
Regis University Regis University

ePublications at Regis University ePublications at Regis University

Regis University Student Publications
(comprehensive collection) Regis University Student Publications

Spring 2010

Develop Best Practices for Designing Internal Business Database-Develop Best Practices for Designing Internal Business Database-

Driven Web Applications Driven Web Applications

Stephen C. Rash
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Rash, Stephen C., "Develop Best Practices for Designing Internal Business Database-Driven Web
Applications" (2010). Regis University Student Publications (comprehensive collection). 128.
https://epublications.regis.edu/theses/128

This Thesis - Open Access is brought to you for free and open access by the Regis University Student Publications
at ePublications at Regis University. It has been accepted for inclusion in Regis University Student Publications
(comprehensive collection) by an authorized administrator of ePublications at Regis University. For more
information, please contact epublications@regis.edu.

https://epublications.regis.edu/
https://epublications.regis.edu/theses
https://epublications.regis.edu/theses
https://epublications.regis.edu/regiscollege_etds
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/128?utm_source=epublications.regis.edu%2Ftheses%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
College for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer
Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

DEVELOP BEST PRACTICES FOR DESIGNING INTERNAL BUSINESS DATABASE-

DRIVEN WEB APPLICATIONS

A THESIS

SUBMITTED ON 21ST OF FEBRUARY, 2010

TO THE DEPARTMENT OF INFORMATION SYSTEMS

OF THE SCHOOL OF COMPUTER & INFORMATION SCIENCES

OF REGIS UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF MASTER OF SCIENCE IN

SOFTWARE ENGINEERING

BY

Stephen C. Rash

APPROVALS

John Holmes

Douglas I Hart

Shari Plantz-Masters

Web Application Design Best Practices ii

Abstract

When developing using newer technology, it is important for smaller information

technology organizations to have universally accepted set of best practices to be able to

successfully complete that type of endeavor. How can these universally accepted set of best

practices be developed? Conducting research on accepted best practices can build the basis for

your theories and assumptions. Next, in the context of your applications, develop an example

application in the newer technology to test your theories and assumptions. Build the application

like a construction project, the initial design is the blueprint, the database is the foundation and

the user interface is the actual building. When you get right down to it, the principals of

simplicity, consistency and user interaction are always best practices in developing applications.

Web Application Design Best Practices iii

Acknowledgements

To my wife, Melanie, thank you for giving me the support and encouragement to complete my

degree. I could not have done this without you.

To my children, Carly, Patrick and Kevin, thank you for giving me the time and space I needed

to complete my homework and even putting up with me when I was frustrated, but, most of all,

understanding that this was something I needed to do.

To my parents, Chuck and Mary Kay, thank you both for the assistance and encouragement to

strive for goals like this my entire life.

To my employer, thank you for the financial assistance to get this degree.

To the faculty and staff of Regis University, thank you all for making this learning experience

wonderful for me, for helping me, challenging me and giving me the tools for continued success

in college and out in the workforce.

Web Application Design Best Practices iv

Table of Contents

Abstract ... ii

Acknowledgements .. iii

Table of Contents ... iv

List of Figures ... vii

List of Tables .. x

Chapter 1 – Introduction ... 1

Chapter 2 – Review of Literature and Research ... 3

Chapter 3 – Methodology ... 7

Chapter 4 – Project Analysis and Results ... 8

Initial Design ... 8

User Interaction ... 9

Requirements Gathering ... 10

Source of requirements. .. 10

Defining use cases... 12

Defining data elements. .. 14

Defining visual aids. ... 14

Documentation .. 16

Producing the scope document. .. 16

Producing the design document. ... 16

User design acceptance and signoff. ... 17

Web Application Design Best Practices v

Security Design ... 17

Network Setup .. 17

Database Setup .. 19

Application Setup.. 19

Database Design .. 20

Database Users .. 20

Tables .. 21

Logging ... 22

Stored Procedures ... 25

The lookup stored procedure. ... 26

The select stored procedure. ... 28

The modify stored procedure. ... 28

Functions ... 28

The Code Table ... 29

Application Design .. 29

Layered (n-tier) Architecture .. 31

Domain layer. .. 31

Service layer.. 31

Business layer. .. 33

Presentation layer. ... 33

Design Patterns ... 34

Web Application Design Best Practices vi

The Model ... 37

Domain Classes. .. 37

Service Classes.. 37

Business Classes. .. 44

The Controller ... 47

Controller Classes (Code Behind). ... 47

Utility Classes. .. 54

The View ... 55

User Controls. .. 56

Cascading Style Sheets. .. 62

Validations. ... 64

Messaging. .. 65

Popups. .. 66

The Configuration File .. 69

Scheduled Tasks .. 70

Reporting ... 71

Chapter 5 – Project History... 72

Chapter 6 – Conclusions ... 74

References ... 74

Web Application Design Best Practices vii

List of Figures

Figure 1: Use Case Diagram. .. 13

Figure 2: Use Case Narrative. .. 13

Figure 3: Data Elements Spreadsheet. .. 14

Figure 4: Use Case Visual Aid. .. 15

Figure 5: Marked-up Use Case Visual Aid. ... 15

Figure 6: Multiple Table Security Setup. ... 19

Figure 7: Application Security Setup. .. 20

Figure 8: Data Table Structure. .. 22

Figure 9: Log Table Structure. ... 23

Figure 10: Logging Trigger Structure. ... 24

Figure 11: Lookup Stored Procedure. .. 25

Figure 12: Select Stored Procedure. ... 26

Figure 13: Modify Stored Procedure. ... 27

Figure 14: Scalar Function. .. 28

Figure 15: Layered Architecture. ... 31

Figure 16: Domain Layer Structure. ... 32

Figure 17: Service Layer Structure... 32

Figure 18: Business Layer Structure. ... 33

Figure 19: Presentation Layer Structure. .. 34

Figure 20: Application Design Patterns. .. 36

Figure 21: Domain Class. ... 38

Figure 22: Factory Class. .. 39

Web Application Design Best Practices viii

Figure 23: IService (Marker Interface) Class. .. 40

Figure 24: Service Interface Class. ... 40

Figure 25: Service SQL Implementation Class – Modify Function. .. 41

Figure 26: Service SQL Implementation Class – Select Function. .. 42

Figure 27: Service SQL Implementation Class – Lookup Function. ... 43

Figure 28: Manager Class. .. 45

Figure 29: IManager (Marker Interface) Class. .. 45

Figure 30: Manager Interface Class. .. 46

Figure 31: Manager Rules Implementation Class. ... 47

Figure 32: Controller Class – Page Load. .. 48

Figure 33: Controller Class – Security. .. 49

Figure 34: Controller Class – New Functions. ... 49

Figure 35: Controller Class – Get Functions. ... 51

Figure 36: Controller Class – Set Functions. ... 51

Figure 37: Controller Class – Set View State. .. 52

Figure 38: Controller Class – Processing Functions. ... 53

Figure 39: Controller Class – Drop-down Lists. .. 54

Figure 40: Controller Class – Search Grid. .. 55

Figure 41: Controller Class – Messages. .. 56

Figure 42: Controller Class – Buttons. ... 56

Figure 43: Utility Class. ... 57

Figure 44: View – Search Criteria Fields. .. 58

Figure 45: View – Search Actions.. 58

Web Application Design Best Practices ix

Figure 46: View – Search Grid. .. 59

Figure 47: View – Data Actions. .. 60

Figure 48: View – Validation Summary. ... 60

Figure 49: View – Data Fields.. 61

Figure 50: View – Hidden Fields. .. 61

Figure 51: View – User Display. .. 62

Figure 52: Cascading Style Sheet. .. 63

Figure 53: Changing a Cascading Style Sheet – Before. .. 63

Figure 54: Changing a Cascading Style Sheet – After. .. 63

Figure 55: Validation Code. ... 64

Figure 56: Validation Display. ... 64

Figure 57: Messaging Code. ... 65

Figure 58: Messaging Display. ... 66

Figure 59: Popup Cascading Style Sheet.. 67

Figure 60: Popup View Code. .. 67

Figure 61: Popup Controller Code. .. 68

Figure 62: Popup Display. .. 68

Figure 63: Configuration File – Application Settings. ... 69

Figure 64: Configuration File – Connection Strings. ... 70

Figure 65: Configuration File – Authentication Settings. .. 70

Web Application Design Best Practices x

List of Tables

Table 1: An analysis of the pros and cons of the different sources of requirements. 11

Table 2: An analysis of the pros and cons of the different security architectures. 18

Table 3: An analysis of the pros and cons of the different list storage architectures. 29

Table 4: An analysis of the different design patterns. .. 35

Table 5: Project history timeline. .. 73

Web Application Design Best Practices 1

Chapter 1 – Introduction

Small Information Technology (IT) organizations that have recently attempted to develop

database driven, internal web-based business applications to replace outdated windows-based

applications have been unsuccessful. These organizations were unsuccessful because they do not

have a universally accepted set of best practices to use for such development.

Hager, Kibler and Zach (1999) state that those who have used a web application have

seen how “this world-changing technology… is burgeoning” and that “many managers are

struggling with the various ways the concepts and technology can be leveraged to create

corporate Intranets”.

 “Companies wanted a way to centrally serve [applications], so some started to use Citrix

Metaframes… which were essentially client-server systems with the client running on remote

machines” (Hice, 2008, p. 20). Organizations are moving away from terminal servers (Citrix)

and windows-based applications to internal web applications. Hice (2008) goes on to say that

web applications “are the wave of the future” and that major software vendors are moving

toward web-based systems. Organizations have found that they do not possess the knowledge

base to successfully implement web applications; they are structured differently than old

windows-based applications. Some organizations contract with outside web application

developers to develop systems to help them gain the knowledge of the best practices to design

and implement these types of applications on their own. Unfortunately, even the contractors do

not always possess the knowledge of the best practices; there is often very little consistency in

their approach and methodology. Organizations often cannot take anything the developers create

and apply it to designing and developing new applications internally.

Web Application Design Best Practices 2

The goal of this research is to identify the best practices for developing and implementing

new business applications by creating an example internal web-based application for

organizations to understand and implement the best practices. The focus of this research is

narrow in the context of understanding best practices for a basic business web application with a

database data repository, any narrower, and the research would lose the validity of a real world

problem.

Web Application Design Best Practices 3

Chapter 2 – Review of Literature and Research

The most important step in developing an internal business web-based application is the

actual design. Davidson (2007) said it best:

…would you hire a contractor to build a house and then demand that they start pouring a

foundation the very next day? Even worse, would you demand that it be done without

blueprints or house plans? Hopefully, you answered "no" to both of these. A design is

needed make sure that the house you want gets built, and that the land you are building it

on will not sink into some underground cavern. If you answered yes, I am not sure if

anything I can say will help you. (¶ 6)

A good, well thought out foundation can make or break the project. The design process cannot

exist without the most important participants, the system users themselves. It is very important to

get the users involved early and often. Hager, Kibler and Zach (1999) highlight the need to

include the users:

User-centered design (UCD) is a technique for designing interfaces… that includes

continuous and early focus on the users’ tasks and goals. It is the best way to get potential

end users to participate in the designing the interface, leveraging their specific knowledge

as part of the overall process. (p. 58)

Meyers (2004) puts forth an interesting statement about the most important design guideline;

“Make interfaces easy to use correctly and hard to use incorrectly”. He also states that “if a user

makes a mistake when using your interface, it’s your fault” (Meyers, 2004, p. 14). Understanding

how a user will use a system can assist an application developer in designing a system the user

Web Application Design Best Practices 4

will actually use successfully. “[D]esigners need to train themselves to anticipate what clients

might reasonably like to do, and then facilitate that activity” (Meyers, 2004, p. 16).

