Regis University

ePublications at Regis University

Regis University Student Publications

(comprehensive collection) Regis University Student Publications

Spring 2008

Investment Technology for Trading Business: Delineating
Requirements, Processes, and Design Decisions for Order-
Management Systems

Daniel L. Mark
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

b Part of the Computer Sciences Commons

Recommended Citation

Mark, Daniel L., "Investment Technology for Trading Business: Delineating Requirements, Processes, and
Design Decisions for Order-Management Systems" (2008). Regis University Student Publications
(comprehensive collection). 109.

https://epublications.regis.edu/theses/109

This Thesis - Open Access is brought to you for free and open access by the Regis University Student Publications
at ePublications at Regis University. It has been accepted for inclusion in Regis University Student Publications
(comprehensive collection) by an authorized administrator of ePublications at Regis University. For more
information, please contact epublications@regis.edu.

https://epublications.regis.edu/
https://epublications.regis.edu/theses
https://epublications.regis.edu/theses
https://epublications.regis.edu/regiscollege_etds
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/109?utm_source=epublications.regis.edu%2Ftheses%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
College for Professional Studies Graduate Programs
Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

1 Investment Technology

Running head: INVESTMENT TECHNOLOGY FOR TRADING BUSINESSES

Investment Technology for Trading Businesses: Delineating Requirements,
Processes, and Design Decisions for Order-Management Systems
Daniel L. Mark
Regis University

School for Professional Studies

Master of Science in Computer Information Technology

2 Investment Technology

Regis University
School for Professional Studies Graduate Programs
MSc in Computer Information Technology Program Graduate Programs Final
Project/Thesis

Certification of Authorship of Professional Project Work

Print Student’s Name Daniel Mark
Telephone 631-335-0226

Email dmarkbusinessonly@gmail.com

Date of Submission 02/25/2008

Degree Program MSc in Computer Information Technology

Title of Submission Investment Technology for Trading Businesses: Delineating
Requirements, Processes, and Design Decisions for Order-Management Systems

Advisor/Faculty Name Doug Hart, Don Archer

Certification of Authorship:

| hereby certify that | am the author of this document and that any assistance |
received in its preparation is fully acknowledged and disclosed in the document. |
have also cited all sources from which | obtained data, ideas or words that are
copied directly or paraphrased in the document. Sources are properly credited
according to accepted standards for professional publications. | also certify that
this paper was prepared by me for the purpose of partial fulfillment of
requirements for the Master of Science in Computer Information Technology
Degree Program.

Student Signature Date
Daniel Mark 2/25/2008

mailto:dmarkbusinessonly@gmail.com

3 Investment Technology

Regis University
School for Professional Studies Graduate Programs MS in Computer Information
Technology Program Graduate Programs Final Project/Thesis

Authorization to Publish Student Work

I, Daniel Mark, the undersigned student, in the Master of Science in
Computer Information Technology Degree Program hereby authorize Regis
University to publish through a Regis University owned and maintained web
server, the document described below (“Work™). I acknowledge and
understand that the Work will be freely available to all users of the World
Wide Web under the condition that it can only be used for legitimate, non-
commercial academic research and study. I understand that this restriction
on use will be contained in a header note on the Regis University web site
but will not be otherwise policed or enforced. I understand and acknowledge
that under the Family Educational Rights and Privacy Act I have no
obligation to release the Work to any party for any purpose. I am
authorizing the release of the Work as a voluntary act without any coercion
or restraint. On behalf of myself, my heirs, personal representatives and
beneficiaries, I do hereby release Regis University, its officers, employees
and agents from any claims, causes, causes of action, law suits, claims for
injury, defamation, or other damage to me or my family arising out of or
resulting from good faith compliance with the provisions of this
authorization. This authorization shall be valid and in force until rescinded
n writing.

Print Title of Document(s) to be published: Investment Technology for Trading

Businesses: Delineating Requirements, Processes, and Design Decisions for

Order-Management Systems

Student Signature Date
Daniel Mark 2/25/08

Check appropriate statement:

X The Work does not contain private or proprietary information.

The Work contains private or proprietary information of the following parties and their
attached permission is required as well:

4 Investment Technology

School for Professional Studies Graduate Programs
MSc in Computer Information Technology ProgramGraduate Programs Final

Project/Thesis

Advisor/Professional Project Faculty Approval Form

Student’s Name: Daniel Mark Program _ MSc in Computer Information Technology
PLEASE PRINT

Professional Project Title: Investment Technology for Trading Businesses:
Delineating Requirements, Processes, and Design Decisions for Order-
Management Systems
Content Advisor Name Doug Hart
Project Faculty Name Don Archer
Advisor/Faculty Declaration:

I have advised this student through the Professional Project Process and approve of the
final document as acceptable to be submitted as fulfillment of partial completion of

requirements for the MSc in Computer Information Technology Degree Program.

Original Content Advisor Signature \DM!LO«LM 2/27/2008

Original Module/Class Facilitator Signature
Date

Degree Chair Approval if:

The student has received project approval from Faculty and has followed due process in
the completion of the project and subsequent documentation.

Original MScCIT Degree Chair/Designee Signature
Date

Document Revision History

5

Investment Technology

Additions/Modification Date
Abstract 7/1/2007
Outline 8/25/2007
First Draft 12/30/2007
Final Research Documented 1/15/2008
Final Feedback Revisions 2/25/2008

6 Investment Technology

Acknowledgements
I would like to acknowledge the generous contributions of extensive and thought-
provoking feedback and guidance provided primarily by Doug Hart and Don Archer.
This work would not have been possible without their consistent and timely input
regarding academic concerns, content, analytical and writing style, and overall approach
to the topic. Throughout more than 5 years of working with Regis University’s MSCIT
program, staff’s universal willingness to assist and accommodate a hurried working-adult
student was nothing short of inspirational. I would also like to thank family and close
friends for their support and encouragement as I progressed toward this personal
milestone. Finally, heartfelt thanks go out to Eric Smith, Rob Howard, and their team at
CodeSmith Tools; dedicated practitioners of software development owe a debt of

gratitude to imaginations capable of such ideas. I thank you all.

7 Investment Technology

Abstract
The requirements and processes for building a robust order-management system (OMS)
for trading of investments within financial services firms are investigated and
enumerated. Requirements and process documentation are not readily available to
members of the general public because they are considered a source of competitive
advantage in a highly profitable industry. This paper provides single-source
documentation of those requirements and processes in the context of the Vested OMS
application, which was constructed specifically to meet industry needs in this area. This
paper describes in detail the core functionality investment businesses currently demand
and the software development techniques used to construct a core system to meet those

demands.

8 Investment Technology

List of Figures

Figure 1: The Enterprise Library Configuration Application.................coceoevuininn. 38
Figure 2: CodeSmith and NetTiers Template.............c.oooviiiiiiiiiiiiiiiiii, 41
Figure 3: Vested Web Site External Dependencies...........c.ooovviiiiiniiiiiiininnen.. 45
Figure 4: Vested NamesSPaCes.ouuuttititiniit it 46
Figure 5: Orders List Sorted by Quantity.............ocoviiiiiiiiiiiiiiiiiiiiieeene 49

Figure 6: Securities — AAd/Edit..........coooiiii 51

9 Investment Technology

Table of Contents

Chapter 11 INtrodUCHIONcceiiiiiiiieiiiie ettt et e e e et ee e e et e e e eebaeeeeenenes 10
1.1 Order-Management SYSEEIMScccuuireerriiieeeeiiiieeeeiiireeeereeeeeeareeeeeeneneeeeeennes 11
1.2 Complexity, Scope, and Demandcccoeeeiiiiiiiieiiiiiie e 12

Chapter 2: Definitions and Literature ReVIEWcccceeivviiiiiiiiiiniiiinieeeiieenicesieee 16
2.1 EQUILY INSTIUMENESeeeiiiiiiiieeiiiiiee et et ee ettt e e et e e et e e e et eeeennaeeeeenenes 17

2.1.1 CommON StOCK....cciiiiiiiiiiiiiee e 17
2.1.2 Preferred StOCK ...oiiiiiiiiieeiiee e e 18
2.1.3 ReStriCted STOCK ..eouvviiiiiieiiiieeeiceee e 18
2.2 Dbt INSTIUMENLS........eiiiiiiiieeeiiiiieeeeiiiee e ettt e e ettt e e et e e e esabeeeeenebeeeesnneeeesennnees 19
2.2.1 BONAS ...ttt et 19
2.2.2 Commercial Paper.........coccuiiiiiiiiiiiiiiiiiie et 20
2.3 Derivative INStIUMENESoeeeiiiiiieeiiiiieeeeiiee et e et e e et e e e eare e e e enareee e e 20
23,1 FOTWAIAS ...ttt ettt ettt e e e 20
2.3 2 FULUTES ...ttt ettt e et e e e s e e e 22
B T BN 7 | o J U PPPPPPTSRPPP 23
2.4 Financial Technology Research............ccooouiiiiiiiiiiiiiiiiicceiee e 24
2.6 Software Design Best PractiCes........cuuuiiiiriiiiiiiiiiiieeeiiieeeeiiee e 27
2.7 Supporting Trading Business Needscccuviiieriiiiiieriiiiieeeiiee e 31

Chapter 3: MethodOIOZYccooouuiiiiiiiiiie et 34

Chapter 4: Vested Architecture and Project HiStOryccoovuiiiieiiiiiiieniiiieeeeieee e 36
4.1 Vested ATCRILECTUIEiiiiiiiiiiieiiiie ettt et 36

O B O Te] 114 U SRS PR PSPPI 37
41,2 SECUITEY ..vtteeeeiiieeeeeitte e e ettt e e e ettt e e e ettt eeeenebaeeeeesbbeeeeessaeeeeenssseeaeesssaeesennnees 41
4.1.3 DAta ACCESSvveeieiiieeeeiiiteee ettt ettt e ettt e et e et e e 42
4.1.4 BUSINESS LAYCT ..eeiiiiiiiiieeiiiiie ettt ettt e ettt e e et e e et e e e e e 43
4.1.5 Class DefINItIONSuvirieeiiiiieeeiiiee ettt e eeieee e e ettt e e e et e e e e b e e e eebaeeeeeenes 44

4.2 USING VESLEA ..eeiiiiiiiiieeiiiie ettt e e et e e e e eebeeaeennsaeeeennnees 48
4.3 History and Reflectionoooviiiiiiiiiiiiiiieiiee e 52
Chapter 5: Lessons Learned and Next EVOIUtion.............cooeviiiiieiiiiiiiieniiiieeeeieee e, 54

5.1 Lessons Learned and Learning CUIVESccoooviireeriiiieeeniiiieeeeiieeeeeiiieee e 55

10 Investment Technology

Investment Technology for Trading Businesses: Delineating Requirements,

Processes, and Design Decisions for Order-Management Systems

Chapter 1: Introduction

There exist ample resources for those wishing to study finance in its many
forms. From basic how-to manuals for profitable stock trading to advanced texts
covering variance in derivative valuations and balance sheet analysis, information
is available to the curious and the committed alike. Similarly, software
construction documentation is plentiful irrespective of development platform,
choice of programming language, or architectural requirements and preferences.

