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Abstract
 

Software applications typically allocate and deallocate resources during their lifetime. Resources 


can be categorized into two broad groups, in-process and out-of-process resources where in-process
 

resources are local resources directly managed by a client, while out-of-process resources are
 

remotely managed by a client which instructs a server to allocate and deallocate the resource on its
 

behalf.
 

Out-of-process resources do not reside in a clients address space which poses an extra layer of
 

complexity in attempting to debug their misuse.
 

This thesis presents an automatic run-time solution to the problem of detecting and reporting source
 

code locations of application client mismanagement of out-of-process resources for a specific case-


study of the X Windowing System which lends itself to use in the wider general case.
 



 

 

  

  

 

 

  

 

 

Runtime Automated Detection of Out of Process Resource 


Mismanagement in the X Windowing System
 

When Software applications allocate and deallocate resources during their lifetime it is 

common for programmers to accidentally: 

1. Fail to deallocate resources after use has been completed 

2. Attempt to re-use a resource that has been deallocated 

3. Attempt to use a resource that has not yet been allocated 

Attempting to re-use a deallocated resource, or an unallocated resource generally results in some 

type of failure of the flawed software. Failure to deallocate resources causes resource leaks; over 

time these resource leaks can starve the system of available resources leading eventually to failure 

in either the afflicted software, or another application attempting to gain sufficient resources to 

function. On modern operating systems most resources in use by an application are released on exit, 

but long-lived applications such as web-browsers or office-suites can accumulate enough leaked 

resources over their life-time to noticeable degrade the overall system performance. 

The misuse of in-process resources such as memory and file handles is well documented and 

understood (Dumitran, 2007), (Maebe, Ronsse, De Bosschere, 2004).  A number of programmers' 

tools exist to detect when a handle to an in-process resource was lost without first deallocating the 

resource, or when an operation has been attempted on an invalid handle. Such tools can display the 

location within the source code where this has occurred.  Some tools can also additionally track the 

use of resources over the life-time of a process, and also report the location where an invalid 

resource handle became invalid, or where a leaked handle was originally allocated. 



 

  

 

  

 

 

   

 

 

 

  

 

Problem Statement 

The problem of out-of-process resources is similar , but one with an extra layer of 

complexity in that client software instructs a server to allocate or deallocate a resource on the 

client’s behalf rather than making a direct in-progress allocation or deallocation. Analogous to 

in-process resources, out-of-process resources are controlled by the client but differ in that the 

resources do not reside in the address space of the client process. While they are typically 

deallocated by the server on loss of connection of the client, long lived clients can cause the same 

type of resource leaks for server resources as can happen with  in-process resources. Attempting to 

use an unallocated or released resource may cause the server to report the error to the client, or to 

terminate the client, but errors may be reported asynchronously, i.e. the application may not be 

informed immediately after use of an invalid handle that it was invalid but instead at some later 

stage, making it more difficult to associate the error with the location that triggered the error. 

To resolve these problems the client-side programmer needs detailed and reliable 

information which is relevant to detecting and solving these out-of-process resource errors, i.e.  the 

source-code location within the program where the initial error was introduced and where the error 

was manifested. 

Purpose of Thesis 

This thesis presents a solution to detecting and reporting the source code locations of misuse 

of out-of-process resources. To determine and implement as a programmers' aid for a specific case 

study of the X Windowing System, a mechanism for detecting and locating when and where handles 

to the server-side resources have: 

1. been lost without a directive to instruct the server to deallocate the associated resource 

2. been used after a deallocation directive 



  

  

 

 

 

 

  

 

 

 

3. been used without an allocation directive 

The techniques deployed in this tooling can be applied to the wider general case of generic client-

side analysis of client-side controlled resources which exist in an out-of-process server. 

Case Study 

The X Windowing System is one method for providing a Graphical User Interface (GUI) s  

on UNIX and UNIX-like operating systems. It is an example of  a client-server architecture where 

resources are allocated by a server on instruction by clients, which may or may not be on the same 

machine as the server. Consequently, X resource leaks and misuse are difficult to identify and locate 

(McCullagh, 2008). Tools exist (Allum, 2003) to indicate that an application is exhibiting 

suspicious resource growth which likely indicates the presence of a leak, but not to identify where 

within the client source code that this potential leak occurs, nor to report on any other class of 

resource misuse. 

Assumptions and Goals 

The basic assumption is that the tool must be deployed on the client-side rather than 

server-side in order to supply client-side source-code locations through use of the debugging 

symbols of the client application binary. 

The other major assumption is that the tooling should require no modification of the 

application itself. As motivation for tooling which requires no modification of the application to be 

debugged an example target application which could benefit from such analysis is OpenOffice.org, 

which on contemporary hardware requires approximately 5 to 6 hours to build. Requiring a 

complete rebuild in order to instrument it to enable detection of out-of-process resource errors 

would be an inordinate up-front burden on the programmer. 

The goal is a successfully implemented mechanism which is capable of operating on 

http:OpenOffice.org


 unmodified real-world large application binaries such as those of the OpenOffice.org office suite or 

Firefox web browser and accurately report source-level locations of X resource client-side 

mismanagement during runtime. 

http:OpenOffice.org


 

 

 

 

  

 

 

  

 

 

 

    

Exploring the problem space
 

Overview of the X Window System 

The X Window System, a trademark of The Open Group, is a client/server architecture 

where multiple client applications connect to an X server (Gettys & Scheifler, 2002). The 

applications are the clients, they communicate with a X server which controls the physical graphic 

display. Clients issue requests to the server which executes them on the clients behalf, e.g. drawing 

requests, window creation, window destruction etc,  while the X server relays user interaction 

events to the client, e.g. mouse clicks, keyboard events, etc. (Manrique, 2001). 

The term X Window System does not indicate any specific product or implementation, but 

instead is defined by The Open Group as a set of protocol and application programmer interface 

(API) specifications. A X server is not specified beyond the X Protocol which defines the structure 

of the data which is shipped to and from that server. The X Window System been implemented by 

multiple vendors to create multiple interoperable implementations. In this study the implementation 

used was the XOrg Foundations's Open Source public implementation, though no non-standard 

features of this implementation were used which do not exist in all other implementations of the X 

Window System provided by other vendors. 

The crucial architectural feature of  the X model is that it doesn't constrain the client to 

execute on the same machine as the server, the communication protocol can work over a network as 

well as over a local inter-process channel. In either local or remote case the client and server operate 

in different address spaces, and communicate over a serialized protocol, rather than execute in the 

same local address space. 

The X Window System specifies a C subroutine library, named Xlib, which supplies a base 

layer API for drawing and windowing operations. Applications link against Xlib, issue direct in



    

 

 

    

 

 

process calls to the Xlib API, and Xlib takes care of converting those API calls into the underlying 

X Protocol which is shipped across to the out-of-process X server though some communication 

pathway hidden to the client. 

As an example, the following illustration shows multiple client applications making use of 

Xlib's XDrawArc function which Xlib converts to the X Protocol and ships it over the network to a 

remote server which renders the arcs to the screen it controls. 

Illustration 1: X Window Architecture 

Remote X Resources 

The problem to be solved is to diagnose on the client-side, the misuse of remote resources 

controlled by the client that exist in the X server. At the client-side, these resources are identified by 

a simple integer number, i.e. “many Xlib functions will return an integer resource ID, which ... refer 

to objects stored on the X server” (Gettys & Scheifler, 2002). These remote resources which are 

controlled by the local client via these integer handles can be of type Window, Pixmap, Cursor, Font 

and Colormap. 



  

 

 

  

 

   

  

 

 

 

Window: A window is a region of the screen which can be shown or hidden (mapped or 

unmapped). 

Pixmap: “An off-screen graphics object. Pixmaps can be used in most graphics functions 

interchangeably with windows and are used in various graphics operations to define patterns or 

tiles” (Gettys & Scheifler, 2002). A Pixmap can be copied to a window, so Pixmaps often used in 

double-buffering to rapidly update a Window without repeating a series of drawing operations. 

Cursor: An image that is shown for a mouse pointer, as opposed to a text entry caret that 

indicates the current text insertion point. 

Font: These server side fonts are considered deprecated in favour of client-side fonts, but 

their use is still supported. Server-side fonts reduced the amount of data that must be transmitted 

from client to server, but limited clients to the fonts available on the server (Herrb & Hopf, 2005). 

Colormap: “The colormap is a small table with entries specifying the RGB values of the 

currently available colors” (Lee, 1992). Colormaps are of most use in 8 or 16 bit displays where the 

number of colours that could be shown at one time is limited. Their use with more common 24 and 

32 bit contemporary displays is less of a factor than historically 

Window and Pixmaps are collectively known as Drawables and are often interchangeable 

for various graphic operations. A major difference is that Windows are always in a hierarchy while 

Pixmaps are not. Every application Window has a parent, and destroying a parent automatically 

destroys all children of that parent. The Xlib API to create a Pixmap requires an existing Drawable 

to be provided but the resulting Pixmap is not a child of that Drawable and not placed in a 

hierarchy. A Pixmap is not destroyed when the reference Drawable is destroyed. 

Given the deprecated state of server-side fonts and the increasing unlikelihood of a need to 

use Colormaps the most commonly used server side resources are Pixmaps, Windows and Cursors. 

Of these Pixmaps are inherently the easiest to allow to leak or otherwise misuse. They are off



 

 

 

   

 

  

 

 

      

screen so failing to release them has obvious visual effect and as Drawables their similarly to 

Windows might erroneously suggest that they are destroyed automatically when the reference 

Drawable used to create them is itself destroyed. The server-side footprint of a Pixmap varies 

according to their dimensions and colour depth, and large numbers of pixmaps can consume 

significant amount of server-side memory. Pixmaps leaks has been shown to cause very serious 

resource starvation in X applications (Giraldeau, Dault & des Ligneris. 2006, McCullagh, 2008 & 

Erikson, 2009) leading to an inability of the X Server to provide new Pixmaps to any clients. 