Design patterns can be very useful in many aspects of designing an application. Fowler

(2003) says that “patterns are half-baked – meaning you always have to finish them yourself and

adapt them to your own environment”. A design pattern is just that, “a model or guide for

something to be made” (“Pattern,” 2009). Patterns can be useful in teaching other, less

experienced, developers and also develop a standard vocabulary so everyone can understand the

overall design (Fowler, 2003, p. 57). The “Model-View-Controller (MVC) is a widely used

software design pattern …[and] is a useful addition to a toolkit, no matter what language you

choose” (Kotek, 2002, ¶ 2). MVC is a logical separation between the View; the user interaction

piece, the Model; the business rules and data processing piece and the Controller; the

communication avenue between the Model and View (Kotek, 2002). The most important aspect

of MVC is that because of the disconnected nature, the different pieces can be changed without

affecting the other pieces.

Object-Oriented (OO) Development concepts are essential in designing and developing

web applications. Armstrong (2006) highlights the need to understand OO development

concepts:

Understanding what concepts characterize OO is of paramount importance to both

practitioners in the midst of transitioning to the OO approach and researchers studying

the transition to OO development. How can we hope to achieve the productivity gains

promised by the OO development approach, effectively transition software developers, or

conduct meaningful research toward these goals, when we have yet to identify and

understand the basic phenomena? (p. 124)

Web Application Design Best Practices 5

Armstrong (2006) goes on to state that “an established set of fundamental OO concepts within a

taxonomy may enhance the maturity of the OO development discipline through standardization,

and increase the portability of developers across organizations and environments”. A firm

understanding of OO concepts implemented in an application can assist a designer in

maximizing the scalability, extensibility and usability of the application.

Davidson (2007) states that “the database is the cornerstone of pretty much every

business project” (¶ 8), data is the key, entering, storing, processing, manipulating and displaying

data for whatever purpose the user wishes. The concept of an evolutionary database design

discussed by Fowler and Sadalage (2003) has some merits, the “design of the system has to

evolve through the various iterations of the software” (¶ 2). Through tightly controlled change,

the database is allowed to grow and mature throughout the life-cycle of the project (Fowler &

Sadalage, 2003). Automated refactoring is very important in this type of development,

everything is controlled; the database schema and test data is rebuilt to ensure integrity of the

entire system (Fowler & Sadalage, 2003).

Performance is an important part of any database, the better a developer understands that,

the better the application. Chen, Goes, Gupta and Marsden (2004) explored query patterns and

found it is not possible “to find a single database structure that is best under all conditions[, but it

is possible]… to identify database structures that perform robustly”. It is a worthwhile effort to

identify and design for the most robust structure possible.

Fraternali (1999) explains about how data-intensive web applications will cope with the

special requirements:

As has happened in the past with other emerging technologies such as databases and

object-oriented programming languages, methodologies and software tools may greatly

Web Application Design Best Practices 6

help in mastering the complexity of innovative applications by fostering a correct

understanding and use of a new development paradigm, providing productivity

advantages, and thus reducing the risk inherent in application development and

migration. (p. 228)

These are new types of “hybrid” applications, web application and information system

(Fraternali, 1999).

Web Application Design Best Practices 7

Chapter 3 – Methodology

The research methodology will be that of design science research, building an example

ASP.NET web application driven by a Microsoft SQL Server 2005 database to gain the

knowledge of what are the best practices associated with designing and building those types of

applications.

The example application will be a simple data in / data out type of application with basic

functionality to search for records, select records, add, change and delete records. It will be

constructed as a three-tier architecture, using the Model-View-Controller (MVC) architectural

pattern taking full advantage of Object-Oriented (OO) development concepts. All of the CRUD,

Create, Read, Update, and Delete operations will be handled by Stored Procedures on the

database side. Data change logging will be handled by Insert, Update and Delete triggers on the

data table, inserting values into a specific log table. Application security will be handled by

Active Directory (AD) for domain access and the system users, along with their associated

security levels stored in database tables, used by the web user interface to control what a

particular logged in user can do or see.

Web Application Design Best Practices 8

Chapter 4 – Project Analysis and Results

The example application was designed to replace an existing application that was

cumbersome and time consuming to use, as well as, lacking key functionality and scalability

required by the users to perform their job. The users requested an application that was simpler

and more streamlined; facilitating quick, easy and reliable user interaction. In addition to the user

experience, they also requested enhanced security features as well as increased flexible search

features.

The new Audit Action Tracker (AAT) application will make the user interface simpler

for the end user by taking advantage of Web-based technology. AAT redesigns the storage of

data in a Microsoft SQL Server 2005 database using tables, triggers, procedures and functions to

better manage data and develop reports with Crystal Reports XI for display in a company-wide

reporting system, BusinessObjects Enterprise XI. This system will meet the functional and

security requirements by managing the data, capturing an audit trail, and making the data more

accessible and reportable.

Initial Design

Initial design is the cornerstone of any good application, the better the foundation the

better the implementation and the more that the users will accept it. The more questions that can

be answered in the beginning, the smoother the actual development will be. In small Information

Technology (IT) organizations, the developer has to perform all the different jobs in the

application development life-cycle, becoming the architect, the designer, the coder, the

documenter, the tester as well as the developer. With all the responsibility falling on the

Web Application Design Best Practices 9

developer to do everything, it is important for the developer to address three areas in the initial

design phase, user interaction, requirements gathering and documentation.

User Interaction

With regard to a business application, the user is the most important element. The

business application itself is a tool that helps the user do their work more easily and efficiently.

The user is a wealth of knowledge in what will help them perform their work better. The users

know what they want or do not want in an application, so it is imperative to involve them in

every aspect of the design and development process to ensure they will be satisfied with the

finished product. Hager, Kibler and Zach (1999) said it best:

Besides the challenges imposed by web technology, the real challenges of web

applications involve getting the content right so the users can do the work they need to

and leave satisfied. The only way to get it right is with early and continuous focus on

users and their tasks. Without user-centered design, applications are almost always

frustrating to use, forcing many users to leave without doing what they came to do.

Obviously this isn’t good for a company’s bottom line. (p. 59)

If users feel they have a voice in designing the application, they will take more pride in working

on it, work harder understanding what they truly need and when it is all finished, will take

ownership in using the application.

Start small with a core group of users, the most knowledgeable and experienced, and then

expand the group to involve more of the user community to get a wider perspective. This will

allow the developer to have a basic understanding and be able to present ideas for feedback from

the user group.

Web Application Design Best Practices 10

Weekly meetings are crucial to the success of the process, providing a forum for users to

see the progress and give feedback. Having an agenda and sticking to it, is a good structure to

help in the design meeting process. Meetings are not value-added if they are constantly off track,

other unrelated topics are introduced or the users are uninterested or otherwise occupied.

Getting the users involved in testing the application or validating a prototype of the

application will give them a better understanding of what they like and do not like and what the

application can do. If the users see it in operation and work with it, they will provide better

feedback to the developer. In most cases, for small IT organizations, it is not practical to build a

prototype, but if pieces of the application, the most representative functionality pieces, can be

built, the users can extrapolate what the other pieces of the application will be like.

Requirements Gathering

Understanding how an application is to be used, who is to use it and what they will be

doing with it is very important for the developer. The developer must have an understanding of

the overall process and the high-level functionality required for a user to perform their work

activities and, once those are understood, they must be able to compile and articulate that

information back to the users in a logical, understandable format, so that the user understands

how the application will look and perform. Developers must understand and determine the

source of requirements to build the application use case diagrams and data elements.

Source of requirements.

There are two main sources of requirements; replacing an existing application and user

developed requirements. . Based on the different sources of requirements, are different

approaches the developer must take to extract the information needed to formulate the initial

Web Application Design Best Practices 11

Table 1: An analysis of the pros and cons of the different sources of requirements. The table

below contains data on the pros and cons of replacing an existing application vs. user

requirements.

Source Pros Cons

Replacing an Existing

Application

 Users will have a better

understanding of what they like

and do not like in an application

 Developers will be able to work

with the existing application to

gain a better understanding of the

user requirements

 Both users and developers will

have a common frame of

reference

 Users may be fixated on how the

existing application works and

not receptive to process

changes... "this is the way we

have always done it"

 Users may feel threatened by a

replacement application in either

workload or employment

 The application itself may be too

complex to replicate in whole or

part

User Developed

Requirements

 The application is a blank slate,

specific process and work-flow

can be built exactly to the user

specifications

 Users will be focused on

functionality and process and

will be free to think outside what

they already know and help

streamline their work

 Developers will have the

opportunity to interject new and

simpler processes into the design

that the user may not have

considered

 The application is a blank slate,

if the user requirements are too

vague, the process to understand

and refine the design may be a

long process

 Developers have to work harder

to understand functionality and

process, more interaction with

the users and more example

development must be done

 Based on arbitrary, grandiose

requirements and development

limitations the application itself

may be too complex to build

Web Application Design Best Practices 12

design. When the developer is replacing an existing application, the focus is on how the existing

application works and how the users want to add to or change the functionally to better suit their

needs. The developer must be granted access to the existing application in a test environment and

given user contacts to work help understand the required functionality. As the developer is

working with user identified requirements, the focus is on understanding the vision of the users,

what functionality they require, want and would like to have. The developer must work closely

with the users to constantly refine the ideas into a workable design.

There are advantages and disadvantages to both sources of requirements as shown in

Table 1. There are also different approaches to gathering requirements for both sources of

requirements. The developer must understand these to be able to successfully develop an initial

design. Once the developer has the underlying understanding of the requirements, the building of

the artifacts begins.

Defining use cases.

The use case is the focal point of the initial design, it is the definition of the specific

activity to be preformed and which specific actors will be performing them. The use cases can be

presented in two forms, the use case diagram shown in Figure 1 and the use case narrative shown

in Figure 2.

The use case diagram and the use case narrative most often go together when detailing

the use case design. The use case diagram is a good visual representation of the interaction

between the actor and an application function. The use case narrative is a textual representation

of the interaction between the actor and an application function with more detail.

Web Application Design Best Practices 13

Figure 1: Use Case Diagram.

Figure 2: Use Case Narrative.

Web Application Design Best Practices 14

Defining data elements.

Once the use cases are defined, the developer then must delve into more detail about what

specific data elements must be captured. The data elements drive the database design as well as

the actual model, the page and user control design in the application. As shown in Figure 3, a

simple spreadsheet can contain all the pertinent information the developer needs to do the actual

implementation.

Figure 3: Data Elements Spreadsheet.

The data element lists will allow the developer to map out the construction of the

database tables, primary and foreign keys, unique index, stored procedures and how they relate

to each other, as well as the application domain objects, implementations and the pages/controls

themselves. It is an important tool to keep updated as a reference to what the pieces should all

look like.

Defining visual aids.

A picture really is worth a thousand words, but only if it is understandable to the

consumer. It is important to present the different functions to the user in a visual form, to show

what the look and feel of the application will be. The user will be able to take that visual aid and

be able to comment and make changes to the overall design of the functions.

Figure 4 is a visual example of a specific use case and how it might be built in the

application; the user can see the navigation, see the different functions available and see how the

data elements will be incorporated into the application.

Web Application Design Best Practices 15

Figure 4: Use Case Visual Aid.

Figure 5: Marked-up Use Case Visual Aid.