Unfortunately, companies with considerable financial support, such as
Charles River Development, Napa Group, Advent, Ameritrade, Fidelity, and
every bank that employs algorithmic trading model experts, tightly control the
knowledge and guidance they use in developing systems that bring institutional
investors electronic management over their trading by combining knowledge of
finance with software prowess. The only pools of combined investment and
software documentation comes either from bringing knowledgeable people
together, intensive long-term study, or reverse engineering of systems such as
Microsoft’s .NET StockTrader Sample Application.

Knowledge at the intersection of the financial and information technology
domains is kept under lock and key to the extent that BBC reporter Ines Bowen
was told by one fund in reference to some of its computer modeling
mathematicians that “many of them...are autistic”. (Bowen, 2007) While

anecdotal evidence is very limited in terms of generalizability, if true, it would be

11 Investment Technology

unsurprising both because they are highly skilled and may be perceived as less
likely to speak of their work with outsiders. Later in the same article, a head of a
different hedge fund spoke to Bowen of his hiring concerns, saying “In today’s
world there’s a good market for social skills. We do not necessarily require that.”
Automated trading algorithms are now so powerful that there are legitimate
concerns about the role of computer programming in causing or deepening market

crises.

1.1 Order-Management Systems

Within the finance domain, authors such as Andrew Chisholm, Jim
Cramer, Michael Durbin, and Michael Covel proffer guidance on topics from
stock picking and timing to calculating the present value of a futures position
given formulaic inputs. However, aside from simplified software intended only
for concept demonstration, there are no such definitive sources regarding the
gathering of requirements or the designing of architectures to specifically address
order-management systems (OMS), which allow for the input, storage, and
analysis of investment purchase and sale decisions that drive finance-industry
profits. Extensive research has documented sets of best practices and design
patterns for software development that vary somewhat across platforms but that
have most generalities in common; again, no specific guidance is available
regarding the tailoring of these ideas to the needs of businesses whose profits are
derived from trading investments. Examples of such intensive research include
Microsoft’s Enterprise Library, Microsoft’s Patterns and Practices Group, and the

independent “Gang of Four” design patterns legacy. The research presented in this

12 Investment Technology

paper brings together information from both domains to concisely and specifically
address the intersection of trading needs, money management requirements, and
information technology practices for an industry whose changes generate near-
daily headlines, with successes minting new billionaires and failures costing the
general public billions, threatening global economic stability, and resulting in
expensive government bailouts as in the case of Long Term Capital Management.
The OMS currently offered to institutional investors are not readily
available or open for research purposes. Neither the technical and business
requirements necessary for development nor the specifications to which these
systems must be constructed are obtainable for any purpose outside the companies
that market them or their customers, who may pay hundreds of thousands of
dollars per year for the use of what amounts to industry-customized create,
retrieve, update, and delete applications. Clarifying these requirements,
documenting the architecture and design that enables the build-out of a core
system that minimizes the resources required to extend its functionality, and
constructing said system will permit the dissemination of knowledge for one
concrete example of both the "what" and the "how" of these systems — the written

business requirements and the mechanical implementation details.

1.2 Complexity, Scope, and Demand

This domain is interesting because of the complexity, scope, market
demand, and potential uses of investment automation tools in the financial sector.
Further, recent market conditions included credit and debt turmoil, valuation

difficulties, and substantial percentage losses attributed to unexpectedly

13 Investment Technology

heterogeneous automated trading systems that resulted in massive amounts of
highly leveraged capital committed to unexpectedly duplicated strategies across
very large pools of invested capital. Similarity between positions across different
firms' computer-driven models forced many money managers to take substantial
losses by exiting innumerable investments earlier than planned, before their losses
could grow larger.

The complexity involved in developing the data architecture and basic
functionality to manage investment systems requires the coordination of hundreds
of data points and incorporation of numerous sets of business rules replete with
numerical formulas and specific, logic-defining business knowledge. To offer an
attractive feature set, the scope of the software must encompass most common
asset classes and offer a fine-grained level of control over the system’s underlying
data. This breadth and depth of functionality must be available in a highly usable,
nearly real-time, and high-availability application because it must be operated in a
fast-paced and information-intensive environment with a user base easily
numbering in the hundreds.

The scope of deployed OMS is delineated by their use within the largest
and smallest of money managers, including retail, thrift, and investment banks,
hedge funds, trust funds, pension managers, non-profits, government agencies,
university endowments, and more. They are typically licensed and sold on a
percentage-of-portfolio-managed basis, such that the annual fee for ongoing
maintenance and support of the software is composed of a percentage of the funds

the software is used to manage. The funds, or assets, under management are

14 Investment Technology

determined by summing the value of the securities for which orders are placed in
the OMS. This licensing model is often complemented by a per-transaction fee.
Finally, maintenance in the form of customizations, performance, and usability
are commonly paid for with fees added to the licensing costs of the customer or
customers that most vocally requested them.

The future market for OMS shows significant potential as a subset of the
market for information technology in the financial services sector, especially
given the anticipated tripling of the total dollar amount managed by hedge funds
around the world within the next three years. While money flows into hedge
funds, the number of trades per investment-industry dollar should increase
because hedge funds trade more actively than private investment banks and other
asset aggregators. According to industry data, assets under management in the
secretive hedge fund industry totaled approximately $1.3 trillion as of December,
2006. This within firms that often use leverage to double, triple, and even
quadruple the compounding impact of each invested dollar.

I first present requirements summaries that illuminate the business
challenges and environments within which OMS are used. Mandatory features are
explored at length because current systems in the marketplace, with unique
individual differences between features, include many capabilities that are not
central to order management. Next I explore logical differentiation and
categorization that must be constructed to process orders for most common types
of securities. Business-oriented requirements, primarily regarding position-related

calculations are discussed in detail. I summarize current considerations regarding

15 Investment Technology

software, including state of the art rapid application development (RAD), design
patterns, and best practices theory. Finally, business requirements and
technological decisions are brought together, concluding in a discussion of
Vested, the web-based application built upon business requirements and technical
foundations revealed throughout. The scope of this document is limited by
resources; documentation encompassing all possible rationale and mechanical
specifics of a full-scale OMS requires the cooperation of at least a small team

over a long period of time.

16 Investment Technology

Chapter 2: Definitions and Literature Review

The business concepts and definitions that must be understood as a
prerequisite for building an OMS revolve around the items for which orders will
most commonly be entered: common stock, restricted stock, preferred stock,
futures, options, and swaps. It can further be helpful to understand one basic
classification level that separates investment types; some basic investment
vehicles, such as common stock, give their holders an ownership percentage of
the public company while others, such as corporate bonds, are analogous to a loan
the investor gives the offering corporation in return for periodic interest payments
and repayment of principal in the future.

Unlike stocks and bonds, futures, options, and swaps are all derivative
instruments. Their value is not intrinsic as in the case of standard equity and debt
instruments; rather their value changes according to the value of another asset,
known as the underlyer. Using an option as an example, which gives its buyer the
option, but not the obligation, to buy or sell at a predetermined price on or before
(an American-style option) or only on (an European-style option) a specific date
in the future, the value of the option is based on the value of what it is an option to
buy. If it is an option to buy 100 shares of IBM in one month for $100 each and
IBM is currently trading at $150 per share, it is easy to understand that the options
value will change as the value of its underlyer (IBM common stock) changes.
Equity, debt, and derivative investment vehicles are the basic building blocks of

most money managers’ actively traded portfolios.

17 Investment Technology

2.1 Equity Instruments

The person or legal entity that owns 1 share of a public company’s common stock, whose
total number of outstanding shares (called the “float”) is 100, owns 1% of the company.
Were the company sold for $100, this person would be due $1. This is termed equity

because the shareholder literally owns a piece of the company.

2.1.1 Common Stock

Common stock derives its name from the fact that it is the most frequently
utilized equity-related investment vehicle. It is available for purchase to nearly
any individual with money to invest and has generated a higher long-term
percentage return on investment than traditional debt-related instruments. As
mentioned earlier, its owners would be entitled to proceeds upon the sale of the
publicly-held company. In addition, owners of common stock are typically given
a say in high-level management decisions through shareholder votes and are often
paid periodic dividends. Ownership grants “a claim to a part of the corporation’s
assets and earnings.” (Investopedia, 2007)

Common stock is most often traded on exchanges, such as the New York
Stock Exchange, the NASDAQ, the FTSE in England, and the Shenzhen Stock
Exchange in China. These exchanges bring buyers and sellers together in a
controlled and regulated environment where individual and institutional investors
trade using their own money or funds they invest on behalf of others. Common
stock can also be traded without an exchange in a process known as over-the-
counter (OTC) trading, but typical stockholders limit their activity to exchanges,

or even to exchanges located in their home countries. Exchanges in one country

18 Investment Technology

frequently offer the ability to buy pseudo-stock in publicly held companies whose
formal stock trades only in other countries. An example of this type of situation
would be the listing of Baidu.com’s common stock on the NASDAQ exchange,
but only as a depository receipt. A depository receipt is fundamentally different
from a share of common stock, but both trade at essentially the same underlying

values.