Implementation Note 

Destroying a window automatically destroys all child Windows, this differs from the 

destruction of other resources. In order to correctly report on Windows which were created but not 

destroyed an implementation will have to capture the hierarchical relationship between windows in 

order to flag children of a destroyed parent as themselves destroyed. 

Problem Summary 

Resources appear on the client side as integer ids. Those integer resource handles are 

provided to an application as the result of calls through the Xlib library which communicates to a 

out-of-process X server. There are five classes of resource handles, one associated with a hierarchy 

where destruction of a parent results in destruction of children. 



     

   
        

           
         
             
                
                    
                
                     
                      
                     
                      
                      
                    
                      
                      
                      
                      
                      

 

 

 

Existing Technology 

X Window Resource Usage Technology 

Xrestop: “Xrestop uses the X-Resource extension to provide 'top' like statistics of each 

connected X11 client's server side resource usage. It is intended as a developer tool to aid more 

efficient server resource usage and debug server side leakage” (Allum, 2003). 

Some sample output is shown below 

xrestop - Display: localhost:0 
Monitoring 40 clients. XErrors: 0
Pixmaps: 81195K total, Other: 181K total, All: 81376K total 

res-base Wins GCs Fnts Pxms Misc Pxm mem Other Total PID Identifier 
4600000 81 175 1 806 149 25856K 10K 25867K 10413 OpenOffice.org Impress
1c00000 1376 67 1 54 80 3608K 36K 3645K 2390 gtk-window-decorator
4000000 532 307 1 190 542 2868K 33K 2901K 2671 Graphics - Mozilla Firefox 
0e00000 26 39 0 18 76 169K 3K 172K 2415 wnck-applet
4c00000 28 50 1 16 45 87K 3K 91K 11328 xlib.pdf
2c00000 12 39 0 14 35 3K 2K 5K 2357 Evolution Mail and Calendar 
1200000 43 47 0 20 56 1K 3K 5K 2310 Panel 
1000000 6 28 0 2 176 8B 4K 4K 2302 gnome-settings-daemon
3a00000 6 28 1 1 20 4B 2K 2K 2493 tomboy
1600000 12 52 0 2 29 8B 2K 2K 2492 notification-area-applet
1a00000 4 28 0 2 34 8B 1K 1K 2347 gnome-power-manager
3800000 6 37 0 2 13 5B 1K 1K 2496 clock-applet
2a00000 2 3 0 2 47 5B 1K 1K 2373 notification-daemon 
3200000 4 28 0 2 12 8B 1K 1K 2345 applet.py
2200000 4 28 0 2 12 8B 1K 1K 2348 Bluetooth Applet
2000000 4 28 0 2 12 8B 1K 1K 2346 NetworkManager Applet
1e00000 4 28 0 2 12 8B 1K 1K 2352 gnome-volume-control-applet
3000000 5 28 0 1 10 4B 1K 1K 2418 Trash Applet 

The X Resource Extension allows the quantity of each type of resource and the memory 

associated with them to be queried from the X server by a client. It provides access to the 

information known to the X server about resource utilization. It can be used to identify suspicious 

behaviour in an application which may indicate a resource leak, but it can only report what the X 

server knows, and the out-of-process X server does not, and can not, know where within the 

applications source code the resource leak may exist. For the same reason it does not, and is not 

intended to, report on use of deallocated or unallocated resouces. 

The XRes lead developer Matthew Allum (2008) plans “future work involving event 

generation on resource creation/destruction”, which might provide some degree of X server-side 



 

  

  

 

 

 

  

 

  

 

 

 

 

support for a speculative client-side debugging tool to be informed of these events. This further 

extension does not exist as of the time of writing, and conceptually there remains the difficultly on 

receipt of an event by a debugger to map these proposed, and possibly asynchronous, events back to 

the source code location within a client which indirectly triggered the creation/destruction event via 

the server. 

Analysis and Debugging Technology 

There is not a great deal of existing literature on the specific problem addressed by this 

thesis, but there is proven technology used to solve similar problems which provide insights and 

possible technological frameworks which could be adapted for use to implement a solution. 

Dtrace: “DTrace provides a powerful infrastructure to permit administrators, developers, 

and service personnel to concisely answer arbitrary questions about the behavior of the operating 

system and user programs” (Sun Microsystems, 2009). 

Dtrace has been shown (Cantrill, Shapiro & Leventhal, 2004) capable of being used to 

server-side dynamically instrument a running X server to detect unusual activity and isolate the 

individual connection from the offending client. And to then be used client-side to instrument that 

client and detect the Xlib library calls which are known to map to that server behaviour. 

DTrace is a script-able framework available only for the Solaris operating system which can 

be used to query and report on a large number of kernel and user-level events that an application 

triggers without modifications to the application itself. As a toolkit it is possible to speculate that 

DTrace has sufficient features to be used to implement tooling which captures client-side Xlib 

function calls, examine their arguments and track what resources have been created, but not 

destroyed and identify use of deallocated/reallocated resources. But no such implementation is 

documented to exist. The tie to the Solaris operating system makes implementing a solution based 



 

 

  

 

   

 

   

  

 

 

 

 

  

  

 

  

on DTrace equally limited to Solaris. 

Purify: A commercial program that “developers and testers use to find memory leaks and 

access errors” (Hastings & Joyce 1992). Purify is a dynamic binary analysis  tool that reports errors 

at run-time of the application being tested. Before execution the application is re-linked by purify in 

order to rewrite the binary to intercept attempts to read and write memory and track if an attempt to 

read/write is on an invalid or uninitialized area of memory. 

Purify solves the analogous problem of detecting misuse of memory as an in-process 

resource and can report on memory leaks, but has no mechanism for extension nor is Purify's source 

available for modification to base an adaptation which could perform the same task for 

out-of-process resources. 

DSO interposition: Programmers commonly block code together into libraries. Libraries 

whose code is bound to at run-time rather than at link time, and which can therefore be shared 

between multiple applications at the same time are termed shared libraries, or Dynamic Shared 

Objects (Drepper, 2006). The Xlib library is one such library. Among the features of a Dynamic 

Shared Object (DSO) is the capacity to override individual functions that an application would call 

from a DSO by providing at application launch-time another shared library with functions of the 

same signature as those found in the normal library. The dynamic linker can be trivially requested to 

resolve attempts to find dynamic symbols against the provided shared library before searching the 

standard libraries. 

Another feature of a DSO is that there is an API to explicitly search for functions by name in 

a named shared library and bind function pointers to them. By combining the two techniques a 

shared library can be written which can be interposed between the application and the normal 

shared library. The interposed library can provide methods which override the standard library, 

carry out additional work, and forward the method onwards to the standard library. 



  

  

 

 

 

 

 

  

 

   

 

  

DSO interposition is a generic technique which has been successfully applied to solving a 

wide range of similar problems, e.g. detecting and fixing file descriptor leaks (Dumitran, 2007) and 

profiling Xlib function calls (Curry, 1994). 

Support for extracting the source code file and line number from within a shared library to 

determine where within the application the call originated is then available through the use of the 

backtrace function call provided by the Linux standard C library and mapping the resulting data 

with existing debug information tools (McNamara, 2007). 

Valgrind: “A programmable framework for creating program supervision tools such as bug 

detectors and profilers. It executes supervised programs using dynamic binary translations, giving it 

total control over their every part ... without the need for recompilation or relinking prior to 

execution” (Nethercote & Seward 2003). Valgrind is a basis on which various execution analysis 

tools can be built. The best known tool is Memcheck which can detect: use of uninitialized memory, 

use of deallocated memory, use of unallocated memory and memory leaks. Unlike purify the source 

is available and modification is allowed. Valgrind is extensible and a number of diverse tools have 

been successfully implemented using the Valgrind core. 

Valgrind, unlike the tracing framework Dtrace, and unlike other dynamic binary 

instrumentation frameworks such as ATOM (Rivastava & Eustace, 2004) or PIN (Luk, et.al, 2005), 

supports origin tracking. Origin tracking enables the location of where an invalid value was initially 

injected into the program flow and is the mechanism by which the Valgrind tool Memcheck 

implements identifying  the line of code where an invalid pointer was initially assigned to a 

variable. 

Without origin tracking, an analysis tool can report that an invalid value has been operated 

on, and show the immediate stack-trace at that point. The immediate history of where the value was 

passed down from is clear from a stack trace, but the history of propagation of the value from the 

point where it was initially assigned an invalid point to the entry point of the stack-trace is not 



  

 

known. With origin tracking, the question of why a value is invalid can be answered by recording 

program locations where unusable values are assigned and storing this information in place of the 

unusable values themselves, facilitating the automatic support of propagating the origin information 

for an invalid value piggy-backed on the value itself has it propagates through the program flow, 

making it available at error detection time to report the origin of the invalid value. 

Valgrind's extensible nature, proven real-world suite of tools based on it, powerful origin 

tracking and accessible documentation makes it a very attractive foundation for building program 

analysis tooling. 



 

 

 

 

 

 

 

 

 

  

 

   

Solution Architectures 

There are a number of possible approaches to solving the problem of tracking use of remote 

resources in order to report to the programmer the source-code location within the program of leaks 

and misuses of them. The specific capabilities required are the capabilities to report, without 

recompilation of the application, the source-code locations of: 

1. where a leaking resource was allocated 

2. where an invalid resource was operated on 

3. where an invalid resource was previously deallocated or initially incorrectly allocated 

This section illustrates the possible solution architectures, their individual strengths and weaknesses 

and examines their capabilities to fulfil the stated goals. 