Web Application Design Best Practices 16

Figure 5 shows the visual aid after it has been marked-up by the users. When the look and

feel of the application has been refined and finalized the developer can start work on a prototype

or example function of the application for the users to see. More revisions may be necessary, but

with a little extra time in the initial design, coding revisions will more likely be minimal.

Documentation

Documentation is very important to a successful project as it allows all the individuals

involved to take time to think out the aspects of the application and write it down so that

everyone has a source for understanding what is required, how it will be produced and that the

responsible individuals approve.

Producing the scope document.

The scope document is a detailed document that defines the justification for “why” the

application is being developed, the high-level usage scenarios, what the application will

exclusively entail and specifically, what it will not. In smaller organizations, this document is the

collaboration between the users and the developers to produce and refine it into something that

all can agree upon.

Producing the design document.

The design document is a compilation of the finalized design artifacts produced by the

developer. The main purpose of this document is for the developer to have something to work

from and also, so any future projects or developers can see how the application was designed and

take away that knowledge.

Web Application Design Best Practices 17

User design acceptance and signoff.

The acceptance and signoff document is user approval to move forward. This could

consist of a single page signed by the user or an email stating the user has reviewed and

approved the initial design and the development work can proceed.

Security Design

The initial design is the blueprint of the application; the security is the gated fence around

the application through which no one passes without authorization. Security is a very important

aspect to any business application large or small, windows or web, you must control who has

access and at what level. The developer must take into consideration many aspects of security,

how many types of individuals will access the application, what level of granularity the security

must be and how the security will be presented to the users. The level of complexity depends

upon the application, from any user having access to the application with access to all functions

to a particular user having access to only particular functions. Internal business applications have

traditionally encompassed all aspects of application security; they stored the user’s passwords

and access levels. More recently, internal business applications have the advantage of being able

to take benefit of network security to control application access. The developer has to build on

the network security to store user and access information in the database to be used to specify

access within the application. There are advantages and disadvantages to both of these security

architectures. Table 2 shows the advantages and disadvantages to both of these security

architectures.

Network Setup

All users that will access the application must have network security credentials. When

the user accesses the network, they automatically have access to the application without having

Web Application Design Best Practices 18

Table 2: An analysis of the pros and cons of the different security architectures. The table below

contains data on the pros and cons of a traditional application based security vs. network

enabled security.

Security Architecture Pros Cons

Traditional

Application Based

Security

 Better access control to the

application, all user ids and

passwords are stored in the

database and the application is

more secure

 System administrators would be

able to more quickly grant users

access to the application

 The user does not need to have

network access to be setup in the

application

 More maintenance issues

because all user's passwords are

stored in the application and

must be encrypted

 Logon is required each time the

user accesses the application

 The user would have to

remember a different password

to access the application

Network Enabled

Security

 Seamless security into the

application; the user is

authenticated by network

security and proceeds into the

application

 If a user's network security

access is disabled, they would be

disabled in the application at the

same time

 Easier user maintenance, ties the

user’s network id to what

security access they require, no

password storage

 There is a security risk, if a user

does not lock their computer

when not in the area, so anyone

could access the application AS

that particular user from that

computer

 The user is required to have

network security credentials to

access the application

 More than a single individual

must be involved in setting up

application access

Web Application Design Best Practices 19

to login again. Seamless access and not having to remember another password is a big advantage

to the users. The security risk to this type of architecture can be mitigated by password protected

screen savers and user training. The advantages outweigh the risks.

Database Setup

The database will contain at least one table that contains the user’s network identification

and their security access. More complex security architecture will contain two or more tables to

hold users, groups and security information.

Figure 6: Multiple Table Security Setup.

The database will also contain a stored procedure that accepts parameters for user and

control to return the level of security access.

Application Setup

The application will access the user – security information via a stored procedure in the

database to grant access to the particular page and or user control with its specific insert, change,

delete and search functions. Figure 7 shows the flow of the application security. The application

security is based on the accessed page or control and the network user id. The page or user

control and user id is passed to the database and a security record is returned consisting of the

level of access that user has to that particular control, the including ability of the user to insert,

update or delete records.

Web Application Design Best Practices 20

Figure 7: Application Security Setup.

Database Design

As the initial design is the blueprint of the application, the security is the fence around the

application, so then it follows that the database is the foundation of the application. The database

development must be the first step in actually building the application. The database has two

main functions, store the data and facilitate the CRUD, Create, Read, Update and Delete

operations.

Database Users

The Achilles heel of security for a database driven web-based application is the double-

hop authentication, client to web server to database server. A simple solution to this issue is to

create database user application id, which has full select, insert, update and delete access to the

tables, as well as execute access to all stored procedures. The application id is used in the

application to connect to the database and perform the operations. Another handy database user

Web Application Design Best Practices 21

is a read-only id, which has only select access to the tables and also has execute access to

selected stored procedures. The read-only id is used in reporting and any external access to the

application data.

Tables

In a database, the table is the most important piece; it is where the data is stored, the

particular data in the table must be unique, consistent and retrievable. The best data table

architecture is as follows:

o A next sequential record key, an integer identity field which is the tables primary

key

o Data type specific fields, the correct data type for the type of data it will be

accepting, every unused bite of data will still take up database space

o Fields accepting null values sparingly, if the field may not have any data

populated, the field should accept null values, but if the field will more likely

have values, the field should not accept null values.

o If the record may be changed by different users, logging should be incorporated

into the table design

o For data integrity, foreign key constraints should be placed on fields where the

values relate to the primary key of other tables

o At least, a unique index should be used, the literal name or unique values captured

in a table

o Grant full select, insert, update and delete permissions to the application user and

grant select only permissions to the read-only user

Figure 8 shows the example SQL code for a data table.

Web Application Design Best Practices 22

Figure 8: Data Table Structure.

Logging

Logging is an important feature to determine the “who,” “what” and “when” a table

record was changed. If the table has records that could potentially be updated by different users,

logging is required. The logging feature is simple and consists of a log table which is structured

very similarly to the data table and a trigger that executes on a record change in the data table.

Web Application Design Best Practices 23

The log table has the exact same fields as the data table, the only differences are that the log table

has no primary key or foreign keys and its unique index is the data table’s primary key field and

the logging fields. The example SQL code for a log table is shown in Figure 9.

Figure 9: Log Table Structure.

Web Application Design Best Practices 24

The logging trigger is executed on any insert, update or delete and copies the data table record

exactly and inserts it into the log table. Figure 10 shows the example SQL code for the log

trigger.

Figure 10: Logging Trigger Structure.

Web Application Design Best Practices 25

The logging is simple but effective, the log table, based on the last modification date-time field

in descending order, can show the administrator what changes have been made to the record

throughout its life and what user made the change.

Stored Procedures

The table is the most important piece in a database, but the stored procedures are a very

close second. The stored procedures control the record manipulation and retrieval of data from

the data tables. There are three main types of stored procedures, lookup, select and modify.

Figure 11: Lookup Stored Procedure.

Web Application Design Best Practices 26

The lookup stored procedure.

The lookup stored procedure accepts search criteria parameters to return a list of records

to populate the search facility in the application. The search is limited to 200 records for

application performance, if the returned record set is the max, 201, the user will be asked to limit

the search. Conversely, if there are no records returned for the search criteria, the user will be

advised of that as well. The SQL code shown in Figure 11 is an example of a lookup stored

procedure.

Figure 12: Select Stored Procedure.

Web Application Design Best Practices 27

Figure 13: Modify Stored Procedure.

Web Application Design Best Practices 28

The select stored procedure.

The select stored procedure accepts a single parameter, the record key, to return a single

record to populate the data manipulation facility in the application. An example of the SQL code

to build the select stored procedure is shown in Figure 12.

The modify stored procedure.

The modify stored procedure accepts all record parameters and based on the type of

modification to be performed, manipulates the record in the table and then returns the record key

for the messaging facility in the application. Figure 13 shows the example SQL code for a

modify stored procedure.

Figure 14: Scalar Function.

Web Application Design Best Practices 29

Functions

The scalar function accepts a single parameter and returns a single descriptive value. The

scalar function is used to decode specific values in the database. The example SQL code for a

scalar function is shown in Figure 14.

The Code Table

Most applications have lists of values that have meaning and populate data records.

Storing of these lists in an application can be architected in two ways: a more traditional

architecture where there are several tables each correlating to a specific list type or a single table

using a type to store all lists. The code table concept is the storing of all lists in a single code

table with an associated code type to differentiate each list and a hierarchical structure to identify

dependencies for use in cascading drop-down lists in the application. There are advantages and

disadvantages to both types of architecture. Table 3 shows the advantages and disadvantages to

both types of architecture.

Which list architecture is the best? That depends on which advantages will best serve the

application and which disadvantages will be the least detrimental. A combination, a hybrid, of

both of these architectures is going to be the best, then the static constrained lists can be

incorporated into the code table and the more complex lists can be separated into different tables.

Application Design

With the initial design being the blueprint, security being the fence, the database being

the foundation , then the user interface becomes the actual building with a well thought out floor

plan, easy for everyone to use and beautiful to look at. Once the database development is

complete, the next step is to build the application. Just like in a construction project, the

development must be from the ground up, it is difficult to start on the fourth floor and work

Web Application Design Best Practices 30

Table 3: An analysis of the pros and cons of the different list storage architectures. The table

below contains data on the pros and cons of a traditional separate table vs. the code table

architecture.

List Architecture Pros Cons

Traditional Separate

Table Architecture

 The developer has more latitude

to add additional data fields and

use different data types

 With separate tables, querying

each list will be based on the

number of records in each table,

not all lists

 Logical table names will allow

for quick identification in the

database

 The application will be more

complex, multiple points of

entry, one for each list to be

maintained

 More development time will be

required in the database to build

the functions to search, select

and update each list table

 The application code to drive the

drop-down lists for each list

would be more complicated and

each would have to be built

individually

The Code Table

Architecture

 The application will be less

complex, the user would have a

single point of entry to maintain

all codes

 Less development time will be

required in the database, once the

functions to search, select and

update a single type of list are

created, those functions can be

reused in the application

 The application code to drive the

drop-down list can more easily

be reused in the application

 The developer is constrained to

just an id and description, no

other additional information can

be captured unless it is captured

for all codes

 With a single table to hold all

codes, the more records, the

slower the querying capabilities

of the application

 The user would need to decode

the record in the code table with

the code type to identify the

members of each list

Web Application Design Best Practices 31

down. In application design, the floors equate to the layers of the Layered (n-tier) Architecture:

the ground floor is the Domain Layer, then the Service Layer, next the Business Layer and lastly,

the Presentation Layer.

Layered (n-tier) Architecture

The Layered Architecture is a logical separation of high-level functionality. This type of

architecture lends itself to being maintainable and distributable. It is maintainable because of the

grouping of the similar functions and it is distributable because the different layers can be run on

different physical hardware.

Figure 15: Layered Architecture.

Domain layer.

The domain layer contains the actual data classes, or objects, that the different layers use

to move records within the application. The domain layer objects are use in all other layers of the

application. The domain layer structure is shown in Figure 16.

Service layer.

The service layer contains the classes that handle the persistence, the movement of

domain objects to and from the data store. The service layer also hides the specific persistence

Web Application Design Best Practices 32

Figure 16: Domain Layer Structure.

Figure 17: Service Layer Structure.

Web Application Design Best Practices 33

technology from the business layer, so it can be swapped out with another technology without

affecting the business layer. Figure 17 shows the service layer structure.

Business layer.

The business layer contains the classes that handle the use case workflow, the specific

rules under which the application operates. The business layer is also the main interface point to

the presentation layer. The business layer structure is shown in Figure 18.