2.1.2 Preferred stock

"Owners of preferred stock", according to Investopedia, "receive
dividends before common shareholders and have priority in the event that a
company goes bankrupt and is liquidated"

(Investopedia, 2007). Additionally, preferred stock does not necessarily grant the
holder voting rights regarding the high-level management decisions whose
outcomes are the result of common shareholder’s voting. Preferred stock may be
callable, also known as redeemable, meaning that the issuing firm has the right to
buy the stock back at a certain price, taking it out of circulation by returning cash,
common stock, or a combination of both to the preferred shareholder’s owner.
Preferred stock can be exchange-traded or OTC and it is typically not found in

individual investors’ accounts.

2.1.3 Restricted Stock

Restricted stock is under a sales restriction and must be registered with the
SEC or fall under the regulations exempting it from registering before it can be

sold. "Insiders are given restricted stock after merger and acquisition activity,

19 Investment Technology

underwriting activity, and affiliate ownership in order to prevent premature
selling that might adversely affect the company. Restricted stock cannot be sold

without registration with the SEC." (Investopedia, 2007)

2.2 Debt Instruments

Other instruments, most prominently bonds, are considered debt-related.
Through these investments, public companies are loaned money for a fixed period
of time. A simple example would be a common corporate bond in the amount of
$1,000,000 with a maturity date one year from its inception date. The investor
would receive periodic interest payments over the course of the year, almost
always at regular monthly intervals, and would always receive a repayment of the
principal $1,000,000 at year’s end, except in the notable and risk-defining case of

default.

2.2.1 Bonds

Corporate and municipal bonds are duration-limited loans used primarily by
businesses and governments to borrow money used for the organization’s expenses.
Investors buying bonds frequently deal in increments of at least twenty-five thousand
dollars, making them too expensive for the majority of investors. The corporation or
government entity makes periodic interest payments to the investor and repays the entire
principal amount of the bond at a future maturity date. Issuers assist institutions looking
to raise money this way by packaging, rating, and offering bonds to investors, whose
concerns include risk, interest rate, duration, principal amount, rating, and funding

purpose. An investment in a United States Treasury Bill is considered essentially risk-

20 Investment Technology

free because the chances of default are remotely small. Municipal bonds, offered to
investors by local government agencies, are somewhat riskier, with corporate bonds
being the riskiest of the three. In order to compensate investors for taking more risk,
corporations raising money through bond issuance offer to pay investors higher rates of

interest over the life of the bond.

2.2.2 Commercial Paper

Commercial paper operates in a market very similar to bonds, but these investor-
bought loans are rarely originated with a term more than one year. Further, investing in
them typically requires an even larger amount of money than in traditional bonds, a
greater tolerance for risk, and increased due diligence on behalf of the investing party.
Commercial paper operates in a manner similar to long-term financing but with rates of
interest closer to those of short-term loans. This makes it an attractive source of capital

for businesses that have ongoing operational finance needs.

2.3 Derivative Instruments

Derivatives are the third primary type of investment vehicle. A
derivative’s valuation depends on the presence of another investment instrument,
which is referred to as the derivative’s underlyer. There are four basic types of
derivatives that form the foundation for numerous permutations within each

category. The four basic classifications are forwards, futures, options, and swaps.

2.3.1 Forwards

Stock forwards involve OTC agreements between a buyer and a seller to

exchange goods in the future at a price determined at the time of the agreement.

21 Investment Technology

They involve counterparty risk to the extent that a buyer may be unable to buy at
the agreed-upon date or a seller may be unable to sell. A primary consideration
when trading forwards is the determination of the price at which goods will be
exchanged in the future.

A theoretical fair price is calculated by considering the amount of cash the
selling, or short, party would need to borrow in order to buy the amount of the
asset that the long party, which is buying in the future, agrees to purchase. The
interest rate at which this money can be borrowed and the duration of the forward
contract are combined to add a cost of carrying to the short (selling) parties cost
of acquiring the contracted quantity. Finally, any dividends that are payable to
the short party over the duration of the life of the contract are subtracted from the
cost of carrying. If a potential long party wants 100 shares of IBM in 12 months
and those shares are purchasable today for $100 each without any transaction
costs, the short party will need to borrow $10,000 to acquire the shares today.
Assuming an interest rate of 4 1/2 percent per year, the cost of carry would be
$450 and the fair price for future trading that can be agreed upon today would be
$10,450 ($104.50 per share). If an annual dividend of $1 per share is paid, a
cumulative dividend of $100 would be subtracted from the cost of carry, yielding
a $10,350 fair forward price.

In order to perform standard investment calculations, the forward security
type requires the following information: the date, which must be in the future, that
the exchange will occur, the price at which the seller agreed to sell and the buyer

agreed to buy on that future date, underlying investment information, and the fair

22 Investment Technology

or theoretical forward price. In practice, the short party must ensure the contract is
executed above the fair price in an attempt to guarantee a profit. Because forwards
are OTC instruments and therefore engender greater counterparty risk than the
nearly identical futures contract, the percentage amount above the fair price that
the seller will negotiate toward will be greater in order to compensate the short
party for taking the perceived risk that the long party will not have the funds

necessary to settle the contract at maturity.

2.3.2 Futures

The future contract shares the same fundamental structure and price
determination methodology. The primary differences between futures and
forwards are the standardization of the contract and the almost complete removal
of counterparty risk through a margin and clearinghouse system. Whereas
forward contracts are available OTC and thus can be arranged with any terms the
parties agree to, futures contracts are traded over exchanges and are standardized
in format with terms that vary according to the dynamics of the underlying asset.
Futures contracts require essentially the same information for calculation of fair
and agreed-upon prices; the spread between these prices may be smaller because
perceived counterparty risk is reduced.

Common futures include natural gas, crude oil, orange juice, gold, bonds,
interest rate, and equities. Using natural gas as an example, the standardized
elements within the contract include: unit of trading, the type of deliverable, the
tick size (minimum change in price) expressed as a fraction of a point where a

point is 100 basis points, the tick value that is derived from the tick size and a unit

23 Investment Technology

of trading, the price quotation, and the contract months last trading day in the last

delivery day (Chisholm, 2004).

2.3.3 Swaps

Swaps involve the exchange of payments between the involved parties at
fixed intervals for a fixed period of time. Each individual payment is referred to
as a leg. The basis for determining how much payment must be made to the
counterparty differs according to which side of the swap the trader takes. An
interest rate swap’s payment legs would differ across parties because the interest
rate applicable to one party's payments is fixed for the duration of the swap while
that applicable to the counterparty’s payments is floating, or open to change.

A so-called plain vanilla swap includes a notional principal monetary
amount that is fixed at the start and does not vary. This principle deemed notional
because it is never exchanged but is only used as the basis when combined with
interest rates for determining payment leg amount. One party multiplies the
notional principal times a fixed interest rate and makes a payment based on the
outcome of this calculation on multiple regular dates in the future. The other
party does the same but with a variable rate of interest. When each floating
payment is made the interest rate applicable to the next floating payment is
determined based on a benchmark reference rate plus or minus any adjustments or
conversion ratios applied to that rate as per the swap agreement. (Chisholm, 2004)

If the notional amount is $100,000 and the fixed rate portion has an
interest rate of 5 1/2 percent per year, the party paying fixed will pay the floating

party $5,500 per month. Ifthe floating party's rate is benchmarked against the

24 Investment Technology

federal funds rate and the federal funds rate is 4 1/2 percent with quarterly rate
resets, both parties know that the fixed payment will be $4500 per month for the
first three months. The fixed party in this example would be hoping the floating
parties benchmark interest rate increases, which may result in future payments
being lopsided and the fixed party coming out on top. A fixed party might take
this type of position in an effort to offset, or hedge, their exposure to rising
interest rates. They may be faced with paying back a loan whose payments are
tied to a fluctuating benchmark rate. By entering into an interest rate swap, a firm
can effectively lock the interest rate which had otherwise been variable, thereby
protecting its profitability and allowing it to more accurately forecast future cash

flows.

2.4 Financial Technology Research

Unsurprisingly, plenty of research has focused on how to make money by
trading the most common instruments in the financial markets. More often than
not this research is implicitly or explicitly focused on the selection of assets into
which funds are invested. Most market participants would at least be aware that
research is performed and publicly available regarding investment decisions, but
the majority of investors are likely unaware of research focused on automating
investment decision-making.

Fernandez and Gomez (2007) explored one common method for
automating portfolio selection by enhancing the traditional mean-variance model
with diversity assurance. This methodology involves determining a desired

percentage level of return, finding a group of securities whose mean historical

25 Investment Technology

return matches the desired percentage return from step one, finding the variance
from that mean within the group of selected securities, and owning, from within
the overall group of assets that historically returned that percentage, those with
the least variance from the mean return level. While many groups of selected
securities could return the desired percentage, following these steps theoretically
ensures that the target return is pursued with the least possible amount of risk.
Fernandez and Gomez refer to this portfolio as the “efficient frontier”.

Yon and Clack (2004) discussed a genetic programming approach to a
solving a challenging problem: how to ensure diversity within an automatically
selected portfolio when faced with dynamic economic environments. Ultimately,
an equation that takes numerous variable values into consideration assists with
making buy and sell decisions. Their system attended to a set of 24 equity-related
factors and was self-training. When the economic environment changes
significantly, their system was capable of altering the decision-making equation in
order to address changes in the environmental factors.