Common Features 

The common feature of all approaches is the necessity to detect and capture the resource 

allocation, resource deallocation, and resource utilization events, and the source-code origin of 

those events. Each solution needs to record allocation and deallocation events, and to examine 

utilization events in order to compare the utilized resource against previously allocated and 

deallocated resources. 

Resources are identified in a client by integer values, and are therefore basically 

indistinguishable from any other integer value used by the application. To track them the 

mechanism by which they enter into the application must be captured. There are two major options 

for capturing this information for the specific case study of the X Window System: at the X 

Protocol level where the information from the X server is received, or at the level of Xlib API entry 

points. 



  

 

    

 

Illustration 2: Normal Application Stack 

Capturing at entry point to Xlib library calls has the advantage that the same technique is 

applicable to a far wider set of similar problems where integer handles enter the application space 

through specific API function calls, while protocol level capture is more difficult as protocol 

schemes differ to a higher degree than function calls whose arguments and return values vary 

according to the API, but always adhere to the same ABI (Application Binary Interface) for a given 

platform. 

A representative sample of the Xlib API is shown below. 

Pixmap XCreatePixmap(Display *display, Drawable d, unsigned int width,
unsigned int height, unsigned int depth)

int XFreePixmap(Display *display, Pixmap pixmap)
int XFillRectangle(Display *display, Drawable d, GC gc, int x, int y,

unsigned int width, unsigned int height) 

XCreatePixmap is the sole resource acquisition call in the Xlib that creates a Pixmap, 



 

 

  

 

 

 

 

 

 

 

 

XFreePixmap is sole resource destruction call, and XFillRectangle is one of a large number of 

operations that operate on a Drawable (either a Window or Pixmap). This is the general pattern for 

most resources, though some resources have multiple acquisition API calls and some have multiple 

destruction calls. Appendix A is a comprehensive list of the resource acquisition and destruction 

API calls. 

All proposed solutions outlined depend on intercepting the Xlib API calls, parsing their 

arguments, and comparing utilized resource ids against resource ids extracted from intercepted 

acquire and destruction calls. 

DSO Interposition 

Calls to dynamic libraries such as Xlib can be intercepted by interposition (Curry, 1994) 

where a replacement library can be interposed between client and the normal dynamic library. The 

DSO Interposition technique can be used to implement an interposed library which overrides the 

functions found in libX11 that are of relevance to the case-study goals. 

A DSO Interposition solution consists of: 

1.	 For each resource creation/destruction API call collect a callstack within the interposed 

library. 

2.	 Keep a map of the associated resources to those callstacks. 

3.	 Forward the calls from replacement library to the real Xlib 

4.	 Wrap the remainder of the Xlib API to test passed resource arguments against the maps of 

allocated and unallocated resources. 

5.	 On detection of use of a deallocated or unallocated resource display an error including the 

call-stack of the detected location of the error and output and the code locations where they 

were created and destroyed when known. 



 

 

    

  

6. On exit of the application output all callstacks of allocated resources which have had no 

matching deallocation call during the applications lifetime. 

Illustration 3: Interposed Solution Stack 

Given the representative sample of the API shown above, a sketch of the key components of 

the implementation is shown in Appendix B. This solution is relatively fast. The only substantial 

overhead is that caused by the execution of the replacement library functions. What this solution is 

capable of doing is: 

1.	 detect and report the location of re-use of a released resources, report the location of the 

previous release of that resource, and report the location of the initial acquisition of the now 

released resource. 

2. report resources acquired but never released 



  

  

   

  

 

 

  

 

 

 

 

 

3. detect and report the location of use of an uninitialized resource 

However, what this solution is incapable of doing is report the location where a utilized 

uninitialized resource was initially assigned its invalid value. By operating solely on a API 

interception level its impossible to detect the introduction of a value into the application that does 

not pass through the interposed library. The call-stack at the time of use of an uninitialized value 

may by happen-chance include the origin of the initial introduction of the invalid value, but in 

general the only mechanism capable of reporting the location of the origin of introduction of an 

uninitialized or invalidly initialized client-side integer handle is through some form of binary 

instrumentation origin tracking (Bond, et.al, 2007). 

Dedicated Valgrind tool 

The key of Valgrind in the context of the overall goal, on error detection, to report the 

location of introduction of an uninitialized resource handle to equal fidelity to that of reporting the 

location of deallocation and prior allocation of a now invalid handle, is Valgrind's origin tracking 

feature. Conveniently, the Valgrind framework provides mechanisms to generate and store 

callstacks on request and map them back to source code and line numbers. Valgrind also provides a 

DSO function wrapping mechanism. Both of these convenience mechanisms  remove the necessity 

within the DSO Interposition technique to implement that additional infrastructure. 

However running the entire client application through the Valgrind dynamic binary 

instrumentation framework is not without its costs. Running an application under Valgrind is at least 

5 times slower than native execution, though this compares well to other similar dynamic binary 

interpreter frameworks such as Pin and DynamoRIO (Valgrind Developers, 2009). 

A solution implemented using the Valgrind framework to create a dedicated tool to achive 

the case-study goals consists of: 



 

  

1. Wrap the Xlib API within a new Valgrind tool. 

2.	 For each resource creation/destruction API call request the Valgrind core to store a callstack. 

3.	 Keep a map of the associated resources to those callstacks. 

4.	 For the remainder of the Xlib API test passed resource arguments against the maps of 

allocated and unallocated resources. 

5.	 On detection of use of a deallocated resource instruct the Valgrind core to display the 

callstack of the detection location and display the cached acquisition and destruction 

callstacks. 

6.	 On detection of use of an unallocated or otherwise invalid resource instruct the Valgrind 

core to display the callstack of the detection location and request from Valgrind the origin 

tracking information from Valgrind for that integer value and display the origin location 

where that value was introduced. 

7.	 On exit of the application output all callstacks of allocated resources which have had no 

matching deallocation call during the applications lifetime. 



 

 

  

   

 

  

  

Illustration 4: Dedicated Valgrind Tool Stack 

Given a representative sample of the API shown above, a sketch of the key components of 

the implementation is shown in Appendix C. This solution is capable of meeting the immediate 

goals, it can 

1.	 detect and report the location of re-use of a released resources, report the location of the 

previous release of that resource, and report the location of the initial acquisition of the now 

released resource. 

2.	 report resources acquired but never released and report the location of the acquisition 

3.	 detect and report the location of use of an uninitialized resource, and report the location or 

the origin of that invalid value. 

Using the Valgrind dynamic binary instrumentation framework gains the ability to detect 

origin information for uninitialized values, at the cost of increased runtime over, but retaining the 

ability to execute on unmodified binaries. However, such a custom tool is hard-coded to the case



  

 

  

 

 

 

  

 

 

    

 

 

study and is not amenable to easy extension to the wider case. To extend the tool to handle different 

APIs or other classes of similar problems it must be manually extended. 

Final Hybrid Architecture 

An optimal solution that supports origin tracking is a Valgrind-based tool which offers an 

extensible route to easily handle similar problems. An open design decision is whether to offer a 

tool which can just be used to check for out-of-process resource misuse, albeit one that is extensible 

to multiple situations, or to extend the existing Valgrind memory checking tool Memcheck. 

Memcheck tests for analogous in-process memory allocations/deallocations, detects use of 

unallocated memory and deallocated memory and reports on memory leaks. Memcheck has also 

been extended to track file descriptors and report on double closes of file descriptors, use of closed 

and unopened file descriptors and report on file descriptors that are never closed. Extending 

Memcheck to support reporting of arbitrary resource leaks and misuse via an extensible interface 

has the advantage of providing a tool which is capable of reporting multiple classes of both in-

process and out-of-process errors at the same time, giving the end programmer a single, simpler 

mechanism to test for resource leaks and misuse regardless of the type of resource. 

The final architecture which supports these desirable features consists of modifications to 

Memcheck to support tracking and reporting on arbitrary resources 

1.	 A Memcheck API which can be used by code executed inside the Valgrind runtime dynamic 

binary instrumentation. 

2.	 A set of interposed DSOs each of which implements a wrapper around the underlying 

libraries which provide and consume the resource handles and communicate when executed 

under Valgrind with the extended Memcheck tool using the Memcheck API to inform 

Memcheck of the resources created, destroyed and request validation of each resource use. 



 

 

   

 

 

The in-process resource checks on memory and file descriptors of Memcheck are unaffected 

by these extensions. 

Illustration 5: Final Valgrind Stack 

The architectural diagram illustrates the basic concepts of the design. The target application 

runs under the extended Memcheck Valgrind tool, and Memcheck makes its normal tests on all 

memory and file descriptor uses. Calls to the various APIs are intercepted by the interposed DSOs 

which use runtime Memcheck hooks to inform Memcheck of the client's use of integer handles to 

out-of-process resources and categorize them as acquire, release or use operations. 

So informed, the extended Memcheck can then report on out-of-process resources 

equivalently to in-process ones. The use of an interposed DSO to inform Memcheck of resource 

events enables a relatively easy extension mechanism to simply create additional wrapper DSOs for 

similar situations to the case-study which can reuse the generic Memcheck logic. 



  

 

  

 

 

 

 

 

 

API 

Valgrind supports an API which can be used by code executed inside the Valgrind runtime 

dynamic binary instrumentation, i.e. VALGRIND_DO_CLIENT_REQUEST which an application 

running under a given Valgrind tool can use to communicate with the controlling Valgrind instance, 

e.g. 