Figure 18: Business Layer Structure.

Presentation layer.

The presentation layer contains all the elements that handle the interaction with the user,

known as the User Interface. The presentation layer displays the visual representation of the

application to the user, accepts inputs and passes those inputs on to the business layer for

processing, then, accepts return messages that the process was either successful or unsuccessful.

Figure 19 shows the presentation layer structure.

Web Application Design Best Practices 34

Figure 19: Presentation Layer Structure.

Design Patterns

Design patterns are a structured approach to designing elements of an application to take

advantage of the principals of Object Oriented Programming (OOP). Inheritance, encapsulation

and reuse, just to name a few, even the object and classes themselves are rooted in OOP and used

in design patterns. Table 4 shows the different types of design patterns, how they are used and

where they are used in the application.

Web Application Design Best Practices 35

Table 4: An analysis of the different design patterns. The table below contains data on how

design patterns are used and where in the Layered Architecture they are used.

Design Pattern What it is used for… Where it is used…

Model, View,

Controller (MVC)

 An overall architectural design pattern

 To simplify the communication between the

different elements

 To separate like functions:

o Model – the application logic, workflow,

persistence and objects

o View – the User Interface, the graphical

representation of the application

o Controller – the communication between

the View and the Model

 Presentation Layer

 Business Layer

 Service Layer

 Domain Layer

Layer Supertype

 To dynamically instantiate the rules

implementations by use of the Web.config file

based on the requested manager interface

 To provide a common interface between the

Business Layer and Service Layer using the

Factory

 Business Layer

Separated Interface

 To decouple the higher level Manager or

Service Interface from the actual

implementation logic

 Business Layer

 Service Layer

Plugin

 To encapsulate the interface details and the

implementations

 To easily swap out the business rules in the

Business Layer or persistence mechanism in

the Service Layer

 Business Layer

 Service Layer

Marker (Serializable)

Interface

 To provide a common interface to the Service

Interfaces and Manager Interfaces

 Business Layer

 Service Layer

Web Application Design Best Practices 36

Factory

 To dynamically instantiate the persistence

implementations by use of the Web.config file

based on the requested service interface

 Service Layer

Singleton
 To ensure that only one object is instantiated

in the Factory

 Service Layer

Object To hold the actual data record Domain Layer

Figure 20 shows how the different design patterns can be employed throughout the application,

to achieve the desired goal of a simple, maintainable and useable application.

Figure 20: Application Design Patterns.

Design patterns assist the developer in standardizing the application; each function will

be built in the same manner. Any other developer working on the application will be able to

follow the methodology and easily integrate additional functions.

Web Application Design Best Practices 37

The Model

The Model is the part of the application that contains the workflow logic and persistence

of the application. The Model consists of the classes that make up the Domain Layer, Service

Layer and Business Layer of the application.

Domain Classes.

Domain classes are very important in Object-Oriented Programming, as they are the

objects themselves. These classes are used throughout the application to move data around as a

consistent record set. The Domain class is based on the table layout in the database; it consists of

the same fields with the same high-level data types, so the first step in creating the object is to

define the fields. Second, the object properties, the communication in and out of the object, must

be defined through gets and sets. Next, the constructors are defined, a default constructor so the

object can be instantiated without being populated and the overloaded constructor which accepts

the values and populates the object. An override to string function is nice to have so the contents

of the object can be viewed in a string format, but it is not necessary. A validation function is

also nice to have to ensure the object is populated correctly, but again not necessary. An example

of an example domain class is shown in Figure 21.

Service Classes.

Service classes handle the communication to the data store. The architecture includes a

Factory class, an IService class, a service interface for each data function and, at least one

service implantation for each data function.

The Factory class shown in Figure 22 is used to dynamically instantiate the persistence

implementation using the service interface through IService. The Factory consists of a default

constructor so it can be instantiated by other classes, a shared get_instance function based on the

Web Application Design Best Practices 38

Figure 21: Domain Class.

Web Application Design Best Practices 39

Singleton design pattern to ensure that only one Factory is instantiated and a get_service function

to return the service implementation of a given service interface.

Figure 22: Factory Class.

The IService class is a marker, or serializable, interface and its purpose is to be a

common interface to the service interfaces. It is an empty interface which is inherited by the

service interfaces. Figure 23 shows an example IService class.

Web Application Design Best Practices 40

Figure 23: IService (Marker Interface) Class.

The service interface classes are used to instantiate the methods used by the service

implementation, so the implementation technology is invisible to the Factory and the higher

levels in the model. The service interface classes have modify, select and lookup functions that

equate to the same functions in the service implementation. An example of a service interface

class is shown in Figure 24.

Figure 24: Service Interface Class.

The service implementation classes are where the actual persistence technology resides

which is used to move data in and out of the data store. In the example application, a Microsoft

Web Application Design Best Practices 41

Figure 25: Service SQL Implementation Class – Modify Function.

Web Application Design Best Practices 42

SQL server is the data store, the modify, select and lookup functions will equate to their

corresponding stored procedures in the database. The modify function will implement the modify

function from the service interface. The function first opens a connection to the SQL database,

creates the SQL command and gets the specific modify stored procedure name. Then the

function builds and populates the stored procedure parameters in the SQL command based on the

passed in object. Next, the modify function executes the SQL command and accepts the return

integer value. Any exceptions in that process are captured and stored as the return value then

logged to the web server. Once all the processing is complete, the function closes the SQL

connection, disposes the SQL command and returns the stored value. Figure 25 shows the

modify function of an example service implementation.

Figure 26: Service SQL Implementation Class – Select Function.

Web Application Design Best Practices 43

Figure 27: Service SQL Implementation Class – Lookup Function.

The select function implements the select function from the service interface. The select

function opens a connection to the SQL database, creates the SQL command, gets the specific

select stored procedure name and builds the SQL data reader to accept the return from the

database. Next, the function builds and populates the stored procedure parameter, the specific

passed in record key, in the SQL command. Then, the function executes the SQL command to

populate the return record into the SQL data reader, which, in turn, populates the object. Any

exceptions in that process are captured and logged to the web server. Finally, the function closes

Web Application Design Best Practices 44

the SQL connection, disposes the SQL command, closes the SQL data reader and returns the

object. An example of the select function of a service implementation is shown in Figure 26.

The lookup function implements the lookup function from the service interface. The

function first opens a connection to the SQL database, creates the SQL command, gets the

specific select stored procedure name and builds the SQL data reader to accept the return from

the database. Second, the lookup function builds and populates the stored procedure parameter,

the specific passed in object, in the SQL command. Then, the function executes the SQL

command to populate the return records into the SQL data reader, which, in turn, populates the

list of objects. Any processing exceptions are captured and logged to the web server. Once all the

processing is complete, the function closes the SQL connection, disposes the SQL command,

closes the SQL data reader and returns the list of objects. Figure 27 shows the lookup function of

an example service implementation.

Business Classes.

The Business classes handle the use case workflow. The architecture includes a Manager

class, an IManager class, a manager interface for each data function and, at least, one manager

implantation for each data function.

The Manager class shown in Figure 28 is used as a communication point to the

controllers: it dynamically instantiates the rules implementation using the manager interface

through IManager and communicates with the Factory to instantiate the proper service

implementation. The Manager consists of a default constructor so it can be instantiated by other

classes, a shared get_service function to instantiate the Factory, then use its get_service function

to return the implementation of a given interface and a get_manager function to return the

manager implementation of a given manager interface.

Web Application Design Best Practices 45

Figure 28: Manager Class.

Figure 29: IManager (Marker Interface) Class.

Web Application Design Best Practices 46

The IManager class is a marker, or serializable, interface and its purpose is to be a

common interface to the manager interfaces. It is an empty interface which is inherited by the

manager interfaces. Figure 29 shows an example IManager class.

The manager interface classes are used to instantiate the methods used by the

implementation. The manager interface classes have modify, select and lookup functions that

equate to the same functions in the manager implementation. An example of a manager

interfaces class is shown in Figure 30.

Figure 30: Manager Interface Class.

The manager implementation classes are where the use case workflow resides, which is

used to control how the methods are executed. The manager implementation is architected with a

call to the manager to get the particular service implementation, a function which implements the

corresponding function from the manager interface and executes the corresponding service

implementation. Figure 31 is an example of a manager implementation class.

Web Application Design Best Practices 47

Figure 31: Manager Rules Implementation Class.

The Controller

The controller is the point of communication between the user interface, the view and the

processing, the model in the application. All user commanded actions flow through the controller

and the results of those actions are returned to the user by the controller. The controller handles

the instantiation of communication channels, user security, object gets and sets, population of

lists and grids as well as the actual processing of the user requests.

Controller Classes (Code Behind).

The controller communicates with the business layer by way of the managers. The first

step must be to instantiate the communication paths to the managers. Next, the load of the page

Web Application Design Best Practices 48

calls the security facility, builds any drop-down lists and sets the initial state of the user interface.

Figure 32 shows the page load portion of an example controller class.

Figure 32: Controller Class – Page Load.

The security function makes a call to return the level of access the current user has to the

particular control. Once the values are returned, they are held in security fields on the control

itself for use in setting the view state, allowing the user access to the fields and actions of that

control. If the current user has no access to the control, the security fields are set to allow no

access to any field or action on the control. The security portion of an example controller class is

shown in Figure 33.

Web Application Design Best Practices 49

Figure 33: Controller Class – Security.

Figure 34: Controller Class – New Functions.

Web Application Design Best Practices 50

The initial or new state of the view must be set, with any defaulted values and any

displayed or hidden controls. This initial state is also used by the application when the user wants

to clear the contents and return to the initial state. Figure 34 shows the new function portion of

an example controller class.

Get functions shown in Figure 35 populate an object with the user entered values and

pass the object back to the requesting function. The get functions also handle any data translation

or clean up while building the objects.

Figure 36 shows the set functions populate the field values with those from an object

provided. The set functions also handle any data translation or clean up populating the fields

from the object.

The view state uses security to enable fields and display buttons the user has access to or

disable fields and hide buttons the user does not. Figure 37 shows the view state functions.

Actions are set in processing functions shown in Figure 38, so they can be called from

within the control. There is a corresponding processing function to each button on the view.

To limit values a user can select in the system, drop-down lists are populated from the

database. The drop-down lists are populated from a list returned based on criteria provided. The

list population functions are shown in Figure 39.

The search facility is a simple grid populated based on the search criteria provided by the

user. There are limitations in the number of records that can be successfully returned, the grids

are limited to 200 records for processing. If the returned record set is outside the acceptable

limits, a message is displayed for the user. The search grid is paging enabled, so the index must

be captured as the user moves through the pages. Selected values are populated in the data area

Web Application Design Best Practices 51

and, based on the record key, provided to the refresh processing function. The search grid

population functions are shown in Figure 40.

Figure 35: Controller Class – Get Functions.

Figure 36: Controller Class – Set Functions.

Web Application Design Best Practices 52

Figure 37: Controller Class – Set View State.

The user is displayed messages about the processing of the data. Both an icon and literal

message text are displayed based on the type of message. Figure 41 shows the user messaging

functions. Buttons are the actual actions the user can perform from the view. For the most part,

the button calls the corresponding processing function, but some have a simple validation to

ensure a record key exists before processing. The button functions are shown in Figure 42.

Web Application Design Best Practices 53

Figure 38: Controller Class – Processing Functions.

Web Application Design Best Practices 54

Figure 39: Controller Class – Drop-down Lists.

The controller is architected in a simple way to facilitate the seamless communication

between the view and the model.

Utility Classes.