While some have focused on achieving investment performance goals
automatically (imagine building substantial wealth without having to invest time
to get it), other research has questioned whether it is even possible to predict what
a given stock market’s rate of return will be. The results seen by Olmeda and
Moreno (2007) suggest that market returns are “clearly nonpredictable”. Their
assertion is that what cannot be predicted cannot be profitably exploited.

However, contradictory research (Greenblatt, 2006) indicates that there is

an incredibly simple formula that essentially uses price-to-earnings ratio and

26 Investment Technology

earnings yield as the only two criteria for finding excellent stock purchases.
Greenblatt’s techniques frequently yielded returns double and nearly triple those
of the overall market while simultaneously producing barely positive returns even
when the market’s overall returns were down considerably for substantial time
periods. Greenblatt recalled the advice of Benjamin Graham, the original
practitioner-advocate of value investing, to buy stock only when there is a margin
of safety available; only buy when the stock is available for purchase at a price
below its true value. While not a fully automated process, Greenblatt did perform
significant back testing of value investing’s essential underlying concept against a
major database of historical stock information, while mitigating common stock
market research weaknesses such as look-ahead bias, survivorship bias, and
transaction cost inclusion.

Covel (2007) also suggests that it is possible to reliably generate long-term
returns much greater than those of the general market. He summarized the
experience of numerous high-profile trend following traders whose profits are
derived not through the application of value investing guidelines as used by
Greenblatt or defined by Graham, but by following price trends. His comparison
of the returns generated by Abraham Trading, for example, with those of the S &
P 500 showed that $1,000 invested in Abraham Trading’s trend following
business would have turned into approximately $34,051 whereas investing in the
S & P 500 over the same period would have netted only $4,280.

As value investing and trend following, likely two of the easier to use

investment strategies — and certainly less complex than building fully automated

27 Investment Technology

algorithm-based systems —, become better known, new potential customers for a
usable order management system that offers a simple way to input and track
orders appear.

Whether one is interested in automated trading systems using statistical
algorithms that assist with buy and sell decisions, learning systems whose
algorithms can be trained at the outset and that automatically change to
compensate for macroeconomic factors, or just general investing tips for the
average individual investor, there are many sources available that provide widely
varying levels of guidance irrespective of whose research an investor believes is
more accurate. However, if one is interested in building an OMS for institutional
investor use, there are few, if any, sources for ideas regarding business rules or

implementation concerns.

2.6 Software Design Best Practices

There are numerous goals of best practices in the software industry. These
best practices define specific techniques for constructing software that meets
performance, scalability, and maintainability goals. These goals are of particular
concern when constructing an OMS for money-focused businesses.

In database-driven systems performance is often a primary concern. This
is especially true for OMS because users are often stereotypical traders whose
personal incomes are on the line. They have strong preferences about how they
spend extra time throughout the day. An OMS that does not perform quickly

leaves less time for the analysis required to keep profits and minimize losses.

28 Investment Technology

Best practices that address performance include caching, use of only high-
speed programming techniques, and partial-page post back for use with Web-
based technologies.

Caching involves temporarily storing data retrieved from the systems
database so that when the same data is needed again another trip to the database,
which usually resides on another computer some distance from the application
using it, is not necessary. Avoiding unnecessary trips to the database can result in
substantial performance improvement.

High-speed programming techniques should be used in place of other
available alternatives in order to mitigate the risk of poor performance. For
example, when using Microsoft technology, performance improvement will result
from avoiding cursors on the database side and favoring forward-only data reader
objects on the client’s side.

Web considerations often include application response time because Web
servers are often located great distances from the client application. In part
because web applications use the stateless HTTP protocol, entire web pages are
often sent long distances to and from the Web server each time the user interacts
with the page, even if the user's interaction really affects content from only one
specific section of the page. The recent rise of AJAX, which was originally
designed to send XML data via HTTP, has made it easy to send the server only
what it needs to refresh affected content, speeding response times by lowering the

amount of data that must travel from client to server and back.

29 Investment Technology

According to the Free On-line Dictionary of Computing, scalability is
defined as “How well a solution to some problem will work when the size of the
problem increases” (Free On-Line Dictionary Of Computing, 2007). Multi-user
applications may perform quickly enough when there are five users but may slow
down substantially as more users are added. Applications that slow down to
substantially would be considered to have scalability problems. Another
scalability concern is growth in the amount of data an application manages over
time. Within an OMS the number of orders increases with each passing trading
day, resulting in a larger amount of data due to the increased number of rows in
order-related tables.

Solutions to scalability problems typically involve scaling up, in which
more power is added to a single computer by adding memory and or CPUs, or
scaling out, where entire extra computers are added. However, Malcolm Davis
presented results from a BEA study that showed software design — the
techniques used to write the application's code — was the most frequent culprit in
production scalability problems (Davis, 2006). Davis’s results suggest that
scalability can and should be addressed by best practices. Applications must be
designed with scalability in mind in order to avoid performance decreases and
maintenance demands as the number of users and amount of managed data grow.
Techniques for addressing application-related scalability concerns in a web-based
environment include minimal use of shared server resources for session
management, flexible paging of returned data, proper indexing of table data, and

the use of high speed programming techniques.

30 Investment Technology

Software maintenance accounts for a large percentage of the time and
money spent on a software project overall; reducing the amount of time required
to make maintenance changes can significantly impact project cost. According to
Pfleeger (2001) and Pigoski (1996), 40 to 60% of maintenance time is spent
merely reaching an understanding of the current version of the software in the
context of what changes must be made. There are three types of maintenance:
corrective, adaptive, preventative, and perfective (Swanson, 1976).

All types of maintenance can be eased through adoption of naming
conventions, thorough and standardized documentation, and consistent
standardization of typical solution techniques. One way to minimize the amount
of time spent on maintenance is to adopt naming conventions within application
code. According to Microsoft, “A consistent naming pattern is one of the most
important elements of predictability and discoverability...” (Microsoft, 2007). A
second way to ease maintenance is to methodically document code, which helps
developers capture and pass along the general knowledge and any extraordinary
techniques required to originally build and maintain an application. As developers
that are less familiar with an application’s code are called upon to maintain it, it
will take less time for them to begin work if they can study the application in
precisely the same manner as they have studied other applications previously.
Finally, the reuse of solution techniques, such as simple drop-down lists for
lookup tables or checkbox sets for joining tables can shorten the amount of time

developers spend learning how individual applications solve common problems.

31 Investment Technology

2.7 Supporting Trading Business Needs

Meeting the requirements for a even a basic OMS mandates a system with
features that support the tracking of buy, sell, buy-to-cover, and sell short orders
for securities within a traditional equity and debt investment portfolio, as well as
handling derivatives processing. The user interface must support the entry,
storage, display, deletion, and editing of data related to funds, managers,
accounts, securities, orders, and allocations. Its data storage must enable
performance reporting across funds, managers, and securities.

It must use a data model centered on accounts and transactions related to
specific users and funds. It should be easily extensible and allow for future
customization. New investment types with unique variations on business rules and
technical requirements must plug in to the system's framework.

The central feature required of an OMS is support of order entry, meaning
it must enable the insertion and storage of order-related data for the purchase or
sale of specified quantities of a given security. The order-entry process must
facilitate associating each order any allocations that may contain partial amounts
of the total trade. It must record transaction-related information including: trade,
settlement, and placement dates, an executing broker, an account, a price,
commission, a security identifier, trade direction (long, short, buy to cover, sell
long), order status. Allocations must be self-identifying while also relating to an

order and orders must be supported across accounts and funds.

32 Investment Technology

Once an order has been entered into an OMS, it must be possible through
the user interface to search for, locate, and retrieve all of the order’s related
details.

Profit and loss calculations are essential to any investment system.

It must be possible to calculate the value of the securities held in a given fund in
order to determine the total dollar value of the fund.

Some value calculations will, at their simplest, be a matter of multiplying
price times quantity, whereas other calculations may require variables, formulas,
and potential payoff tables. At their most complex, value calculations will
involve the changing values of asset-backed securities, such as mortgage-backed
securities, which require periodic re-computation because anticipated future
repayment rates cannot exactly match what borrowers with flexible payment
terms will pay.

Requirements for the storage of security information that must be related
to orders include identifying security number, ticker, and CUSIP. Security name,
type, description, issuer, and currency must all be stored.

Funds are one way in which many money managers and institutional
investors organize their holdings and offer investment products to their clients
under the terms of legally binding agreements. Funds hold positions across
various asset classes, so an OMS must offer the ability to manage positions across

funds.

33 Investment Technology

The available information for funds must include a fund identifier, name,
type, description, currency, market value, and manager. Table 3 lists fund-related
data the system should make available.

Money managers often use accounts at numerous financial institutions
such as prime brokers, broker/dealers, and custodians while establishing their own
internal account numbering systems. Account numbers at any given financial
institution are guaranteed, at some level, to be unique; using accounts from more
than one financial institution requires establishing account mappings to avoid the
possibility of two institutions using the same account number and the resulting
inability on the money manager's side to track the two accounts separately.
Financial institution information must relate to the system’s accounts and it must
include an institution identifier, name, and type. The requirements for account
data tracking minimally include account identifiers, financial institution identifier,
account number, and type.

The order-management and security information requirements will vary
according to instrument type, which will include common stock, preferred stock,
restricted stock, corporate bonds, municipal bonds, commodity futures, interest-

rate futures, and index futures.

34 Investment Technology

Chapter 3: Methodology

Research methods used relied most heavily on review of academic literature over
a five-year period. Other research and preparation involved reading of numerous entire
investment books, computer science textbooks, professional employment experience at
both a software company that made software for the investment industry and a hedge
fund that used two industry-leading OMS, and passing three Microsoft technical
certification exams resulting in bestowment of a Microsoft Certified Application
Developer credential. I also made myself substantially more familiar with advanced and
somewhat unusual — relative to my professional life — development systems and
techniques, such as Ruby on Rails, object relational mapping (ORM), and automated
code generation. More traditional concerns, such as maintenance and scalability, were
also researched intensively.