VALGRIND_DO_CLIENT_REQUEST(..., VG_USERREQ__MAKE_MEM_UNDEFINED, _qzz_addr,
_qzz_len, ... ); 

to inform Memcheck that a given range of memory should be considered undefined. Using this API 

as a basis, support for informing Memcheck of remote resources can be added though the creation 

of an API of: 

VG_USERREQ__ACQUIRE_RESOURCE(handle, type, parent) 

VG_USERREQ__USE_RESOURCE(handle, type) 

VG_USERREQ__RELEASE_RESOURCE(handle, type) 

Where a type is a simple integer id to disambiguate resources with potentially the same id but of 

different types, e.g. Font versus Pixmap. 

The semantics are that the destruction of a parent id as passed to extended Memcheck with 

VG_USERREQ__ACQUIRE_RESOURCE in the creation on a child implies the automatic 

destruction of all children of that parent id. Pixmaps which require the existence of another 

Drawable in their creation API by this rule do not inform Memcheck that the reference Drawable is 

a parent, but instead pass a NULL id as a parentless resource. Adding some complexity to this area 

is that the Xlib API provides a XDestroySubwindows() which destroys the children of a window, 

but not the window itself. To support this concept, the Memcheck API additionally requires a 

VG_USERREQ__RELEASE_SUBRESOURCES(handle, type) API call. 



  

 

 

 

 

 

 

  

 

Implementation 

Many Xlib API calls take Drawables as arguments, in order to support checking the validity 

of arguments passed to such methods both Window and Pixmaps must be considered. The simplest 

solution is to specify that the type argument in VG_USERREQ__USE_RESOURCE is a bitfield 

where types can be ORed together to indicate that any of the types specified is legal for use.  

Unlike the architecture proposed for a dedicated Valgrind tool, these APIs are primarily for 

use within an interposed DSO to provide it with a way to communicate with the extended 

Memcheck Valgrind tool when the application it is linked to is executing under Valgrind. The 

extended Memcheck has the task of tracking the resource usage, while the DSO has the task of 

feeding the events into Memcheck. A representative section of the DSO side of the implementation 

to handle a subset of the API that demonstrates acquiring a resource, releasing a resource, and 

capturing the use of a resource which may be of multiple types is shown in Appendix D. 

The crucial components on the extended Memcheck are the handlers for these events, and 

the built-in Memcheck support for origin tracking and stacktrace recording. The handlers for the 

events in this hybrid model follows the same pattern as shown for the dedicated tool in Appendix C, 

while a simplified demonstration of the use of origin tracking to report the location where an 

uninitialized value entered the program flow is shown in Appendix E to illustrate the key issues for 

the VG_USERREQ__USE_RESOURCE handler. 

The corresponding handlers for the acquire and release operations store the stack traces of 

these events and associated them with the handle id. The release handler also makes use of the use 

handler in order to report on double releases, or releases of acquired resources. 

The Memcheck-side is completely unaware of and independent of the Xlib API. It deals 

solely in terms of integers being flagged by the external helper DSO as handles to remote resources. 

The helper DSO provides the hierarchical information for each handle in order for Memcheck to 



 

   

  

 

 

 

  

 

infer that acquired child handles have become invalid. 

A feature of the X Windowing System that adds a certain degree of complexity to the 

specific case study is that all Windows must be the child of some other window. A clients toplevel 

window therefore must itself be the child of some other window, i.e. the root window of the 

hierarchy is not created by the client, but instead exists before the instantiation of the client but the 

client may, and in practice already certainly must, operate on its resource handle. A number of other 

instances of this situation where a client makes use of resource ids not created by itself, either as 

parents for windows or for querying for shared desktop resources, exist. 

In order to not trigger false positives of resource misuse reports on use of resources before 

allocation, these resource handles must be explicitly excluded by the interposed DSO from the use 

events reported to Memcheck.  Examples include operations on the SelectionOwner window id in 

order to paste content from one application to another, or creation of a toplevel window as a child of 

the DefaultRootWindow id. In these two examples non-destructive operations on those window ids 

should be filtered out before reporting to Memcheck to suppress false positives, while attempts to 

destroy those windows can be allowed to pass through to Memcheck to be reported as invalid 

operations. 

The generic Memcheck extension supports sufficient operations to capture the relations 

between resources that are necessary to maintain a model of the validity and life-cycle of remote X 

Windowing resources in order to report meaningful information about their misuse. But it is 

insulated from the details and semantics of that particular case study API. It is unaware of the actual 

API in use and sufficiently flexible to be reused without modification by alternative interposition 

DSOs which implement different remote resource APIs that follow a similar acquire/release pattern. 

This architecture enables individual quirks of the API to be handled within each 

supplementary DSO, such as the Xlib SelectionOwner window issue, without compromising the 

relative simplicity of the general purpose reusable core. 



 

 

  

   

 

 

  

 

  

 

 

 

Testing
 

Test Harness 

To create a comprehensive test-suite to prove that the tooling is sufficient to handle all 

detectable scenarios, the Xlib API must be analyzed to determine the number of different possible 

remote resources, the calls to acquire them, the calls to release them and aspects of the semantics of 

use. 

Manual inspection of the API and associated documentation (Gettys & Scheifler, 2002) 

shows six possible server-side resources, Colormaps, Cursors, Fonts, Pixmaps, Windows and 

Graphic Contexts. Of these six possibilities, inspection of Graphic Contexts shows that the client-

side integer handle for the server-side Graphic Contexts can only be acquired or released as part of a 

local structure which is dynamically allocated or deallocated by the Xlib internals. As such, using 

the final architecture of an extended Memcheck solution, misuse of this category of remote resource 

will be already automatically detected through the standard Memcheck local memory tests. Leaks, 

use before acquisition and use after release, will all be captured by the standard local tests, so this 

category of resource can be discarded from consideration. 

The Xlib API can then be categorized into calls that return or take a handle to a remote 

resource versus those that don't. In this case the second category is clearly not relevant and can be 

discarded. The first category can be further subdivided into acquire calls, release calls, subrelease 

calls and usage calls. 

The API calls that return or take a remote resource can be further categorized into primitive 

and utility calls. Utility calls are those calls which do not directly operate on the resource, but pass 

the resource through other intermediate API calls. The remaining API calls, which do not 

decompose into other APIS calls, are our primitives. These comprise the the subset of calls that are 



 

    

 

 

 

 

  

 

 

 

 

 

  

necessary to intercept in the interposed DSO, the utility calls can be discarded from consideration as 

their use of remote resources is delegated to the primitives. As a concrete example the 

XCreateFontCursor API call is a utility function which wraps XCreateGlyphCursor and so does not 

need to be explicitly intercepted. 

The test-harness then consists of tests that exercise capture of every primitive entry point to 

acquire and release each remaining category of resource. Each category of resource requires tests to 

validate: 

1. No errors: That legal use of the resource does not trigger a false positive 

2. Leak: That omission of a release call is detected 

3. Use before acquire: That use of an never-valid handle is detected 

4. Use after release: That use of a released handle is detected 

5. Double Free: That an attempt to release an already released handle is detected. 

Strictly speaking double-frees are a sub category of “Use after release”. But is an important 

grouping worthy of explicit test-cases as historically the local memory equivalent of duplicate use 

of the “free” memory release call has been a source of many security exploits (MITRE, 2009). 

The source of the resulting test cases derived from the above analysis and the corresponding 

output from the modified Memcheck can be found in Appendix A. For the purposes of the 

test-harness, all acquire and release paths are exercised, but due to the space required only a 

representative selection of the API that operates on each category of resource is selected. 

Field Testing 

The project goal is that the tooling is sufficient to detect resource misuse in unmodified 

real-world large application binaries. A reasonable target is OpenOffice.org, a large office suite 

available for Linux and other UNIX operating systems which has been shown to suffer from X 

http:OpenOffice.org


  
  

  

  

  

  

  

  

  

    

 

  

 

resource leaks in the past and suspected of resource leaks at present. 

Detecting Known Issues 

McCullagh (2008) opened a bug against OpenOffice.org 2.3 to report “both Impress and 

Writer crashing thin clients where a large amount of image data is placed in the document.  The 

application pushes the pixmap image data across onto the X server which is forced to allocate 

memory to store it”. Traditional debugging discovered that the root cause was a remote X Pixmap 

leak where matching a XFreePixmap call on the result of XCreatePixmap was missing and 

subsequently solved for OpenOffice.org 2.4. The difficulty in manually discovering the origin of 

this leak was a prime motivation for this thesis. 

This bug is known to be a Pixmap leak and the location of the leak also known, so it 

provides a real-world scenario in a large application which the tooling should theoretically be able 

to discover and report accurately on. The error report can be compared against the known location 

of the error to validate the results. 

