
Regis University Regis University 

ePublications at Regis University ePublications at Regis University 

Regis University Student Publications 
(comprehensive collection) Regis University Student Publications 

Spring 2008 

The Value Proposition of Service-Oriented Architecture The Value Proposition of Service-Oriented Architecture 

David Norman 
Regis University 

Follow this and additional works at: https://epublications.regis.edu/theses 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Norman, David, "The Value Proposition of Service-Oriented Architecture" (2008). Regis University Student 
Publications (comprehensive collection). 99. 
https://epublications.regis.edu/theses/99 

This Thesis - Open Access is brought to you for free and open access by the Regis University Student Publications 
at ePublications at Regis University. It has been accepted for inclusion in Regis University Student Publications 
(comprehensive collection) by an authorized administrator of ePublications at Regis University. For more 
information, please contact epublications@regis.edu. 

https://epublications.regis.edu/
https://epublications.regis.edu/theses
https://epublications.regis.edu/theses
https://epublications.regis.edu/regiscollege_etds
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F99&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F99&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/99?utm_source=epublications.regis.edu%2Ftheses%2F99&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu


 
 

Regis University  
College for Professional Studies Graduate Programs  

Final Project/Thesis  
 
 

Disclaimer
 

 
 
Use of the materials available in the Regis University Thesis Collection 
(“Collection”) is limited and restricted to those users who agree to comply with 
the following terms of use. Regis University reserves the right to deny access to 
the Collection to any person who violates these terms of use or who seeks to or 
does alter, avoid or supersede the functional conditions, restrictions and 
limitations of the Collection.  
 
The site may be used only for lawful purposes. The user is solely responsible for 
knowing and adhering to any and all applicable laws, rules, and regulations 
relating or pertaining to use of the Collection.  
 
All content in this Collection is owned by and subject to the exclusive control of 
Regis University and the authors of the materials. It is available only for research 
purposes and may not be used in violation of copyright laws or for unlawful 
purposes. The materials may not be downloaded in whole or in part without 
permission of the copyright holder or as otherwise authorized in the “fair use” 
standards of the U.S. copyright laws and regulations.  
 









Regis University 
 
 
 
 
 
 
 

  The Value Proposition of Service-Oriented Architecture 
 
 
 
 

 
by 

David Norman 
davidlnorman@hotmail.com 

 
 
 
 
 
 
 
 
 
 

A Project Report submitted in partial fulfillment of the requirements for 
the degree of Master of Science in Computer Information Systems 

 
 
 
 
 
 
 
 
 
 
 

February 2008 



Service Oriented Architecture  Dave Norman  
 

Regis University 
School for Professional Studies 

MSCIS Program 
 

Certification of Authorship of Professional Project Work 
 
 
Submitted to: Mike Nims, Don Ina 
 
Student’s Name: David Norman 
 
Date of Submission: 
 
Title of Submission: Research of Service-Oriented Architecture 
 
 
Certification of Authorship:  I hereby certify that I am the author of this document 
and that any assistance I received in its preparation is fully acknowledged and 
disclosed in the document.  I have also cited all sources from which I obtained 
data, ideas, or words that are copied directly or paraphrased in the document.  
Sources are properly credited according to accepted standards for professional 
publications.  I also certify that this paper was prepared by me for the purpose of 
partial fulfillment of requirements for the MSC 696 or the MSC 696B course. 
 
 
Student’s Signature:  
 

David Norman  March 2, 2008 
____________________________________________________ 
 

 

 
 
 
 
 
 
 

 Page ii



Service Oriented Architecture  Dave Norman  
 

 
 

Regis University 
School for Professional Studies 

MSCIS Program 
 

Advisor/MSC 696 and 696B Faculty Approval Form 
 
 
Student’s Name:  ____David Norman_______________________________ 
 
Professional Project Title:   The Value Proposition of Service-Oriented 
Architecture      
 
Advisor’s Declaration:  I have advised this student through the Professional 
Project Process and approve of the final document as acceptable to be submitted 
as fulfillment of partial completion of requirements for the MSC 696 or MSC 696B 
course.  The student has received project approval from the Advisory Board or 
the 696A faculty and has followed due process in the completion of the project 
and subsequent documentation. 
 
 
ADVISOR  

 Mike Nims     March, 02,2008 
_______________________________________________________________ 
Name                                               Signature                                            Date 
 
 
 
MSC 696 or MSC 696B Faculty Approval 

Donald J. Ina              February 28, 2008 
Name                                              Signature                                            Date 
 

 
 

 

 

 

 Page iii



Service Oriented Architecture  Dave Norman  
 

An Abstract of a Project/Practicum Report Submitted to Regis University 
School for Professional Studies in Partial Fulfillment of the Requirements 

for the Degree of Master of Science in Computer Information Systems 

 
Abstract 

 
by 

 
David Norman  

 
February 2008 

 
The author of this thesis evaluates Service-Oriented Architecture (SOA) design 
and implementation strategies.  The purpose is to provide the reader with the 
definition of Service-Oriented Architecture.  This report discusses: (1) The 
definition of Service-Oriented Architecture, (2) The problems solved by Service-
Oriented Architecture, (3) Application of design principles to achieve Service-
Oriented Architecture.  As a result of this investigation, Service-Oriented 
Architecture is a design style that is fundamentally about sharing and reuse of 
functionality across diverse applications, so that organizations can quickly adapt 
to changing business requirements while increasing IT asset reuse and 
minimizing integration and development costs. 

 Page iv



Service Oriented Architecture  Dave Norman  
 

 Table of Contents 

 

1 Chapter One: Introduction - Thesis Statement____________________________ 1 
1.1 Statement of the Problem ______________________________________________ 1 

1.1.1 Inflexible Systems _________________________________________________________ 3 
1.1.2 Limited or No Reusability ___________________________________________________ 3 
1.1.3 Lack of Interoperability _____________________________________________________ 4 
1.1.4 Poor Maintainability _______________________________________________________ 5 

1.2 Service-Oriented Architecture (SOA) Defined_____________________________ 6 
1.3 Business Need for SOA________________________________________________ 7 
1.4 Goals of SOA ________________________________________________________ 7 

1.4.1 IT Flexibility _____________________________________________________________ 8 
1.4.2 Reusability_______________________________________________________________ 9 
1.4.3 Integration and Collaboration ________________________________________________ 9 
1.4.4 Maintainability___________________________________________________________ 10 

1.5 Barriers and/or Issues________________________________________________ 11 
1.6 Summary __________________________________________________________ 12 

2 Chapter Two: Review of Literature and Research ________________________ 14 
2.1 What is Architecture_________________________________________________ 14 
2.2 Application Architecture _____________________________________________ 15 
2.3 Enterprise Architecture ______________________________________________ 16 
2.4 Service-Oriented Architecture_________________________________________ 17 
2.5 Comparison of Client Sever and Service-Oriented Architecture _____________ 18 

2.5.1 Location of Application Code _______________________________________________ 19 
2.5.2 Presentation and Logic Separation ___________________________________________ 20 
2.5.3 Software Distribution _____________________________________________________ 21 

2.6 Comparison of Distributed and Service-Oriented Architecture______________ 22 
2.6.1 Location of Application Code _______________________________________________ 23 
2.6.2 Communication Protocol___________________________________________________ 24 

2.7 Summary __________________________________________________________ 25 
3 Chapter Three: The Value Proposition of SOA __________________________ 26 

3.1 Analysis of Business Benefits __________________________________________ 26 
3.1.1 Reduced Integration Expense _______________________________________________ 27 
3.1.2 Increased Asset Reuse _____________________________________________________ 28 

3.1.2.1 Governance ________________________________________________________ 28 
3.1.2.2 Granular Level Design ________________________________________________ 29 
3.1.2.3 Standard Interface/Web Services ________________________________________ 29 

3.1.3 Competitive Advantage ____________________________________________________ 30 
3.2 Analysis of Financial Benefits _________________________________________ 31 

3.2.1 Financial Metrics _________________________________________________________ 32 
3.2.2 Consideration of Soft Benefits_______________________________________________ 34 

 Page v



Service Oriented Architecture  Dave Norman  
 

3.3 Risks of Investing in SOA_____________________________________________ 35 
3.3.1 Weakest Link in the Service Chain ___________________________________________ 35 
3.3.2 Nature of the Organization _________________________________________________ 36 
3.3.3 Web Service Framework Immaturity _________________________________________ 37 
3.3.4 Inexperience with SOA Design Principles _____________________________________ 38 

3.4 Cost of not Adopting SOA ____________________________________________ 38 
3.5 Summary __________________________________________________________ 39 

4 Chapter Four: The Components of SOA _______________________________ 40 
4.1 Implementation Strategy _____________________________________________ 40 
4.2 Enterprise Service Bus (ESB) _________________________________________ 41 

4.2.1 ESB Defined ____________________________________________________________ 41 
4.2.2 Interoperability __________________________________________________________ 42 
4.2.3 Implementation Scenario___________________________________________________ 42 

4.3 Business Process Management (BPM) __________________________________ 43 
4.4 Business Process Execution Language (BPEL) ___________________________ 46 
4.5 Web Services _______________________________________________________ 48 
4.6 Application Server __________________________________________________ 49 
4.7 Universal Description, Discovery and Integration (UDDI) __________________ 51 
4.8 Summary __________________________________________________________ 53 

5 Chapter Five: Analysis and Design of SOA _____________________________ 54 
5.1 SOA Analysis and Design Overview ____________________________________ 54 

5.1.1 Task-centric Services______________________________________________________ 55 
5.1.2 Entity-centric Services_____________________________________________________ 56 

5.2 Design Fundamentals ________________________________________________ 57 
5.2.1 Service Granularity _______________________________________________________ 58 
5.2.2 Service Contracts_________________________________________________________ 59 

5.2.2.1 Standardization of Contracts ___________________________________________ 60 
5.2.3 Loose Coupling __________________________________________________________ 61 
5.2.4 Abstraction _____________________________________________________________ 63 
5.2.5 Reusability______________________________________________________________ 63 
5.2.6 Autonomy ______________________________________________________________ 64 

5.3 Summary __________________________________________________________ 65 
6 References _______________________________________________________ 67 

7 Appendix_________________________________________________________ 76 

 Page vi



Service Oriented Architecture  Dave Norman  
 

List of Figures 
Figure 1 – Silo-Based IT Systems (Brown, 2007) _____________________________________________ 2 
Figure 2 – Core BPM Infrastructure Components (Howard, 2007 p. 17) _________________________ 44 
Figure 3 – Business Process Realized as Services (Jussuttis, 2007)______________________________ 47 
Figure 4 – Registry Components (Manes, January 2007)______________________________________ 52 
Figure 5 – Contract Naming Standard (Erl, 2007, p. 133) _____________________________________ 60 

 
 

 Page vii



Service Oriented Architecture  Dave Norman  
 

List of Tables 
Table 1: Sample Total Cost of Ownership (Haddad 2005, p. 21) ________________________________ 32 
Table 2: Sample Net Cash Flow  (Haddad 2005, p. 22) _______________________________________ 32 
Table 3: Sample Discounted Cash Flow  (Haddad 2005, p. 22) _________________________________ 33 
Table 4: Sample Net Present Value  (Haddad 2005, p. 23)_____________________________________ 33 
Table 5: Sample Return on Investment (Haddad 2005, p. 23)___________________________________ 34 

 Page viii



Service Oriented Architecture  Dave Norman  
 

1 Chapter One: Introduction - Thesis Statement 
 

According to Anne Manes, “organizations have hundreds (sometimes 

thousands) of legacy applications with an abundance of duplicate functionality” 

(Manes March 2007).  To remain competitive, businesses must continually 

evolve to meet the changing demands of their customers.  As business needs 

change, Information Technology (IT) needs also change.    Paul Patrick states 

that “the necessary information is not all stored in a single data store, such as a 

database, but is instead stored in individual silos from which each application 

must drink” (Patrick, 2005).  Each of these silos has its own characteristics that 

usually differ from other systems in the enterprise.  Methods to integrate these 

silos have long been the focus of software architects.   

1.1 Statement of the Problem 
Service-Oriented Architecture (SOA) has surfaced as a software 

development method to address the problems that have typically infiltrated IT.  

Erl (2007) describes the historical approach to IT systems as follows: 

Over the course of IT’s history, the majority of such solutions have been 

created with a common approach of identifying the business tasks to be 

automated, defining their business requirements, and then building the 

corresponding solution logic (p. 76). 

 
Brown (2007) reinforces this by explaining that “the majority of IT projects 

have traditionally focused on a single business process activity (or group of 

activities) residing entirely within a single application silo”.  Achieving additional 

 Page 1



Service Oriented Architecture  Dave Norman  
 

value from this type of application is “usually inhibited because their capabilities 

are tied to specific business requirements and processes” (Erl, 2007, p.77).  

Figure 1 illustrates isolated nature of silo-based applications that make up most 

IT systems. 

 
Figure 1 – Silo-Based IT Systems (Brown, 2007) 

 
When new requirements and processes are introduced, organizations are 

forced to either make significant changes or build new applications altogether 

(Erl, 2007, p. 77).  As a result, the “traditional application landscape of multiple 

stovepipes was extremely complex and expensive to maintain or extend. So 

when the business needed a change in systems, IT seemed slow to deliver it” 

(Mehul, 2007). 

The silo-based nature of IT systems is the heart of the problem for 

organizations and SOA offers the possibility of eliminating these silos (Sippl, 

2005, p. 6).  There are 4 major recurring issues that stem from silo-based 

systems.  They include inflexibility, lack of reusability, poor interoperability and 

poor maintainability (Erl, 2007).  According to Manes, SOA addresses each of 

these issues (Manes, July 2006, p. 6).  These issues are discussed in the 

following sections. 

 Page 2



Service Oriented Architecture  Dave Norman  
 

1.1.1 Inflexible Systems  

Silo-based systems are inflexible because their capabilities are tied to 

specific requirements and processes (Erl, 2007, p77).   Van der Vlist (2002) 

expands on this by explaining that these types of systems “make extra work 

when an application has to adapt to changing business requirements, because 

each modification to one application may force developers to make changes in 

other connected applications”.  Organizations that have followed the historical 

norm in IT development may find the work load to adjust the system to be much 

more difficult than expected.  

Inflexible systems corner organizations into a constant state of catch-up to 

adapt their IT systems to evolving business needs (Erl, 2005).  This could make 

IT systems the bottleneck for the business. “When business processes cannot 

efficiently evolve, enterprises find themselves hamstrung as they try to respond 

to changing opportunities and pressures” (Brown, 2007).    

1.1.2 Limited or No Reusability 

The concept of reuse is a very simple idea: make a software component 

that is useful for more than one purpose (Erl, 2005).  The reuse of existing IT 

assets can be a complicated and problematic ambition to achieve in a silo-based 

system (Mehul, 2007).  As established previously, the majority of IT systems 

have multiple applications that are isolated from each other.  This “lack of 

centralized control and communication between business units within 

organizations caused the same solutions to be reinvented over and over again” 

 Page 3



Service Oriented Architecture  Dave Norman  
 

(Mehul, 2007).  Solutions that are continually reinvented across business units 

ultimately results in disposable applications (Mehul, 2007).   

Disposable IT assets are obviously less than ideal because “something 

that is useful for a single purpose will provide value, something that is repeatedly 

useful will provide repeated value and is therefore a more attractive investment” 

(Erl, 2007, p. 254).  In silo-based systems, organizations suffer financial 

consequences through the inefficiency of implementing existing functionality time 

and again (Brown, 2007). 

1.1.3 Lack of Interoperability  

In a silo-based system, “sharing information among applications is difficult 

due to differences in technology platforms and data models” (Newcomer, 2004).  

Applications can not collaborate across silo’s with each other to exchange data in 

a business process without “resource-intensive manual processes for tasks like 

loading data from different data sources, transforming data into the right common 

format, and checking the accuracy of these data” (Mehul, 2007).  This has the 

circular effect of making the system inflexible and reducing the organizations 

ability to respond to changes.  

The challenge that organizations face is coordinating the work of multiple 

application silos in order to achieve enterprise goals (Brown, 2007).  Business 

and technology teams that remain in silos will not have a common view of the 

world and therefore may be working counter to the goals of the organization 

(Manes, 2007, p. 21).  Integration of silo-based systems is a complex endeavor 

 Page 4



Service Oriented Architecture  Dave Norman  
 

because it “is a multifaceted problem, many different technologies, products, and 

processes have been used over the years to address it” (Newcomer, 2004). 

Not only do organizations face the challenge of integrating internal systems, but 

there is also a growing need to integrate with business partners from external 

organizations (Erl, 2007).  The complexity and resource-intensive processes 

needed to integrate silo-based applications could leave organizations in a 

position where they find it difficult to establish partnerships and cannot respond 

to market changes quickly (Manes, 2005, p.20).  

1.1.4 Poor Maintainability 

In a silo-based system it is common for IT groups to be burdened with 

maintaining many different types of applications and data sources, often written 

in differing languages or platforms (Brown, 2007).  “This traditional application 

landscape of multiple stovepipes was extremely complex and expensive to 

maintain or extend” (Mehul, 2007).  The expertise to maintain applications of 

varying languages and platforms can easily get out of hand. Adding to the issues 

is the fact that duplication in data and functionality is quite common in 

organizations that have many software applications and data sources (Mehul, 

2007).  Redundancy in functionality and data often leads to confusion and errors 

for those who carry out the daily business tasks because they may receive 

conflicting results from silo’s that are out of sync with each other (Mehul, 2007).  

Maintenance of the numerous disparate systems could be very complex and 

labor intensive (Erl, 2007). 