A traditional iterative development process was used, beginning with the
definition of the problem, requirements, and consideration of use cases. I next developed
a data model that was ultimately refined over more than 10 iterations and that defines the
relationships within the model. Repetitive updates to stored procedures within the
database after each iteration’s data model changes made the repetitive process extremely
repetitive, cumbersome, time-consuming, and error-prone. This prompted a review of the
state-of-the-art in relational database modeling for software development in general.
Specific attention was focused on ORM, which addresses the need to represent tables of
data as objects in code. This led to the discovery of code-generation tools and ORM

frameworks.

35 Investment Technology

The processes followed through each subsequent development iteration, listed
without a fine level of detail, included: creating a backup of the current version prior to
making any changes, adding columns, removing columns, assigning default values to
columns, changing column data types, changing names of tables or columns to ensure
naming consistency, defining new relationships between tables, assigning indexes to
tables, normalization resulting in a greater number of tables, updates to non-generated
code, and regeneration of generated code.

This project’s deliverables include this written document, ancillary bureaucratic
documentation, all code for the software that fulfills its requirements, technical
documentation of that code, samples of data housed within the system, and demonstration
of the working copy of that software.

The software requires the availability of one Microsoft SQL Server 2000 or
higher, one Microsoft IIS Web server 5.1 or higher, and a web browser on the client side
with Microsoft's Internet Explorer being the only officially supported client.

The outcome of this work is a highly scalable and easily maintainable system
suitable for near-immediate use across even large real-world businesses. I view the end
result as a resounding success because it achieves its primary goals and does as much as

is possible to minimize the amount of time required for standard maintenance demands.

36 Investment Technology

Chapter 4: Vested Architecture and Project History

The project began nearly 6 years before it was completed. Initially, I knew that I
wanted to be a highly capable programmer and solution architect and I knew that I would
prefer earning more money to earning less. While working full time as a programmer in
support of New York City's finance industry I was exposed to automated trading systems.
I learned that there are numerous individuals and companies of all sizes that use software
to automate large parts, or even the entirety, of their decisions regarding buying and
selling securities. In New York City the orders placed by the systems frequently run into
the millions of dollars, making trading software an essential part of businesses with a lot

of cash.

4.1 Vested Architecture

Vested has been designed in accordance with best practices as defined by
Microsoft’s Patterns and Practices group and implemented within their Enterprise Library
product. They produced a set of reusable components that address common software
development concerns including logging, exception handling, data access, caching,
security, cryptography, and validation. Vested relies on the second version of these
Microsoft components to enable loosely coupled data access and object caching.

When appropriately leveraged, these components provide immeasurable benefit to
the developer by reducing the amount of code the developer must author when code
accesses data stores. In addition, Enterprise Library code is, perhaps arguably, less error-
prone and more scalable than code any individual developer might write, in part because

of rigorous testing internally at Microsoft and in part because the patterns were culled

37 Investment Technology

from the minds of many highly regarded developers following repeated successful
implementations. I believe these components, because they have been under development
within Microsoft for years, represent a bridge to the future of Microsoft-related software

development.

4.1.1 Caching

Vested implemented a custom caching mechanism that served as a wrapper
around the Enterprise Library’s Caching Application Block. This caching system allowed
Vested to store business-layer objects, such as orders, securities, and users, in memory so
that they can be accessed faster. This wrapper functionality was implemented in Vested’s
EntityCache class and was configurable through Microsoft’s Enterprise Library
Configuration application, which is shown in. The importance of faster access was
critical in this web-based application because data usually must travel farther before

becoming available to the user.

38 Investment Technology

Enterprise Library Configuration 1Ol =l
File Action Help
e g
E‘ Enterprige Library Configuration E General
BT ChnetpubbwmrootyV ested\Wested Website\entib. config ExpirationPalFrequencylnSeconds 60
E|‘f Caching Application Block M aximumE lementslnCachel efan Chlsllye 1000
EI--EQ Cache Managers M ame Vested YestedBLL EntityCache

A Wested VestedBLL EntityCache MumberT oR emovetWhenS cavenging 10
=8 Data Access Application Black
E1-{5 Connection Strings
. B2 LocalSqlServer
! [data source
7 Integrated Security
[T AttachDEFilename

T User Instance
Cusztom Provider Mappings
EIO E xzeption Handling Application Block
El-[& MoneExceptionPalicy

Eaﬂ,' Exception
=4y Logging Handler

1 Logging Application Block
Filters
{5 Category Sources
---'.] Exceptions
i #-T§ General
E@ Special Sources
#-B3 Trace Listeners
=% Formatters
[#H- & Security Application Block

MaximumE lementsinCacheB eforeScavengng
Getz or sets the maximum number of cache items stored before scavenging occurs,

Configuration Errors

Mame | Froperty | D ezcription | Fath

Ready A
Figure 1: The Enterprise Library Configuration Application

Vested’s caching system, similar in this regard to its data access layer, does have
dependencies on other Enterprise Library components and could be considered a
heavyweight object inasmuch as it provides some features that are not heavily utilized but
whose code is still present. It must use the Library’s Common and ObjectBuilder blocks
to manage configuration and construction tasks. These heavyweight dependencies,
however, enable the caching system to be solely focused on faster object access for the
application. The use of factory and provider design patterns permits Vested’s
EntityCache class, which provides caching on an entity-by-entity basis, to use the
Enterprise Library’s CacheManager object for implementation of the most-common

caching functionality needs, such as adding items, removing items individually, and

39 Investment Technology

emptying entire caches. Because the CacheManager is designed to completely
encapsulate the responsibility of handling cached objects, Vested can use it and is
therefore insulated. Further, changes to cache implementation logic require modifications
in only one place while client systems can continue to use the new functionality without
changing themselves.

Most importantly, this mean that the developer does not have to write the code
required to cache entities, but can instead implement interfaces and call pre-written
methods that will perform caching for them while automatically remaining mindful of
best practices and significant patterns. For example, the EntityCache class, when adding
an entity to the cache, requires only one line of code, which is used to call the Enterprise
Library’s caching functionality. The EntityCache class does not have to consider all
possible situations because the Enterprise Library handles those situations for it,
including what if the entity is already in the cache. Microsoft’s Enterprise Library code
manages this situation for Vested by removing the original item from the cache and then
inserting the item that Vested was trying to cache. It also guarantees a simple way of
ensuring that the adding process completed by checking that the item Vested attempts to
add exists within the cache after it was added. If it does not exist, there was a problem
within the Enterprise Library-managed addition process.

Of nearly equal importance is that this framework code does not need its
functionality tested before it can be deployed. It must be understood, but for the vast
majority of uses at least, it has already undergone significant testing at Microsoft and is

currently functioning in systems around the world.

40 Investment Technology

Vested’s framework of generated code, as output by the CodeSmith and NetTiers
template seen in Figure 2, includes a set of default parameters that customize the
implementation of the EntityCache class. Configurable parameters include the maximum
number of objects that the cache will hold (1000 by default), the maximum amount of
time any object will remain in cache (60 minutes by default), how frequently the cache
should be polled to determine which objects are expired (once per minute by default), and
the minimum number of items that should be removed from the cache at a time during
scavenging (10 by default). The EntityCache class is declared static so that it is shared. It
makes available functionality to add an entity into the cache, remove an entity from the
cache, or retrieve an entity from within the cache. Callers can pass in a string identifier
that uniquely identifies an entity in order to manipulate the cache in regard to that

individual entity.

41 Investment Technology
Skark PFage Wested.cst | CommonsgliCode.cs | 4 b X iF‘ruperties o |
15 <%0 CodeTemplate $73 StlHo | wadw
s <2 @ oo mbly Name _ = |E 01. Getting Started - Required)
ChoozeSourcelatabaze Yested
3 | & @ Asse mbly MName= t appingFile C:Alnetpubhwwwioot\Yeste
i <% @ =] mbly Hame= OutputDirecton C-Alnetpubhwwwioot\Veste
RootMameSpace Yested
5| <30 Rssembly Name= |5 gip. Filter by Individual Objects - Optional
6| <%3@ Assembly Name= EnumT ables
SourceT ables “dbo_Accountz”, “dbo Acc__
= Sourceviews
5| <30 Import MNamespa | |E 02 Framework Generation - Optional
AutolncrementBuildyersion’ True
5| & @ Impr:u rt Names P CustormCodeFolderdame App_Code
10| <%0 Inpo rt Names Pa EntLibiersion v2
11| %@ Import NameSpa Bteoutzb| True
InciudeComponentLayer | Mone
12| <% @ Imp':' rt Names Fa InciudelD atabazeFeature: | Mone
15| <% Tmpo rt MNames pa IncludelGeneratedD ate True
IncludeldnitT est Mone
14| <%0 Impo rt Names = Includer/CFD atadttibutes False
15| <%@ Import NamesSpa Includemistibutes True
i LaunchifisualStudio True
MarmeConversion Mone
17i| <%——- 1. Datasource SenalizeEntityS tate False
18| <%0 Property HName= S!Z!LFu:ulderName SQL
YiewReport True
1= El 03. Namespaces - Required
sgi |=EE- = 3. Frameworl BuzsinezzsLogicLayertames YestedBLL
21| o @ = rope I’:t}-’ Hama= ComponentLayerameSpa -
ChoozeSourceD atabase
zzi| <%@ P rope]’:t}" Name= « || | Database that the tables views, and stored procedures should be
I X | | ST . ' = _’IJ based on. IMPORTAMTIN If SourceT ables and Sourceliews ar...
] Template | 2] Output | BR Temp. |t@@ sche... | B output B3 Prope...

|H|F'Iain Text ”DefauItState

||TemplateDirectiveStartTu:uken [¥]

Figure 2: CodeSmith and NetTiers Template

4.1.2 Security

Vested provides a security feature intended to minimize the likelihood of a

successful SQL injection attack. This feature was implemented through the construction

of a regular expression that checks non-parameterized user input for security-sensitive

2 ¢

SQL strings, such as “grant”,

99 46

exec”,

sysuser”, and “--*.