For the purposes of the experiment the bugfix was reverted from a local copy of 

OpenOffice.org 3.1 to recreate the leak and the binary started under the modified Memcheck tooling 

and immediately quit after start up was completed. OpenOffice.org successfully executed under the 

framework, and at normal program termination the following trace was output by the tooling: 

==13354== Resource 0x46002fb of class 2 never released, acquired at
==13354== at 0x400E2A6: XCreatePixmap (xr_intercepts.c:255)
==13354== by 0x548154F: SalGraphics::DrawAlphaBitmap(SalTwoRect const&,

SalBitmap const&, SalBitmap const&, OutputDevice const*)
(salgdilayout.cxx:793)

==13354== by 0x541322D: OutputDevice::ImplDrawAlpha(Bitmap const&,
AlphaMask const&, Point const&, Size const&, Point const&, Size const&)
(outdev2.cxx:1983)

==13354== by 0x5413CF8: OutputDevice::ImplDrawBitmapEx(Point const&, Size
const&, Point const&, Size const&, BitmapEx const&, unsigned long)
(outdev2.cxx:891)

==13354== by 0x54141FA: OutputDevice::DrawBitmapEx(Point const&, Size const&,
Point const&, Size const&, BitmapEx const&) (outdev2.cxx:788)

==13354== by 0x53E1C6E: ImplImageBmp::Draw(unsigned short, OutputDevice*,
Point const&, unsigned short, Size const*) (impimage.cxx:550)

==13354== by 0x54145B7: OutputDevice::DrawImage(Point const&, Image const&, 

http:OpenOffice.org
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unsigned short) (outdev2.cxx:1204) 

The reported source-code location of “salgdilayout.cxx:793” identified the following line of 

code 

Pixmap aAlphaPM = XCreatePixmap( pXDisplay, hDrawable_, rTR.mnDestWidth,

rTR.mnDestHeight, 8 ); 


which correctly identifies the source of the known bug where the handle returned by this 

XCreatePixmap was never destroyed with a matching XFreePixmap, accumulating X Server 

resources leading to an eventual resource starvation. 

Detecting Unknown Issues 

The modifications were shown to be capable of discovering the known issue, but another 

issue was also reported on exit from a basic start-up and exit cycle, i.e.: 

==29004== Resource 0x4800015 of class 8 never released, acquired at
==29004== at 0x400E4CE: XCreatePixmapCursor (xr_intercepts.c:292)
==29004== by 0xC7A2196: x11::SelectionManager::createCursor(char const*,

char const*, int, int, int, int) (X11_selection.cxx:277)
==29004== by 0xC7A4624: x11::SelectionManager::initialize(

com::sun::star::uno::Sequence<com::sun::star::uno::Any> const&)
(X11_selection.cxx:443)

==29004== by 0xC7A4AD5: x11::SelectionManagerHolder::initialize(
com::sun::star::uno::Sequence<com::sun::star::uno::Any> const&)

(X11_selection.cxx:3973) 

Some investigation of this report showed that the detection of an additional leak is accurate. 

The Cursors created through XCreatePixmapCursor at the reported location had no matching 

XFreeCursor call creating a very small previously unknown leak. Due to this discovery a fix was 

created and submitted for inclusion into OpenOffice.org 3.2 (McNamara, 2009). 

The known bug reported by McCullagh is not the only reported bug where xrestop indicated 

the likely presence of an X resource leak. Erickson (2009) also reported a bug discovered in 

OpenOffice.org 2.4.1 where  “Working in OpenOffice Impress/Presentation is fine until starting 

"Slide Show", which caches excessive amounts of pixmap data to thin-client memory. This is bad 

because thin clients generally have very little amount of RAM (64-128MB is typical), and when all 

of the RAM is exhausted by something like excessive pixmap memory usage, the session simply 

http:OpenOffice.org
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crashes outright, causing data loss.” 

The symptoms reported are similar to the bug reported by McCullagh but were unchanged 

by the fix for that problem. The root problem was unknown, but xrestop showed an increase of two 

Pixmaps and a Window after every new use of the slide show making this example a candidate for 

investigation with this tooling. Running the presentation software under the tooling and starting and 

exiting the Slide Show provided a vast stack trace, an abbreviated version of which appears here 

that contains the major stack frames, that identifies the locations where an X resource related to 

starting a slide show has leaked. 

==29471== Resource 0x4400c14 of class 2 never released, acquired at
==29471== at 0x400E2A6: XCreatePixmap (xr_intercepts.c:255)
==29471== by 0x62C468F: gdk_pixmap_new (in

/usr/lib/libgdk-x11-2.0.so.0.1700.0)
==29471== by 0x54F4588: Window::ImplInit(Window*, long long,

SystemParentData*) (window.cxx:824)
==29471== by 0x548A789: ImplBorderWindow::ImplInit(Window*, long long,

unsigned short, SystemParentData*) (brdwin.cxx:1887)
==29471== by 0x548A89A: ImplBorderWindow::ImplBorderWindow(Window*,

SystemParentData*, long long, unsigned short) (brdwin.cxx:1922)
==29471== by 0x5500D79: WorkWindow::ImplInit(Window*, long long,

SystemParentData*) (wrkwin.cxx:76)
==29471== by 0x55010B3: WorkWindow::WorkWindow(Window*, long long)

(wrkwin.cxx:124)
==29471== by 0xD6BAA37: sd::SlideShow::StartFullscreenPresentation()

(slideshow.cxx:1204)
==29471== by 0xD6BABF1: sd::SlideShow::startWithArguments(

com::sun::star::uno::Sequence<com::sun::star::beans::PropertyValue> const&)
(slideshow.cxx:838) 

Examining the reported stack to discover the owner of the acquired Pixmaps reported to be 

leaked showed that the object (WorkWindow in the stacktrace above) referencing the remote 

resources was not itself correctly released. Once discovered the a simple fix for the leak was 

submitted for consideration for inclusion in OpenOffice.org 3.2 (McNamara, 2009). 

These results show that the tooling is practical to use with a large real-world application, 

discovers and reports accurately on X resource misuse, dramatically reducing the effort required to 

identify the existence and source-code location of the introduction of those errors. 

http:OpenOffice.org


 

   

 

 

 

    

 

   

Conclusions
 

The presented solution operates on unmodified binaries and reports locations where a 

resource was acquired but not released and locations where invalid resource handles are used. On 

use of an invalid resource handle, the location where the resource was either previously deallocated 

or where the uninitialized handle was introduced into the program flow are shown. There are vital 

pieces of information to guide the programmer in solving the detected flaws. 

The tooling is not tied to one specific category of out-of-process resource tracking and can 

be extended to support any similar situation where client-side code manages out-of-process 

resources through an API which can be intercepted. Multiple DSOs to intercept different APIs can 

coexist at runtime communicating with the central hub to support checking multiple APIs at the 

same time. 

What has been demonstrated by this thesis is a practical architecture and set of techniques to 

enable building debugging tools that are aware of out-of-process resources which otherwise can not 

be seen by current in-process resource monitoring debugging tools such as traditional bounds 

checkers and memory checkers. The architecture has been shown to be capable of successfully 

automatically discovering and correctly reporting errors on misuse of remote resources in the X 

Windowing System case-study to an equivalent degree of quality as performed by a standard 

Valgrind Memcheck tool for in-process memory errors. 



  

  

 

  

 

   

  

  

 

   

 

  

  

Future Work 

There is scope for future work in both the specific X Resource tracking tool plugin and the 

wider resource tracking architecture. 

Image Grabs on Drawables: Specific to the X Window case the tooling could be improved 

by adding features to the API interceptor to capture image grabs of Drawables at destruction time to 

provide a view of them in a debugging GUI to help visually identify what was last referenced by a 

handle if it is later used after becoming invalid. Similarly at exit time the tooling could be extended 

to take image grabs of the contents of leaked Drawables. 

The core generic part of the tool could be enhanced to help isolate difficult to debug 

problems that are not specific to the X Windowing System. 

Instrument a particular execution path: A trigger mechanism to control where API 

interception begins and ends during a clients lifecycle would enable verifying that a given execution 

path's resource utilization matches expectations. A particular execution path might not leak 

resources from the perspective that all resources are eventually released, but it may be considered to 

logically leak (Maebe, 2004) where resources should have been released earlier than they eventually 

are. Support for resource checking between check points would enable detection of such logical 

leaks. 

Time stamping: Enable recording time-stamp information for operations on resource 

handles and enable supporting arbitrary queries to search for long lived resources that are unused 

for long periods of time prior to eventual destruction. Getting access to this information would 

enable discovery of potential lost resource optimization opportunities. 

Support Reparenting Resources: Some API calls may reparent a resource where a given 

resource is moved from one part of the hierarchy to another. There is currently no support for this 



 

 

 

  

  

     

 

  

 

  

 

 

 

 

 

     

  

 

feature, so there is the theoretical possibility of a resource being reported as leaking when it has in 

fact be reparented under another resource which was subsequently destroyed automatically 

destroying its subresources. 

Implement More API Interceptors: The case-study implemented one interposed DSO for 

one API, creating extra plugins for other APIs that control remote resource through handles (e.g. 

APIs that control remote database resources) would exercise the core to identify if the supported 

semantics of acquire, release, and sub-release are sufficient for the general case or if further 

extensions to the internal API is required to support additional concept used by other APIs, e.g. 

speculatively a given API might include a call to destroy an entire category of resources, a concept 

which the current core doesn't support. 

Formal API description language: Manually examining the Xlib API documentation to 

determine whether a call that returns a resource places a responsibility to release ownership of that 

resource to the caller or not, and if so, what is the correct release function was fraught with 

difficulty, e.g the documentation for. XCreateFontCursor makes no mention if the returned Cursor 

should be released by a client and no mention of a corresponding release function, but a 

XFreeCursor call is separately documented and references XCreateFontCursor. Wrapping the APIs 

by manually writing wrapping functions with the same signatures as the API that forward to the true 

API is a tedious task that should be possible to mostly automate. 

A formal API description language with support for indicating which out parameters are the 

responsibility of the caller to release and with what matching API would resolve these ambiguities. 

Such a language should have notation for indicating if out parameters are part of a hierarchical 

model where children are automatically destroyed on destruction of a parent and mechanisms for 

describing how an API call may modify the resource hierarchy, e.g. API calls that remove a child 

from one hierarchical tree and add it to another. A language along these lines would enable 

automated processing of APIs to generate interposition DSOs without tedious manual parsing of 



   

 

 

 

  

 

 

  

 

   

 

   

   

documentation and provide a common language that further tools that perform dynamic and static 

analysis of software could reuse. 