 Page 5



Service Oriented Architecture  Dave Norman  
 

1.2 Service-Oriented Architecture (SOA) Defined 
Service-Oriented Architecture (SOA) can be thought of as “a methodology 

for achieving application interoperability and reuse of IT assets” (Newcomer, 

2004).  According to Krafzig (2005), SOA can be defined as follows:  

A Service-Oriented Architecture (SOA) is a software architecture that is 

based on the key concepts of an application front-end, service, service 

repository, and service bus. A service consists of a contract, one or more 

interfaces, and an implementation. 

 
The focus of an SOA is centered on the business processes of an 

organization. A service is used to meet the needs of a business process.  For 

example “When we use the term ‘service’, we have in mind a business service 

such as making airline reservations or getting access to a company's customer 

database” (Krafzig, 2005).  These services provide the business processes that 

carry out the business needs such as getting a reservation, or canceling a 

booking.  

These business services should not be confused with infrastructure 

processes.  Infrastructure processes may include such things as connecting to 

and accessing data from the database.  “Actually, the SOA must decouple 

business applications from technical services and make the enterprise 

independent of a specific technical implementation or infrastructure” (Krafzig, 

2005). 

Delivering the requested information to users is the main value of an SOA.  

All of the objects that are used to deliver the information are transparent to the 

 Page 6



Service Oriented Architecture  Dave Norman  
 

user.  These objects may include technical infrastructure objects and business 

components.   

1.3 Business Need for SOA 
“SOA presents the possibility of finally eliminating corporate silos” (Sippl, 

2005, p. 6).  SOA enables interoperability across diverse technical platforms 

(Manes, Jan 2006, p. 7).  This interoperability is one key to breaking down the 

silos and uniting IT systems so they are able to collaborate to meet the goals of 

the enterprise (Brown, 2007).  By adopting SOA principles, IT assets can be 

“reused, mixed and matched, and assembled and reassembled into the new 

agile applications” (Sippl, 2005, p. 5).  SOA addresses all of the issues that stem 

from silo based applications to enable the creation of IT systems that promote 

flexibility, reusability, interoperability and maintainability (Manes, July 2006).  This 

means “applications, services, and products can be offered more quickly and 

securely, giving an advantage over competitors” (Manes, July 2006).  

1.4 Goals of SOA 
The main goals of SOA are to increase IT systems flexibility, reusability, 

interoperability and maintainability (Manes, July 2006).  “Organizations that don’t 

adopt SOA will be faced with maintaining an ever-increasing pile of inflexible 

application silos, duplicate data and functionality, and spaghetti integration 

challenges” (Manes, July 2006).  The following sections take a detailed look at 

how SOA addresses each of the goals. 

 Page 7



Service Oriented Architecture  Dave Norman  
 

1.4.1 IT Flexibility 

SOA provides flexibility through loose coupling.  “Loose coupling is a 

fundamental concept of SOA (and large distributed systems in general) aimed at 

reducing dependencies between different systems.” (Josuttis, 2007).  To achieve 

loose coupling, a service interface must be abstracted from its implementation.   

By abstracting the service interface from its implementation, SOA removes the 

complexity of attempting to make software from different languages or from 

different platforms communicate.   

Since the abstracted interface can be a universally understood medium 

such as XML, it is possible to leverage any application that fulfills a business 

need.  Anne Manes illustrates this point by saying, “XML has had a huge impact 

on data integration. By providing a standard data encoding format and syntax, 

XML has significantly advanced the ability to integrate data sets” (Manes, 2006, 

p. 21).   

All that is needed is the ability to wrap the process in a service.  This not 

only supports the short term goals of being agile enough to adapt systems to 

changing business needs, but it also provides a long term architecture that 

increases the flexibility of an organizations software systems (Newcomer, 2004).  

By increasing flexibility, organizations will be able to adapt critical systems 

quicker than could be achieved by traditional proprietary systems (Sippl, 2005, p. 

4). 

 Page 8



Service Oriented Architecture  Dave Norman  
 

1.4.2 Reusability 

SOA design principles facilitate reusability by taking all of the processes 

an organization needs to conduct business and organizing them into services.  

These services can then be reused as needed.  According to Manes, some 

advantages include: 

• Increased consistency of business-process execution across diverse 
applications that reuse common services 

• Reduced duplication of development work among distributed teams 
• Streamlined deployment and maintenance of service code 
(Manes, 2006, p. 5)  

 
An SOA should enable an organization to deal with the latest business 

requirements by reusing existing business logic (Erl, 2007, p. 505).  This allows 

them to minimize risks while reducing costs from resource, and maintenance 

overhead (Brown, 2007). 

1.4.3 Integration and Collaboration 

“The most fundamental requirement of a SOA infrastructure is that it 

enable interoperability across diverse technical platforms” (Manes, Jan 2006, p. 

7).  The services of a well designed SOA enable application integration through 

industry-standard interfaces.  These standard interfaces make it possible for 

applications to make requests, and return results.  Web services are perfect for 

implementing SOA because they provide a way to be accessed from anywhere 

on the web and they use an industry standard document language (XML) to 

communicate requests and responses to and from web services.  Anne Manes 

points out that the Enterprise Service Bus (ESB), a component of SOA, “provides 

the tools and runtime frameworks that developers use to encapsulate legacy 

 Page 9



Service Oriented Architecture  Dave Norman  
 

applications and expose them as web services” (Manes, Jun 2005).  Since web 

services can use XML to communicate service requests and responses, they 

make it possible to integrate applications regardless of the underlying platform or 

programming languages. 

1.4.4 Maintainability 

Since SOA design principles strive for reusable services, one desirable 

result is a more maintainable IT system (Erl, 2007, p. 61).  A reduction in 

redundancy means that maintenance tasks are eased because when changes 

are required in a process, or problems are identified, there is only one place to 

make the change (Erl, 2007, p. 61).  The complexity of searching through all of 

the possible implementations of the functionality is greatly reduced by decreasing 

redundancy.  Thomas Erl (2007) makes this point in the following statement: 

By centralizing reusable services, logic redundancy can be dramatically 

reduced. When applied to significant portions of an enterprise, this 

effectively decreases the quantity of solution logic that needs to be hosted, 

governed, and maintained. As a result, the physical size of an IT 

enterprise can shrink, along with the effort and budget required to operate 

it. (p. 507) 

Organization could experience considerable maintenance savings with SOA 

(Erl, 2007).  SOA makes it possible to modify or add processes with less effort, 

thereby reducing maintenance and development costs (Brown, 2007). 

 Page 10



Service Oriented Architecture  Dave Norman  
 

1.5 Barriers and/or Issues 
Since contemporary SOA is a relatively young architecture, standards that 

define what it is, and how to achieve it are still emerging (Manes, June 2005, p. 

6).  As with any new concept, there has been confusion on how to implement a 

best practice SOA (Manes, June 2005, p.6).  For example, many people 

mistakenly believe that with a web service framework (WSF), they automatically 

have a SOA (Erl, 2005).  These people are under the misguided notion that SOA 

is only about implementation technology (Erl, 2005).  This type of misconceptions 

has led to confusion that has caused some organizations to flounder when 

attempting to adopt SOA (Manes, June 2005, p.6).  If there is not a clear 

understanding of the design principles and implementation options that follow the 

emerging best practice standards, they most likely will not maximize the benefits 

that SOA can deliver (Erl, 2005). 

SOA is not a technology; it is a style of design that is composed of 

services that can be shared and reused to accomplish specific business 

functions.  Manes (2006) attempts to resolve this misconception as follows: 

SOA has at least as much to do with behavior as it does with technology.  

Fundamentally, SOA is a style of application design that focuses on 

implementing software functionality as shared, reusable services, in which 

each service represents a relatively autonomous business or technical 

function. (p.6) 

An ideal SOA would provide organizations with a way to create new 

applications from existing services with little or no coding (Josuttis, 2007).  

Applications could be assembled from a library of services.  A potential barrier to 

 Page 11



Service Oriented Architecture  Dave Norman  
 

SOA is that in order to compose business processes, there must be a complete 

portfolio of services that can be assembled (Manes, June 2005, p. 6).  These 

services must not only be capable of supporting component assembly, they must 

also be reusable.  To achieve this goal of SOA, careful and methodical planning 

must be undertaken to ensure that every business process is addressed in a 

reusable service that supports assembly (Erl, 2007, p.270). 

“Unfortunately, the industry has not yet codified SOA principles and 

practices into well-defined design patterns” (Manes, 2006, p.6).  The IT industry 

is still learning how best to implement SOA.  According to Manes, some believe 

that SOA requires asynchronous, event-driven communications, while others 

argue that SOA should support many different message exchange patterns 

(Manes, 2006, p. 6).  These debates are likely to rage while SOA matures.  As 

SOA adoption becomes more prevalent, best practices will probably evolve into 

widely accepted standards.  This will allow organizations to maximize the 

benefits of SOA.  

1.6 Summary 
SOA is a design style for creating distributed systems that provide 

application functionality and data as services to end-users or to other 

applications or services (Manes, July 2006, p. 31).  Although SOA can be 

implemented using web services, it is also possible to use other technologies for 

implementation (Erl, 2005).   

According to Manes, SOA could provide a powerful competitive advantage 

for organizations that adopt it because it provides flexibility, reusability, 

 Page 12



Service Oriented Architecture  Dave Norman  
 

maintainability and the ability to integrate data sources and applications (Manes, 

July 2006, p. 31).  This allows businesses to respond quickly to changing 

business needs such as competitive threats, new partners and new products and 

services (Josuttis, 2007).   

 Page 13



Service Oriented Architecture  Dave Norman  
 

2 Chapter Two: Review of Literature and Research 
 

According to Erl (2005), “in older environments, the construction of the 

solution was so straight forward that the task of abstracting and defining its 

architecture was seldom performed“.  As IT solutions became more complex, 

formal architectures began to evolve. 

Before the internet, architects generally only needed to be concerned with 

building systems that supported users within the organization (Erl, 2005).  The 

architect was usually armed with information such as how many users and the 

typical usage patterns that would need to be supported with the systems 

architecture (Erl, 2005).  Along with the internet came focus on building systems 

architectures that support a potentially large number of users that access the 

organization’s IT resources in unpredictable ways (Erl, 2005). 

2.1 What is Architecture 
One popular definition of architecture from the Rational Unified Process is 

as follows: 

Software architecture encompasses the following: 
 

• The significant decisions about the organization of a software 
system 

• The selection of the structural elements and their interfaces by 
which the system is composed together with their behavior as 
specified in the collaboration among those elements 

• The composition of these elements into progressively larger 
subsystems; the architectural style that guides this organization, 
these elements, and their interfaces, their collaborations, and their 
composition 

 
Software architecture is concerned with not only structure and behavior, 

but also usage, functionality, performance, resilience, reuse, 

 Page 14



Service Oriented Architecture  Dave Norman  
 

comprehensibility, economic and technologic constraints and trade-offs, 

and aesthetic issues. (Kruchten, 2003, Glossary) 

 
Sun Microsystems (2002) defines architecture as follows:  “Architecture is 

a set of structuring principles and patterns that, when applied to a problem, 

provides the framework for a solution, which can then be assembled from a set of 

simpler subsystems or components” (p. 8). 

2.2 Application Architecture 
The application architecture describes the systems structure and how the 

requirements will be supported.  “Application architecture is to an application 

development team what a blueprint is to a team of construction workers.” (Erl, 

2005) 

There could be as many different application architectures as there are 

applications in the organization.  One reason that application architectures might 

vary within an organization is that advances in technology lead to a new and 

better architecture.  An older application may have been developed using 

COBOL and mainframes.  The ability to create distributed software on newer and 

faster hardware could lead an organization to adopt a different approach for new 

development efforts.   

Many organizations use several different application architectures (Erl, 

2005).  An organization with many application architectures should “almost 

always be accompanied by and kept in alignment with a governing enterprise 

architecture.” (Erl, 2005)  

 Page 15

http://www.informit.com/author_bio.asp/ISBN=0321197704


Service Oriented Architecture  Dave Norman  
 

2.3 Enterprise Architecture 

The need for enterprise architecture sprang up from complexity that was 

introduced by having multiple application architectures (Erl, 2005).  The ability to 

manage multiple application architectures was addressed with the concept of 

enterprise architectures.  An enterprise architecture is “a master specification to 

be created, providing a high-level overview of all forms of heterogeneity that exist 

within an enterprise, as well as a definition of the supporting infrastructure” (Erl, 

2005).  Erl (2005) goes on to explain that “an enterprise architecture specification 

is to an organization what an urban plan is to a city”.  For example, if a blueprint 

is comparable to application architecture, then an urban plan would be 

comparable to enterprise architecture. 

Enterprise architecture provides an all encompassing view of organizations 

systems (Erl, 2005).  It also ensures that individual applications fit into the system 

as value added components that carry out the goals of the organization.  It is 

common for enterprise architectures to attempt to plan for all future service level 

requirements (Erl, 2005).  According to Cade (2002), the service level 

requirements are as follows: 

• Performance – this is usually measured in response time for a 
given screen transaction per user. 

• Scalability – the ability to support the required quality of service as 
the system load increases without changing the system.  A system 
can be considered scalable if, as the load increases, the system 
still responds within the acceptable limits. 

• Reliability – ensures the integrity and consistency of the application 
and all its transactions. 

• Availability – ensures that a service/resource is always accessible. 

 Page 16



Service Oriented Architecture  Dave Norman  
 

• Extensibility – the ability to add additional functionality or modify 
existing functionality without impacting existing system functionality. 

• Maintainability – the ability to correct flaws in the existing 
functionality without impacting other components of the system. 

• Manageability – the ability to manage the system to ensure the 
continued health of a system with respect to scalability, reliability, 
availability, performance, and security. 

• Security – the ability to ensure that the system cannot be 
compromised. 

(p. 7) 

These service level requirements represent consideration for dependencies 

between the individual application architectures and the enterprise architecture.  

Since changes to the enterprise architecture are likely to have an impact on 

dependent application architectures, it is not uncommon for enterprise 

architectures to include a plan for evolving the technology to minimize impact of 

changes (Erl, 2005).  

2.4 Service-Oriented Architecture 
Service-oriented architecture arose from the labor of enterprise architects 

searching for a better plan (Erl, 2005).  A major hurdle in designing enterprise 

architecture is making it flexible enough to integrate heterogeneous application 

architectures into the enterprise.  “When numerous, disparate application 

architectures co-exist and sometimes even integrate, the demands on the 

underlying hosting platforms can be complex and onerous.” (Erl, 2005).   The 

concept of service-oriented architecture evolved from plans to minimize the 

impact of adding or changing applications in an enterprise (Erl, 2005).  Building 

reusable and interoperable services that can be exposed as web services 

provides the capability to integrate virtually any application, regardless of the 

underlying platform (Josuttis, 2007).   

 Page 17



Service Oriented Architecture  Dave Norman  
 

It is important to note that SOA does not require the use of web services 

(Erl, 2005).  All that is required is a vendor-neutral communications platform.  

Since web services have emerged as the dominant vendor-neutral 

communications platform, the author will focus on this aspect.  The key factor 

that has generated so much excitement about SOA is that web services enable it 

to extend across both enterprise and application architecture domains (Erl, 

2005).   

The value of SOA becomes apparent when it is applied across 

heterogeneous solutions.  “The benefit potential offered by SOA can only be truly 

realized when applied across multiple solution environments” (Erl, 2005).  New 

services can be created using any programming language on any platform and 

added to the SOA without impacting any other service, regardless of language or 

platform.  This provides enormous flexibility for any organizations IT systems 

(Brown, 2007).  As new programming languages emerge, they can be adopted, 

added and integrated with legacy systems (Brown, 2007).  There is no need to 

redesign the old architecture and rewrite old systems.  Since SOA facilitates a 

vendor-neutral communications framework, IT organizations are not tied to a 

single proprietary development or platform (Newcomer, 2004).  If the only 

available human resources have Java skills, then new service could be written in 

Java, even if all other systems are written in .Net. 

2.5 Comparison of Client Sever and Service-Oriented 
Architecture 

According to John Sullivan (2006), “client/server describes the relationship 

between two computer programs in which one program, the client, makes a 

 Page 18



Service Oriented Architecture  Dave Norman  
 

service request from another program, the server, which fulfills the request”.  This 

basically means there is a client that communicates with a server to complete 

processing tasks.   

According to Erl (2005), the common configuration of client server 

“consisted of multiple fat clients, each with its own connection to a database on a 

central server. Client-side software performed the bulk of the processing, 

including all presentation-related and most data access logic”. 

2.5.1 Location of Application Code 

In client server systems, the bulk of the application logic, and therefore the 

majority of the processing work reside on the client (Erl, 2005).  “This results in a 

monolithic executable that controls the user experience, as well as the back-end 

resources” (Erl, 2005).  This is a one of the most significant obstacles to client 

server technology.  It is very difficult to build client software that will work properly 

with the multitude of operating systems and varying configurations that act as 

clients.  In a client server environment, it is common to have several copies, or 

branches of source code that are customized for the operating system or client 

environment.  Writing and maintaining multiple branches of code is time 

consuming, expensive and is often problematic.  The processing power of the 

client machine may also be a factor in the performance of the client software.  

This issue is often dealt with by advertising minimum hardware requirements. 

In a SOA environment, processing logic is highly distributed.  “Each 

service has an explicit functional boundary and related resource requirements” 

(Erl, 2005).  Having the processing logic located on the server puts the control 

 Page 19



Service Oriented Architecture  Dave Norman  
 

back in the hands of the architects and developers.  In a SOA environment, since 

the code resides on the server, the developers do not need to spend time and 

energy in writing multiple sets of code and trying to address environment issues.  

Developers can concentrate on writing one set of code for the server 

environment that addresses the business needs.  This removes the complexity of 

trying to satisfy all possible client environments and puts the focus back on the 

task of translating business requirements into services.  