The utility classes are used to hold global functions that allow for reuse. The functions within the

utility classes are shared, so they can be used by any of the controllers to perform common or

repetitive functions. Figure 43 shows an example utility class.

Web Application Design Best Practices 55

Figure 40: Controller Class – Search Grid.

The View

The view is the user interface, the representation of the application presented to the users.

The view is where the user performs tasks necessary to their specific job function. The view

consists of the master pages, pages, user controls, as well as, images and cascading style sheets

that control the look and feel to the user.

Web Application Design Best Practices 56

Figure 41: Controller Class – Messages.

Figure 42: Controller Class – Buttons.

Web Application Design Best Practices 57

Figure 43: Utility Class.

User Controls.

The user control is the main piece of the view. The user functions are encapsulated in

user controls to allow for reuse, and contain all the functionality of the application. The example

application is data driven, so each function must allow for the basic data functions to search,

insert, update and delete data records.

The first part of the user control is a search facility to accept user input to limit the

returned subset of records. Example search criteria fields’ code is shown in Figure 44.

Web Application Design Best Practices 58

Figure 44: View – Search Criteria Fields.

Next, Figure 45 shows the search action buttons that affect the search and reset the search criteria

fields if necessary. Any search related messages are displayed to the user.

Figure 45: View – Search Actions.

Web Application Design Best Practices 59

The search grid displays the returned records from the database in such a way that the user can

select the record needed. By selecting a record, the data is populated in the data area for

modification. Figure 46 shows code for the search grid controls.

Figure 46: View – Search Grid.

The data action buttons are next. Figure 47 shows the code to setup of the action buttons. They

facilitate the inserting, updating or deleting of the selected data record. Any data related

messages are displayed to the user. The validation summary displays a literal message to the user

when there are data field validation errors. The validation summary code is shown in Figure 48.

The data fields hold the data record information to be manipulated by the user. They are

Web Application Design Best Practices 60

displayed as a label and a field. Any validations are attached to the field to display when a

validation error occurs. The code for the data fields is shown in Figure 49.

Figure 47: View – Data Actions.

Figure 48: View – Validation Summary.

Web Application Design Best Practices 61

Figure 49: View – Data Fields.

Hidden fields hold any data for processing or security that the application needs to hold, but not

display to the user. Figure 50 shows the code for the hidden field setup.

Figure 50: View – Hidden Fields.

Web Application Design Best Practices 62

Figure 51 shows the view displayed to the user is simple and clean with everything laid out in a

logical way.

Figure 51: View – User Display.

All together, the view is what the user will see and use to work with the application; if it is not

straight forward; easy to use and understand, it will not be a successful application.

Cascading Style Sheets.

Cascading style sheets are a global way to control the look and feel of the application.

Building the style of the application in a common place to be pulled anywhere it is needed, is an

advantage; if the style changes, that change can be made in one location and affects the entire

application. Example code for creating a cascading style sheet is shown in Figure 52.

Web Application Design Best Practices 63

Figure 52: Cascading Style Sheet.

If the styles of the required and non-required fields change in the application, they can be

easily modified in one location. Figure 53 shows code and example the before the change.

Change the style sheet class and the change is effective on all the required and non-required

fields without having to go to each one and make the change there. Figure 54 shows code and

example the after the change.

Figure 53: Changing a Cascading Style Sheet – Before.

Figure 54: Changing a Cascading Style Sheet – After.

Web Application Design Best Practices 64

Validations.

To ensure valid data is entered in the application, field validations are necessary. Visual

Studio has delivered validation controls that are easy to use and give the user instant feedback at

the point of entry. There are two parts to the validation: a validation summary, which displays

the literal validation message and, the specific validation, which assesses a particular data field

for validity. The example code for setting up validations is shown in Figure 55.

Figure 55: Validation Code.

Figure 56: Validation Display.

Web Application Design Best Practices 65

If there is a validation error, the validation summary is displayed and the field is highlighted that

does not meet the validation criteria. Figure 56 shows the validation display.

Messaging.

It is important to inform the user about processing successes and failures. The messaging

feature allows the user to see when the process is complete and, if it was successful, or if there

was an error. The messaging facility also masks the particular error message returned and

displays a more useful message to the user. Figure 57 shows the code for setting up messing.

Figure 57: Messaging Code.

Web Application Design Best Practices 66

Based on the message type, the icon and message text are displayed in such a way the user

knows if the processing was successful or if it failed. Examples of the display of the messages is

shown in Figure 58.

Figure 58: Messaging Display.

Popups.

A modal popup window can be very useful for displaying a message that a user has to

acknowledge or to do external processing prior to continuing. The example application uses the

modal popup window to lookup values in the system to assign to the parent control. There are

many third-party built controls that can be used, but have a lot of processing overhead to deal

with. A simple modal popup can be built within the context of the existing tools.

To create the simple modal popup, a cascading style sheet for the popup and modal styles

must be created. Figure 59 shows the cascading style sheet code for the simple popup. Next,

panels for both the modal and popup must be created. The modal panel has no content; it is just a

barrier between the original screen and the popup, so no processing can be accomplished on the

original window without first closing the popup. The popup has the content to be processed.

Code to create and display the simple popup is shown in Figure 60.

Web Application Design Best Practices 67

Figure 59: Popup Cascading Style Sheet.

Figure 60: Popup View Code.

Web Application Design Best Practices 68

By making both the modal and popup panels visible, the popup is the only item on the screen

that can be accessed. By returning the values from the popup and hiding both the modal and

popup panels, the original screen is active and has the selected values. Figure 61 shows the code

to return values from the popup and hide the panels. The display to the user is simple, the popup,

the modal panel between it and the original screen. The display of what the simple popup looks

like is shown in Figure 62.

Figure 61: Popup Controller Code.

Figure 62: Popup Display.

Web Application Design Best Practices 69

The Configuration File

The configuration file, the web.config file, is a file that resides outside the application

where variables can be assigned and changed without having to republish the application. There

are three main areas that are used in the configuration file: the application settings, the

connection strings and the authentication section.

The application settings are value pairs stored in the file, which can be changed if

necessary to change the returned value to the system. All the processing specific values are

stored here, system specific used for display in the application, service and business

implementations used in processing and any other variables that could change, such as: database

stored procedure names, file locations and even literal error messages. Figure 63 shows the

example application setting value pairs held in the configuration file.

Figure 63: Configuration File – Application Settings.

Web Application Design Best Practices 70

Connection strings to the database instances are held in the configuration file and could

be changed, if the need arose. Multiple instances can be controlled by an application setting as to

which one to use. Figure 64 shows the value pairs of connection strings.

Figure 64: Configuration File – Connection Strings.

Based on the architecture, the authentication variables need to be set. The application will

impersonate the user, so the application does not have to pass the user credentials. The

authentication string information is shown in Figure 65.

Figure 65: Configuration File – Authentication Settings.

Scheduled Tasks

There are occasions that there will be some processing done outside the normal

processing in the application. In the case of the example application, periodic e-mail notifications

are generated. On those occasions where processing outside the application is necessary, a

Windows Service is the best way to handle that type of processing. The Windows Service

executes on a set timeframe, processes and waits for the next execution.

Web Application Design Best Practices 71

Reporting

Reporting is a very important aspect of any business application, as it is important to be

able to get information back out of the application. There are reporting applications that can be

implemented to gain reporting functionality, which would have to be built into an application. In

the case of the example application, reporting is handled in an external reporting application

where scheduling, security and a single point of reporting can be leveraged.

Web Application Design Best Practices 72

Chapter 5 – Project History

The example application, Audit Action Tracker, was designed and developed over a four

month period of time. The project was broken down into five phases: documentation, design,

construction, testing and implementation.

The documentation phase consisted of working with the users to formulate the initial

application design, documenting that initial design, getting the user approval and developing the

project plan. The documentation consisted of a combined scope and design document, as well as,

the approval to proceed with the project.

The design phase consisted of working with the users to refine the initial design into a

detailed design. Use cases, screen mockups and data elements were created and refined to a point

where the developer and users could agree upon navigation and content of the application.

The construction phase consisted of each element of the application being built. Database

elements were constructed first, tables, triggers, functions and stored procedures, as well as, the

data migration plan based on the detailed design. Next the model elements were constructed; the

domain, service and business layers were built based on the detailed design. Lastly, the user

interface elements, the view and controller pieces were constructed.

The testing phase allowed the users to test the navigation and the particular functions to

ensure they worked correctly. This phase also gave the users a chance to make minor changes to

the system to better suit their needs. The developer in the testing phase had the opportunity to

take the testing results and the change requests and make the necessary modifications to the

application to better satisfy the needs of the users.

Web Application Design Best Practices 73

Table 5: Project history timeline. The table below contains a list of the phases and tasks and the

periods of time that were taken to complete each task.

Phase Task End Date End Date

Documentation Create Project Short Form 7/2/2009 7/13/2009
 Create Project Plan 7/13/2009 7/13/2009
 Documentation Sign-off 7/13/2009 7/13/2009
Design Design SQL Database 7/20/2009 7/27/2009
 Design Legacy Data Migration 7/28/2009 7/29/2009
 Design ASP.NET Web Pages 7/30/2009 8/7/2009
 Design Crystal XI Reports 8/10/2009 8/13/2009
 Design Complete 8/13/2009 8/13/2009
Construction Construct SQL Database 8/20/2009 8/21/2009
 Construct Legacy Data Migration 8/24/2009 8/25/2009
 Construct ASP.NET Web Pages 8/26/2009 8/31/2009
 Construct Crystal XI Reports 9/1/2009 9/2/2009
 Construction Complete 9/2/2009 9/2/2009
Testing Test Legacy Data Migration 9/9/2009 9/9/2009
 Test Admin Functions 9/10/2009 9/17/2009
 Test User Functions 9/18/2009 9/25/2009
 Test Database Functions 9/28/2009 10/5/2009
 Test Notifications 10/6/2009 10/7/2009
 Rework Discrepancies Found 10/8/2009 10/21/2009
 Testing Sign-off 10/21/2009 10/21/2009
Implementation Implement SQL Database 11/2/2009 11/2/2009
 Implement Legacy Data Migration 11/2/2009 11/2/2009
 Implement ASP.NET Web Pages 11/2/2009 11/2/2009
 Implement Crystal XI Reports 11/2/2009 11/2/2009
 Implementation Sign-off 11/2/2009 11/2/2009

The implementation phase consisted of the actual implementation of the new application

into the production environment. Putting all the pieces together, building the database,

conducting the data migration and publishing the web application to the production web server.

Table 5 shows a breakdown by phase and task the project timeline.

Web Application Design Best Practices 74

Chapter 6 – Conclusions

The most important set of best practices for developing database driven, internal web-

based business applications are principals, the principals of simplicity, consistency and user

interaction. These principals drive the nuts and bolts of developing the application. In developing

the example application, these principals presented themselves time after time.

Simplicity – finding the most concise way to do something, to make it easy to understand

and use. In business applications, simple is just better. There is no need to add elements that are

not necessary, just give the users what they need to satisfy their requirements and little more.

Consistency – doing the same task the same way each time, building the same function

the same way each time and making the application look the same from function to function. The

user will see consistency in the user interface, but the most important aspect of application

consistency is in the construction that the user will never see. There should be a common theme,

common naming convention and a common design philosophy. This commonality or consistency

will help in the maintenance of the application and add additional functionality, as well as,

helping other developers understand how the application is architected.

User interaction – giving users a voice in the development, they know what they need in

a business application and they are going to have to ultimately use the application as a tool to

make their work easier. Without the users and their requirements, there would be no need for the

developer. Building a relationship between the user and developer is important; any development

is a team effort.