Concluding Remarks 

This thesis has presented a practical architecture for tracking out-of-process resources 

residing in a server, but controlled by a client, in order to automatically at client-side report on 

resource leaks and other misuses by an individual client. The techniques shown can be applied to 

the general case of improving the quality of Client/Server Architectures where equivalent defects 

can otherwise go undetected, for example: 

Remote Procedure Calls: Remote Procedure Call (RPC) technology enables clients to 

execute procedures in another address space, typically on a remote server. Server-side resources 

created or controlled over RPC by a client are vulnerable to the same defects as described in the 

case-study. The techniques shown here can be used to extract acquire/release ownership rules of 

resources controlled by a given RPC API and married to the demonstrated model in order to 

similarly detect volition of ownership rules of remote resources. APIs based on conceptually similar 

out-of-process middleware technology such as Common Object Model or CORBA are equally 

vulnerable to clients accidentally either exhausting server-side resources, or exhausting the 

maximum available allocation for a single client. Applications based on these remote invocation 

technologies can benefit from debugging tools that automatically track their remote resource 

utilization and report client-side locations of remote resource leaks and misuse. 

Remote Database Connectivity: The Open Database Connectivity (ODBC) API is a 

standard that allows a client to access remote databases. Basic errors in client-side ODBC 

applications are capable of creating effective leaks at server side where a client request causes 

memory to be allocated in the server but the client omits the call that directs the server to release the 

memory e.g. “only the SQL_DROP option of the SQLFreeStmt API actually frees all memory 



 

 

 

 

associated with the handle. SQL_CLOSE and SQL_UNBIND do not ... each statement handle 

allocated by the application also results in memory allocated on the server” (IBM, 2008). Similar 

possibilities exist in other mechanisms for accessing remote databases, e.g. Java Database 

Connectivity and ActiveX Data Object. 

Wrapping the remote database APIs to record which calls return handles to acquired remote 

resources that need to be explicitly released with specific calls would enable the client-side 

programmer to detect and debug these errors. 
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 Appendix A: Test Matrix Results
 

Colormap Cursor Font Pixmap 

Leak Detected 0 errors Detected 0 errors Detected 0 errors Detected 0 errors 
Detected 1 leak Detected 1 leak Detected 1 leak Detected 1 leak 

Double Release Detected 1 error Detected 1 error Detected 1 error Detected 1 error 
Detected 0 leaks Detected 0 leaks Detected 0 leaks Detected 0 leaks 

Use after release Detected 1 error Detected 1 error Detected 1 error Detected 1 error 
Detected 0 leaks Detected 0 leaks Detected 0 leaks Detected 0 leaks 

Use before acquire Detected 1 error Detected 1 error Detected 1 error Detected 1 error 
Detected 0 leaks Detected 0 leaks Detected 0 leaks Detected 0 leaks 

No Errors Detected 0 errors Detected 0 errors Detected 0 errors Detected 0 errors 
Detected 0 leaks Detected 0 leaks Detected 0 leaks Detected 0 leaks 

Colormap: Leak 

#include <X11/Xlib.h> 

int main(void)
{ 

Display *dpy = XOpenDisplay(NULL);
Colormap map = XcreateColormap(dpy, /*Never released*/ 

DefaultRootWindow(dpy),

DefaultVisual(dpy, DefaultScreen(dpy)), AllocNone); 


/*Does not release map, and return-map not released*/
XCopyColormapAndFree(dpy, map); 

XCloseDisplay(dpy);
return 0;

} 

Resource 0x4c00001 of class 4 never released, acquired at
at 0x400F3F6: XCreateColormap (xr_intercepts.c:484)
by 0x80485C5: main (testLeakColormap.c:6) 

Resource 0x4c00002 of class 4 never released, acquired at
at 0x400F4A8: XCopyColormapAndFree (xr_intercepts.c:498)
by 0x80485DD: main (testLeakColormap.c:11) 

RESOURCE LEAK SUMMARY: 
definitely lost: 2 resources. 

Cursor: Leak 

#include <X11/Xlib.h> 

int main(void)
{ 

Display *dpy = XOpenDisplay(NULL);
XColor acolor;
XColor bcolor; 

Window 

Detected 0 errors 
Detected 1 leak 
Detected 1 error 
Detected 0 leaks 
Detected 1 error 
Detected 0 leaks 
Detected 1 error 
Detected 0 leaks 
Detected 0 errors 
Detected 0 leaks 



Pixmap p;
Cursor c; 

p = XCreatePixmap(dpy, DefaultRootWindow(dpy), 10, 10, 1);
c = XCreatePixmapCursor(dpy, p, None, &acolor, &bcolor, 0, 0); 

XFreePixmap(dpy, p); /*Pixmap released, but cursor isn't and leaks*/ 

XCloseDisplay(dpy);

return 0;


} 

Resource 0x4c00002 of class 8 never released, acquired at
at 0x400EBA5: XCreatePixmapCursor (xr_intercepts.c:356)
by 0x804861A: main (testLeakCursor.c:12) 

RESOURCE LEAK SUMMARY: 
definitely lost: 1 resources. 

Font: Leak 

#include <X11/Xlib.h> 

int main(void)
{ 

Font f;
Display *dpy = XOpenDisplay(NULL); 

f = XLoadFont(dpy, "fixed"); /*font never released*/ 

XCloseDisplay(dpy);
return 0;

} 

Resource 0x4c00001 of class 10 never released, acquired at
at 0x400EFE3: XLoadFont (xr_intercepts.c:416)
by 0x8048520: main (testLeakFont.c:8) 

RESOURCE LEAK SUMMARY: 
definitely lost: 1 resources. 

Pixmap: Leak 

#include <X11/Xlib.h> 

int main(void)
{ 

Display *dpy = XOpenDisplay(NULL); 

XCreatePixmap(dpy, DefaultRootWindow(dpy), 200, 100, 1); /*never released*/ 

XCloseDisplay(dpy);
return 0;

} 



Resource 0x4c00001 of class 2 never released, acquired at
at 0x400E906: XCreatePixmap (xr_intercepts.c:317)
by 0x804856A: main (testLeakPixmap.c:7) 

RESOURCE LEAK SUMMARY: 
definitely lost: 1 resources. 

Window: Leak 

#include <X11/Xlib.h> 

int main(void)
{ 

Display *dpy = XOpenDisplay(NULL); 

Window w = XCreateSimpleWindow(dpy, /*never released*/ 
DefaultRootWindow(dpy),

0, 0, 200, 100, 0,

BlackPixel(dpy, DefaultScreen(dpy)),

WhitePixel(dpy, DefaultScreen(dpy))); 


XCloseDisplay(dpy);
return 0;

} 

Resource 0x4c00001 of class 1 never released, acquired at 
at 0x400DEDE: XCreateSimpleWindow (xr_intercepts.c:174)
by 0x8048610: main (testLeakWindow.c:7) 

RESOURCE LEAK SUMMARY: 
definitely lost: 1 resources. 

Colormap: Double-release 

#include <X11/Xlib.h> 

int main(void)
{ 

XColor c;
Display *dpy = XOpenDisplay(NULL);
Colormap map = XCreateColormap(dpy, DefaultRootWindow(dpy),

DefaultVisual(dpy, DefaultScreen(dpy)), AllocNone); 

XAllocColor(dpy, map, &c); 

XFreeColormap(dpy, map);
XFreeColormap(dpy, map); /* map already released!*/ 

XCloseDisplay(dpy);
return 0;

} 



Resource 0x4c00001 of class 4 used, but is already released
at 0x4031542: XFreeColormap (xr_intercepts.c:510)
by 0x804863D: main (testDoubleFreeColormap.c:13

Release was at 
) 

at 0x4031542: XFreeColormap (xr_intercepts.c:510)
by 0x8048629: main (testDoubleFreeColormap.c:12) 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 

Cursor: Double-release 

#include <X11/Xlib.h> 

int main(void)
{ 

Display *dpy = XOpenDisplay(NULL);
XColor acolor;
XColor bcolor;
Pixmap p;
Cursor c; 

p = XCreatePixmap(dpy, DefaultRootWindow(dpy), 10, 10, 1);
c = XCreatePixmapCursor(dpy, p, None, &acolor, &bcolor, 0, 0); 

XDefineCursor(dpy, DefaultRootWindow(dpy), c); 

XFreeCursor(dpy, c);
XFreeCursor(dpy, c); /*c already released*/
XFreePixmap(dpy, p); 

XCloseDisplay(dpy);
return 0;

} 

Resource 0x4c00002 of class 8 used, but is already released
at 0x400EDE1: XFreeCursor (xr_intercepts.c:389)
by 0x80486F4: main (testDoubleFreeCursor.c:17 

Release was at 
) 

at 0x400EDE1: XFreeCursor (xr_intercepts.c:389)
by 0x80486E0: main (testDoubleFreeCursor.c:16) 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 

Font: Double-release 

#include <X11/Xlib.h> 

int main(void)
{ 

XFontStruct *fontinfo;
Font f;
Display *dpy = XOpenDisplay(NULL); 

f = XLoadFont(dpy, "fixed");
fontinfo = XQueryFont(dpy, f); 



if (fontinfo)
{ 

/*XFreeFont automatically calls CloseFont on the fontid*/
XFreeFont(dpy, fontinfo);

}

/*so calling UnloadFont on f is a double-free*/

XUnloadFont(dpy, f); /* f already released */ 

XCloseDisplay(dpy);
return 0;