2.5.2 Presentation and Logic Separation 

Client server environments tend to have a presentation layer that is tightly 

coupled with the application logic.  A typical client server application would 

require an installation on the client that included both the application logic and 

the presentation.  There is usually very little or no separation between the logic 

and presentation.  “This results in a monolithic executable that controls the user 

experience, as well as the back-end resources” (Erl, 2005). 

By contrast, the presentation layer within contemporary service-oriented 

architecture is loosely coupled to the service logic.  Web services facilitate 

communication between thin clients and the service logic.  The thin client could 

be a web page or “any piece of software capable of exchanging SOAP 

messages” (Erl, 2005).   While it is commonly expected for requestors to be 

services as well, presentation layer designs are completely open and specific to 

a solution's requirements. 

 Page 20



Service Oriented Architecture  Dave Norman  
 

2.5.3 Software Distribution 

Client server environments require the software to be installed on each 

client machine.  This type of distribution can be challenging for IT departments.  

Imagine installing client software on hundreds or thousands of personal 

computers within an organization.  Consider the possible variations in operating 

systems and environment variables that may impact the client software.  It is 

possible that some machines may have Windows or Mac or Linux or dual-boot.  

Software distribution in a client server environment can be a daunting 

undertaking. 

Because web services can be automatically available to anyone in the 

world with a web connection, there are no software distribution issues in a 

contemporary SOA environment.  Sandy Carter (2007) points out how 

contemporary SOA solves traditional deployment issues in the following 

statement: 

Leveraging SOA as the underpinning technology for deployment 

dramatically reduces process times and deployment costs. If the business 

model has been done right, when business processes or business rules 

change, they change in only one place, and the results are seen 

everywhere as needed. This means that IT can implement solutions 

faster, with better communication and fewer errors.  

 
In a contemporary SOA environment, distribution of the software is a 

simple matter of publishing the web service.  The services that contain the 

business logic are accessible through the web service. 

 Page 21



Service Oriented Architecture  Dave Norman  
 

2.6 Comparison of Distributed and Service-Oriented 
Architecture 

The concept of distributed architecture was formed in an effort to solve 

some of the problems related to client server architecture.  The idea of “breaking 

up the monolithic client executable into components” and distributing these 

components across multiple hardware devices “(some residing on the client, 

others on the server)” became known as distributed architecture (Erl, 2005).  

Distributed architecture alleviated much of the deployment issues by moving 

more of the application logic to the servers.  “Server-side components, now 

located on dedicated application servers, would then share and manage pools of 

database connections, alleviating the burden of concurrent usage on the 

database server” (Erl, 2005).     

In the mid 90s, the internet had a huge impact on distributed computing.  

Internet technology allowed the client component to be replaced by the browser.  

“Not only did this change radically alter (and limit) user-interface design, it 

practically shifted 100% of application logic to the server” (Erl, 2005).  As can be 

seen in the following excerpt from Thomas Erl’s (2005) book, internet technology 

had a positive impact on communication protocols: 

Distributed Internet architecture also introduced a new physical tier, the 

Web server. This resulted in HTTP replacing proprietary RPC protocols 

used to communicate between the user's workstation and the server. The 

role of RPC was limited to enabling communication between remote Web 

and application servers. 

 
 

 Page 22



Service Oriented Architecture  Dave Norman  
 

2.6.1 Location of Application Code 

SOA can be thought of as a distributed architecture because the 

application logic is distributed across one or more servers.  However, the 

traditional distributed architecture differs from SOA in how the logic is divided up.  

In a traditional distributed architecture, the business logic is created by building 

components, usually with a homogenous code base.  The code base can be 

heterogeneous, but the added complexity leads most organizations to choose a 

single programming platform (Erl, 2005).  The most dominant platforms are .Net 

and J2EE.  The components that reside on the servers “are designed with 

varying degrees of functional granularity, depending on the tasks they execute, 

and to what extent they are considered reusable by other tasks or applications” 

(Erl, 2005). 

In an SOA environment, the idea of components remains in tact, however, 

the SOA components are carefully designed as services.  One service may 

include some or all of the components in a similar distributed architecture.  

“These services are designed according to service-orientation principles and are 

strategically positioned to expose specific sets of functionality” (Erl, 2005).  Once 

the service has been created, it can be exposed via a web service.  This “use of 

Web services establishes a loosely coupled environment that runs contrary to 

many traditional distributed application designs” (Erl, 2005).  A library of carefully 

designed services can be assembled to build applications that satisfy business 

needs.  Unlike traditional distributed architecture, SOA “fosters reuse and cross-

 Page 23



Service Oriented Architecture  Dave Norman  
 

application interoperability on a deep level by promoting the creation of solution-

agnostic services” (Erl, 2005).   

2.6.2 Communication Protocol 

Traditional distributed computing relies on proprietary APIs to facilitate 

communication between objects that reside on the same machine.  

Communication between components on separate servers, typically rely on RPC 

protocols.  “At design time, the expected interaction components will have with 

others is taken into account—so much so that actual references to other physical 

components can be embedded within the programming code” (Erl, 2005). 

Communication that relies on embedded code or specific physical references is a 

prime example of tight-coupling.  “This rigid and brittle connection was forged out 

of necessity because interfaces to and from these chunks of code were not well 

defined, and connections usually needed to be created via custom code” (Carter, 

2007).  Once this type of tight-coupling becomes a part of the system, it is very 

difficult to make modifications or extensions to the system.  

In a SOA environment, communication is accomplished through SOAP 

messages passed between web services.  This is an important advantage over 

the distributed method of using APIs or RPCs.  Implementing SOA with web 

services allows a simple document markup language approach (i.e. XML) to be 

used to communicate requests and responses to and from the web services.  

Another important advantage is “the fact that a lightweight document transfer 

protocol such as HTTP can provide an effective, universal data transfer 

mechanism” (Newcomer, 2004). It doesn't matter what the underlying operating 

 Page 24



Service Oriented Architecture  Dave Norman  
 

system or software happens to be, a web service understands the XML request 

and understands how to fulfill the request.  “Web services can be added to any 

computer that understands XML and HTTP or XML and most other popular 

communications transports” (Newcomer, 2004). 

2.7 Summary 
Many of the characteristics of contemporary SOA were derived from the 

architectures of the past.  “SOA is a radical departure from client-server 

architecture” (Erl, 2005).  Some of the principles that were used to build client 

server applications are still used for SOA.  However, SOA has made huge gains 

in improving on client server architecture (Erl, 2005). 

Although distributed architecture is very similar, SOA has “distinct 

characteristics relating to both technology and its underlying design principles” 

(Erl, 2005).  SOA provides several improvements over distributed architecture, 

but the most notable is the achievement of loose coupling.  By achieving loose 

coupling, SOA has overcome the biggest shortcomings of all of its predecessors.  

These past architectures have evolved into contemporary SOA.  The fact that 

SOA with web services is platform independent and promotes service reuse 

makes it a very compelling architectural solution. 

 Page 25



Service Oriented Architecture  Dave Norman  
 

3 Chapter Three: The Value Proposition of SOA 
 

Challenges such as constant change, rigid IT budgets, increased regulation, 

and global competition require that investments in new technology deliver value 

to the business.  According to Chris Haddad (2005) of the Burton Group, “After 

the spending sprees of the year 2000 and the dot-com eras, enterprises have 

learned a measure of fiscal responsibility and now scrutinize spending initiatives 

such as service-oriented architecture (SOA) projects very closely” (p.5) .  

According to Erl (2007), for established technologies it is a strait forward 

endeavor to understand the facts and how they will provide value over time in 

order to measure the return on investment (ROI) (p. 61). New approaches to IT, 

such as contemporary SOA are more challenging to measure because “the 

emphasis on increasing ROI typically goes beyond the returns traditionally 

sought as part of past reuse initiatives (Erl, 2007, p.62).  Organizations must 

make architectural investments long before they can realize tangible return.  

Recognizing and measuring the value of adopting SOA is more of an art form 

than a science.  Organizations must attempt to recognize the soft benefits as well 

as the tangible benefits in order to understand the true value of SOA (Haddad, 

2005, p. 11). 

3.1 Analysis of Business Benefits 
There are a couple of important SOA concepts to understand when 

analyzing business benefits of this architectural approach (Erl, 2007, p. 276).  

First, services are created at a granular level to represent a piece of a business 

process (Erl, 2007, p. 276).  Once a library of services has been created, 

 Page 26



Service Oriented Architecture  Dave Norman  
 

business processes can be built from these services using the Business Process 

Execution Language (BPEL) (Josuttis, 2007).  BPEL is “an XML language for 

describing business flows and sequences, which in themselves are services” 

(Josuttis, 2007). According to Josuttis (2007), the beauty of composing business 

processes using BPEL is that the services used in any given process could be 

written in any language on any piece of hardware literally anywhere in the world.  

Josuttis (2007) supports this by saying, “in practice, you can compose processes 

and services that use different middleware and even native technologies such as 

J2EE calls”.   

3.1.1 Reduced Integration Expense 

One of the most significant factors in using Web services is that data 

exchange is governed by open standards. According to Thomas Erl (2005), “After 

a message is sent from one Web service to another it travels via a set of 

protocols that is globally standardized and accepted”.  The key concept to grasp 

here is that Web services are “globally standardized and accepted” (Erl, 2005).  

Since pieces of business processes are exposed as Web services in 

contemporary SOA, they can be incorporated into any application that can 

consume a Web service (Erl, 2005).   

“The use of an open, standardized messaging model eliminates the need 

for underlying service logic to share type systems and supports the loosely 

coupled paradigm” (Erl, 2005). That means that any organization in the world can 

integrate those services into their own application regardless of language, 

platform or database.  It does not matter whether they use a Windows or UNIX, 

 Page 27



Service Oriented Architecture  Dave Norman  
 

J2EE or .Net.  Since Web services are globally standardized, they can be 

integrated into any application that can communicate with Web services.   

3.1.2 Increased Asset Reuse 

There are three main areas of asset reuse that can be achieved by 

following SOA principles.  These areas can be categorized as governance, 

standard interface and granular level design and are discussed in the following 

sections (Erl, 2007). 

3.1.2.1 Governance 
A common mistake within IT departments is the waste introduced when 

time and money are spent building software that has already been built (Josuttis, 

2007).  Reducing this type of redundancy and achieving software reuse has long 

been a goal for the IT industry (Brown, 2007).  A common reason for redundant 

software is poor organization or governance of software (Erl, 2007, p. 363).  A 

deficiency of centralized control and interaction between the various departments 

of organizations results in the same software solutions being duplicated over and 

over (Erl, 2007, p. 363).  “Hence, a centralized registry of services is required for 

easy discovery and promoting service reuse at the enterprise level” (Mehul, 

2007).  This centralized registry allows SOA stakeholders to find existing services 

so they can determine their effectiveness for reuse.   According to Mehul (2007), 

“an entry in such a registry provides functional information such as the name of a 

service, service operations, and service location for its invocation”.  A central 

repository makes services discoverable so project teams can avoid the mistake 

of recreating their functionality. 

 Page 28



Service Oriented Architecture  Dave Norman  
 

3.1.2.2 Granular Level Design 
One of the best known approaches to reduce redundancy is the Object 

Oriented paradigm which has a “stronger emphasis on modularity and offers a 

more advanced form of reusability. The latest design architecture in this evolution 

of reusability is Service-oriented architecture (SOA)” (Mehul, 2007).  SOA is 

similar to the Object Oriented paradigm in that they both attempt to minimize 

redundancy by organizing software into granular levels of reusable components.  

This granular level design is intended to enable services to provide encapsulation 

of reusable logic that does not overlap other services.  “Service Reusability 

emphasizes loose coupling because the lower the dependency requirements of a 

service, the more easily it can be reused.” (Erl, 2007, p. 279). 

3.1.2.3 Standard Interface/Web Services 
Web services are the preferred standards-based way to enable 

messaging for SOA.   Web services provide a vendor neutral communications 

framework that has become a significant enabler of SOA. By organizing pieces of 

reusable business logic into services and exposing them as web services, they 

can be incorporated and reused by any application and/or BPEL in any 

organization that has internet access (and is authorized to use them).  A single 

service could be used in any number of applications.  “Because service logic can 

now be accessed via a vendor-neutral communications framework, it becomes 

available to a wider range of service consumer programs” (Erl, 2007, p. 50).   

 Page 29



Service Oriented Architecture  Dave Norman  
 

3.1.3 Competitive Advantage 

For many organizations, business processes and their corresponding 

software systems are very tightly integrated.  It is difficult, if not impossible, to 

change one without impacting the other.  “Altering business processes inevitably 

requires system changes. Conversely, system changes inexorably alter business 

processes.” (Brown, 2007).  This integration of business processes and IT 

systems can be a major inhibitor of an organizations ability to adapt to changes.  

A new business opportunity could be lost to more agile competitors if the 

software systems cannot be efficiently modified to address the new processing 

needs. 

SOA positions services as reusable assets that can be repeatedly used in 

different applications.  A library of loosely coupled services allows modification of 

existing processes without major impact on other services.  It also allows new 

business processes to be composed from existing services rather than 

developed from scratch.  “As a result, the time and effort required to automate 

new or changed business processes is correspondingly reduced because 

development projects can now be completed with significantly less custom 

development effort” (Erl, 2007, p. 63).   

The benefit to organizations is “heightened responsiveness and reduced 

time to market” (Erl, 2007, p. 63).  This increase in ability to rapidly respond to 

changes in business can provide enormous strategic advantage over competitors 

who lack these capabilities.  

 Page 30



Service Oriented Architecture  Dave Norman  
 

3.2 Analysis of Financial Benefits 
Financial Benefits can be very difficult to measure for SOA endeavors 

because there are many indirect monetary advantages.  A primary concern with 

SOA is creating IT assets that can be repeatedly assembled into various 

business processes.  Instead of developing a new software component from 

scratch every time a business need arises, services can be reused to compose 

new business processes.  According to Erl (2007), “logic can be designed for 

reuse, thereby lowering the subsequent effort to build applications that require 

the same type of logic” (p. 452).  This can lead to faster development of software 

and a reduction in coding effort, resulting in lower development costs.  SOA can 

effect the operations of organizations by allowing new and improved products or 

services.  Some other benefits include enabling business partner opportunities 

and simplifying customer facing processes (Erl, 2007, p. 452). 

All of these improvements can significantly strengthen the position of an 

organization.  “SOA promises financial economies of scale through sharing and 

reuse of services” (Haddad, 2007, p. 9).  The challenge is quantifying the 

improvements so that they can be measured in terms of financial benefit.  

Computing the financial benefit of reusing a service instead of writing new code 

is not as straight forward as with traditional IT systems.  The financial gain 

achieved by adopting SOA is elusive because the true value is in SOA’s ability to 

deliver economies of scale and meet future business needs (Haddad, 2005, p. 

8). 

 Page 31



Service Oriented Architecture  Dave Norman  
 

3.2.1 Financial Metrics 

Some of the typical costs that should be considered when applying 

financial metrics to a SOA project include software licenses, maintenance, 

hardware, nonrecurring integration cost and administration costs. Table 1 shows 

a sample of these costs for a three-year period. 

Costs  Year 1  Year 2 Year 3 Total  
Software license  -100,000 0  0  -100,000  
Software maintenance  0  -20,000 -20,000 -40,000  
Hardware  -50,000 0  0  -50,000  
Nonrecurring engineering -75,000 0  0  -75,000  
Administration  -25,000 -25,000 -15,000 -65,000  
Operations  -15,000 -15,000 -15,000 -45,000  
Total  -265,000 -60,000 -50,000 -375,000  

 
Table 1: Sample Total Cost of Ownership (Haddad, 2005, p. 21) 

 

Table 2 illustrates net cash flow by subtracting the costs from the estimated 

benefits. 

Benefits  Year 1  Year 2 Year 3  Total  
Improved productivity  0  50,000 75,000  125,000 
Elimination of redundant development 
costs  

25,000  75,000 150,000  250,000 

Increased sales volume  100,000  125,000 225,000  450,000 
Total  125,000  250,000 450,000  825,000 
Net cash flow  
(total cost minus total benefits)  

-140,000  190,000 400,000  450,000 

 
Table 2: Sample Net Cash Flow  (Haddad, 2005, p. 22) 

 
According to Manes of the Burton Group, the “discounted cash flow (DCF) 

adjusts the cash flow expectations to reflect the cost of capital over time” (Manes, 

2006, p. 22).  Manes goes on to explain that “DCF is calculated using the 

following formula: amount/(1 + interest rate)
n
, where n = the forecasted year” 

 Page 32



Service Oriented Architecture  Dave Norman  
 

(Manes, 2006, p. 22).  Table 3 uses the net cash flow numbers from table 2 and 

computes the DCF using a discount factor of 10%. 

 Year 1 Year 2 Year 3 
Net cash flow  -140,000 190,000 400,000 
Discounted cash flow (10%)  -127,273 172,727 363,636 

 
Table 3: Sample Discounted Cash Flow (Haddad, 2005, p. 22) 

 

After the DCF has been established, the Net Present Value (NPV) can be 

computed.  The NPV “is the current value of all expected future cash flows, 

discounted by the cost of capital, minus the present value of the proposed 

investment” (Haddad, 2005, p.22).  Table 4 displays the NPV which was 

computed using the values from the DCF in Table 3.  Haddad (2005) explains 

that the formula used to “calculate NPV is the summation of the cash flows 

divided by a calculated value equaling the exponent (number of cash flows) of 

one plus the discount factor” (p. 23). 