13

Vested maintains awareness of end users through the implementation of Users,

Groups, and Permissions object while recording a lightweight audit trail via standardized

42 Investment Technology

create and modify user and date columns. Each table in its data model includes
CreateDate, CreateUser, ModifyDate, and ModifyUser columns. By not allowing these
columns to contain null values at the database level, Vested enforces an audit policy that
records who created and changed orders, securities, and other database objects.

This is a simplistic audit system in that it does not keep an ongoing history once
an item is created. Where a full-featured audit system would retain information about
each individual update to an item in case items are updated more than once, Vested
retains only the latest update information. For example, if a security is changed twice,
Vested does not retain information about who performed the first change and when; only
the most recent update’s audit information is available.

Mindful of the clichéd mantra of knowledge being power, Vested was developed
with the guiding principle that giving users access to their OMS information is to give
them power. Because complexity in software can often obscure intentions, every effort
was made to keep the user interface simple to use, even if the code base of the system
behind that interface was extensive and complex. While the system is ripe for
customization in terms of roles and authorization, its immediate implementation gives all

users access to all data.

4.1.3 Data Access

Data access is enabled through calls into the Enterprise Library’s Database object.
The most common of these calls are ExecuteReader, ExecuteNonQuery, ExecuteDataSet,
and ExecuteScalar. When requirements dictate that data be returned, as when the user is
viewing a page of orders or securities, Vested uses ExecuteReader almost exclusively

because it performs significantly faster than ExecuteDataSet. ExecuteReader returns an

43 Investment Technology

object that implements the IDataReader interface while another utility class provides a
function generic and capable enough to take any object that implements IDataReader and
convert it into a DataSet.

Vested’s data-related capabilities include utilities for generating SQL statements
that are used to interact with the database. These features include the ability to
dynamically query the system using like, not like, contains, starts with, ends with, and
null values to mention a few. Applications often offer dynamic where clause building so
that their databases can be searched for an item with an id number of 5 using the same
code that could alternatively search for an item with an id number of 10, 50, or any other
integer. Vested’s framework takes this concept substantially farther in that it offers the
developer the opportunity to dynamically query any table in the database based on values
in almost any column of that table (Vested uses neither).

Access to the application’s data begins with a request for a web page in the
system. Convention is relied upon heavily, with pages relying on naming conventions to
establish associations with database tables, such as the orders and securities tables. To
request the orders page is to request a list of orders, which is essentially the same as
requesting multiple rows of data from the orders table simultaneously. Beginning with
the web page, the request is forwarded to the appropriate domain entity (the orders entity
in this example) in the application’s business layer. The domain object passes the request
along to a provider class, and the request is tranformed into a data-friendly representation

via stored procedures that actually get the data from the database.

4.1.4 Business Layer

44 Investment Technology

Factory patterns that define how objects are created are central to Vested’s object-
oriented design. The EntityFactoryBase class provides entity creation functionality that is
generically used to manage the creation of each distinct type of object in the business
layer. Every table in the template data source’s database is generated into a business layer
class and is considered an entity. Each of these entities is created through the
EntityFactoryBase class’s Create methods, which manage performance optimization by
maintaining a list of string parameters that are used to determine which type of entity is
created. As discussed in Design Patterns Explained, abstract factory patterns address the
problems of combinatorial explosion, unclear meaning, and creation logic while avoiding
both tight coupling and low cohesion (Shalloway, 2007).

The business layer also includes management, location, and comparison
functionality. Management features are made available through the EntityManager class,
which provides overall management of entities, including creation and entity state
tracking so that Vested is aware when an entity’s current state is unchanged, added,
changed, or deleted. Location functionality includes storage of objects in a weakly-
referenced dictionary collection while comparison features include a Compare function
that implements the Icomparable interface’s requirements, returning 0 if two objects of

the same type are equal.

4.1.5 Class Definitions

Though the framework used to create Vested included web service and Windows
Forms generation capability, these were excluded from the solution’s implementation.
While those features may be included in future revisions, the current architecture follows

a traditional 3-tier structure in which the user interface, business-specific logic, and data

45 Investment Technology

manipulation logic are separated into physically distinct components that each
encapsulate necessary code and provide generic functionality. The business layer is
organized with the Vested.Entities namespace and the data layer resides within the
Vested.Data namespace. A list of the external and internal components Vested reuses is

shown in Figure 3.

C Inetpub’ wwwroot' ¥ested' Yested. Website', Property Pages ﬂi’

References Reference Name | Type | Version |

- Build AjaxConkrolToolkit BIM 1.0,10615.0

. Accessibiity stdole GAC 7.0,3300.0

pat oo cyetem, Confiaura Gac 200

. : wstern, Configuration .0.0.

Mabild Ophions Swskenn. Configuration. Install GAC 2.0.0.0
Sysker.Daka GAC 2.0.0.0
Swstem,Data. OracleClient GAC 20,00
Svwskem.Design GAC 2.0.0.0
System,Drawing GAC 2.0.0.0
System.Management GAC 2.0.0.0
Swskem. Security GAC 2.0.0.0
Swsten.Wweb GAC 2.0.0.0
System,Wweb.Extensions GAC 1.0,61025.0
Syskenn, xml GAC 2.0.0.0
Vested.Data Project Auto Update
Wested,Data, SglClient Project Auto Update
e ities Project Auto Update
e b Project Auto Update
Add Reference... Add web Reference. .. | Remove I Update |

0K I Cancel | Apply |

Figure 3: Vested Web Site External Dependencies

Vested uses an extensive class and interface hierarchy to enable data flows, 3-
tiered separation of concerns, and loose coupling in the context of an OMS system. The
top-level class in this hierarchy is referred to as an entity. In fact, it is technically named
EntityBaseCore, but for simplicity’s sake, it is referred to as an entity. All other business-
layer objects, such as securities, orders, or user objects, are also entities because they
automatically extend the entity class. This hierarchy includes generated and non-
generated abstract, partial classes. It also includes definition and implementation of at
least one interface for each business class. The order object, for example, implements the

Iorder interface, whereas the security object implements the Isecurity interface. The

46 Investment Technology

Orders class inherits from the partial and abstract OrdersBase class, which in turn inherits
from the partial and abstract EntityBase class, which in turn inherits from the partial and
abstract EntityBaseCore class. Figure 4 illustrates Vested’s organization into functionally

and physically distinct layers separated into namespaces.

£
I_-' == .VE -
«Searchs=

1 F] MetTierslvested. YestedLL
-} Vested VestedBLL

- {} Vested,VestedBLL.Validation

=1 5] MetTiersiVested. YestedDal

- L} Wested VestedDAL

H-{} Yested VestedDAL Bases

B E MetTiers\Yested. YestedDaL, SqlClient
-4} Yested VestedDAL,SqlClient

[=] E MetTiers|Yested. Web

-} Vested Web.Data

H-{} Yested.Wweb.LI

D)

Figure 4: Vested Namespaces

The EntityBaseCore class in turn implements the IEntity,
INotifyPropertyChanged, IDataErrorInfo, and IDeserializationCallback interfaces. The
OrdersBaseClass implements seven interfaces: Vested.Entities.IOrders,
[Entityld<OrdersKey>, System.IComparable, System.ICloneable, IEditableObject,
IComponent, and INotifyPropertyChanged. The files composing this highly standardized

architecture across the entire application are largely generated, but the architectural

47 Investment Technology

implementation intentionally leaves the partial Orders class untouched whenever the
main code base is regenerated to accommodate database changes.

Also of note is the fact that the architecture is customizable at numerous levels.
Vested customized the architecture to include implementation of the IEntityCacheltem
interface at the business class level so that business objects such as securities and orders
could be cached. When an instance of a business-layer class is located or created by the
EntityManager class, the EntityManager will first check if the object being sought
implements the IEntityCacheltem interface. If so, it will look for that item in the cache
before attempting its retrieval and construction.

The user interface employs master pages to standardize the look, feel, navigation,
and functional aspects of the system’s appearance. Composite controls, which are those
including both visual and logical features, were used to build filtering and searching
capabilities into each page’s data grids. FormView controls were used within user
controls and included type-appropriate input validation and automated checking for
required fields. These user controls were then embedded in their related pages. Minor
customizations of these controls allowed for implementing various filters for some pages,
but not for others. An example of this can be seen in the orders page’s (shown in Figure
5) from and to date fields. This page’s instance of the composite filtering and searching
control was customized to allow users to search orders over specific date ranges.

The code generation system’s features for retaining customizations across
multiple regenerations of a new version of the system were referred to as its “merging
strategy”. Using a simple string-based naming convention within the application’s code

files allows the developer another method to preserve customizations. The code

48 Investment Technology

generation system “merges” freshly generated code with the customized named regions
the developer provides. Two different customization options, the aforementioned partial
classes and named regions, allow the developer to customize both the user interface and

the system logic.

4.2 Using Vested

When entering orders, the process most central to normal system use, the user
must input all required data, and will be prompted with bold red “Required” messages
next to all required fields that are still unfilled when the insert button is clicked. Required
fields for order entry are defined by business requirements. For example, it is not possible
to execute a trade without both price and quantity, irrespective of the trade’s other details.
That real-world business rule is modeled within Vested by requiring the user to provide
data for both fields, which are each set to disallow the null value in Vested’s data model.
This synchronization between business realities, data modeling, and interface is essential
to the system. Additionally, users will automatically be prompted about data type
incompatibilities. If the user tries to insert or save changes that set a date field, such as
order date, to a plain text string like “tomorrow”, the system will disallow the insert or
save and inform the user of the problem.