Web Application Design Best Practices 75

Now for the nuts and bolts; exactly how to develop a database-driven, internal web-based

business application from the ground up. The practices, themselves, employ simplicity,

consistency and user interaction.

The initial design is very important, get the users involved early in the initial design

phase as their knowledge is extremely important and they know what they need and want in an

application. Communication is paramount, meetings, visual aids and documentation. Constantly

working together with the key group; ensuring that everyone understands the design and has a

chance to voice their opinions. The point of this phase is to refine the application on paper before

even one line of code is written. Throughout the process the users must validate the ongoing

work, since they should be able to identify any issues or rethink functionality before major

rework would be required. The users must be able to test in the same way as they would use the

application to identify workflow issues.

In a database driven application, the database is the basis for the design. All elements

flow from the database, tables should equate to objects and stored procedures should equate to

service implementations. The database should take advantage of self incrementing record keys,

primary and foreign keys to preserve data integrity, simple logging techniques for audit purposes

and simplify and reuse database objects where possible.

The use of design patterns in the application allows the development to be done more

quickly and keep overall consistency in the architecture, which translates to maintainability and

scalability in the future. The Model View Controller (MVC) design pattern takes a small step

away from simplicity, but makes up for it in consistency. Understanding that, the developer

should use it in a limited form. There are clear advantages to the single point of integration that

the Factory and Layer Supertype patterns give the developer. The Separated Interface and Plugin

Web Application Design Best Practices 76

patterns allow for hiding technology and the ability to swap that technology out without having

to rewrite the application.

Once again, the principals of simplicity and consistency are very important in the user

interface. Presenting a simple consistent look and feel to the application is very important for the

user interaction, as well as, the maintenance of the application. Clutter free windows, simple

popup windows and controls, in addition to the ability to globally change the look and feel of the

application, make the user experience more favorable. Presenting field validation messages

before any processing takes place is very helpful to the user. Clearly displaying processing

messages; both successful and understandable failure messages, assists the user in understanding

the processing happening behind the scenes in the application.

Therefore, the best practices for designing and implementing a database driven, internal

web-based business application are themselves simple. Get the users involved throughout the

process, design the database as the basis to the rest of the application, build the application with

commonality and maintainability in mind and, lastly, make the user interface clear and easy to

use, that is the ultimate goal.

Web Application Design Best Practices 77

References

Armstrong, D. J. (2006, Feb.). The quarks of object-oriented development. Communications of

the ACM, 49(2), 123–128. doi:10.1145/1113034.1113040.

Chen, A. N. K., Goes, P.B., Gupta, A., & Marsden, J. R. (2004, June). Database design in the

modern organization—identifying robust structures under changing query patterns and

arrival rate conditions. Decision Support Systems, 37(3), 435-447.

Davidson, L. (2007, Feb. 26). Ten common database design mistakes. Retrieved from

http://www.simple-talk.com/sql/database-administration/ten-common-database-design-

mistakes/

Fowler, M. (2003). Patterns. IEEE Software, 20(2), 56-57. doi:10.1109/MS.2003.1184168.

Fowler, M., Sadalage, P. (2003, Jan.). Evolutionary database design. Retrieved from

http://www.martinfowler.com/articles/evodb.html

Fraternali, P. (1999, Sept.). Tools and approaches for developing data-intensive web

applications: a survey. ACM Computing Surveys (CSUR) archive. 31(3), 227-263.

doi:10.1145/331499.331502.

Hager, D., Kibler, C., & Zack, L. (1999, May). The basics of user-friendly web design. Journal

for Quality & Participation, 22(3), 58-61. Retrieved from Academic Search Premier

database.

Hice, R. (2008, November). Surrounded: The web is inescapable. Scientific Computing, 25(6),

18-20. Retrieved from Academic Search Premier database.

Kotek, B. (2002, Oct. 30). MVC design pattern brings about better organization and code reuse.

Retrieved from http://articles.techrepublic.com.com/5100-10878_11-1049862.html

Web Application Design Best Practices 78

Meyers, S. (2004). The most important design guideline? IEEE Software, 21(4), 14-16.

doi:10.1109/MS.2004.29.

Pattern. (2009). Retrieved from http://dictionary.reference.com/browse/pattern

Web Application Design Best Practices 79

Appendix A

Design Document

Project Name: Audit Action Tracker (AAT)

Author Stephen C. Rash
Date July 13, 2009

Revision & Sign-off Sheet

Change Record

Date Author Version Change Reference
7/2/2009 Stephen C. Rash 1.0 Initial Document Development
7/6/2009 Stephen C. Rash 1.1 Updates
7/9/2009 Stephen C. Rash 1.2 App Name Change / Updates
7/13/2009 Stephen C. Rash 1.3 Finalize

Reviewers

Name Position Date Approval
John Doe Manager-EHS 7/15/2009

Estimated Hours
Estimated hours for this project are between 250-300 hours.

Objective & Scope
The current Action Tracking System (ATS) functionality is outdated, cumbersome and
time consuming for the users. ATS lacks the functionality and scalability required by the
users to perform their job. The users want a system that is simpler and more
streamlined which facilitates quick and easy user interaction, has enhanced security
features and has better report generation features.

The objective of this project is to design a replacement application for ATS, which
consists of three separate Visual Basic 6 applications, ATS, ATSUpload and ATSAuto.
The new Audit Action Tracker (AAT) application will make the user interface simpler for
the end user by taking advantage of Web-based (ASP.NET) technology, redesign the
storage of data (MSSQL 2005 database) using tables, triggers, procedures and views to
better manage data and develop reports (Crystal Reports XI) for display in our company
wide reporting system (BusinessObjects Enterprise XI). This system will meet the
functional and security requirements by managing the data, capturing an audit trail, and
making the data more accessible and reportable.

Web Application Design Best Practices 80

Functional Requirements
The AAT application will contain the following functionality:

1. Security
a. Based on the user logging in, the system will search the Corporate

Directory to find the user’s structure and determine what data the user will
be able to view and to what level of access (Add, Change, Read-Only) the
user will have.

b. Also based on the user logging in, the system will determine if the user
falls into the Admin or a TeamLead groups to allow additional system
functions.

c. There will be 4 types of user access:
i. Admin – System Administrators (NT Group).
ii. TeamLead – Audit Team Leaders (NT Groups by Functional

Group).
iii. Assignees – Individual responsible for the Action Item (Action Item

Record).
iv. ReadOnly – The Location Managers and Supervisors and Manages

above the Location Manager and Action Item Assignees.

2. Locations
a. Location information will be housed in a database table.
b. Location name, state and city information will be entered.
c. Location will be associated with a Business Unit, Region and Division.
d. System audit information will be housed in a database table and

generated by triggers on the Location table.

3. Audits
a. Audit information will be housed in a database table.
b. Audit name, audit start and end dates will be entered.
c. Audit will be associated to a Location.
d. Facility Manager will be selected.
e. Audit Team Leader will be captured by login credentials.
f. Audit Team Members will be selected.
g. Audit Team Leader will complete Audit records.
h. System audit information will be housed in a database table and

generated by triggers on the Audit table.

4. Action Items
a. Action Item information will be housed in a database table.
b. Audit Team Leader will Upload or manually add/change Action Item

records.
c. Action Item findings, references, due date and Assignee will be entered.
d. Assignee will change/complete Action Item records.
e. System notification to Assignee when added to an Action Item.
f. System audit information will be housed in a database table and

generated by triggers on the Action Item table.

Web Application Design Best Practices 81

5. System Notifications

a. Generate periodic notifications to Assignee, Assignee’s Supervisor and
Assignee’s Supervisor’s Supervisor

Detailed Design
The design of the AAT application will consist of a database (tables, triggers,
procedures and views), Web-based users interface (ASP.NET with VB code behind)
and reports (Crystal Reports XI accessed via BusinessObjects Enterprise):

Audit Maintenance

Web Application Design Best Practices 82

 (1) Audit Search Grid User Control
 A data grid to display the Audits for a particular Audit Lead or user in the Corporate Directory

Hierarchy
 Should display audit_name, audit_loc_name, audit_start_date, audit_end_date and

audit_complete
 Selected item should open and populate Audit Maintenance by audit_id
 Data Grid only visible if Current User is in Audit Lead or Audit Admin

(4) Location Select User Control

 A User Control to search for and select a single Location

(5) Date Select User Control

 A User Control to display a calendar and select a date (Required)

(6) User Select User Control

 A User Control to search for and select a single User (user id) from the Corporate Directory

Audit Team

(9) Audit Team Grid

 Display users of the Audit Team based on audit_id
 Audit Team Member can be deleted from grid

(6) User Select User Control

 A User Control to search for and select a single User (user id) from the Corporate Directory

Web Application Design Best Practices 83

Action Item Upload

Web Application Design Best Practices 84

Action Item Maintenance

Web Application Design Best Practices 85

(2) Action Item Grid User Control
 A data grid to display the Action Items for a particular Audit Lead / Assignee or user in the

Corporate Directory Hierarchy.
 Should display item_name, item_priority, item_due_date and item_complete
 Selected item should open and populate Action Item Maintenance by item_id.

(5) Date Select User Control

 A User Control to display a calendar and select a date (Required)

(6) User Select User Control

 A User Control to search for and select a single User (user id) from the Corporate Directory

Code Maintenance

 (7) Code Search Grid

 A grid to search for and select codes
 Should display code_type_id, code_name and code_active
 Selected item should open and populate Code Maintenance by code_id.

Web Application Design Best Practices 86

Location Maintenance

(8) Location Grid

 A grid to search for and select locations
 Should display loc_name, loc_city, loc_zip and loc_active
 Selected item should open and populate Code Maintenance by loc_id.

Web Application Design Best Practices 87

Audit Table Maintenance

Audit Team Lead User Update (From User -> To User)

(6) User Select User Control (From)
 A User Control to search for and select a single User (user id) from the Corporate Directory

(6) User Select User Control (To)

 A User Control to search for and select a single User (user id) from the Corporate Directory

Audit Location Manager User Update (From User -> To User)

(6) User Select User Control (From)
 A User Control to search for and select a single User (user id) from the Corporate Directory

(6) User Select User Control (To)

 A User Control to search for and select a single User (user id) from the Corporate Directory

Web Application Design Best Practices 88

Action Item Table Maintenance

Action Item Assignee User Update (From User -> To User)

(6) User Select User Control (From)
 A User Control to search for and select a single User (user id) from the Corporate Directory

(6) User Select User Control (To)

 A User Control to search for and select a single User (user id) from the Corporate Directory