 Year 1  Year 2  Year 3  Total  
Net cash flow  -140,000  190,000  400,000  450,000  

 
 Year 1  Year 2  Year 3  NPV  
Discounted cash 
flow (10%)  

-127,273 172,727  363,636  330,278  

 
Table 4: Sample Net Present Value (Haddad, 2005, p. 23) 

 
A positive NPV indicates that the return from a project exceeds the cost of 

capital.  Financial justification for a project can be expressed in terms of NPV.  

The higher the NPV, the more financially compelling a project is for the 

organization.  

Another important financial metric to consider is Return on Investment.  

“Return on investment (ROI) is the result of subtracting the project costs from the 

 Page 33



Service Oriented Architecture  Dave Norman  
 

benefits and then dividing by the costs” (Schwalbe, 2004, p. 147).  Table 5 

illustrates how ROI can be computed using sample data. 

 Year 1  Year 2  Year 3  Total  
Costs  265,000  60,000  50,000  375,000  
Benefits  125,000  250,000  450,000  825,000  

 
3-year ROI  220%  

 
Table 5: Sample Return on Investment (Haddad, 2005, p. 23) 

 
The higher the ROI, the more an organization will benefit from the project 

(Haddad, 2005, p. 23).  An important thing to note about these financial metrics is 

that they do not incorporate the economies of scale that can be introduced by 

SOA.  For example, a central principle in SOA is that services can be reused by 

many different processes and applications (Erl, 2005).  To accurately calculate 

ROI, you would need to estimate the reuses potential and factor that into the 

benefits (Erl, 2005).  This could significantly change the ROI. 

3.2.2 Consideration of Soft Benefits 

Soft benefits are those that are difficult to measure in terms of financial 

advantage (Haddad, 2006, p. 10).  An organization that thrives on being able to 

establish a method to share information with business partners would benefit 

greatly from SOA (Haddad, 2006, p. 11).  SOA may even provide the most 

enabling factor in allowing an organization to outmaneuver competitors (Manes, 

2006, p. 11).  However, quantifying the value of faster partnership capabilities 

would leave most organizations in uncharted territory (Haddad, 2006, p. 11).  

Other soft benefits may include “increased employee productivity, improved 

customer/partner service, and improved competitive standing” (Haddad, 2006, p. 

 Page 34



Service Oriented Architecture  Dave Norman  
 

11).  Soft benefits should be given their due attention when considering an 

investment in SOA.  According to Haddad (2005), “the inclusion of soft benefits, 

or intangibles, can buttress the hard-dollar analysis and make the case even 

more compelling” (p. 11).   

3.3 Risks of Investing in SOA 
Adopting SOA does not guarantee that all of the benefits will be realized 

by all organizations.  “Unfortunately, SOA is not an off-the-shelf product. SOA 

adoption requires careful planning and a profound willingness to change” 

(Manes, 2005, p. 31).  SOA implementations can be more complicated than 

those of traditional IT system.  It can be very difficult to design reusable services 

that are loosely coupled, heterogeneous, stable and scalable.  Some of the 

challenges that adoption of SOA can introduce are discussed in the following 

sections. 

3.3.1 Weakest Link in the Service Chain 

“One of the goals of SOA is to enable organizations to mix and match 

services and rapidly create new applications in response to changing business 

imperatives” (Manes, 2007, p. 23).  SOA applications can be composed from 

services on not only internal systems, but from any number of partner systems 

from all over the globe.  That means a composed application is only as stable as 

the weakest service from the most instable system of a partner organization.  If a 

partner server goes down, it could potentially bring down every business process 

in the world that uses it.  For SOA initiatives to be successful, it is critical that 

services be dependable in terms of scalability and stability. 

 Page 35



Service Oriented Architecture  Dave Norman  
 

3.3.2 Nature of the Organization 

Organizations that are heavily segmented may find it difficult to centralize 

efforts.  It would not be surprising to find organizations that duplicate SOA 

implementation efforts.  “A decentralized culture may lead to multiple SOA 

infrastructure initiatives that result in redundant systems and fewer economies of 

scale” (Manes, 2006, p. 15).  One reason for this type of decentralization could 

be a lack of communication.  Organizations that have departmentalized their 

operations often operate as separate businesses with their own IT departments.  

Another reason could be the natural desire to maintain control of all components 

of a system.  There is often a “reluctance to accept a hard dependency on 

something that’s out of one’s control” (Manes, 2005, p. 24). 

To be successful in a SOA effort, care must be taken in the design phase 

to ensure that services are reusable (Erl, 2007, p. 276).  This type of design 

requires more time without an immediate benefit (Erl, 2007, p. 276).   “Why 

should a line-of-business manager agree to accept the increased burden of 

developing reusable services just so someone else can benefit?” (Manes, 2005, 

p. 24).   

Before an organization can realize a successful SOA endeavor, they must 

address these types of cultural issues (Manes, July 2006, p. 6).  Anne Manes 

(July 2006) describes a common cultural impediment to SOA as follows: “In most 

organizations, current IT efforts are focused on delivering applications as quickly 

as possible at the lowest possible cost. Organizational structure, accounting 

practices, and incentive systems all reinforce this goal” (p. 12). 

 Page 36



Service Oriented Architecture  Dave Norman  
 

The reward system should be altered to focus on the long term benefit of 

the entire organization, not just the immediate needs of a single department 

(Manes, 2005, p.24).  Employees should also be educated on the concepts of 

SOA to ensure everyone is working toward the same goal (Manes, 2005, p.24). 

3.3.3 Web Service Framework Immaturity 

The Web Service Framework (WSF) is a young technology that has two 

major governing bodies, OASIS and W3C.  These two organizations define the 

standards that make up web services framework (WSF).  W3C is currently 

working on finalizing the WSF 2.0 standards.  Manes (2007) explains some of the 

issues revolving around the current state of the WSF 2.0 as follows: 

The core standards on which the WSF is based (SOAP 1.1 and WSDL 

1.1) were never vetted and ratified by a formal standards body, and they 

contain a number of ambiguities, inconsistencies, and errors. The WS-I 

Basic Profile addresses the most grievous issues that impede 

interoperability, but nonetheless, revised specifications are required to 

address a number of shortcomings in the core framework, such as 

inadequate support for attachments, asynchronous messaging, routing, 

and versatile MEPs. (p. 33) 

There are obvious risks associated with depending on a technology where 

the standards are in a state of flux.  Changes in the standards could have serious 

impacts on the technical implementation of a SOA.  Until WSF 2.0 is finalized 

and the technology has matured, there is no guarantee that the IT won’t set off in 

a new direction. 

 Page 37



Service Oriented Architecture  Dave Norman  
 

3.3.4 Inexperience with SOA Design Principles 

A major design principle for SOA is that software be organized into loosely 

coupled, reusable components (Erl, 2007, p. 452).  This requires a different way 

of thinking for IT professionals.  “In SOA, the focus is on building reusable 

services and then assembling those services to implement a business process” 

(Manes, 2006, p. 15).  The person who assembles applications may not be the 

same person who developed the services. 

Instead of focusing on individual applications, designers of SOA must 

focus on designing at a much broader level (Erl, 2007, p. 254).  Careful planning 

must be carried out to design and build services that can be reused by multiple 

applications often at different geographic locations (Erl, 2007, p. 255).  In order to 

be employed across disparate applications, the services must be granular 

enough that they are compatible with other business processes (Erl, 2007, p. 

255).  Too much functionality or too many attributes could render them useless to 

other applications.  “Designers must shift from an application-centric to a service-

centric design approach” (Manes, 2006, p. 15). 

3.4 Cost of not Adopting SOA 
Although there are risks associated with an investment in SOA, the 

arguments for moving forward with SOA are very compelling.  The competitive 

market position of organizations may depend on their ability to respond to market 

conditions (Josuttis, 2007).  SOA has the potential to provide significant return on 

investment (Haddad, 2005, p. 23).  It promises to provide high value IT assets 

that are reusable and enable flexible business processes.  Manes (2006) 

 Page 38



Service Oriented Architecture  Dave Norman  
 

describes the cost of not investing in SOA as follows: “Without SOA, the 

organization can find itself in a position where it can’t respond to market changes 

as quickly, is slow to introduce new services, finds it difficult to establish 

partnerships, or can’t easily join collaborative communities.” 

The choice not to pursue SOA can negatively impact an organization’s 

competitive market position.  This is especially true if competitors moving forward 

with SOA projects.  As an organization becomes weaker, they may find it difficult 

to recover. 

3.5 Summary 
SOA comes with some risks, but the potential benefits far outweigh those 

risks.  It can provide technology benefits such as “reuse of existing IT assets; 

quicker development of new software; simplified, integrated, and standardized IT 

portfolios” (Finneran, 2006).  By enabling quicker development, businesses can 

respond to market conditions faster (Mehul, 2007).  Quicker responses to market 

conditions increase revenue while lowering development and maintenance costs 

(Josuttis, 2007).  It can be a significant undertaking, but if implemented properly, 

SOA can provide organizations a competitive advantage that enables their 

success (Manes, July 2006, p. 11). 

 Page 39



Service Oriented Architecture  Dave Norman  
 

4 Chapter Four: The Components of SOA 
 

SOA is a design style, not a specific technology (Josuttis, 2007).  

However, it is the recent implementation practices revolving around web services 

that have generated so much excitement about SOA (Josuttis, 2007).  Erl (2005) 

illustrates this point as follows:  

Perhaps one day Web services will be supplanted by a superior platform 

even more capable of bringing the world closer to pure service-orientation. 

For now, though, the Web services platform (and all that comes with it) is 

as good as it gets.  

The web service implementation details make contemporary SOA 

solutions stand above those of the past (Josuttis, 2007).  Understanding how to 

bring the theory into practice can help see the reason SOA has come back into 

the lime light (Josuttis, 2007).  This chapter is devoted to delving into these 

contemporary SOA implementation technologies. 

4.1 Implementation Strategy 
There has been much debate over how to properly implement 

infrastructure to support SOA (Manes, June 2005, p.6).  Some of the top vendors 

have formed a group called Open Service-Oriented Architecture (OSOA) 

collaboration in an attempt to reach a common understanding of SOA (Wikipedia, 

November 23, 2007).  The group’s members are made up of IBM, Oracle and 

many others.  The primary objective of the group is “defining a language-neutral 

programming model that meets the needs of enterprise developers who are 

developing software that exploits Service-Oriented Architecture characteristics 

 Page 40



Service Oriented Architecture  Dave Norman  
 

and benefits” (Edwards, 2007).  The vendors from this collaboration effort all 

have similarities in the major infrastructure components for their respective SOA 

software solutions.  These components are discussed in the following sections of 

this chapter.   

4.2 Enterprise Service Bus (ESB) 
There has been a lot enthusiasm in the industry around the subject of 

ESBs (Manes, October 2007, p.6).  There have also been a lot of opinions about 

what an ESB actually is and does (Josuttis, 2007)).  According to Manes 

(October 2007), “the term “ESB” has been redefined, overloaded, and diluted to 

the point where it has no precise meaning” (p. 4).  Many people have confused 

the ESB with SOA.  In other words, there is a common misconception that an 

organization could purchase an SOA by buying an ESB from a vendor (Manes, 

October 2007, p. 7).  There has even been an assertion that ESB is an 

architectural approach, not a middle-ware software product (Manes, October 

2007, p. 7).   

4.2.1 ESB Defined 

Despite all of the confusion, the industry is starting to come together on 

some of the major characteristics of ESBs (Manes, October 2007, p. 29).  The 

ESB’s main role is to provide interoperability among heterogeneous 

environments (Manes, October 2007, p. 8).  Manes (October 2007) goes on to 

explain that “an ESB is a service-oriented middleware solution that enables 

integration of heterogeneous systems by modeling application endpoints as 

services” (p. 8).  The ESB acts as a host for services and abstracts the 

 Page 41



Service Oriented Architecture  Dave Norman  
 

implementation details from the service consumer.  It also provides mediation to 

ensure messages are routed and delivered to the appropriate services (Josuttis, 

2007).  According to Manes (October 2007), most ESBs exhibit the following 

features: 

• Service-oriented middleware: ESBs model application endpoints as 
services. 

• Standards compliance: ESBs are more standards compliant than previous 
generations of EAI technology, and in particular, they all support 
multivendor interoperability using the WSF. 

• Virtualization of service agents: ESBs provide service containers that 
virtualize a service and insulate the application code from its protocols, 
invocation methods, message exchange patterns (MEPs), quality of 
service (QoS) requirements, and other infrastructure concerns.  Beyond 
these basic characteristics, ESBs are a remarkably diverse and disparate 
bunch of products.  
(p. 8) 

4.2.2 Interoperability 

ESB’s in contemporary SOA make services accessible to applications 

through Web Services (Manes, October 2007, p. 11).  The use of a standard 

protocol enables generic interoperability with the services.  There are many 

protocols that can be used to facilitate interoperability such as CORBA, Java 

Remote Method Invocation (RMI) (Josuttis, 2007).  However, the most commonly 

adopted protocol in contemporary SOA is SOAP based web services (Erl, 2005). 

4.2.3 Implementation Scenario 

In an SOA implementation environment, a common implementation 

scenario could include developing a service in an integrated development 

environment (IDE).  If the development environment is integrated with the ESB 

the service can be deployed to the ESB with very little effort (Krafzig, 2004).  A 

 Page 42



Service Oriented Architecture  Dave Norman  
 

successful deployment results in a service that can be made available to any 

organization with internet connectivity. 

4.3 Business Process Management (BPM) 
According to Josettis (2007), “services are typically parts of one or more 

distributed business processes”.  Defining business processes that reflect the 

day to day operations of an organization is the starting point of SOA.  Services 

are the lowest-level activities of a decomposed business process (Josettis, 

2007).  Breaking business processes into granular, reusable services is a design 

step that can be performed in a BPM tool (Josettis, 2007).  BPM provides a 

means to design and model the business processes.  However, BPM goes 

beyond design and modeling to include a method for executing, monitoring and 

optimizing processes.   A wikipedia (October 29, 2007) definition of BPM is: 

Business Process Management (BPM) is a field of knowledge at the 

intersection between management and information technology, 

encompassing methods, techniques and tools to design, enact, control, 

and analyze operational business processes involving humans, 

organizations, applications, documents and other sources of information.  

Although some vendors have complete BPM software solutions, many 

organizations are likely to assemble the components that make up BPM 

(Howard, 2007, p. 7).  According to Chris Howard (2007) of The Burton Group, 

“the business process management (BPM) infrastructure is a collection of 

technologies and concepts that facilitate the construction and execution of 

 Page 43

http://en.wikipedia.org/wiki/Management
http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Business_process


Service Oriented Architecture  Dave Norman  
 

composite business processes” (p. 14).  Figure 2 illustrates the major 

components that make up the BPM infrastructure.  

 

Figure 2 – Core BPM Infrastructure Components (Howard, 2007 p. 17) 
 

The design components consist of a process designer and a process 

modeler.  The process designer is a modeling tool that facilitates a graphical 

representation of the process flows needed to carry out the business processes 

(Howard, 2007, p. 15).  Once the processes have been modeled they are 

translated into run time code that can be executed in the orchestration engine 

(Howard, 2007, p. 15).   

The messaging component represents a logical view of the ESB (Howard, 

2007, p 19).  Figure 2 illustrates how the orchestration engine interacts with the 

ESB to utilize services within the process definitions.  The ESB is sometimes 

 Page 44



Service Oriented Architecture  Dave Norman  
 

considered a separate infrastructure component for SOA, but some vendors offer 

it as a component of the BPM infrastructure (Howard, 2007, p. 7).  Figure 2 

depicts how “the adapter layer of the architecture provides connectivity to 

services on the network” (Howard, 2007, p 19).   These adapters enable the ESB 

to abstract the services from their underlying implementations.  Depending on the 

vendor, the business rules engine may be part of the orchestration engine, or it 

may be a separate component (Howard, 2007, p. 18).  A business rules engine is 

used to integrate detailed rules within the workflow (Howard, 2007, p. 18).  

Another component of BPM that is not depicted in Figure 2 is a Business 

Activity Monitor (BAM).  BAM provides a way for organizations to monitor and 

measure their business processes.  “BAM processes collect data from the 

various sources and surface it to operations manager or business analysts” 

(Howard, 2007, p. 20).  Many SOA vendors implement BAM software solutions 

as web based dashboards that integrate with the orchestration engine to collect 

data about each business process. 

BPM is not an absolute requirement to implement a successful SOA 

(Howard, 2007, p. 8).  However, it takes planning and diligence to define the 

behavior of an organization in terms of its processes (Josettis, 2007). An 

organizations highest probability for a successful SOA implementation is to 

“practice BPM in iterations of design, execution, analysis and refinement” 

(Howard, 2007, p. 13).  These activities facilitate best practices by providing a 

means for defining processes in operational terms so that services can be 

accurately created to meet business needs (Josettis, 2007).   

 Page 45



Service Oriented Architecture  Dave Norman  
 

4.4 Business Process Execution Language (BPEL) 
One of the goals of SOA is to provide a way to orchestrate services from 

multiple sources to build business applications (Juric, 2006).  The Business 

Process Execution Language (BPEL) provides this capability by using a standard 

process integration model. IBM (2007) defines BPEL as follows: 

An XML-based language for the formal specification of business 

processes and business interaction protocols. BPEL extends the Web 

Services interaction model and enables it to support business 

transactions. It is the result of a cross-company initiative between IBM, 

BEA and Microsoft to develop a universally supported process-related 

language. 

According to Howard (2007), BPEL is a component of BPM (p. 10).  It has 

been purposely separated into this section because most of the vendors offer it 

as a separate software product including Oracle and IBM.  The basic idea is that 

once a library of services has been created and registered to an organization’s 

ESB, these services can then be assembled into business processes using 

BPEL (Juric, 2006).  This is commonly referred to as orchestration (Jusuttis, 

2007).  Erl (2005) explains that “Orchestration is more valuable to us than a 

standard business process, as it allows us to directly link process logic to service 

interaction within our workflow logic”.   

