
others. Clearly separate all database access code; have a clearly defined data access layer 
in the application, invisible to changes in the actual database. The authors also 
highlighted variations to this design, keeping multiple database lineages; in more 
complex applications multiple versions of the database may need to be maintained. You 
don't need a DBA; most of the work can be done by developers. The authors also stated it 
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is important to automate as much of the repetitive tasks as can be. This was a very 
interesting article; it presented a new way of looking at database design and outlined best 
practices for that type of development. 

 
Fraternali, P. (1999, Sept.). Tools and approaches for developing data-intensive web 

applications: a survey. ACM Computing Surveys (CSUR) archive. 31(3), 227-263. 
doi:10.1145/331499.331502. 
 
The author outlined web-application development in terms of software engineering, 
architectural and applicative issues. Process: the development lifecycle of the application, 
consisting of the following steps: requirements analysis, conceptualization, prototyping 
and validation, design, implementation and finally evolution and maintenance. Models, 
Languages, and Notation: characterized by three major design dimensions: structure, 
navigation and presentation. Reuse: the ability to reuse an object at any level in the 
development cycle. Architecture: the physical arrangement of the application and its 
access. Usability: the presentation and navigation as well as the flexibility and proactive 
nature of the application. The author also outlined the current development tools. Visual 
Editors and Site Managers: a visual way to write the underlying web code. Web-enabled 
Hypermedia Authoring Tools: similar to visual editors, but from a different origin for 
developing off-line code. Web-DBPL Integrators: database driven development tools. 
Web Form Editors, Report Writers, and Database Publishing Wizards: using traditional 
database design concepts and development tools to create data-intensive applications 
Web applications. Multiparadigm Tools: a combination of the previously mentioned 
visual and database driven tools. Model-Driven Web Generators: use conceptual 
modeling and code generation techniques to the development of Web applications. 
Middleware, Search Engines, and Groupware: middleware is the communication piece 
between the web application and the database, search engines are logical navigation of 
the application and groupware provide access, collaboration and workflow. The author 
then evaluated the relationship between what was termed as “state-of-the-practice 
solutions” and relevant areas along with the research prospective. Fraternali also 
discussed in detail five research projects in data-intensive Web development. The author 
then discussed his background research in the areas of modeling notation, processes and 
other design tools. This was a very good article, there was a considerable amount of 
pertinent information as well as referential and background to the study. The research 
was comprehensive and the author’s conclusions were sound and well formulated. 

 
Hager, D., Kibler, C., & Zack, L. (1999, May). The basics of user-friendly web design. Journal 

for Quality & Participation, 22(3), 58-61. Retrieved June 20, 2009, from Academic 
Search Premier database. 
 
The authors discuss the challenges and techniques around creating Web applications in a 
user-centered approach. The advantages to Web applications also cause some problems; 
multiple browser compatibility, network connectivity and individual user browser 
customizations. The users must be involved in the design, without that involvement the 
application may be frustrating and not useful for users. Setting goals as to when the 
application is complete and can move into production with the understanding that it is not 



Web Application Design Best Practices 98 

perfect, but through feedback the application will improve. The designer must also know 
who they are designing the application for; what they should know, what their 
experiences have been, what they do in their job, what they expect from the application 
and what other applications have they used that may be helpful. Once the user has been 
understood, the actual tasks the application will perform are analyzed. With the task 
information the process can start; build a prototype and work with the users, research 
how others solved similar issues, walkthrough the design with the users to get feedback, 
build the applications and allow a subset of users to test it and finally, distribute the 
application to the entire population and survey them for feedback. This was a very good 
article; the authors knew their subject matter and presented it well. I found some useful 
tips on web application design. 
 

Hice, R. (2008, November). Surrounded: The web is inescapable. Scientific Computing, 25(6), 
18-20. Retrieved June 20, 2009, from Academic Search Premier database. 
 
The author started out with an amusing anecdote to illustrate how users are constantly 
connected to others by the cell phone. Hice continues on to explain through the use of 
cell phones and internet access on commercial airlines how more and more applications 
are becoming Web-based or Web-enabled. The author highlights how applications are 
migrating from PC or client/server based to Web-based. Companies started looking at 
centralizing applications using Citrix Mataframes to make them Web-available; the 
application was just running on a remote computer. Early attempts at Web-enabled 
applications meaning they still required software to be loaded on the workstation and 
server were written in HyperText Markup Language (HTML); they were just not as good 
a user interface as the applications they were replacing. More recently with the advent of 
eXtensible Markup Language (XML) and Web services the applications are truly 
becoming Web-based; better functionality and usability as a user interface. A good 
thought provoking article highlighting the trends of applications moving from PC or 
client/server based to fully Web-based. 

 
Kotek, B. (2002, Oct. 30). MVC design pattern brings about better organization and code reuse. 

Retrieved June 16, 2009, from the TechRepublic web site: 
http://articles.techrepublic.com.com/5100-10878_11-1049862.html 
 
The author explains how MVC works to by enforcing the separation of the different 
aspects of the application into; the model, the view and the controller with each handling 
a different set of tasks. The view does very little processing, it just handles the input from 
the users and returns the output. The controller interprets requests from the view and 
routes them to the appropriate portion of the model to complete the request. The model is 
the business logic and communication to the data storage which returns natural data to the 
controller and on to the view. The author also explains why MVC is an important design 
pattern for web applications. Multiple views can access a single model, because the view 
and model are disconnected, the views can be swapped out with no changes to the model. 
Changes to data access and business rules can be made easier within the model and 
changes there will be invisible to the controller and the view. The concept of a controller 
is also powerful, it connects the two independent pieces together, so either one can 
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change without affecting the other, it allows for reusability of the different pieces in the 
model and view. The author highlighted the drawbacks of the MVC pattern. MVC is 
complex and requires a great deal of planning and attention to detail. MVC might not be 
worth the trouble for small or even medium sized applications. This article was a good 
overview of the MVC design pattern. The author spoke to the subject with knowledge 
and understanding. I however disagree with the assertion that MVC is too much trouble 
for small or medium applications, if you understand the implementation, the advantages 
of the highly separated system outweigh the extra work in implementing MVC. 

 
Meyers, S. (2004). The most important design guideline? IEEE Software, 21(4), 14-16. 

doi:10.1109/MS.2004.29. 
 
In this article the author emphasized many good practices for designing and developing 
good user interfaces. His underlying idea is to “make interfaces easy to use correctly and 
hard to use incorrectly.” Meyers states that it is the responsibility of the designer to make 
the interface user friendly and if they do not, it is their fault if anything goes wrong, not 
the user. The designer must design the interface to not allow the user to make mistakes. 
The author asserts that using drop-down lists to only allow the user to select valid values, 
but this is not always the ideal, it might cause more errors than it solves. The designer 
must consider all the ways a user could misuse the interface in considering a design. 
Another aspect to good design is releasing and destroying object no longer needed. Clean 
up will help with performance and keep the interface running smoothly. The author had a 
very good understanding of designing user interfaces. The article showed how important 
the actual design portion of development truly is, and that it is the ultimate responsibility 
of the designer to make the interface useable and perform well. 
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