Database (Tables)
Name Description
tbl_code_type Holds code type information, what code relates to what list for use in

the system
tbl_code_audit Holds code audit data, who, what and when the code record was

inserted, changed or deleted by use of Triggers
tbl_code Holds code specific information
tbl_location_audit Holds location audit data, who, what and when the location record

was inserted, changed or deleted by use of Triggers
tbl_location Holds location data, the specific location where the audit is preformed
tbl_audit_audit Holds 'audit' audit data, who, what and when the audit record was

inserted, changed or deleted by use of Triggers
tbl_audit Holds audit data, audit specific information, the where the audit was

preformed, who preformed it and who is the responsible manager
tbl_audit_team_audit Holds audit team audit data, who, what and when the audit team

record was inserted, changed or deleted by use of Triggers
tbl_audit_team Holds audit team data, what person(s) conducted the audit.
tbl_action_item_load Holds action item upload data, temporary load information to be

verified and loaded into the action item table
tbl_action_item_audit Holds action item audit data, who, what and when the action item

record was inserted, changed or deleted by use of Triggers
tbl_action_item Holds action item data, event header detail lines... the type of waste

to dispose of

Web Application Design Best Practices 89

Database (Triggers)
Name Description
tgr_code_ins Logs inserts to the code table
tgr_code_upd Logs updates to the code table
tgr_code_del Logs deletes from the code table
tgr_location_ins Logs inserts to the location table
tgr_location_upd Logs updates to the location table
tgr_location_del Logs deletes from the location table
tgr_audit_ins Logs inserts to the audit table
tgr_audit_upd Logs updates to the audit table
tgr_audit_del Logs deletes from the audit table
tgr_audit_team_ins Logs inserts to the audit team table
tgr_audit_team_upd Logs updates to the audit team table
tgr_audit_team_del Logs deletes from the audit team table
tgr_action_item_ins Logs inserts to the action item table
tgr_action_item_upd Logs updates to the action item table
tgr_action_item_del Logs deletes from the action item table

Database (Procedures)
Name Description
sp_code_type_sel Selects code type table record information
sp_code_sel Selects code table record information
sp_code_ins Inserts code table record information
sp_code_upd Updates code table record information
sp_location_sel Selects location table record information
sp_location_ins Inserts location table record information
sp_location_upd Updates location table record information
sp_audit_opn Sets the Status to 'OPEN' on audit table record information
sp_audit_upd Updates certain fields on audit table record information
sp_action_item_opn Sets the Status to 'OPEN' on action item table record information
sp_action_item_upd Updates certain fields on action item table record information
sp_audit_sel Selects audit table record information
sp_audit_ins Inserts audit table record information
sp_audit_upd Updates audit table record information
sp_corp_dir_sel Selects Corporate Directory record information
sp_audit_team_sel Selects audit team table record information
sp_audit_team_ins Inserts audit team table record information
sp_audit_team_upd Updates audit team table record information
sp_audit_team_del Deletes audit team table record information
sp_action_item_load_sel Selects action item load table record information
sp_action_item_load_ins Inserts action item load table record information
sp_action_item_load_upd Updates action item load table record information
sp_action_item_load_del Deletes action item load table record information
sp_action_item_load_xfer Selects action item load table record information
sp_action_item_sel Selects action item table record information
sp_action_item_ins Inserts action item table record information
sp_action_item_upd Updates action item table record information

Web Application Design Best Practices 90

Database (Views)
Name Description
vw_all_audit_data Selects All types of Audits data for reporting
vw_audit_audit_data Selects Audit type of Audit data for reporting
vw_assessment_audit_data Selects Assessment of Audit type data for reporting
vw_security_audit_data Selects Security type of Audit data for reporting
vw_psm_audit_data Selects PSM type of Audit data for reporting
vw_all_action_data Selects All types of Action Items data for reporting
vw_audit_action_data Selects Audit type of Action Item data for reporting
vw_assessment_action_data Selects Assessment type of Action Item data for reporting
vw_security_action_data Selects Security type of Action Item data for reporting
vw_psm_action_data Selects PSM type of Action Item data for reporting

Database (Groups)
Name Description
AAT_SysAdmin System Administrators
AAT_AuditLead Audit Team Leaders
AAT_AssmtLead Assessment Team Leaders
AAT_SecLead Security Team Leaders
AAT_PSMLead PSM Team Leaders

Reports
Name Parameters
All Detail Data Date Range, Business Unit, Region, Division, Open/Completed
Audit Detail Data Date Range, Business Unit, Region, Division, Open/Completed
Assessment Detail Data Date Range, Business Unit, Region, Division, Open/Completed
Security Detail Data Date Range, Business Unit, Region, Division, Open/Completed
PSM Detail Data Date Range, Business Unit, Region, Division, Open/Completed
All Detail Data Due Date Range, Priority, Open/Completed
Audit Detail Data Due Date Range, Priority, Open/Completed
Assessment Detail Data Due Date Range, Priority, Open/Completed
Security Detail Data Due Date Range, Priority, Open/Completed
PSM Detail Data Due Date Range, Priority, Open/Completed

Web Application Design Best Practices 91

Testing Scenarios
Test the following web-based AAT application functionality:

1. Code Maintenance
a. Search for an existing record

i. Code Search page opens
ii. Parameters limit search
iii. Search returns results
iv. Returns resulting record to the Code Maintenance page

b. Add a record
i. Required fields must be filled in to Save
ii. Inserts entire record into the database
iii. Inserts ‘ADD’ record into the Code Audit table – Admin

c. Change a record
i. Required fields must be filled in to Save
ii. Updates correct record into the database
iii. Inserts ‘CHG’ record into the Code Audit table – Admin

2. Location Maintenance

a. Search for an existing record
i. Location Search page opens
ii. Parameters limit search
iii. Search returns results
iv. Returns resulting record to the Location Maintenance page

b. Add a record
i. Required fields must be filled in to Save
ii. Inserts entire record into the database
iii. Inserts ‘ADD’ record into the Location Audit table – Admin

c. Change a record
i. Required fields must be filled in to Save
ii. Updates correct record into the database
iii. Inserts ‘CHG’ record into the Location Audit table – Admin

3. Audit Table Maintenance

a. Re-open Audit Records
i. Generates Notification that the Audit record was Changed (See #9)
ii. Status field on the Audit record is set to ‘OPEN’
iii. Inserts ‘CHG’ record into the Audit Audit table – Admin

b. Update Audit Records
i. Generates Notification that the Audit record was Changed (See #9)
ii. Field data matching Criteria is changed
iii. Inserts ‘CHG’ record into the Audit Audit table – Admin

c. Delete Audit Records
i. Generates Notification that the Audit/Action Item records were

Deleted (See #9)
ii. Deletes Audit and all associated Action Item records from the

database

Web Application Design Best Practices 92

iii. Inserts ‘DEL’ record into the Audit/Action Item Audit tables – Admin

4. Action Item Table Maintenance
a. Re-open Action Item Records

i. Generates Notification that the Action Item record was Changed
(See #9)

ii. Status field on the Action Item record is set to ‘OPEN’
iii. Inserts ‘CHG’ record into the Action Item Audit table – Admin

b. Update Action Item Records
i. Generates Notification that the Action Item record was Changed

(See #9)
ii. Field data matching Criteria is changed
iii. Inserts ‘CHG’ record into the Action Item Audit table – Admin

c. Delete Action Item Records
i. Generates Notification that the Action Item record was Deleted

(See #9)
ii. Deletes Action Item record from the database
iii. Inserts ‘DEL’ record into the Action Item Audit table – Admin

5. Audit Maintenance

a. Search for an existing record
i. Audit Search page opens
ii. Parameters limit search
iii. Search returns results
iv. Returns resulting record to the Audit Maintenance page

b. Add a record
i. Inserts entire record into the database
ii. Inserts ‘ADD’ record into the Audit Audit table – Admin

c. Change a record
i. Updates correct record into the database
ii. Inserts ‘CHG’ record into the Audit Audit table – Admin

d. Complete a record
i. Updates correct record into the database
ii. Inserts ‘CHG’ record into the Audit Audit table – Admin

e. Add Audit Team members (See #6)
f. Upload associated Action Item records (See #7)

6. Audit Team Maintenance (Add, Change and Delete Records)

a. Add a record
i. Audit Team Add page opens
ii. Parameters limit search
iii. Search returns results
iv. Inserts entire record into the database
v. Inserts ‘ADD’ record into the Audit Team Audit table – Admin

b. Delete a record
i. Deletes correct record into the database

Web Application Design Best Practices 93

ii. Inserts ‘DEL’ record into the Audit Team Audit table – Admin

7. Action Item Upload
a. Upload a file

i. Browse for formatted MS Excel upload file
ii. Inserts all file contents into the Action Item Load table

b. Resolve any errors
i. Identify any error fields
ii. Update and save any error fields

c. Add all records
i. Inserts entire record into the database
ii. Inserts ‘ADD’ record into the Action Item Audit table – Admin

8. Action Item Maintenance

a. Search for an existing record
i. Action Item Search page opens
ii. Parameters limit search
iii. Search returns results
iv. Returns resulting record to the Action Item Maintenance page

b. Add a record
i. Generates Notification that the Action Item record was Added (See

#9)
ii. Inserts entire record into the database
iii. Inserts ‘ADD’ record into the Action Item Audit table – Admin

c. Change a record
i. Generates Notification that the Action Item record was Changed

(See #9)
ii. Updates correct record into the database
iii. Inserts ‘CHG’ record into the Action Item Audit table – Admin

d. Complete a record
i. Generates Notification that the Action Item record was Completed

(See #9)
ii. Updates correct record into the database
iii. Inserts ‘CHG’ record into the Action Item Audit table – Admin

9. Notifications

a. Notification was generated
b. Notification was e-mailed to correct individuals
c. Notification was copied to the AAT mailbox

Web Application Design Best Practices 94

Annotated Bibliography

Armstrong, D. J. (2006, Feb.). The quarks of object-oriented development. Communications of
the ACM, 49(2), 123–128. doi:10.1145/1113034.1113040.

The author took an in depth look at Object-Oriented Development (OO) as to why it has
not lived up to its potential. The author asserts that there are still issues with
understanding the basic concepts of OO and how they fit into a coherent scheme.
Armstrong outlined the quarks of OO by defining and giving the reader some background
on the major concepts of OO; inheritance, object, class, encapsulation, method, message
passing, polymorphism and abstraction. Armstrong then examined the OO taxonomy and
how the concepts fit together to create an approach into two constructs; Structure
(Abstraction, Class, Encapsulation, inheritance and Object) and Behavior (Message
Passing, Method and Polymorphism). Structure is focuses on the relationships between
the classes and objects and also how they are structured. Behavior focuses on the object
actions within the system. The author then explains why there has been no consensus on
the concepts of OO because there are no set of standards established to aid in the learning
of OO. This was a very good article for a reader who was unsure of the concepts and
structure of OO. The concepts were defined very well and how they fit together was also
explained in such a way that would be understandable. The author was knowledgeable
and seemed to understand how to explain the concepts to others.

Chen, A. N. K., Goes, P.B., Gupta, A., & Marsden, J. R. (2004, June). Database design in the

modern organization—identifying robust structures under changing query patterns and
arrival rate conditions. Decision Support Systems, 37(3), 435-447.

The authors illustrate that there are many variables to selecting the best database design
to satisfy a specific need, there is no one solution that would fit under all conditions. The
authors present their approach to understanding the best design for a given database, their
approach consisted of five steps; construct a feasible database; measure processing times
for each query type; identify top performers; evaluate the top performers with additional
performance measures to identify robust performers; evaluate the robust performers
across complexity levels to make selections. The authors laid out their example database
application environment; the tables and how they relate as well as keys and data sizing.
The example database testing was comprehensive and used a query pattern to evaluate 5
components on both non-congested and congested systems. The authors were able to
evaluate and select potential good performers using their five steps to determine robust
performers. This article was written at a high-level, it was understandable to someone
who had little prior knowledge of the subject but was not very useful in understanding
how to replicate the process.