 

 Page 46



Service Oriented Architecture  Dave Norman  
 

Figure 3 – Business Process Realized as Services (Jussuttis, 2007) 
 

The power of this capability becomes clearer when one considers that not 

only services from within an organization are available for orchestration, but 

partner organizations services can be included in the business processes (Juric, 

2006).  This makes it possible to build business processes from a potentially 

unlimited number of services that are scattered across organizations all over the 

world.   

Many of the vendors support the use of BPEL in an integrated 

development environment (IDE) (Juric, 2006).  Some commonly used IDE’s for 

SOA development include Eclipse and JDeveloper (Juric, 2006).  The IDE 

provides the BPEL developer component to orchestrate services into a business 

process (Juric, 2006).  The developer selects from a list of standard process 

activities to define the actions.  The IDE also provides a list of services that a 

developer can choose from to include in the process (Juric, 2006).  These 

services can have a local ESB as the source, or they can use partner links that 

reside on servers elsewhere (Juric, 2006).  As a best practice, UDDI registries 

are the ideal place to look for all services (Erl, 2007, p. 372).  Whether they are 

internal or services from partner organizations, if they are registered in a UDDI, 

the BPEL developer will have information to ensure that the services are 

appropriate for their business process.   

An important point here is that these IDE’s enable a developer to create 

BPEL processes graphically, but behind the scenes, they are producing XML 

(Juric, 2007).  That means that BPEL is easily transferred from one environment 

to another without any proprietary ties.  Once the business processes have been 

 Page 47



Service Oriented Architecture  Dave Norman  
 

defined using BPEL, they are registered to the orchestration engine where they 

can be executed (Howard, 2007, p. 15). 

4.5 Web Services 
The World Wide Web Consortium (W3C) (2007) defines web services as 

"a software system designed to support interoperable Machine to Machine 

interaction over a network".  An interface described in a machine-processable 

format, specifically WSDL, is used to enable interaction with other systems using 

SOAP messages (W3C 2007).  Web services are self describing messages that 

provide interoperability through standard protocols (Josuttis, 2007).   

The core technologies behind web services are eXtensible Markup 

Language (XML) and HTTP.  Two other standards are also generally accepted to 

be major contributors to web services.  They are WSDL and UDDI. Nicolai 

Josuttis (2007) summarizes the standards that are generally accepted to make 

up web services as follows: 

• XML is used as the general format to describe models, formats, and 
data types. Most other standards are XML standards. In fact, all Web 
Services standards are based on XML 1.0, XSD (XML Schema 
Definition), and XML namespaces. 

• HTTP (including HTTPS) is the low-level protocol used by the Internet. 
HTTP(S) is one possible protocol that can be used to send Web 
Services over networks, using Internet technology. 

• WSDL is used to define service interfaces. In fact, it can describe two 
different aspects of a service: its signature (name and parameters) and 
its binding and deployment details (protocol and location). 

• SOAP is a standard that defines the Web Services protocol. While 
HTTP is the low-level protocol, also used by the Internet, SOAP is the 
specific format for exchanging Web Services data over this protocol. 

• UDDI is a standard for managing Web Services (i.e., registering and 
finding services) 

 

 Page 48



Service Oriented Architecture  Dave Norman  
 

According to Josuttis (2007), the only key characteristic of web services is 

the employment of WSDL.  “Everything else is optional.  For example, you don’t 

have to use SOAP and HTTP to send service requests around” (Josuttis, 2007).  

There are other protocols that can be used, but as long as a WSDL is used, it 

can still be considered a web service.  Although UDDI is an important aspect of 

managing Web Services, it is often forgotten because it plays only a secondary 

part as will be discussed later in this chapter (Manes, January 2007). 

There is enough information on web services to fill volumes of books on 

the subject.  The key concept to take away from this brief discussion on the topic 

is that most experts, including SOA architects, vendors and other experts agree 

that most appropriate way to implement contemporary SOA is with web services 

(Erl, 2005).  Josuttis (2007) stresses this point by saying, “Web Services are 

widely regarded as the way SOA should be realized in practice”. 

4.6 Application Server 
There are many ways to support applications that use web services and 

other web based software.  One of the key ingredients is a web server such as 

Apache (Newcomer, 2004).  As internet traffic to increases, organizations must 

have a way to meet scalability demands (Erl, 2005).  Web servers can fail to 

meet the needs of a consumer for any number of reasons.  That brings to light a 

need to plan for increased availability.  Security, manageability and performance 

are also service level requirements that require careful consideration (Sun, 2002, 

p. 8). 

 Page 49



Service Oriented Architecture  Dave Norman  
 

A large IT team committed to building the necessary software components 

from scratch can address these issues through many hours of design, coding 

development and testing.  Alternatively, IT departments could take advantage of 

the thousands of man hours that have been dedicated by one of the many 

vendors by using a commercial off the shelf (COTS) application server.  An 

application server is a central component of the SOA infrastructure for the major 

vendors, including IBM and Oracle (Manes, 2007, p. 21). 

 According to wikipedia (October 29, 2007), an application server “is a 

software engine that delivers applications to client computers or devices. 

Moreover, an application server handles most, if not all, of the business logic and 

data access of the application (a.k.a. centralization)”.   “The basic functions of an 

application server can be described as hosting components, managing 

connectivity to data sources, and supporting different types of user interfaces, 

such as thin Web interfaces or fat client applications” (Krafzig, 2004).   

There are scores of software development platforms, but the two most 

noted development platforms that facilitate the implementation of enterprise 

applications on the web are J2EE and .Net (Manes, 2007, p. 21).  Oracle, IBM 

and many other vendors offer application server software for the J2EE platform.  

Microsoft is the only vendor for its proprietary offering of the .Net framework 

(Manes, August 2005).  The application components of the .Net framework 

achieve the same core features of most of the J2EE application servers (Manes, 

August 2005).  These core features address issues like availability, security, 

 Page 50



Service Oriented Architecture  Dave Norman  
 

manageability and performance, allowing developers to concentrate on building 

business services instead of infrastructure components. 

4.7 Universal Description, Discovery and Integration (UDDI) 
A central registry that allows providers to advertise services and 

consumers to discover those services is a key component of SOA.  “Although a 

registry service isn't required to build and deploy services, it is required to 

manage and govern the ensuing SOA environment” (Manes, January 2007).  A 

wikipedia (November 2, 2007) definition of UDDI is:  

Universal Description, Discovery and Integration (UDDI) is a platform-

independent, XML-based registry for businesses worldwide to list 

themselves on the Internet. UDDI is an open industry initiative, sponsored 

by OASIS, enabling businesses to publish service listings and discover 

each other and define how the services or software applications interact 

over the Internet. 

A registry provides a central repository that houses information about the 

services.  There are many vendors that offer UDDI compliant service registries 

(Manes, 2007, p. 31).  These registries often integrate with IDE’s that allow 

designers and developers to discover existing services.  “A registry service sits at 

the intersection of design, development, discovery, provisioning, and 

management of services” (Manes, Jan 2007).   

A typical commercial registry offering consists of two major components, a 

registry repository and a registry interface.  The registry repository is often 

referred to as a data store or meta-data repository and is usually implemented as 

 Page 51



Service Oriented Architecture  Dave Norman  
 

a database (Manes, January 2007, p. 11).  Figure 4 shows the basic architecture 

of a registry. 

 

Figure 4 – Registry Components (Manes, January 2007) 
 

The data store in Figure 4 represents the registry repository that stores the 

data about each service.  The registry service provides a graphical user interface 

that allows service data to be entered and edited (Manes, January 2007, p. 11).  

It may be implemented as a web or client application.  Some of the major IDE’s 

provide plug-ins that allow designers and developers to interface with registries 

(Manes, January 2007, p. 11).  The overall goal of these two components is to 

enable the following: 

• Governance and lifecycle management: Ensures that services conform to 
corporate principles and best practices, and manages and coordinates 
service lifecycle stages, such as release engineering, provisioning, 
utilization, and versioning 

• Virtual system of record: Provides a single point of reference that enables 
disparate products to exchange information pertaining to the SOA 
environment 

• Discovery: Finds services and service metadata 
(Manes, January 2007) 

 

Registries contribute to governance by providing a central point of 

reference for all available services (Erl, 2005).  This central point of reference 

helps organizations to manage services to ensure that they are developed with 

 Page 52



Service Oriented Architecture  Dave Norman  
 

purpose and discipline (Erl, 2005).  This reduces the risk of duplicating services 

that already exist and organizes the services to ensure that they live up to their 

objectives.   

4.8 Summary 
Recent technology developments have created a lot of enthusiasm around 

SOA as an IT solution (Josuttis, 2007).  These advances in technology have the 

industry leading vendors converging toward similar implementation components 

that will enable organizations to realize SOA (Manes, June 2005, p.6).  Although 

there is still some debate over what the components are and how they should be 

implemented, the industry is starting to see the formation of concrete 

implementation components (Manes, 2005, p. 6).  The components that have 

been generally recognized by the industry leaders include the following: 

• Business Process Model (BPM) 
o Business Process Execution Language (BPEL) 
o Business Activity Monitoring (BAM) 

• Web Services 
• Application Server 
• Enterprise Service Bus (ESB) 
• UDDI/Registry 
(Manes, January 2007) 
 

The major vendors offer software to address each of these infrastructure 

components for their respective SOA software solutions (Manes, January 2007, 

p. 21).  Although the general trend seems to have the industry focused on these 

components, there are many ways to realize SOA that may or may not 

incorporate them (Manes, January 2007, p. 21).  As SOA matures the 

implementation details are becoming more practical and clear.  

 Page 53



Service Oriented Architecture  Dave Norman  
 

5 Chapter Five: Analysis and Design of SOA 
 

Careful consideration and diligence must be given to the design phase of 

a SOA system in order to achieve benefits like “reuse of existing IT assets; 

quicker development of new software; simplified, integrated, and standardized IT 

portfolios” (Finneran, 2006).  Design of SOA components can be more complex 

than traditional systems because the designers must take into account possible 

uses that are not present at design time (Erl, 2007, 255).  The design must 

provide a clear vision of how software components can be divided into services 

that address both functional requirements and system requirements (Erl, 2007, 

255). 

Imagine the complexity of building a reusable software component with 

the goal of making it generic enough that it can accommodate the needs of future 

business partners while addressing the current needs of present business 

partners (Erl, 2007, p. 212).  All the while, these same components must adhere 

to system requirements such as security, performance, scalability manageability 

and extensibility (Cade, 2002, p. 7).  How does the designer know if the service 

will be able to accommodate the functional needs of business partners that don’t 

even exist yet?  This chapter is dedicated to revealing best practice design that 

maximizes the potential benefits identified with SOA. 

5.1 SOA Analysis and Design Overview 
The overall goal of the analysis and design phases of a SOA system is to 

create a plan that will facilitate development of a library of services (Erl, 2007, p. 

393).  Once the library of services has been created, they can be used and 

 Page 54



Service Oriented Architecture  Dave Norman  
 

reused by a potentially infinite number of business processes (Erl, 2007, p. 393).  

The process is very similar to that of traditional IT systems.  First, analysis is 

performed to define business requirements.  Once the business requirements are 

fully understood, design of the services can begin.  There are two general 

categories of business services, task-centric and entity-centric services (Erl, 

2005).  The artifacts that result from the analysis and design phase will vary 

depending on the organizations preferences.  However, the following two 

sections discuss generally accepted modeling sources for task-centric and entity-

centric services. 

5.1.1 Task-centric Services 

Task-centric services “contain operations that relate to a particular task 

within the context of a process” (Erl, 2005).  The source of a task-centric service 

is usually a use-case or a Business Process Management (BPM) model.  The 

clear trend in the industry is in favor of deriving services from a BPM.  According 

Erl (2005), the “advent of BPM has resulted in an industry-wide flurry of process 

modeling and remodeling activity”.  The major software vendors include a BPM 

component in their SOA offerings further fueling the trend (Manes, June 2005, p. 

23).  

The starting point is usually to identify all of the business processes that 

an organization uses to carry out its tasks.  These business processes are often 

expressed as process workflows (Erl, 2005).  Once the processes have been 

identified, they are broken down into their functional components with the ideal of 

 Page 55



Service Oriented Architecture  Dave Norman  
 

maximizing reuse.  The primary focus is on identifying services that need to be 

built and determining what logic should be included in each service (Erl, 2005).   

5.1.2 Entity-centric Services 

“Entity-centric business services generally are produced as a part of a 

long-term or on-going analysis effort to align business services with existing 

corporate business models” (Erl, 2005).  In contrast to task-centric services, 

entity-centric services focus first on the entities or objects in a system and their 

relationships with other entities.  The tasks or functions are logically grouped into 

their corresponding entities.  Entity-relationship diagrams or object models are 

typical sources for entity-centric services (Erl, 2005). 

Although the industry is gravitating toward task-centric services, Erl (2005) 

explains that “when compared to task-centric services, entity-centric services 

significantly increase the agility with which service-oriented processes can be 

remodeled”.  Entity-centric services “inherent generic nature makes them highly 

reusable by numerous business processes”.  On the other hand, task-centric 

services are created with a single business process in mind which can lead to 

them becoming coupled to that process.  When the business logic changes, “the 

context under which the services are used and composed may change as well. 

This may invalidate the original grouping of service operations and could result in 

the requirement for a redesign and redevelopment effort” (Erl, 2005).  Erl (2005) 

goes on to explain that “a series of entity-centric services composed by a parent 

orchestration service layer establishes a desirable SOA, promoting a high degree 

of agility and accurate business model representation”. 

 Page 56



Service Oriented Architecture  Dave Norman  
 

5.2 Design Fundamentals 
Learning from experiences is one of the most essential values in any 

endeavor (Erl, 2007, p. 104).  Examining what works and what does not work 

from failures and successes of the past can help ensure that future projects are 

more likely to succeed if one follows design fundamentals that previously worked 

while avoiding or modifying those that failed (Erl, 2007, p. 255).  Following design 

fundamentals, or principles is especially important for a SOA effort because it 

can be more complicated than a traditional system (Erl, 2007, p. 255).  Thomas 

Erl (2007) illustrates this point with the following statement:   

When moving toward a service-oriented architecture, principles take on 

renewed importance primarily because the stakes are higher. Instead of 

concentrating on the delivery of individual application environments, we 

usually have a grand scheme in mind that involves a good part of the 

enterprise. (p. 104) 

SOA design fundamentals should form guidelines that support service-

oriented computing benefits.  According to Erl (2007), these benefits are as 

follows: 

• Increased Intrinsic Interoperability 
• Increased Federation 
• Increased Vendor Diversification Options 
• Increased Business and Technology Domain Alignment 
• Increased ROI 
• Increased Organizational Agility 
• Reduced IT Burden 
(p. 104) 

 

 Page 57



Service Oriented Architecture  Dave Norman  
 

Application of SOA design fundamentals should be geared toward 

supporting these goals.  The following sections are intended to examine design 

fundamentals that are effective in realizing these goals.  

5.2.1 Service Granularity 

According to Erl (2007), the term granularity “is most commonly used to 

communicate the level of (or absence of) detail associated with some aspect of 

software program design” (p. 114).  When designing a service, there are several 

factors to consider including the following types of granularity: 

• Service granularity refers to the functional scope of the service as a whole, 
as defined by its functional context. 

• Capability granularity refers to the functional scope of a specific capability. 
• Data granularity refers to the volume of data exchanged by a service 

capability. 
• Constraint granularity refers to the level of detail to which validation logic 

is defined for a particular parameter or capability within the service 
contract. 

(Erl, 2007, p. 118) 
 

The functional granularity of a service has a direct impact on the 

reusability of the service (Erl, 2007, p. 280).    In order to meet the design goals 

of SOA, diligence and careful consideration must be put into the logic that will 

implement the functional requirements.  A design goal is to build services with a 

functional context that allows it to be reused by other business processes (Erl, 

2007, p. 280).  Too much logic would most likely reduce the level of reusability, 

while too little logic could make the service too impractical (Erl, 2007, p. 277). 

In contemporary SOA, where web services are used, data and constraint 

granularity are both usually built into the XML documents that are defined in the 

 Page 58



Service Oriented Architecture  Dave Norman  
 

SOAP messages (Erl, 2007, p. 117).  The data that a service receives or returns 

is passed within an XML document.  Since all of the data is validated and passed 

within an XML document, the data and constraint granularity would be 

considered course grained (Erl, 2007, p. 117).  Each of the remaining sections of 

this chapter consider granularity as a major concern in proper design of services.  

5.2.2 Service Contracts 

Service contracts are an essential part of service design because they 

describe the interface to a service.  This interface is intended to facilitate 

interaction with the service.  According to Thomas Erl (2007), “a contract for a 

service (or a service contract) establishes the terms of engagement, providing 

technical constraints and requirements as well as any semantic information the 

service owner wishes to make public” (p. 126).  For example, a web service 

contract could be made up of a WSDL definition, an XML schema and a WS-

Policy description (Erl, 2007, p. 127).   

The overall purpose of a service contract is to consistently provide a 

description of the service and technical requirements for its use.  A service 

contract may consist of both technical and non-technical documents, but there 

must be some form of technical contract when there are two software 

components that need to interact (Erl, 2007, p. 128).   Erl (2007) emphasizes the 

importance of careful design of contracts by saying, “much of service-orientation 

is dedicated to ensuring that service contracts establish a balanced expression of 

a service's purpose and capabilities in support of reuse and other key strategic 

goals of service-oriented computing” (p. 129). 

 Page 59



Service Oriented Architecture  Dave Norman  
 

5.2.2.1 Standardization of Contracts 
It probably comes as no surprise that as a best practice, formal, 

standardized service contracts should be established during the design phase.  