} 

Resource 0x4a00001 of class 10 used, but is already released
at 0x400F13B: XUnloadFont (xr_intercepts.c:444)
by 0x804860B: main (testDoubleFreeFont.c:17 

Release was at 
) 

at 0x400F1F3: XFreeFont (xr_intercepts.c:457)
by 0x80485F7: main (testDoubleFreeFont.c:14) 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 

Pixmap: Double-release 

#include <X11/Xlib.h> 

int main(void)
{ 

Display *dpy = XOpenDisplay(NULL); 

Pixmap p = XCreatePixmap(dpy, DefaultRootWindow(dpy), 200, 100, 1); 

XFreePixmap(dpy, p);
XFreePixmap(dpy, p); /* p is released!*/ 

XCloseDisplay(dpy);

return 0;


} 

Resource 0x4c00001 of class 2 used, but is already released
at 0x400EA07: XFreePixmap (xr_intercepts.c:333)
by 0x80485C6: main (testDoubleFreePixmap.c:10

Release was at 
) 

at 0x400EA07: XFreePixmap (xr_intercepts.c:333)
by 0x80485B2: main (testDoubleFreePixmap.c:9) 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 

Window: Double-release 

#include <X11/Xlib.h> 

int main(void)
{ 



Display *dpy = XOpenDisplay(NULL); 

Window w = XCreateSimpleWindow(dpy, DefaultRootWindow(dpy),
0, 0, 200, 100, 0,
BlackPixel(dpy, DefaultScreen(dpy)),
WhitePixel(dpy, DefaultScreen(dpy))); 

XSelectInput(dpy, w, ButtonPressMask | KeyPressMask);
XMapWindow(dpy, w); 

XDestroyWindow(dpy, w);
XDestroyWindow(dpy, w); /*w is released!*/ 

XCloseDisplay(dpy);

return 0;


} 

Resource 0x4c00001 of class 1 used, but is already released
at 0x400E164: XDestroyWindow (xr_intercepts.c:209)
by 0x80486CC: main (testDoubleFreeWindow.c:16 

Release was at 
) 

at 0x400E164: XDestroyWindow (xr_intercepts.c:209)
by 0x80486B8: main (testDoubleFreeWindow.c:15) 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 

Colormap: Use after release 

#include <X11/Xlib.h> 

int main(void)
{ 

XColor c;
Display *dpy = XOpenDisplay(NULL);
Colormap map = XCreateColormap(dpy, DefaultRootWindow(dpy),

DefaultVisual(dpy, DefaultScreen(dpy)), AllocNone); 

XFreeColormap(dpy, map);
XAllocColor(dpy, map, &c); /*map is released!*/ 

XCloseDisplay(dpy);
return 0;

} 

Resource 0x4a00001 of class 4 used, but is already released
at 0x400F5F3: XAllocColor (xr_intercepts.c:521)
by 0x8048629: main (testDeInitializedColormap.c:11

Release was at 
) 

at 0x400F542: XFreeColormap (xr_intercepts.c:510)
by 0x804860D: main (testDeInitializedColormap.c:10) 

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 22 from 2) 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 



Cursor: Use after release 

#include <X11/Xlib.h> 

int main(void)
{ 

Display *dpy = XOpenDisplay(NULL);
XColor acolor;
XColor bcolor;
Pixmap p;
Cursor c; 

p = XCreatePixmap(dpy, DefaultRootWindow(dpy), 10, 10, 1);
c = XCreatePixmapCursor(dpy, p, None, &acolor, &bcolor, 0, 0); 

XFreeCursor(dpy, c);
XDefineCursor(dpy, DefaultRootWindow(dpy), c); /*c is released!*/ 

XFreePixmap(dpy, p); 

XCloseDisplay(dpy);
return 0;

} 

Resource 0x4a00002 of class 8 used, but is already released
at 0x400EF18: XDefineCursor (xr_intercepts.c:402)
by 0x80486E0: main (testDeInitializedCursor.c:15 

Release was at 
) 

at 0x400EDE1: XFreeCursor (xr_intercepts.c:389)
by 0x80486A2: main (testDeInitializedCursor.c:14) 

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 26 from 2) 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 

Font: Use after release 

#include <X11/Xlib.h> 

int main(void)
{ 

XFontStruct *fontinfo;
Font f;
Display *dpy = XOpenDisplay(NULL); 

f = XLoadFont(dpy, "fixed");
XUnloadFont(dpy, f);
fontinfo = XQueryFont(dpy, f); /*f is released!*/
if (fontinfo)
{ 

/*XFreeFont automatically calls CloseFont on the fontid*/
XFreeFont(dpy, fontinfo);

} 

XCloseDisplay(dpy); 



return 0;
} 

Resource 0x4c00001 of class 10 used, but is already released
at 0x400F280: XQueryFont (xr_intercepts.c:469)
by 0x80485EC: main (testDeInitializedFont.c:11 

Release was at 
) 

at 0x400F13B: XUnloadFont (xr_intercepts.c:444)
by 0x80485D8: main (testDeInitializedFont.c:10) 

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 26 from 2) 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 

Pixmap: Use after release 

#include <X11/Xlib.h> 

int main(void)
{ 

Display *dpy = XOpenDisplay(NULL);
XGCValues values;
GC gc; 

Pixmap p = XCreatePixmap(dpy, DefaultRootWindow(dpy), 200, 100, 1); 

values.foreground = WhitePixel (dpy, DefaultScreen (dpy));

gc = XCreateGC (dpy, p, GCForeground, &values); 


XFreePixmap(dpy, p);
XFillRectangle(dpy, p, gc, 0, 0, 200, 200); /* p is released!*/ 

XFreeGC(dpy, gc); 

XCloseDisplay(dpy);

return 0;


} 

Resource 0x4c00001 of class 3 used, but is already released
at 0x400E65C: XFillRectangle (xr_intercepts.c:282)
by 0x8048710: main (testDeInitializedPixmap.c:15

Release was at 
) 

at 0x400EA07: XFreePixmap (xr_intercepts.c:333)
by 0x80486CB: main (testDeInitializedPixmap.c:14) 

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 26 from 2) 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 

Window: Use after release 

#include <X11/Xlib.h> 



int main(void)
{ 

Display *dpy = XOpenDisplay(NULL); 

Window w = XCreateSimpleWindow(dpy, DefaultRootWindow(dpy),

0, 0, 200, 100, 0,

BlackPixel(dpy, DefaultScreen(dpy)),

WhitePixel(dpy, DefaultScreen(dpy))); 


XSelectInput(dpy, w, ButtonPressMask | KeyPressMask);

XMapWindow(dpy, w);

XDestroyWindow(dpy, w);
XSelectInput(dpy, w, ButtonPressMask | KeyPressMask); /*w is released!*/ 

XCloseDisplay(dpy);
return 0;

} 

Resource 0x4c00001 of class 1 used, but is already released
at 0x400E2FE: XSelectInput (xr_intercepts.c:236)
by 0x80486D4: main (testDeInitializedWindow.c:15 

Release was at 
) 

at 0x400E164: XDestroyWindow (xr_intercepts.c:209)
by 0x80486B8: main (testDeInitializedWindow.c:14) 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 

Colormap: Use before acquire 

#include <X11/Xlib.h> 

int main(void)
{ 

XColor c; /*uninitialized*/
Colormap map;

Display *dpy = XOpenDisplay(NULL); 


XAllocColor(dpy, map, &c); /*c never initialized*/ 

XFreeColormap(dpy, map); 

XCloseDisplay(dpy);
return 0;

} 

Uninitialised byte(s) found during client check request
at 0x400F5F3: XAllocColor (xr_intercepts.c:521)
by 0x8048568: main (testNeverInitializedColormap.c:9

Address 0xbed55214 is on thread 1's stack 
) 

Uninitialised value was created by a stack allocation
at 0x804853A: main (testNeverInitializedColormap.c:4

failed request: BadColor (invalid Colormap parameter)
) 

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 22 from 2) 



 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 

Cursor: Use before acquire 

#include <X11/Xlib.h> 

int main(void)
{ 

Display *dpy = XOpenDisplay(NULL);
Cursor c; /*never initialized*/ 

XDefineCursor(dpy, DefaultRootWindow(dpy), c); /*c never initialized*/ 

XCloseDisplay(dpy);
return 0;

} 

Uninitialised byte(s) found during client check request
at 0x400EF18: XDefineCursor (xr_intercepts.c:402)
by 0x804855A: main (testNeverInitializedCursor.c:8 

Address 0xbec60228 is on thread 1's stack 
) 

Uninitialised value was created by a stack allocation
at 0x804850A: main (testNeverInitializedCursor.c:6 

failed request: BadCursor (invalid Cursor parameter)
) 

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 26 from 2) 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 

Font: Use before acquire 

#include <X11/Xlib.h> 

int main(void)
{ 

XFontStruct *fontinfo;
Font f; /*never initialized*/
Display *dpy = XOpenDisplay(NULL); 

fontinfo = XQueryFont(dpy, f); /*f was never initialized*/
if (fontinfo)
{ 

/*XFreeFont automatically calls CloseFont on the fontid*/
XFreeFont(dpy, fontinfo);

} 

XCloseDisplay(dpy);
return 0;

} 

Uninitialised byte(s) found during client check request
at 0x400F280: XQueryFont (xr_intercepts.c:469)
by 0x8048560: main (testNeverInitializedFont.c:9) 



Address 0xbe805224 is on thread 1's stack 
Uninitialised value was created by a stack allocation

at 0x804853A: main (testNeverInitializedFont.c:6) 

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 26 from 2) 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 