Web Application Design Best Practices 95

Cook, R. (2007, June 19). Securing the endpoints: The 10 most common internal security threats.
Retrieved June. 17, 2009, from the CIO.com web site:
http://www.cio.com/article/120101/Securing_the_Endpoints_The_Most_Common_Intern
al_Security_Threats

The author looks at the top ten most common security threats to internal networks. The
analysis was done based on endpoints; any device connected to the corporate network,
desktops, laptops, PDAs and cell phones. The ten major problem areas are, USB
Devices: anyone who can get access to a network asset, can download or upload from a
USB drive and there is little security in place to stop that. Peer-to-Peer File Sharing:
unauthorized programs allowing file sharing through a secure network. Antivirus
Problems: companies not updating their antivirus software often and on a regular basis.
Outdated Microsoft Service Packs: companies not keeping their vendor supplied software
current. Missing Security Agents: security agents not being installed which can alert
companies as to network traffic, missing company assets or verify that software patches
have been installed. Unauthorized Remote-Control Software: software that can allow
someone possibly outside the network to access and control an internal network asset.
Media Files: unauthorized audio and video files can contain hidden malicious programs.
Unnecessary Modems: an unsecured modem is a direct pathway into a company’s
network. Unauthorized or Unsecured Synchronization Software: software that
synchronizes different devices can potentially transfer sensitive company data without the
user even knowing it. Wireless Connectivity: most laptop computers have a built in
wireless access, which could be used for malicious purposes. It is important to control as
many of these security threats as you can, you will never be able to eliminate all of them,
but you should strive to attain as close to that as you can. This was a very interesting and
thought provoking article, it really opened my eyes to the security threats that are very
commonly used.

Davidson, L. (2007, Feb. 26). Ten common database design mistakes. Retrieved June. 15, 2009,

from the Red Gate Software web site: http://www.simple-talk.com/sql/database-
administration/ten-common-database-design-mistakes/

The author outlines the ten most common mistakes in designing databases and gives
examples and real world insight into the problem. Poor design/planning; the database is
the cornerstone of most projects, so every aspect must be thought out before a line of
code is written. Ignoring normalization; a single table cannot do it all, break the data
down into as small a logical group as you can for performance and ease of development.
Poor naming standards; consistency and readability are the keys, name it what it is and be
consistent across the application. Lack of documentation; good standards are only part of
it, document aspects so someone else can understand how the system works, it just might
be you who needs a refresher. One table to hold all domain values; break them up into
smaller logical groups, it is more difficult, but worth the time for maintainability. Using
identity/guid columns as your only key; an identity field should be used in conjunction
with a natural key, something a user could understand. Not using SQL facilities to protect
data integrity; base rules such as nullability should be implemented in the database, any
aspects that are rigid and will not change. Not using stored procedures to access data;

Web Application Design Best Practices 96

stored procedures insulate the database layer from the users and assist in maintainability,
encapsulation, security and performance. Trying to build generic objects; be specific,
there are performance concerns to trying to be too generic. Lack of testing; test the
database piece by piece to ensure it is working, it is harder to troubleshoot and correct
further down the line. This was a very well written article, full of real world examples
from an author who is both passionate and knowledgeable on the subject.

Fowler, M. (2003). Patterns. IEEE Software, 20(2), 56-57. doi:10.1109/MS.2003.1184168.

Fowler states his reasons for using design patterns. Patterns are a good way to assist the
designer in solving problems in a controlled manor, solving recurring problems with
common solutions and designing in a consistent structured way. Patterns are a tool to
assist in solving a problem; they themselves are not a solution. Implementing patterns in
libraries is not advisable, the pattern may be hard to find and understand; developers
move from language to language the pattern by itself would be more useful and the
library can implement a pattern, but it is up the developer on how to use it. Experts might
find patterns unnecessary, they might not learn anything new, but they can be a good tool
to teach others and have a common vocabulary so everyone can understand with little
explanation. Pattern overuse is a problem; if a pattern does not contribute it should be
removed. The author has a great deal of experience in this field and his insights are
displayed in this article. The article is a good piece to understand the important aspects
of design patterns.

Fowler, M., Sadalage, P. (2003, Jan.). Evolutionary database design. Retrieved June 19, 2009,

from the Martin Fowler web site: http://www.martinfowler.com/articles/evodb.html

The authors put forth some very interesting ideas about evolutionary database design.
The first aspect was dealing with change; the design is an on-going process, is iterative in
nature and the designer might run through many life-cycles over the life of the project.
The authors also highlighted the fact that they not solved all the problems of evolutionary
databases. This approach involves several practices, DBAs collaborate closely with
developers; constant communication is very important. Everybody gets their own
database instance; developers get their own sandbox to play in that will not affect anyone
else. Developers frequently integrate into a shared master; development work flows
frequently to the master from which all work flows back down. A database consists of
schema and test data; the actual database and standardized test data so all developers test
with the same subset of data. All changes are database refactorings; control the changes,
change all aspects so nothing becomes disconnected. Automate the refactorings; script all
changes so they can be consistently applied. Automatically update all database
developers; push the changes from the master to the developers automatically so
everyone has the same database to develop on and no developer is disconnected from the
others. Clearly separate all database access code; have a clearly defined data access layer
in the application, invisible to changes in the actual database. The authors also
highlighted variations to this design, keeping multiple database lineages; in more
complex applications multiple versions of the database may need to be maintained. You
don't need a DBA; most of the work can be done by developers. The authors also stated it

Web Application Design Best Practices 97

is important to automate as much of the repetitive tasks as can be. This was a very
interesting article; it presented a new way of looking at database design and outlined best
practices for that type of development.

Fraternali, P. (1999, Sept.). Tools and approaches for developing data-intensive web

applications: a survey. ACM Computing Surveys (CSUR) archive. 31(3), 227-263.
doi:10.1145/331499.331502.

The author outlined web-application development in terms of software engineering,
architectural and applicative issues. Process: the development lifecycle of the application,
consisting of the following steps: requirements analysis, conceptualization, prototyping
and validation, design, implementation and finally evolution and maintenance. Models,
Languages, and Notation: characterized by three major design dimensions: structure,
navigation and presentation. Reuse: the ability to reuse an object at any level in the
development cycle. Architecture: the physical arrangement of the application and its
access. Usability: the presentation and navigation as well as the flexibility and proactive
nature of the application. The author also outlined the current development tools. Visual
Editors and Site Managers: a visual way to write the underlying web code. Web-enabled
Hypermedia Authoring Tools: similar to visual editors, but from a different origin for
developing off-line code. Web-DBPL Integrators: database driven development tools.
Web Form Editors, Report Writers, and Database Publishing Wizards: using traditional
database design concepts and development tools to create data-intensive applications
Web applications. Multiparadigm Tools: a combination of the previously mentioned
visual and database driven tools. Model-Driven Web Generators: use conceptual
modeling and code generation techniques to the development of Web applications.
Middleware, Search Engines, and Groupware: middleware is the communication piece
between the web application and the database, search engines are logical navigation of
the application and groupware provide access, collaboration and workflow. The author
then evaluated the relationship between what was termed as “state-of-the-practice
solutions” and relevant areas along with the research prospective. Fraternali also
discussed in detail five research projects in data-intensive Web development. The author
then discussed his background research in the areas of modeling notation, processes and
other design tools. This was a very good article, there was a considerable amount of
pertinent information as well as referential and background to the study. The research
was comprehensive and the author’s conclusions were sound and well formulated.

Hager, D., Kibler, C., & Zack, L. (1999, May). The basics of user-friendly web design. Journal

for Quality & Participation, 22(3), 58-61. Retrieved June 20, 2009, from Academic
Search Premier database.

The authors discuss the challenges and techniques around creating Web applications in a
user-centered approach. The advantages to Web applications also cause some problems;
multiple browser compatibility, network connectivity and individual user browser
customizations. The users must be involved in the design, without that involvement the
application may be frustrating and not useful for users. Setting goals as to when the
application is complete and can move into production with the understanding that it is not

Web Application Design Best Practices 98

perfect, but through feedback the application will improve. The designer must also know
who they are designing the application for; what they should know, what their
experiences have been, what they do in their job, what they expect from the application
and what other applications have they used that may be helpful. Once the user has been
understood, the actual tasks the application will perform are analyzed. With the task
information the process can start; build a prototype and work with the users, research
how others solved similar issues, walkthrough the design with the users to get feedback,
build the applications and allow a subset of users to test it and finally, distribute the
application to the entire population and survey them for feedback. This was a very good
article; the authors knew their subject matter and presented it well. I found some useful
tips on web application design.

Hice, R. (2008, November). Surrounded: The web is inescapable. Scientific Computing, 25(6),
18-20. Retrieved June 20, 2009, from Academic Search Premier database.

The author started out with an amusing anecdote to illustrate how users are constantly
connected to others by the cell phone. Hice continues on to explain through the use of
cell phones and internet access on commercial airlines how more and more applications
are becoming Web-based or Web-enabled. The author highlights how applications are
migrating from PC or client/server based to Web-based. Companies started looking at
centralizing applications using Citrix Mataframes to make them Web-available; the
application was just running on a remote computer. Early attempts at Web-enabled
applications meaning they still required software to be loaded on the workstation and
server were written in HyperText Markup Language (HTML); they were just not as good
a user interface as the applications they were replacing. More recently with the advent of
eXtensible Markup Language (XML) and Web services the applications are truly
becoming Web-based; better functionality and usability as a user interface. A good
thought provoking article highlighting the trends of applications moving from PC or
client/server based to fully Web-based.

Kotek, B. (2002, Oct. 30). MVC design pattern brings about better organization and code reuse.

Retrieved June 16, 2009, from the TechRepublic web site:
http://articles.techrepublic.com.com/5100-10878_11-1049862.html

The author explains how MVC works to by enforcing the separation of the different
aspects of the application into; the model, the view and the controller with each handling
a different set of tasks. The view does very little processing, it just handles the input from
the users and returns the output. The controller interprets requests from the view and
routes them to the appropriate portion of the model to complete the request. The model is
the business logic and communication to the data storage which returns natural data to the
controller and on to the view. The author also explains why MVC is an important design
pattern for web applications. Multiple views can access a single model, because the view
and model are disconnected, the views can be swapped out with no changes to the model.
Changes to data access and business rules can be made easier within the model and
changes there will be invisible to the controller and the view. The concept of a controller
is also powerful, it connects the two independent pieces together, so either one can

Web Application Design Best Practices 99

change without affecting the other, it allows for reusability of the different pieces in the
model and view. The author highlighted the drawbacks of the MVC pattern. MVC is
complex and requires a great deal of planning and attention to detail. MVC might not be
worth the trouble for small or even medium sized applications. This article was a good
overview of the MVC design pattern. The author spoke to the subject with knowledge
and understanding. I however disagree with the assertion that MVC is too much trouble
for small or medium applications, if you understand the implementation, the advantages
of the highly separated system outweigh the extra work in implementing MVC.

Meyers, S. (2004). The most important design guideline? IEEE Software, 21(4), 14-16.

doi:10.1109/MS.2004.29.

In this article the author emphasized many good practices for designing and developing
good user interfaces. His underlying idea is to “make interfaces easy to use correctly and
hard to use incorrectly.” Meyers states that it is the responsibility of the designer to make
the interface user friendly and if they do not, it is their fault if anything goes wrong, not
the user. The designer must design the interface to not allow the user to make mistakes.
The author asserts that using drop-down lists to only allow the user to select valid values,
but this is not always the ideal, it might cause more errors than it solves. The designer
must consider all the ways a user could misuse the interface in considering a design.
Another aspect to good design is releasing and destroying object no longer needed. Clean
up will help with performance and keep the interface running smoothly. The author had a
very good understanding of designing user interfaces. The article showed how important
the actual design portion of development truly is, and that it is the ultimate responsibility
of the designer to make the interface useable and perform well.

	Develop Best Practices for Designing Internal Business Database-Driven Web Applications
	Recommended Citation

	Web Application Design Best Practices