One important consideration in standardization of service contracts is naming of 

expressions.  Figure 5 illustrates how naming standards in a web service can 

help clarify the meaning of a service. 

Listing #1
<message name="GetInvoiceRequest"> 
  <part name="InvoiceCriteria" 
    element="bus:GetInvoiceRequestType"/> 
</message> 
<message name="GetInvoiceResponse"> 
  <part name="InvoiceDocument" 
    element="bus:GetInvoiceResponseType"/> 
</message> 
 
Listing #2
<message name="GetInvoiceRequest"> 
   <part name="RequestValue" 
      element="bus:InvoiceNumber"/> 
</message> 
<message name="GetInvoiceResponse"> 
 <part name="ResponseValue" 
    element="bus:Invoice"/> 
</message> 
 

Figure 5 – Contract Naming Standard (Erl, 2007, p. 133) 
 

In listing #1, the part name and element names are unclear and 

misrepresent the purpose of the service.  In contrast, listing #2 has naming 

standards that more accurately describe the function and data in the service.  

This will reduce the chances of confusion as to the purpose and use of this 

service.  “Because effort is made to consistently clarify the meaning of each 

service, reuse opportunities for those with an agnostic context are more easily 

identified” (Erl, 2007, p.133). 

 Page 60



Service Oriented Architecture  Dave Norman  
 

Another design consideration is standardization of service data 

representation.  Since contemporary SOA utilizes web services for passing data 

to and from business services, the focus of this topic is on standardizing web 

service contracts.  When processes in an inventory of services have differing 

XML schema representations, there must be a mechanism for transforming the 

data from one format to another (Erl, 2007, p. 133).  This can be accomplished 

by transforming the data with XSLT style sheets (Josuttis, 2007). However, 

transformations should be minimized because it is very inefficient to execute 

transformation logic at runtime (Erl, 2007, p. 140).  Standardizing message data 

representation formats will result in fewer transformations.  Erl (2007) explains 

this by explaining that standardization of service data representation, “results in 

more efficient and simplified interoperability, where runtime message 

transformation is avoided when two services share data based on a common 

XML schema (p. 141). 

5.2.3 Loose Coupling 

Coupling between software components allows the exchange of 

information for the purposes of automation of an IT system (Erl, 2007, p. 165).  

There will always be a need for some degree of coupling in any system that is 

modular in nature.   Erl (2007) describe the level of coupling as follows:  “A 

measure of coupling between two things is equivalent to the level of dependency 

that exists between them” (p. 165).  Traditional IT systems commonly created 

tightly coupled systems.  This resulted in inflexible systems and very low reuse 

opportunities.  

 Page 61



Service Oriented Architecture  Dave Norman  
 

A design principle for SOA systems is to minimize the dependencies 

between services.  “When there are fewer dependencies, modifications to or 

faults in one system will have fewer consequences on other systems” (Josuttis, 

2007).  There are several types of negative coupling such as dependencies on 

specific technologies; however, the primary concern during the SOA design 

phase is in decoupling business services.  Erl (2007) explains the design 

challenge of instilling the principle of loose coupling as follows: 

When trying to determine suitable levels of service coupling, our goal is to 

position the service as a continually useful and accessible resource while 

also protecting it and its consumer from forming any relationships that may 

constrain or inhibit them in the future. (p. 167) 

During the design of a SOA system loose coupling can be realized by 

abstracting the service contract from the business logic.  Erl (2005) supports this 

by saying, “Loose coupling is achieved through the use of service contracts that 

allow services to interact within predefined parameters”.  This ensures that any 

future code modifications will not impact the interface that is recognized by the 

service consumers (Erl, 2007, p. 167).  It is also very important to carefully divide 

the business logic into services that have enough functionality to be practical, but 

not so much that they include redundancies with other services.  This principle 

reduces redundancy and maintenance costs and enables orchestration by 

centralizing logic into reusable services (Erl, 2007, p. 508). 

 Page 62



Service Oriented Architecture  Dave Norman  
 

5.2.4 Abstraction 

Abstraction, as it relates to SOA, is described by Erl (2007) to mean hiding 

“information about a program not absolutely required for others to effectively use 

that program” (p. 212).  The functional purpose of a service should be the only 

concern of the service consumer.  The logic, platform, or other proprietary details 

of a service should not be published as part of the service contract.  “The primary 

reason for us to share less information about what a service encapsulates is so 

that we can make changes without affecting consumer programs that are already 

using the service” (Erl, 2007, p. 235).  

By hiding the proprietary details and ensuring that interaction between 

services is performed only through service contracts, this principle promotes 

loose coupling and therefore flexibility (Erl, 2007, p. 237).  The level of 

abstraction during the design phase should be considered for each service.  

Careful consideration should be given to what is published in the service 

contracts.  The less detail that is published, the more flexibility the service owner 

will have in evolving the service over time (Erl, 2007, p. 238).   

5.2.5 Reusability 

The concept of building IT assets that can be reused is arguably the most 

important design principle in SOA (Erl, 2007, 259).  It may also be the most 

difficult to achieve (Erl, 2007, 255).  Building a software product for a single 

purpose is a relatively straight forward endeavor.  Building one that can be 

reused has many rewards, but also increases the complexity significantly (Erl, 

2007, p. 255).  Once that software component is in use by one or more 

 Page 63



Service Oriented Architecture  Dave Norman  
 

consuming processes, dependencies are formed (Erl, 2007, 256).  Changes can 

no longer be made without analyzing the impact on all consumers of the 

component.  Erl (2007) expands on the challenges introduced with reusable 

software components as follows: “A reusable program may furthermore require a 

hosting environment capable of fulfilling increased availability and scalability 

requirements” (p. 256). 

“Pursuing Service Reusability requires us to position logic so that it is as 

neutral or agnostic as possible to its surrounding environment” (Erl, 2007, p. 

268).  A service should be designed where possible to provide capabilities that 

are not specific to a single business process.  This can be achieved by identifying 

redundant logic across all known business processes.  Once identified, the 

redundant logic should be extracted into a service of it own.  Well-designed 

service “provide the most repeated value in a given inventory” (Erl, 2007, p. 269). 

5.2.6 Autonomy 

Designing each service as a standalone component is a highly stressed 

goal of SOA.  According to Erl (2007), “autonomy, in relation to software, 

represents the independence with which a program can carry out its logic” (p. 

295).  Isolating the logic of a service from outside influence enables it to maintain 

control of its own functional paths.  “The result of achieving enhanced autonomy 

in software programs is increased reliability and predictability due to the 

increased independence and isolation in which the programs operate” (Erl, 2007, 

p. 294). 

 Page 64



Service Oriented Architecture  Dave Norman  
 

Once a service consumer starts utilizing a service in a production 

environment, it is bound that services contract.  This has the effect of limiting how 

the service evolves because the service must honor the existing contract.  A well 

designed service should ensure that “service contracts are designed in alignment 

with each other to avoid overlap of expressed functionality” (Erl, 2007, p. 301).  

During the design phase, service logic should also be analyzed for redundancy.  

All redundant logic should be pulled into a single service where possible.  Erl 

(2007) explains that the practice of service normalization facilitates “a well 

aligned (and streamlined) service inventory, and because redundancy is avoided, 

the overall quantity of required services (and therefore the overall size of the 

inventory) is also reduced” (p. 303). 

5.3 Summary 
Determining exactly what services should consist of, and how they should 

interact with other services is a crucial step in delivering a successful SOA (Erl, 

2007, p. 104).  There are two generally accepted approaches to consider when 

getting started in the analysis and design of a SOA.  Organizations must first 

consider whether to organize components by their processes, known as task-

centric services or by entities, known as entity-centric services (Erl, 2007).   

In either case, there are several design fundamentals that are intended to 

support the goals of SOA.  The fundamental concerns of the design and analysis 

phases of a service include the following: 

• Service Granularity 
• Service Contracts 
• Loose Coupling 
• Abstraction 

 Page 65



Service Oriented Architecture  Dave Norman  
 

• Reusability 
• Autonomy 

(Erl, 2007) 
 

Consistent application of each of these fundamentals during the analysis 

and design phases offers the highest probability for a successful SOA (Erl, 2007, 

p. 105).  The ultimate goal of diligently applying these fundamentals is to ensure 

that the overall benefits of SOA are realized (Erl, 2007, p. 105).

 Page 66



Service Oriented Architecture  Dave Norman  
 

 

6 References 
 

(1) Brown, Paul  C, (2007). Succeeding with SOA: Realizing Business Value 
Through Total Architecture. Pearson Education, Inc. (Safari Tech Books 
Online).   

Paul C. Brown is a Principal Software Architect at TIBCO Software, Inc. His 
model-based tool architectures underlie a diverse family of applications, 
including distributed control systems, process control interfaces, internal 
combustion engines, and NASA satellite missions. Extensive design work on 
enterprise-scale information systems led him to recognize that service-
oriented architectures inherently structure both business processes and 
information systems, which, in turn, led him to the concept of Total 
Architecture.

(2) Carter, Sandy. (2007). The New Language of Business: SOA & Web 2.0. 
IBM Press. (Safari Tech Books Online). 

Sandy Carter has a Bachelor of Science degree in math and computer 
science from Duke University and an MBA from Harvard, Sandy Carter’s 
background in technology and business gives her the unique ability to author 
this book that addresses the changing business landscape and how 
organizations can capitalize on this shift. As an IBM Vice President of 
Marketing, Sandy Carter taps into her fluency in eight programming 
languages and meshes it with her award winning marketing prowess to drive 
worldwide strategic initiatives for one of IBM’s biggest bets: SOA. Her track 
record in strengthening brands through savvy marketing campaigns and 
strategic acquisitions is evidenced by her past successes including IBM’s On 
Demand and WebSphere e-Commerce campaigns as well as ensuring IBM’s 
SOA initiatives consistently earn third party validation and top leadership 
rankings by analysts and pundits alike.

(3) Cade, M., Simon, R., (2002), Sun Certified Enterprise Architect for J2EE 
Technology Study Guide. Sun Microsystems Press. 

Mark Cade has 15 years of experience as a software engineer. Currently, he 
works at the Sun Microsystems Java Center as a Senior Java Architect, 
where he has extensive experience creating architectures for J2EE solutions 
for Fortune 500 companies. Cade is lead developer and assessor of the Sun 
Certified Enterprise Architect for J2EE exam. 

Simon Roberts has worked in the software development and training 
industries for nearly twenty years. He is a team lead on the programmer and 

 Page 67



Service Oriented Architecture  Dave Norman  
 

developer certification projects. Roberts is co-author of The Complete Java 2 
Certification Study Guide with Philip Heller and Michael Ernest, and The Java 
2 Developer's Handbook with Philip Heller. 

(4) Eeles, Peter, (2006). What is a software architecture. IBM. Retrieved March 
21, 2007 from: 
http://www-128.ibm.com/developerworks/rational/library/feb06/eeles/  

 
Peter Eeles works for Rational Software, part of the IBM Software Group, 
and has spent much of his career architecting and implementing large-scale, 
distributed systems. He is based in the UK, and is Worldwide Community of 
Practice Lead for Model-Driven Development, assisting organizations in their 
adoption of the Rational Unified Process and the Rational toolset in 
architecture-centric initiatives. He is coauthor of "Building J2EE Applications 
with the Rational Unified Process" (Addison-Wesley, 2002), coauthor of 
"Building Business Objects" (John Wiley & Sons, 1998) and a contributing 
author to "Software Architectures" (Springer-Verlag, 1999). He is a regular 
speaker at conferences worldwide 

 
(5) Erl, T. (2005). Service Oriented Architecture: Concepts, Technology and 

Design. Prentice Hall PTR. (Safari Tech Books Online). 
 

Thomas Erl is the world's top-selling SOA author, Series Editor of the 
"Prentice Hall Service-Oriented Computing Series from Thomas Erl" 
(www.soabooks.com), and Editor of The SOA Magazine (www.soamag.com). 
With over 80,000 copies in print world-wide, his books have become 
international bestsellers and have been formally endorsed by senior 
members of major software organizations, such as IBM, Microsoft, Oracle, 
BEA, Sun, Intel, SAP, and HP. His most recent title, "SOA: Principles of 
Service Design", was released in 2007 and his fourth book, "SOA Design 
Patterns", is scheduled for publication in 2008.  
 
Thomas is also the founder of SOA Systems Inc. (www.soasystems.com), a 
company specializing in SOA training, certification, and strategic consulting 
services with a vendor-agnostic focus. Through his work with standards 
organizations and independent research efforts, Thomas has made 
significant contributions to the SOA industry, most notably in the areas of 
service-orientation and SOA methodology. Thomas is a speaker and 
instructor for private and public events, and has delivered many workshops 
and keynote speeches. Papers and articles written by Thomas have been 
published in numerous industry trade magazines and Web sites, and he has 
delivered Webcasts and interviews for many publications, including the Wall 
Street Journal. For more information, visit www.thomaserl.com.

 
(6) Erl, T. (2007). SOA Principles of Service Design. Prentice Hall PTR. 
 

 Page 68



Service Oriented Architecture  Dave Norman  
 

(7) Finneran, John, (09/18/2006). SOA: The New Software Bazaar.  The Motley 
Fool. Retreived on October 1, 2007 from: 
http://www.fool.com/investing/value/2006/09/18/soa-the-new-software-
bazaar.aspx  
 
John Finneran is a consultant, investment analyst, and writer specializing in 
the financial value of technology.

 
(8) Haddad, Chris, (2005). Building the Business Case for Service-Oriented 

Architecture Investment. The Burton Group.  
 

Chris Haddad is a Vice President and Service Director at The Burton Group.  
His emphases include: Web services, J2EE, .NET, WS-*, XML Schema, 
service-oriented architecture, open source, portals, enterprise information 
integration, model-driven development 

Chris has over 17 years of experience architecting and managing 
development initiatives, and advising on product strategy for Web service 
companies such as Grand Central, Flamenco Networks (Digital Evolution), 
Computer Associates (formerly Adjoin), Securant, Employease, Jamcracker, 
and TRX.  

Primary Distinctions: An expert in the design of service-oriented architecture 
and business class Web service infrastructure. Current event chair of the 
IASA Interop City events, director of the XML Atlanta Users Group, member 
of the Fawcette Publications editorial board. Chaired the Atlanta Web 
Services SIG and IBSi Technology Committee, a business service provider 
consortium forging standards relating to application integration. Has worked 
on Web services infrastructure for the Apache Axis and Employease 
EConnect projects. Granted committer status on the Apache Axis project in 
2002. Author, speaker, and technical editor of courseware, presentations, 
articles, and books on SOA, Web services, and model-driven development. 

(9)  Howard, C., (2007). BPM Infrastructure Technology and Standards. The 
Burton Group.  

Chris Howard is a Vice President and Service Director at The Burton Group. 
His emphases includes: Languages, platforms and frameworks, modeling 
and domain-specific languages, business process management, composite 
applications, .NET, user experience design, organizational dynamics, 
enterprise architecture initiatives 

Since 1991, Chris has been actively engaged in the technology industry in a 
variety of consulting roles, including Former Vice President of Information 
Delivery and Payment Systems at U.S. Bank, with responsibility for .NET 
strategy and adoption, J2EE and .NET development standards and support, 

 Page 69

mailto:jf@fintechvalue.com


Service Oriented Architecture  Dave Norman  
 

branch channel renewal and university research affiliations. Consulting 
projects include developing and implementing the MIDI specification for the 
Roland Corporation, multimedia production, global project leadership and 
enterprise application design. Led a cross-campus research project with 
Stanford University to study the impact of behavioral economics and 
consumer motivation on application design in high trust environments. 

Primary Distinctions: Frequent speaker for IT industry conferences and 
universities including Cambridge, Harvard and Stanford Universities. Held 
teaching and faculty positions at McGill University, the University of British 
Columbia and the University of Cincinnati. Participated in the development of 
the MIDI specification. Served as an industry advisor to the Microsoft 
Patterns and Practices community. Listed in the “Canadian Who’s Who” 
since 1990 for his interdisciplinary achievements.    

(10) IBM. (2007). IBM WebSphere Studio: On-line  Glossary.  Retrieved on 
November 2, 2007, from: 
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.w
sinted.glossary.doc/topics/glossary.html  

 
(11) Josuttis, Nicolai, (2007). SOA in Practice. O’Reilly. (Safari Tech Books 

Online). 
 

Nicolai Josuttis, who wrote The C++ Standard Library and C++ Templates, 
both for Addison-Wesley, has worked as a systems architect and technical 
manager. Recently, he spent two years rolling out a SOA at an international 
phone company. Nicolai presents SOA tutorials at several conferences, and 
has been speaking on the subject for multiple years. 
 

(12) Juric, Matjaz B., (2006). Business Process Execution Language for Web 
Services. Packt Publishing. (Safari Tech Books Online). 

 
Matjaz B. Juric holds a Ph.D. in computer and information science. He is 
Associate Professor at the University of Maribor. In addition to this book, he 
has coauthored Professional J2EE EAI, Professional EJB, J2EE Design 
Patterns Applied, and .NET Serialization Handbook, published by Wrox 
Press. He has published chapters in More Java Gems (Cambridge University 
Press) and in Technology Supporting Business Solutions (Nova Science 
Publishers). He has also published in journals and magazines, such as Java 
Developer's Journal, Java Report, Java World, Web Services Journal, eai 
Journal, theserverside.com, OTN, and ACM journals, and presented at 
conferences such as OOPSLA, Java Development, XML Europe, OOW, SCI, 
and others. He is a reviewer, program committee member, and conference 
organizer. Matjaz has been involved in several large-scale object technology 
projects. In cooperation with IBM Java Technology Centre, he worked on 

 Page 70



Service Oriented Architecture  Dave Norman  
 

performance analysis and optimization of RMI-IIOP, an integral part of the 
Java platform. 
 