The orders screen also enables users to quickly see all orders for a given security
or all orders of a given type by clicking on the security’s name within the order’s row or

the order row’s order type id column (See Figure 5).

49 Investment Technology

/3 Orders List - Microsoft Internet Explorer) = =]]
File Edit ‘“iew Favorites Tools Help | ;','
- . . - n - M —
@ Back - @ - d \g _l\l | /-_]Search ‘::\/ Favorites &i | i .\,’- liw, = _l ﬁ i‘
Address I@ http: {flocalhosk: 2005 Vested. Website Adminf Crders. aspx j GO | Links **
GDEJ8|€|ECv dGo +@ M - E b | <% Bookmarks= @Dblocked | A.,?Check - 2 @SEttingSv
=l

Vested

Admin > Orders
Orders List
Loak N "
Eoii |Order [} x| which: | contains =] | |ﬂ| Reset |
|Order Type Id ‘Security d |Quantit3ﬂ Price |T0tal Cost
Edit Select BL BCSI 100 100 10000
Edit Select SL M3 100 40 4010
Edit Select BL BCSI 100 25 2510
Show Page: 1 (Total Records: 3) Records Per Page: |1D 'l

Add Mew |

t - Speed Through Standards

i
] T T Meames

Figure 5: Orders List Sorted by Quantity

Orders list, as with all list pages within the application, provides built-in sorting
functionally for all columns that are stored in the list’s related database table; therefore,
the orders table is related to the orders list page. All list pages support searching Vested’s
database. Searching for an order is enabled across every order table column
(OrderTypelD, SecuritylD, Quantity, Price, TotalCost, etc). Users may search for
securities, orders, other users, groups, or any other piece of data stored by the system.
Further, search functionality is parameterized so that every table column can be
combined with each of the four search types: contains, starts with, ends with, or equals.
This gives users the freedom to search in numerous ways. Because some types of data

within SQL Server are less searchable than others, only columns that have the following

50 Investment Technology

data types can be searched: ANSI strings, Boolean, byte, currencies, dates, decimals,
doubles, integer types, and xml.

Foreign key columns have navigational features that provide uniform
functionality across the entire system. When a user clicks on either the Security or Order
Type 1d columns, they are sent to edit pages that then retrieve primary key values from
the query string. Edit pages use those primary key values to query the system for the
details of one security or order type identified by the passed key value. The interface
presents those details to the user for viewing and editing.

Figure 6 illustrates the result of clicking the “BCSI” link in the orders list page.
Navigational features bring the user to the securities - add/edit page where details
regarding the BCSI security can be viewed or edited. The page, using the database’s
foreign key from the orders table into the security table, is capable of simultaneously
displaying orders for the security being viewed or edited within a collapsible frame (the
frame labeled “Orders Details” in Figure 6). Edit pages system-wide, as in the securities

add/edit page pictured, permit the editing of one record at a time.

51 Investment Technology

2} Securities Edit - Microsoft Internet Explorer =3l
File Edt ‘iew Favorites Tools Help | :,'

= = . = A 5. °T7
@Eack - -.J v IJ @ _;] | /-_)Search \;:\/ Favorites {‘3 = \7 fiw, = _| ﬂ ‘i‘
Address I@ http: fflocalhost: 2005 Vested. Wehsite fadmin/ SecuritiesE it aspx ?SecurityTd=1 j Go | Links **
GDEngc|EGv ;IGD +@ M B D~ | ¢ Bookmarks= &0 blocked | "% check vy Autolink + () settings -

“

Vested

Admin

Securities - Add/Edit

Security: IEICSI—
Security Desc: IW
Cusip: W
Security Type Id: lm
Cancel

[#] orders Details {Hide Details...)

| Quantitys | Price | Taotal Cost
Select 100 100 10000
Select 100 25 2510

Show Page: 1 {Total Records: 2} Records Per Page: |1D Vl

opyright - Speed Through Standards

=
e T —

Figure 6: Securities — Add/Edit

Standardized grids are used throughout Vested to provide users with a common
look and feel that they are likely to be familiar with already, given the wealth of
spreadsheets found in the financial services sector. These grids allow for sorting and
navigation and have customizable records-per-page settings. Every user can have his or
her preferred number of results shown onscreen by manipulating the records per page

value in each grid’s lower left corner.

52 Investment Technology

4.3 History and Reflection

At the project level the initial ambitiousness of my interests was the first thing
that went wrong. I am still debating whether it was a good event or not that I chose to use
NET 2.0, with which I was almost completely unfamiliar, as the platform upon which to
build the application. I had been using .NET 1.1 only for years. However, that one small
choice opened up a door of possibilities that would not have been available in such a
powerful form had I not been working within Microsoft’s Visual Studio 2005 with .NET
2.0.

The most significant of these positive occurrences related to platform choice was
my discovery of code generation. This capability of modern programming frameworks
allowed me to simultaneously discover, experience, and learn new material related to
automated unit testing, object modeling, aspect-oriented programming, presentation,
RAD, and many more fast-changing but incredibly powerful software design concepts.
This project was managed primarily through a state-of-the-art remote interface into Regis
University, partly through iterative discovery, feedback, and development between
myself and Dr. Doug Hart, and partly by sheer force of my own will to continue
managing and motivating myself to devote time in pursuit of only the highest-quality
productive effort. It was only possible because I was able to take the lessons I learned at
work each day and put them to use in this work immediately upon arriving home.

The first milestone in the project was literally the final determination of what
system to build. Originally, I was very interested in systems that could not only make

buy and sell decisions in place trades but could also automatically adapt, or learn, when

53 Investment Technology

marketplace dynamics changed. Realizing the ambitiousness of that undertaking, I
considered implementing a system that would allow me to track my own investment
purchases and sales online, from anywhere at any time. Thinking that such a system
might be small in scope and that having something more substantial might actually help
my career considerably, I ultimately decided to apply the lessons I've learned while
working with programming code on four separate OMS over recent years.

Subsequent milestones included the finalization of the data model and the
realization of the potential impact of code generation, not just in this project but in the
sense that, if mastered, it could be a phenomenally productive skill. Significant project
changes resulted from almost every piece of feedback that I received from academic
peers. As I learned more about the industry while at work and through several nonfiction
and textbooks, smaller changes to the existing project plan occurred.

The project undoubtedly meets its primary goal which is to manage orders.
Orders can be entered, viewed, changed, deleted, and searched. The system accurately
models the appropriate relationship between orders in the securities that those orders
purchase or sell. It also links orders to accounts, accounts to funds, and people to all of
the above. Orders are handled in accordance with generic and generally accepted

methodologies dictated by the type of security related to the order.

54 Investment Technology

Chapter 5: Lessons Learned and Next Evolution

I learned so much over the course of this work that it is actually quite difficult to
recall everything, begging the question “If one cannot remember it, can one really say
one has learned it?” In the programming technicalities domain I covered everything from
aspect-oriented programming, unit testing via assert statements, generic types, null able
types, master pages, interface usage, numerous design patterns including their rationale
and application, serialization, object data sources, object relational databases, high-speed
NET programming, scaffolding, weak references and garbage collection, configuration
and convention, source control, agile project management, service-oriented concepts, and
many more.

In the finance business domain I covered margin accounts, simple and complex
derivatives, securities lending, leverage, accounting, legal structures, currency
conversions, hedge funds and fund-of-funds, master-feeder structures, and partnership
interests. I became comfortable with most so-called alternative investment strategies:
distressed debt, equity market neutral, merger arbitrage, and statistical arbitrage to name
a few.

Meanwhile, the daily workplace taught me people skills, prioritization needs,
truly rapid development skills, and forced me to realize that people are the bridges
between the external businesses and internal departments that technology systems
support. My experience and my coursework combined to give me project management
skills while an unimaginably demanding work environment managed by a stereotypically
superhuman multitasked resisted my inclinations toward formality, standardized

development, and process documentation.

55 Investment Technology

I found myself working with people whose real lives were dramatized in books I
was reading and movies I was seeing. The deals they made literally were the stuff of
legends. It was my fascination with the paychecks they had been pocketing that led most
directly to all of this learning; there is much to be said for inspiration just as much
knowledge and material comfort can be earned from hard work. I believed in myself, in

my ability to complete this, and in so doing I matched inspiration with potential.

5.1 Lessons Learned and Learning Curves

If T had it to do over again, I would not take a two-year hiatus from the Master’s
degree program as I did from about 2004 through 2006. I unexpectedly moved across the
country in pursuit of love a year or so after starting the program. I would move for the
same reason again, but I would not let it break me from my studies. I also would have
adopted the cutting edge much sooner. If I had known the capabilities of an upgraded
development environment when paired with judiciously selected plug-ins like
CodeSmith, NetTiers, and ReSharper, I would have begun exploring programming’s
state-of-the-art sooner. In the final analysis, my only regret is that I did not have more
time — though I will soon — to become familiar with the specific code generation tool I
chose to use for this project. When I discovered it, I had literally just finished building
out a large system for my employer over the course of nine months. Had I known of and
used code generation, that new system could have been done in two months. The power
of productivity and efficiency gains made possible by intelligently leveraging other

people’s work are amazing.

56 Investment Technology

Another lesson I learned early on was to strip out the details of a system during
initial development. Focusing on the core components, needs, standardizations,
customizations, and use cases only really helps discover the needs a system must meet.
Initially, I was faced with a system I generated at home with hundreds of files in it and
multiple layers. The scope of its features and the sheer amount of generated code were
daunting. I discovered how helpful it could be to create another version of the Vested
database, giving the new copy only two or three tables. This would reduce the amount of
generated code substantially and allow my time, analysis, and learning curve to focus on
the architecture, the what, and the how, of all the new technologies I had discovered.