(13) Krafzig, D., Banke K., Slama D.  (2004). Enterprise SOA: Service-Oriented 
Architecture Best Practices. Prentice Hall PTR. (Safari Tech Books Online). 

 
DIRK KRAFZIG has twelve years experience in enterprise IT, including a full 
decade in project management and distributed system design for large-scale 
insurance industry projects. He is currently the product manager for a 
standard insurance suite with FJA in Germany. 

KARL BANKE has extensive experience with Deutsche Bank as a software 
architect and consultant for distributed systems, Web services, and Java. He 
now serves as the general manager for iternum GmbH, Frankfurt, Germany. 

DIRK SLAMA is the strategic advisor for Allianz Venture Partners. He has ten 
years in enterprise IT, including stints with Bankgesellschaft Berlin and IONA, 
and as CEO of Shinka Technologies. 

 
(14) Kruchten, P., (2003). Rational Unified Process, The: An Introduction, Third 

Edition. Addison Wesley Professional. (Safari Tech Books Online). 
 

Philippe Kruchten is professor of software engineering in the department of 
electrical and computer engineering of the University of British Columbia, in 
Vancouver, Canada. He joined UBC in 2004 after a 30+ year career in 
industry, where he worked mostly in with large software-intensive systems 
design, in the domains of telecommunication, defense, aerospace and 
transportation. Some of his experience is embodied in the Rational Unified 
Process (RUP) whose development he directed from 1995 till 2003, when 
Rational Software was bought by IBM. RUP includes an architectural design 
method, known as "RUP 4+1 views". His current research interests still 
reside mostly with software architecture, and in particular architectural 
decisions and the decision process, as well as software engineering 
processes, in particular the application of agile processes in large and 
globally distributed teams. He is a senior member of IEEE CS, member of 
ACM and INCOSE, the founder of Agile Vancouver, and a Professional 
Engineer in British Columbia. He has a diploma in mechanical engineering 
from Ecole Centrale de Lyon, and a doctorate degree in informatics from 
Ecole Nationale Supérieure des Télécommunications in Paris. 

 
(15) Manes, A. T, (Jan 2007). Registry Services: The Foundation for SOA 

Governance. The Burton Group.  

Anne Thomas Manes is a Vice President and Research Director at The 
Burton Group. Her emphases includes: Service-oriented architecture, web 

 Page 71



Service Oriented Architecture  Dave Norman  
 

services, XML, governance, superplatforms, application servers, Java, J2EE, 
.NET, application security, data management 

Background: Former Chief Technology Officer at Systinet, a SOA 
governance vendor (now part of HP). Director of Market Innovation in Sun 
Microsystem's software group. Manes' 28-year industry background also 
includes field service and education at IBM Corporation; customer education 
at Cullinet Software; product management at Digital Equipment Corporation; 
chief architect at Open Environment Corporation; and research analyst with 
Patricia Seybold Group. 

Primary Distinctions: Named one of the 50 most powerful people in 
networking in 2002 by Network World. Listed among the "Power 100 IT 
Leaders," by Enterprise Systems Journal. A frequent speaker at trade shows 
and InfoWorld, JavaOne, and RSA conferences. She has also authored 
numerous articles in trade publications. Member of Web Services Journal 
editorial board. Authored "Web Services: A Manager's Guide," published by 
Addison-Wesley, 2003. Participated in web services standards development 
efforts at W3C, OASIS, WS-I, and JCP. Anne earned a BA in Economics at 
Wellesley College.  

 
(16) Manes, A. T., Monson-Haefel, R., Niski, J., Robison, L., Howard, C.  

(2007). VantagePoint 2007-2008: Build for Today, Architect for Tomorrow. 
The Burton Group.  

 
(17) Manes, A. T, (August 2005). The Microsoft Superplatform: Setting the Bar 

in the Superplatform Arms Race. The Burton Group.  
 
(18) Manes, A. T, (2005). VantagePoint 2005-2006 SOA Reality Check. The 

Burton Group.  
 
(19) Manes, A. T, (2006). SOA Runtime Infrastructure. The Burton Group.  
 
(20) Manes, A. T, (July 2006). Service-Oriented Architecture Enterprise 

Roadmap. The Burton Group.  
 
(21) Manes, A. T, (2007). SOA Runtime Infrastructure. The Burton Group.  
 
(22) Manes, A. T, (Oct 2007). Enterprise Service Bus : A Definition. The Burton 

Group.  
 
(23) Mauhmoud, Q. (2005). Service-Oriented Architecture (SOA) and Web 

Services: The Road to Enterprise Application Integration (EAI). Sun 
Microsystems. Retrieved on September 27, 2005 from: 
 http://java.sun.com/developer/technicalArticles/WebServices/soa/  

 Page 72



Service Oriented Architecture  Dave Norman  
 

 
Qusay H. Mahmoud holds a PhD in Computer Science from Middlesex 
University (UK), and an M.Sc. in Computer Science and a B.Sc. in Data 
Analysis, both from the University of New Brunswick (Canada). Qusay is the 
author of two books: Distributed Programming with Java (Manning 
Publications, 1999) and Learning Wireless Java (O'Reilly, 2002), and editor of 
two books: Middleware for Communications (Wiley, 2004) and Cognitive 
Networks (Wiley, 2007). He is a Senior Member of the IEEE, and Associate 
Editor of the ACM Transactions on Internet Technology. Qusay has 
contributed dozens of Java articles to Sun Developer Network. 

 
(24) Mehul, J, (07/24/2007). SOA Reusability: Shrinking the Lag between 

Business and IT. java.net.  Retrieved on August 21, 2007 from: 
http://today.java.net/pub/a/today/2007/07/24/soa-reusability-shrinking-lag-
time.html#service-reuse  
 
Mehul J. is a writer, researcher, and software engineer working at the 
forefront of the IT and business worlds. Mehul has worked in the SOA/EAI 
industry for more than six years, a field that he is passionate about, and has 
an extensive experience in SOA, EAI, integration architectures, business 
process management (BPM), and rule based engines. Mehul's 10 years of 
experience includes working with business and IT users across the globe 
mainly from North America, Europe, and South Asia wearing hats of technical 
lead, solution consultant, and trainer. Mehul has also excelled into Internet, 
J2EE, XML, and internationalization related technologies, tools, and 
products. 
 

(25) Newcomer, E., Lomow, G. (2004). Understanding SOA with Web 
Services. Addison Wesley Professional. (Safari Tech Books Online). 

In the role of Chief Technology Officer at IONA, Eric Newcomer is 
responsible for IONA's technology roadmap and the direction of IONA's Orbix 
E2A e-Business Platforms as relates to standards adoption, architecture, and 
product design. 

Eric has 24 years experience in the computer industry, including more than 
15 years at Digital Equipment Corporation/Compaq Computer (from April 
1984 through November 1999), where he held a series of positions of 
increasing responsibility in management and technical roles within the 
commercial software engineering division, including most recently as 
manager of the Compaq COM+ Expertise Center. Eric received his B.A. in 
American Studies from Antioch College, with a minor in computer science. 

Greg Lomow is a senior architect and developer with fifteen years of 
experience building applications and distributed systems for the banking and 
financial services industry as well as mentoring development teams on the 

 Page 73



Service Oriented Architecture  Dave Norman  
 

effective use of object-oriented technology. He received the PhD in Computer 
Science from the University of Calgary. 

 
(26) Edwards, Mike. (07/27/2007). Open SOA.  Retrieved on October 15, 2007 

from:  http://www.osoa.org/display/Main/Home  
 
(27) Patrick, Paul. (2005). Impact of SOA on Enterprise Information 

Architectures. BEA Systems, Inc. 
 

Paul Patrick is the Chief Security Architect for BEA System, Inc. He was 
the architect of BEA's (and earlier Digital Equipment Corporation's ) 
ObjectBroker CORBA ORB, co-architect of WebLogic Enterprise (now 
Tuxedo), and has been the security architect for WebLogic Server. 

 
(28) Robison, L., (Aug 2007). Application Rationalization: Burning Fat and 

Building Muscle. The Burton Group.  
Lyn Robison specializes in B2B commerce on the Microsoft platform. Since 
1998, he has worked as a programmer and as a technical lead on numerous 
projects that produced successful B2B applications. He is a speaker at 
technical conferences such as WinDev and WinSummit, and teaches 
courses for developers on B2B commerce. He is also the author of Teach 
Yourself Database Programming with Visual C++ 6 in 21 Days (Sams, 1998). 

 
(29) Schwalbe, Kathy.  (2004). Information Technology Project Management 

Third Edition. Thomson Course Technology. 
 

Kathy Schwalbe is an associate professor at Augsburg College in 
Minneapolis and teaches project management, problem solving for business, 
systems analysis and design, information systems projects, and electronic 
commerce. Kathy worked for 10 years in industry before entering academia 
in 1991. In addition, Kathy is an active member of PMI (Project Management 
Institute). Kathy earned her Ph.D. at the University of Minnesota, her MBA at 
Northeastern University, and her B.S. in mathematics at the University of 
Notre Dame. 
 

(30) Siple, Roger., (2005), Breaking Down the Siloi Wall: Realizing the Vision 
of SOA. Sun White Paper.  Retrieved on February 5, 2008 from: 
http://www.soahub.com/Architecture/Breaking_Down_Silo_Walls.pdf 
 
Roger Sippl has over 25 years of senior operations and chief executive 
experience with technology companies. He was founder of Informix 
Software, Inc. in 1980. Under his direction, Informix pioneered SQL 
relational databases, 4GL application development tools, and OLTP 
database technology and is now a part of IBM. Sippl was co-founder 
and chairman of The Vantive Corporation, a CRM leader and 
successful public company now part of PeopleSoft. In 1993, he 

 Page 74



Service Oriented Architecture  Dave Norman  
 

founded and was chairman of Visigenic Software, helping pioneer 
distributed computing and application servers in enterprises. Visigenic 
was acquired by Borland.  
 
Roger Sippl is also a founding partner of Sippl Macdonald Ventures 
and during the nineties, Sippl invested privately in several successful 
software companies, including Illustra (acquired by Informix), 
Broadvision, SupportSoft and Red Pepper (acquired by PeopleSoft). In 
2002, Sippl founded, and is currently chairman of, Above All Software, 
the leading development software for composite applications that 
enable service-oriented architecture. He earned a B.S. in computer 
science from the University of California at Berkeley.  
 

(31) Sun Microsystems Inc., (2002), Adaptable Architecture:  Best Practices for 
Meeting Dynamic IT Requirements. Sun White Paper.  Retrieved on October 
14, 2005 from: 
http://www.sun.com/service/sunps/architect/sun_architecture_whitepaper.pdf  

 
(32) Sullivan, John (2006). SearchNetworking.com. Definitions. Retrieved 

February 28, 2007, from: 
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci211796,00.html 

 
(33) Van der Vlist, E. (2002). XML Schema: The W3C's Object-Oriented 

Descriptions for XML. O'Reilly. (Safari Tech Books Online). 
 

Eric van der Vlist is a consultant and contributing editor for XML.com 
(http://xml.com) and writer of the O'Reilly books "XML Schema" and "RELAX 
NG". He has created and maintains XMLfr (http://xmlfr.org), a French portal 
dedicated to XML and is the editor of the ISO/DSDL Part 10 specification in 
progress: Validation Management. Eric is a seasoned software engineer and 
active contributor to XML and XSL mailing lists. He is one of the authors of 
the RSS 1.0 proposal and the creator of examplotron. He has an engineer 
degree (B.Sc..) from the Ecole Centrale de Paris. 

 
(34) W3C. (2007), World Wide Web Consortium: Web Services Glossary.  

Retrieved on October 24, 2007 from: http://www.w3.org/TR/ws-gloss/  

 Page 75



Service Oriented Architecture  Dave Norman  
 

7 Appendix 

Josuttis (2007) compiled the following glossary.  This glossary lists the most 
common specific SOA terms.  

Glossary 

See [WS-Glossary] for another glossary of the Web Services community. 

2PC (two-phase commit) 

An approach for maintaining consistency over multiple systems. In the first 
phase, all backends are asked to confirm a requested change so that in 
the second phase the commitment of the updates usually succeeds. In 
accordance with the principles of loose coupling, in SOA compensation is 
usually used instead of 2PC.  

Activity 

Possible term for one step in a business process. In the context of SOA, 
an activity is typically implemented by a service.  

Agent 

A Web Services term for participant, which is the general term for a 
consumer or provider. 

Architecture 

According to [BassClementsKazman03], the architecture of a computing 
system is the structure or structures of the system, which comprise 
software (and hardware) components, the externally visible properties of 
those components, and the relationships among them.  

Asynchronous communication 

A form of communication where there is a measurable time interval 
between the sending and receiving of the content of any message. 
Message-oriented middleware is typically implemented based on this 
concept by introducing message queues that queue (persist) messages 
sent by a system until they are accepted by the receiving system(s). 

Asynchronous communication is a form of loose coupling because it 
avoids the requirement that the sender and receiver of a message must 
be available at the same time. 

 Page 76



Service Oriented Architecture  Dave Norman  
 

 

Asynchronous request/response 

Another name for the request/callback message exchange pattern. 

Backend 

A system that maintains the data and/or business rules of a specific 
domain. Usually, it provides a specific role or has a specific responsibility 
in a system landscape. In SOA, a backend is usually wrapped by some 
basic services.  

Basic service 

Common term for services that provide basic business functionalities of a 
single backend. These services are usually part of the first set of services 
that wraps or hides implementation details of a specific backend. Basic 
services can be data-driven or logic-driven. They are the base for 
composing higher services such as composed services and process 
services. 

BPEL 

Business Process Execution Language. An XML-based language used to 
orchestrate services to composed services or process services. The 
resulting services are Web Services.  

IDEs allow you to create BPEL files using graphical user interfaces. 
Engines allow you to run (and debug) services implemented with BPEL. 

BPM 

See business process management and business process modeling.  

BPMN 

Business Process Modeling Notation. A graphical notation for business 
processes maintained by the OMG. 

Bus 

An abstract software pattern used to transfer data between multiple 
systems. In contrast to the hub and spoke pattern, it uses a federation of 
components that all follow a common policy or protocol to send, route, and 
receive messages. 

 Page 77



Service Oriented Architecture  Dave Norman  
 

Business process 

A structured description of the activities or tasks that have to be done to 
fulfill a certain business need. The activities or tasks might be manual 
steps (human interaction) or automated steps (IT steps). 

Business processes might be managed (see business process 
management) and implemented using modeling notations such as BPMN 
or EPC or execution languages such as BPEL. 

Some people differentiate between workflows and business processes by 
stating that business processes describe more generally what has to be 
done while workflows describe how activities or tasks should be carried 
out. 

Business Process Execution Language 

See BPEL. 

Business process management (BPM) 

A general term that refers to all activities carried out to manage (i.e., plan, 
implement, document, observe, and improve) business processes. 

Business process modeling (BPM) 

According to [BloombergSchmelzer06], "a set of practices or tasks that 
companies can perform to visually depict or describe all the aspects of a 
business process, including its flow, control and decision points, triggers 
and conditions for activity execution, the context in which an activity runs, 
and associated resources." 

Business Process Modeling Notation 

See BPMN. 

Choreography 

A way of aggregating services to business processes. In contrast to 
orchestration, choreography does not compose services to a new service 
that has central control over the whole process. Instead, it defines rules 
and policies that enable different services to collaborate to form a 
business process. Each service involved in the process sees and 
contributes only a part of it.  

 

 Page 78



Service Oriented Architecture  Dave Norman  
 

CMMI 

Capability Maturity Model Integration. An approach to categorize and 
improve the product and software development processes of 
organizations. CMMI is an extension of SW-CMM (formerly just called 
CMM), which deals with the aspects of software development. Part of it is 
a model to categorize the maturity of an organization by different levels 
("initial," "managed," "defined," "quantitatively managed," and 
"optimizing"). 

Compensation 

An approach for maintaining consistency over multiple systems. In 
contract to 2-phase commit, compensation doesn't update all the 
backends synchronously. Instead, it defines compensating activities to be 
performed in the event that not all corresponding updates of different 
systems succeed (regardless of whether the updates are performed 
sequentially or in parallel). As a consequence, this approach leads to 
looser coupling of systems; however, it might require more effort to 
implement. BPEL has direct support for compensation.  

Composed service 

Common term for services that are composed of basic services and/or 
other composed services.  

Consumer 

General term for a system that has the role of calling ("consuming") a 
service (which is offered by a service provider). Another term used for this 
role is (service) requestor. 

Contract 

The complete description of a service interface between one consumer 
and one provider. It includes the technical interface (signature), the 
semantics, and nonfunctional aspects such as service-level agreements. 

Sometimes a contract is also called a "well-defined interface." 

CORBA 

Common Object Request Broker Architecture. An OMG standard that 
allows remote access to objects of different platforms. Although its initial 
purpose was to provide an infrastructure to access distributed objects, 

 Page 79



Service Oriented Architecture  Dave Norman  
 

CORBA can be used as a SOA infrastructure by focusing on its concept of 
Object by Value (OBV).  

Domain 

A definable (business) area or scope that plays a specific role and/or has 
a specific responsibility. In SOA this might be a company, a division, a 
business unit, a department, a team, or a system. 

Domain-specific language (DSL) 

A specific graphical or textual notation for a meta model. It allows you to 
specify the concrete behavior of a model in a precise, condensed, 
readable, and complete form. 

EAI 

Enterprise Application Integration (sometimes also just called Enterprise 
Integration, or EI). An approach to integrate distributed systems such that 
they use a common infrastructure (middleware and/or protocol). With this 
approach, for each system it is enough to provide and maintain only one 
adapter to the infrastructure, instead of a specific adapter for each of the 
systems with which it communicates. 

The infrastructure might use a bus or hub and spoke approach. 

SOA can usually be described as an extension of EAI that provides the 
technical aspect of interoperability. For this reason, the concepts of EAI 
can be considered as being a major part of or even the same as an 
enterprise service bus. 

EDA 

See Event-driven architecture. 

Enterprise Application Integration 

See EAI. 

Enterprise service bus (ESB) 

The infrastructure of a SOA landscape that enables the interoperability of 
services. Its core task is to provide connectivity, data transformations, and 
(intelligent) routing so that systems can communicate via services. The 
ESB might provide additional abilities that deal with security, reliability, 
service management, and even process composition. However, there are 

 Page 80



Service Oriented Architecture  Dave Norman  
 

different opinions as to whether a tool to compose services is a part of an 
ESB or just an additional platform to implement composed and process 
services outside the ESB. 

In addition, while tool vendors tend to define an ESB as something to buy, 
you might also consider a standard such as Web Services to be an ESB 
because, conceptually, they define all that is necessary to provide 
interoperability between systems (without the need to buy some specific 
hardware or software). 

An ESB might also be heterogeneous, using various middleware and 
communication technologies. 

You can consider EAI solutions as (part of) an ESB. 

EPC 

See Event-driven process chain.  

ESB 

See Enterprise service bus. 

Event 

A notification sent to a more or less well-known set of receivers 
(consumers). Usually, the receivers of an event have to subscribe for a 
certain type of event (sent by a certain system or component). Depending 
on the programming or system model, the systems sending the events 
(the providers) might or might not know and agree to send the events to 
the subscribing receivers.  

You can consider events as part of the publish/subscribe message 
exchange pattern. 

Event-driven architecture (EDA) 

A software architecture pattern promoting the production, detection, 
consumption of, and reaction to events. Some consider EDA to be an 
extension of or complement to SOA; others consider EDA to be part of the 
SOA approach (a special message exchange pattern where the service 
provider sends a message to multiple consumers). 

Event-driven process chain (EPC) 

A graphical notation for business processes, mainly promoted by SAP. 

 Page 81



Service Oriented Architecture  Dave Norman  
 

Fire and forget 

Another name for one-way messages (a message exchange pattern 
where a service sends a message without expecting a response). 

Frontend 

A system that initiates and controls business processes by calling the 
necessary services. That is, it acts as a service consumer. A frontend 
might be a system with human interaction or a batch program. 

Governance 

In general, a term that describes the task of "making sure that people do 
what's right." In SOA, governance is about architectural decisions, 
processes, tools, and policies.  

HTTP 

HyperText Transfer Protocol. The fundamental protocol of the World Wide 
Web. In a secure form (using SSL transport-layer security), it is called 
HTTPS.  

Hub-and-spoke 

An abstract software pattern used to transfer data between multiple 
systems. In contrast to the bus pattern, it uses a central component that 
coordinates all communication between senders and receivers. 

IDE 

Integrated development environment. A (usually graphical) project-
oriented environment for the development of specific software.  

Idempotency 

The ability of services to deal with messages that are delivered more than 
once so that redeliveries do not have unintended effects. 

In an unreliable network, if you don't receive a confirmation, you don't 
know whether a message was delivered (it is possible that the receiver 
processed the message and its response was lost). If you send the 
message again (to be sure the message gets delivered), the receiver 
should be able to deal with this second message in such a way that it 
does not produce an effect different from that of receiving the message 
only once. For example, if the message is a request to add money to a 

 Page 82



Service Oriented Architecture  Dave Norman  
 

bank account, the receiver should add the money only once even if, for 
reliability reasons, the message was sent twice. 

Interoperability 

The ability of different systems to communicate with each other. 
Interoperability between different platforms and programming languages is 
a fundamental goal of SOA. 

Note that standards do not necessarily ensure interoperability. For this 
reason, in the Web Services world a special organization called WS-I 
provides profiles to make the standards interoperable.  

JMS 

Java Message Service. The standard Java API for message-oriented 
middleware (MOM). Because it is only an API standard, it provides 
portability (allowing you to change the middleware while keeping the 
interfaces) but not interoperability (allowing you to use different MOM 
implementations).  

Loose coupling 

The concept of reducing the dependencies between systems. 

There are different ways to decrease the tightness of coupling between 
systems, such as having different object models, using asynchronous 
communication, or using compensation instead of 2PC to maintain 
consistency. In general, loose coupling leads to more complexity. For this 
reason, in a specific SOA you have to find the right amount of loose 
coupling.  

Maturity model 

A model to categorize the maturity of an organization by different levels. 
Most famous are the Capability Maturity Model (CMM) and its successor, 
the Capability Maturity Model Integration (CMMI). Following this approach, 
many organizations have developed SOA maturity models.  

MDSD 

Model-driven software development. An approach where a significant 
amount of schematic code, which has the same structure but varies 
depending on the concrete situation, is generated out of an abstract 
model. In the context of SOA and this book, MDSD might also stand for 
model-driven service development.  

 Page 83



Service Oriented Architecture  Dave Norman  
 

Message 

A chunk of data sent around as part of a service call. Message exchange 
patterns define typical sequences of messages to perform service calls. 

Message exchange pattern (MEP) 

A definition of the sequence of messages in a service call or service 
operation. This sequence includes the order, direction, and cardinality of 
the messages sent around until a specific service operation is done. 

The most important message exchange patterns are one-way, 
request/response, and request/callback (asynchronous request/response).  

For example, the request/response MEP defines that a consumer sends a 
request message and waits for the answer, which is sent by the provider 
as a response message. 

Message-oriented middleware (MOM) 

Middleware that is based on the concept of asynchronous communication. 
Examples are WebSphere MQ (formerly MQ Series) by IBM, MSMQ by 
Microsoft, Tibco Rendezvous, and SonicMQ. 

Meta model 

A description of a model. A meta model refers to the rules that define the 
structure a model can have. In other words, a meta model defines the 
formal structure and elements of a model.  

Model 

An abstraction. In SOA, a model is typically used to specify services. With 
the help of MDSD, you can generate different code and other artifacts out 
of it. The structure of a model is typically described with a meta model. For 
the model, there are typically one or more specific graphical or textual 
notations (sometimes called domain-specific languages, or DSLs) that 
allow you to specify the concrete behavior in a precise, condensed, 
readable, and complete form. 

Model-driven software/service development 

See MDSD. 

 

 Page 84



Service Oriented Architecture  Dave Norman  
 

OASIS 

Organization for the Advancement of Structured Information Standards. 
An international not-for-profit computer industry consortium for the 
development, convergence, and adoption of e-business and Web Services 
standards. See "http://www.oasis-open.org.  

OMG 

Object Management Group. An international, not-for-profit computer 
industry consortium for the development of enterprise integration 
standards. OMG's standards include UML, MDA, and BPMN. See 
http://www.omg.org.  

One-way 

A message exchange pattern where a service sends a message without 
expecting a response. Another name for this pattern is fire and forget. 

Orchestration 

A way of aggregating services to business processes. In contrast to 
choreography, orchestration composes services to a new service that has 
central control over the whole process.  

For Web Services, BPEL is a standard for orchestration, for which 
development tools and engines are available. 

Participant 

General term for a consumer or provider. Alternatively, in Web Services 
terminology, agent is used. 

Policy 

A general rule or guideline. In SOA, policies have an impact on the 
infrastructure (ESB), the provider(s), and the consumer(s). A policy might 
be a mandatory law (such as a required naming convention) or a goal 
(such as the maximum number of versions of a service in operation).  

Process 

A structured set of steps (activities or tasks) to carry out to fulfill a certain 
need or reach a certain goal. 

 Page 85

http://www.oasis-open.org/
http://www.omg.org/


Service Oriented Architecture  Dave Norman  
 

Different processes are involved in SOA: the goal is to implement 
business processes. To do this, you must have processes to establish and 
manage solutions and services (solution lifecycles, service lifecycles, and 
so on). Also, on a meta level, you have the process of establishing SOA 
and SOA governance.  

Process service 

A service that represents a long-term workflow or business process. From 
a business point of view, this kind of service represents a macro flow, 
which is a long-running flow of activities (services) that is interruptible (by 
human intervention). 

Unlike basic services and composed services, these services usually have 
a state that remains stable over multiple service calls. 

Profile 

In the context of SOA and especially Web Services, a profile is a set of 
standards, each of specific versions, combined with guidelines and 
conventions for using these standards together in ways that ensure 
interoperability. 

Provider 

General term for a (part of a) system that has the role of offering 
("providing") a service, which might then be used/called by different 
consumers. 

Publish/subscribe 

A message exchange pattern where a service consumer subscribes to get 
a notification message from a service provider when a certain condition or 
state occurs or changes. 

The subscription might happen at design time or at runtime. If the provider 
doesn't know the consumer, this pattern is the base of event-driven 
architecture, where the notification is an event. 

Registry 

Registries manage services from a technical point of view, unlike 
repositories, which manage services from a business point of view. 
Registries manage all the technical details necessary for using services at 
runtime (signatures, deployment information, and so on). Usually, a 
registry is considered to be a part of the infrastructure (ESB).  

 Page 86



Service Oriented Architecture  Dave Norman  
 

Repository 

Repositories manage services and their artifacts from a business point of 
view. That is, they manage interfaces, contracts, service-level 
agreements, dependencies, etc., to help to identify, design, and develop 
services. Unlike for a registry, the service description should be 
independent of technical details and infrastructure aspects. That is, it 
should not be necessary to change a repository when a company switches 
to a new infrastructure (ESB). 

Request 

A message that is sent by a consumer as an initial message in most 
message exchange patterns (see request/response and request/callback).  

Sometime this term is also used as a synonym for a service call. 

Requestor 

Alternative term for consumer (mainly used in the context of Web 
Services). 

Request/callback 

A message exchange pattern where a service consumer sends a request 
message but does not block and wait for a reply. Instead, it defines a 
callback function that is called later, when the response message sent by 
the service provider arrives.  

Sometimes request/callback is called asynchronous request/response.  

Request/response 

A message exchange pattern where a service consumer sends a request 
message and expects an answer. 

Usually the consumer blocks until the response message sent by the 
service provider arrives. Sometimes, however, blocking is not required. In 
that case, there is a separation between synchronous and asynchronous 
request/response. The latter is also known as the request/callback 
message exchange pattern. 

Response 

A message that is sent by a provider as an answer to a service request 
(see request/response). 

 Page 87



Service Oriented Architecture  Dave Norman  
 

Service 

The IT realization of some self-contained business functionality. 

Technically, a service is a description of one or more operations that use 
(multiple) messages to exchange data between a provider and a 
consumer. The typical effect of a service call is that the consumer obtains 
some information from and/or modifies the state of the providing system or 
component. 

Services can have different attributes and can fall into different categories. 
The most famous categorization differentiates between basic services, 
composed services, and process services.  

A service is usually described by an interface. The complete description of 
a service from a consumer's point of view (signature and semantics) is 
called a "well-defined interface" or contract. 

Service-level agreement (SLA) 

A formal negotiated agreement between two parties, which in the context 
of SOA are usually a service provider and a service consumer. For a 
specific subject, an SLA usually records the common understanding about 
priorities, responsibilities, and warranties, with the main purpose of 
agreeing on the quality of the service. For example, it may specify the 
levels of availability, serviceability, performance, operation, or other 
attributes of the service (such as billing and even penalties in the case of 
violations of the SLA). 

Service-oriented architecture (SOA) 

There are various definitions for SOA. Some specify only that it is an 
approach for architectures where the interfaces are services. However, in 
a more specific sense (and according to my understanding), SOA is an 
architectural paradigm for dealing with business processes distributed 
over a large and heterogeneous landscape of existing and new systems 
that are under the control of different owners. 

The key concepts of SOA are services, interoperability, and loose 
coupling. The key ingredients of SOA are the infrastructure (ESB), 
architecture, and processes. The key success factors for SOA are 
understanding, governance, management support, and homework. 

Note that Web Services is not a synonym for SOA; Web Services are one 
possible way of realizing the infrastructure aspects of SOA. 

 Page 88



Service Oriented Architecture  Dave Norman  
 

SOAP 

SOAP is the basic protocol of Web Services. As an XML-based format, it 
defines the format of the header and body of a Web Services message. 

Formerly the acronym stood for "Simple Object Access Protocol," but 
because SOAP was neither simple nor for objects or access, the term now 
stands for itself. 

The protocol still allows different types of message exchange. The most 
commonly used is the document/literal wrapped pattern. 

Software architecture 

See architecture. 

SSL 

Secure Sockets Layer. A cryptographic protocol that provides secure 
communication over the Internet protocol HTTP (which is often called 
HTTPS then). 

Task 

Possible term for one step of a business process. In the context of SOA, a 
task is typically implemented by a service.  

Two-phase commit 

See 2PC. 

UBR 

The UDDI Business Registry, which was founded in 2000 with the 
intention of becoming a worldwide registry for public Web Services. 
However, the idea didn't work, and the UBR was switched off in 2006.  

UDDI 

Universal Description, Discovery, and Integration. A Web Services 
standard for registries. Initially designed for the UDDI Business Registry 
(UBR), it now serves as a standard for the technical management and 
brokerage of Web Services. 

W3C 

 Page 89



Service Oriented Architecture  Dave Norman  
 

World Wide Web Consortium. An international consortium for the 
development of standards for the World Wide Web, which also develops 
SOA standards such as XML and SOAP. See http://www.w3.org.  

Web Services 

A set of standards that serves as one possible way of realizing a SOA 
infrastructure. Initially started with the core standards XML, HTTP, WSDL, 
SOAP, and UDDI, it now contains over 60 standards and profiles 
developed and maintained by different standardization organizations, such 
as W3C, OASIS, and WS-I. 

Workflow 

Similar to a business process, a description of the activities or tasks that 
have to be done to fulfill a certain business need. 

Some people differentiate between workflows and business processes by 
stating that business processes describe more generally what has to be 
done while workflows describe how activities or tasks should be carried 
out. 

WS 

General abbreviation for Web Services. Also used as common prefix for 
Web Services standards. 

WSDL 

Web Services Description Language. An XML-based language that 
describes service interfaces from a technical point of view. Although it is a 
Web Services standard, WSDL can also be used for other infrastructures. 

WS-I 

Web Services Interoperability Organization. An open industry organization 
that standardizes Web Services standards as profiles to make them 
interoperable. See http://www.ws-i.org. 

XML 

eXtensible Markup Language. A human-readable general-purpose 
notation widely used for the description and exchange of data. Specific 
XML formats can be defined by and validated against an XML schema 
definition. 

 Page 90

http://www.w3.org/
http://www.ws-i.org/


Service Oriented Architecture  Dave Norman  
 

XML Schema Definition (XSD) 

A language used to describe a set of rules to which a corresponding XML 
document must conform in order to be considered valid. It includes a set 
of basic data types. 

 Page 91


	The Value Proposition of Service-Oriented Architecture
	Recommended Citation

	1 Chapter One: Introduction - Thesis Statement
	1.1 Statement of the Problem
	1.1.1 Inflexible Systems 
	1.1.2 Limited or No Reusability
	1.1.3 Lack of Interoperability 
	1.1.4 Poor Maintainability

	1.2 Service-Oriented Architecture (SOA) Defined
	1.3 Business Need for SOA
	1.4 Goals of SOA
	1.4.1 IT Flexibility
	1.4.2 Reusability
	1.4.3 Integration and Collaboration
	1.4.4 Maintainability

	1.5 Barriers and/or Issues
	1.6 Summary

	2  Chapter Two: Review of Literature and Research
	2.1 What is Architecture
	2.2 Application Architecture
	2.3 Enterprise Architecture
	2.4 Service-Oriented Architecture
	2.5 Comparison of Client Sever and Service-Oriented Architecture
	2.5.1 Location of Application Code
	2.5.2 Presentation and Logic Separation
	2.5.3 Software Distribution

	2.6 Comparison of Distributed and Service-Oriented Architecture
	2.6.1 Location of Application Code
	2.6.2 Communication Protocol

	2.7 Summary

	3  Chapter Three: The Value Proposition of SOA
	3.1 Analysis of Business Benefits
	3.1.1 Reduced Integration Expense
	3.1.2 Increased Asset Reuse
	3.1.2.1 Governance
	3.1.2.2 Granular Level Design
	3.1.2.3 Standard Interface/Web Services

	3.1.3 Competitive Advantage

	3.2 Analysis of Financial Benefits
	3.2.1 Financial Metrics
	3.2.2 Consideration of Soft Benefits

	3.3 Risks of Investing in SOA
	3.3.1 Weakest Link in the Service Chain
	3.3.2 Nature of the Organization
	3.3.3 Web Service Framework Immaturity
	3.3.4 Inexperience with SOA Design Principles

	3.4 Cost of not Adopting SOA
	3.5 Summary

	4  Chapter Four: The Components of SOA
	4.1 Implementation Strategy
	4.2 Enterprise Service Bus (ESB)
	4.2.1 ESB Defined
	4.2.2 Interoperability
	4.2.3 Implementation Scenario

	4.3 Business Process Management (BPM)
	4.4 Business Process Execution Language (BPEL)
	4.5 Web Services
	4.6 Application Server
	4.7 Universal Description, Discovery and Integration (UDDI)
	4.8 Summary

	5  Chapter Five: Analysis and Design of SOA
	5.1 SOA Analysis and Design Overview
	5.1.1 Task-centric Services
	5.1.2 Entity-centric Services

	5.2 Design Fundamentals
	5.2.1 Service Granularity

	5.3 Summary

	6 References
	7  Appendix