Learning how to customize the system, which was every bit as time-consuming as
just figuring out what it basically did, how, and why, I found it helpful to generate a
system from only a few tables so that I could analyze the preservation of one-to-many
and many-to-many relationships in the data access layer and debug the generated
system’s lifecycle. It was this hands-on approach, as much as referring to documentation
that made the project possible. There are no books on how to use most of these tools and
you cannot take a course in developing with them. The only way to learn is through
intensive long-term study and actual use. I have spent literally months studying what
these sorts of frameworks make possible; I could have shortened that timeframe
substantially by focusing on small core pieces initially instead of attempting to build an
entire system all at once.

The project did not meet my own initial expectations, because I had conflicting
ideas about what the project should be. I thought that as long as I was already spending

the time doing something, I might as well try to make it something I would use. That

57 Investment Technology

logic originally had me considering a system that would record just my own trading
information so that I could more accurately track the performance in my own investment
accounts, which had been doing quite well for a number of years. I took the initial
thought process further, rationalizing that I may as well make it something that other
people could use. You never know, maybe somebody would buy OMS software from
me!

I have put so much time into this effort in total. Endless hours of typing followed
endless hours of programming followed by bed and then repeated ad infinitum. And it
hasn’t been just the programming and typing; I must have spent $300 on extra-curricular
textbooks from the finance arena and easily a couple hundred hours reading all of them.
This project is the apex of something that has not been just about my reading books or
following daily financial news from Bloomberg and the Wall Street Journal, it is the
culmination of what my life has become over the past few years of living in New York
City. The number of hours seems countless, making the number of years the only
meaningful metric. This project will not end here because I have invested my life into it
and it is my product.

The next steps will be to enhance reporting capabilities and add more security
types. Fundamentally, these are the only steps necessary before this software could be
marketed as a commercial OMS. I have considered changing some of the NET
framework’s controls within the software into more robust controls from third party
vendors, such as the data display grids available from DevExpress, Infragistics, and

Xceed. I have not decided yet to implement third-party grids, but I would like to for their

58 Investment Technology

features — the drawbacks are the learning curve and the cost but the payoff of sleek and
highly customizable interfaces may decide it.

In conclusion, I strongly recommend that individuals in general make a habit of
investing their own money. I have come to believe that it is possible, without really a
whole lot of work, for people to affect their own return on investment to the extent that
they retire considerably sooner than they otherwise may have. I believe it is possible to
invest in a manner that yields returns reliably higher than standard benchmark indexes,
higher than mutual funds, and as high as the best hedge funds, and I believe these things
are possible for individual and institutional investors alike, whether they use an OMS,
Ameritrade, Schwab, or any other mechanism that grants access to markets. I also
strongly advocate that individual software developers and development teams make
adherence to proven best practices and pattern usage standard throughout their systems. I
have become a vocal advocate of object-relational mapping systems and code generation.
For the individual developer interested in furthering his or her development skills and

career, these two technologies seem an excellent place to start.

59 Investment Technology

References

Anquetil, N., de Oliveira, K.M.., de Sousa, K.D., and Dias, M.G.B., Software
maintenance seen as a knowledge management issue, Information and Software

Technology Volume 49, Issue 5, May 2007, Pages 515-529.

Bowen, 1. (2007, November). Mathematicians’ role in market mayhem. Retrieved

December 12, 2007 from http://news.bbc.co.uk/2/hi/business/7109805.stm

Davis, M. (2006, July 19). Scale Up vs. Scale Out [Msg 1]. Message posted to
http://weblogs.java.net/blog/malcolmdavis/archive/2006/07/scale up vs s

ca.html

Free On-line Dictionary of Computing (2007, December). Scalability. Retrieved
December 4, 2007 from http://foldoc.org/index.cgi?query=scalability&act

ton=Search

Greenblatt, J. (2006) The Little Book that Beats the Market. Hoboken: John

Wiley and Sons.

Investopedia Stock (n.d.), Retrieved August 20, 2007 from

http://www.investopedia.com/terms/s/stock.asp

http://news.bbc.co.uk/2/hi/business/7109805.stm
http://weblogs.java.net/blog/malcolmdavis/archive/2006/07/scale_up_vs_s
http://foldoc.org/index.cgi?query=scalability&act
http://www.investopedia.com/terms/s/stock.asp

60 Investment Technology

Microsoft’s .NET Framework General Reference Naming Guidelines. (n.d.).
Retrieved January 9, 2008, from http://msdn2.microsoft.com/en-

us/library/xzt533wO0(VS.71).aspx

Pfleeger, S.L. (2001). Software Engineering: Theory and Practice (2nd ed.).

Upper Saddle River: Prentice Hall.

Pigoski, T.M. (1996). Practical Software Maintenance: Best Practices for
Managing Your Software Investment. Hoboken: John Wiley &

Sons.

Swanson, E. B. (1976). The Dimensions of Maintenance. In Proceedings of the
Second International Conference on Software Engineering, pages 492-

497, San Francisco, October 1976.

Yan, W., & Clack, C.D. (2006). Behavioural GP Diversity for Dynamic Environments:
an application in hedge fund investment. Proceedings of the 8" annual conference

on Genetic and evolutionary computation (pp. 1817-1824). New York: ACM.

http://msdn2.microsoft.com/en�

InVested is an order management system
(OMS) for trading common securities.

Daniel Mark
Regis University
May, 2008

7 Habits of Highly Successful People

Habit number one: Put first things first.

If it wasn't for people like you,
people like myself and my class mates
might not have the choice available to us to go out and further

ourselves, to exercise and develop our minds.
It took more patience and dedication over time
than almost anything I've ever done, and I'm sure teaching

takes the same from you every day.

Thank you many times over.

Table of Contents

Introduction

Users Perspective
Methodology
Architecture and History
Lessons Learned

Main Features
Workflow: Security Setup
Use Case 1: Order Entry
Use Case 2: Reporting
Filtering

Calendar

Remaining

Conclusion

Introduction

Recent market turmoil
Background with OMS
Market size

Users Perspective

Security type: comprehensive
Profit and loss

Performance

_ow maintenance

Methodology

lterative SDLC
Code generation
Maintenance focus

Architecture and History

Architecture:
Standard 3-tier
Inheritance: type hierarchy
Interfaces: composition
Composite controls
History: Program trading to OMS

Learning automation —a program whose
automated buy and sell recommendations
become more effective over time.

Lessons Learned

Initial focus
Requirements gathering
Scope

Feature creep

Cutting edges

Main Features

Order entry with data validation and protection
Filtering

Usable and responsive — as with Ajax calendar
Reporting

Use of Enterprise Library

Available as a web service

Unit testing automation

Order Entry

Add or edit

7 Required fields

Tab indexing

10 supported security

types

=
m
v
=
m
i

Admin

Accounts

Account Types
Allocations
Allocation Statuses
Countries
Currencies
Exchanges

Financial
Institutions

Funds
Fund Types

Q
7]

—
o
®

Industries

Order Statuses

Order Types

yE

Sectors
Securities
Security Types
User Accounts
User Groups
Users

Orders - Add/Edit

Order Type Id: |= Please Choose ..> »|Required

Security Id: | < Please Choose _..

=

Trade Date: |

Is Done: #Yeas No

=lRequired
B Required

Trader Id: | < Please Choose --->;|Required

Executed Price: |

Executed !

Quantity:

Executed l
Value:

Settle Date: |

Executing

Broker Id: I< Please Choose .

5]

Status Id: | < Please Choose ..

5]

Comments: |

Authorizing

User Id: !< Please Choose ..

Instruction: |

Duration: |

Currency Id: < Please Choose ...

Required
Required
Required
B

Filtering

Orders List

Look Far:]Drder IC ~ |||¥hich: |oontains | | Search || Reset

)

From Trade Date ! o To Trade Date

Filters: by trade date
Search: across all columns
Criteria: contains, starts with, ends with,

equals
Enhancement: from and to date for every

date column

Calendar

Vested

Adrmin

IExecuted Cuantity 'i ICDmains 'i 1 Search |

13,"1,-"2008 B To Trade Date |[|3/27/2008 B
4 March, 2008 3
Su Mo Tu We Th Fr Sa

Feset |

SecL ted [Executed | Executed Settle | Executing |Counter [Status
d 24 25 26 27 28 29 1§ | Quantity Walue Date | BrokerId |Party 1d| Id
2 i3 40 & fo SEE R
Edit Select BL Apple 9 10 11 12 13 14 15 poo 100 5000000000 3/9/2008 Armeritrade HEW

16 17 18 19 20 21 22
23 24 25 26 27 .28 29
303 1 2 3 4 5

Show Page: 1 (Total P

Add Mew !

Today: March 22, 2008

Responsiveness and validation

Leap years correctly

Significance within finance — business rules and
dollar amount calculations rely heavily on dates

Reporting

Export to excel
Filtering ++
Aggregation
Better grid

Workflow: Security Setup

Sequential process (security must exist before trades

can be placed with it)
Set up new security (enter its data) with minimum required

fields

Use the security in an order
Security Types

Stock: common, restricted, preferred

Bond: corporate, government, municipal

Call Option

Put Option

Future and Forward

Credit Default Swap

Equity Swap

Interest Rate Swap

American Depository Receipt

Exchange-Traded Fund

Use Case 1: Order Entry

Order entry

Required fields dictated by type of security being
bought/sold

Automatic calculation of values, e.qg. price x
quantity = value

Permanent record associated with user, date, and
security

Use Case 2: Reporting

Orders

Given security, date range, security within a date range

Orders by user/trader
Profit and loss

By fund/account

Daily, monthly, year-to-date
Exposure and risk

Exposure by investment, sector, industry
Leverage, investment versus hedge

Remaining

Refactor
Navigation
Reporting
Calculated columns
Security types

Bits

Process flows

Sign up customers!

Conclusions

Difficulty level
Invest
Churchill: Don't stop

	Investment Technology for Trading Business: Delineating Requirements, Processes, and Design Decisions for Order-Management Systems
	Recommended Citation

	tmp.1458662448.pdf.AjLi1