Pixmap: Use before acquire 

#include <X11/Xlib.h> 

int main(void)
{ 

Display *dpy = XOpenDisplay(NULL);
XGCValues values;
GC gc;
Pixmap px; /*never initialized*/ 

Pixmap p = XCreatePixmap(dpy, DefaultRootWindow(dpy), 200, 100, 1); 

values.foreground = WhitePixel (dpy, DefaultScreen (dpy));
gc = XCreateGC (dpy, p, GCForeground, &values); 

XFillRectangle(dpy, px, gc, 0, 0, 200, 200); /*px never initialized*/ 

XFreeGC(dpy, gc);
XFreePixmap(dpy, p); 

XCloseDisplay(dpy);
return 0;

} 

Uninitialised byte(s) found during client check request
at 0x400E65C: XFillRectangle (xr_intercepts.c:282)
by 0x80486F6: main (testNeverInitializedPixmap.c:15

Address 0xbea8f1b4 is on thread 1's stack 
) 

Uninitialised value was created by a stack allocation
at 0x80485DA: main (testNeverInitializedPixmap.c:8) 

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 26 from 2) 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 

Window: Use before acquire 

#include <X11/Xlib.h> 

int main(void)
{ 

Display *dpy = XOpenDisplay(NULL);
Window w; /*never initialized*/ 

XSelectInput(dpy, w, ButtonPressMask|KeyPressMask); /*w never initialized*/ 



XCloseDisplay(dpy);
return 0;

} 

Uninitialised byte(s) found during client check request
at 0x400E2FE: XSelectInput (xr_intercepts.c:236)
by 0x8048538: main (testNeverInitializedWindow.c:8 

Address 0xbef57224 is on thread 1's stack 
) 

Uninitialised value was created by a stack allocation
at 0x804850A: main (testNeverInitializedWindow.c:6) 

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 26 from 2) 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 

Colormap: No Errors 

ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 21 from 1) 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 

Cursor: No Errors 

ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 21 from 1) 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 

Font: No Errors 

ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 21 from 1) 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 

Pixmap: No Errors 

ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 21 from 1) 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 

Window: No Errors 

ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 21 from 1) 

RESOURCE LEAK SUMMARY: 
definitely lost: 0 resources. 



Appendix B: DSO Interposition
 

Pixmap (*real_XCreatePixmap)(Display *, Drawable , unsigned int ,
unsigned int , unsigned int ) = NULL; 

Pixmap XCreatePixmap(Display *display, Drawable d, unsigned int width,
unsigned int height, unsigned int depth)

{ 
Pixmap ret;

if (!real_XCreatePixmap)
*(void **) (&real_XCreatePixmap) = get_func("XCreatePixmap");

ret = (*real_XCreatePixmap)(display, d, width, height, depth);
restrack.acquired_resource(ret);
return ret;

} 

int (*real_XFreePixmap)(Display *, Pixmap ) = NULL; 

int XFreePixmap(Display *display, Pixmap pixmap)
{ 

int ret;
if (!real_XFreePixmap)

*(void **) (&real_XFreePixmap) = get_func("XFreePixmap");
ret = (*real_XFreePixmap)(display, pixmap);
restrack.released_resource(pixmap);
return ret;

} 

int XFillRectangle(Display *display, Drawable d, GC gc, int x, int y, unsigned
int width, unsigned int height)

{ 
if (!real_XFillRectangle)

*(void **) (&real_XFillRectangle) = get_func("XFillRectangle");
restrack.check_resource(ret);
return (*real_XFillRectangle)(display, d, gc, x, y, width, height);

} 

void restracker::acquired_resource(long nId)
{ 

aAllocatedIds[nId] = backtrace...
aActiveIds[nId] = aAllocatedIds[nId]

} 

void restracker::released_resource(long nId)
{ 

aActiveIds.erase(nId);
aReleasedIds[nId] = backtrace...

} 

void restracker::check_resource(long nId)
{ 

if (nId in aActiveIds)
return; //No error

else 
{ 

fprintf(stderr, "invalid resource %d at", nId);
show_location();
if (nId in aReleasedIds)
{ 



fprintf(stderr, "Use of DeAllocated resource,"
"resource was allocated at);

aReleasedIds[nId].show_location();
fprintf(stderr, "resource was originally allocated at);
aAllocatedIds[nId].show_location();

}
else 

fprintf(stderr, "Use of Unintialized resource");
}

} 



Appendix C: Dedicated Valgrind Tool
 

Pixmap I_WRAP_SONAME_FNNAME_ZZ(libX11ZdsoZdZa,XCreatePixmap)(Display *display,
Drawable d, unsigned int width, unsigned int height, unsigned int depth)

{ 
unsigned int _qzz_res;
Pixmap ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
CALL_FN_W_5W(ret, fn, display, d, width, height, depth);
restrack.acquired_resource(ret);
return ret;

} 

int I_WRAP_SONAME_FNNAME_ZZ(libX11ZdsoZdZa,XFreePixmap)Display *display,
Pixmap pixmap)

{ 
unsigned int _qzz_res;
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
CALL_FN_W_WW(ret, fn, display, pixmap);
restrack.released_resource(pixmap);
return ret;

} 

int I_WRAP_SONAME_FNNAME_ZZ(libX11ZdsoZdZa,XFillRectangle)(Display *display,
Drawable d, GC gc, int x, int y, unsigned int width, unsigned int height)

{ 
unsigned int _qzz_res;
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
restrack.check_resource(ret); 

return ret;
CALL_FN_W_7W(ret, fn, display, d, gc, x, y, width, height); 

} 

void restracker::acquired_resource(long nId)
{ 

aAllocatedIds[nId] = backtrace...
aActiveIds[nId] = aAllocatedIds[nId]

} 

void restracker::released_resource(long nId)
{ 

aActiveIds.erase(nId);
aReleasedIds[nId] = backtrace...

} 

void restracker::check_resource(long nId)
{ 

if (nId in aActiveIds)
return; //No error

else 
{ 

fprintf(stderr, "invalid resource %d at", nId);
show_location();
if (nId in aReleasedIds) 



{ 
fprintf(stderr, "Use of DeAllocated resource,"

"resource was allocated at);
aReleasedIds[nId].show_location();
fprintf(stderr, "resource was originally allocated at);
aAllocatedIds[nId].show_location();

}
else 
{ 

//Use Valgrind Origin Checking to report undefined values 

} 
VALGRIND_CHECK_VALUE_IS_DEFINED(nId); 

}
} 



Appendix D: DSO-side Of Hybrid Solution
 

Pixmap XCreatePixmap(Display *display, Drawable d, unsigned int width,
unsigned int height, unsigned int depth)

{ 
Pixmap ret;
unsigned int _qzz_res;
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0, VG_USERREQ__USE_RESOURCE, &d,

WINDOW | PIXMAP, 0, 0, 0); \
ret = (*real_XCreatePixmap)(display, d, width, height, depth);
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0, VG_USERREQ__ACQUIRE_RESOURCE, &ret,

PIXMAP, 0, 0, 0);
return ret;

} 

int XFreePixmap(Display *display, Pixmap pixmap)
{ 

int result;
unsigned int _qzz_res;

VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0, VG_USERREQ__RELEASE_RESOURCE,

&pixmap, PIXMAP, 0, 0, 0);


result = (*real_XFreePixmap)(display, pixmap);
return result;

} 

int XFillRectangle(Display *display, Drawable d, GC gc, int x, int y,
unsigned int width, unsigned int height)

{ 
unsigned int _qzz_res;
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0, VG_USERREQ__USE_RESOURCE, &d,

WINDOW | PIXMAP, 0, 0, 0);
return (*real_XFillRectangle)(display, d, gc, x, y, width, height);

} 



Appendix E: Using Origin Tracking
 

static void check_use_resource(ThreadId tid, UWord handle_addr, UWord idtype)
{ 

/*Look up the handle_addr of resource type idtype in our tables of
acquired and not released yet resource*/

XR_Resource *resource = ... 

if (!resource) {
/*This resource was never acquired, we need to use origin tracking

to determine where this invalid value originated*/
Addr bad_addr = handle_addr;
UInt otag = 0;
/*An example of priting the stacktrace of the current location*/
VG_(get_and_pp_StackTrace) ( tid, 1000 ); 

/*Extrac the origin tracking information for this invalid value*/
if (MC_(clo_mc_level) == 3)

otag = MC_(helperc_b_load1)( bad_addr ); 

/*Use built-in reporting function to print stacktrace of where
this value entered the program flow*/

MC_(record_user_error) ( tid, bad_addr, /*isAddrErr*/False, otag );
}
else if (resource->release_context) { 

/* we recorded that this resource was released earlier*/
VG_(get_and_pp_StackTrace) ( tid, 1000 );
VG_(message)(Vg_UserMsg, "Release was at");
VG_(pp_ExeContext) ( resource->release_context ); 

VG_(maybe_record_error)( tid, 9000, 0, NULL, NULL );
} 

} 
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opaque to Valgrind, though for different technical reasons. Valgrind is presented as a framework 
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on which to build new dynamic run-time debugging tools. 

Nethercote, N., Seward, J. (2007). How to shadow every byte of memory used by a program. 

Proceedings of the 3rd international conference on Virtual execution environments. ACM. 

The authors, designers and implementers of the Valgrind debugging framework, present a 

technique for for creating efficient dynamic analysis tools that shadow every byte of memory used 

by a program with another value that tracks certain information about that byte, e.g. how many 

times that byte has been accessed, or where it was initialized from. Shadow memory enables “tools 

that use it [to] detect critical errors such as bad memory accesses, data races, and uses of 

uninitialised or untrusted data”. The technical mechanism of implementation is shown, and 

performance compared against other similar implementations, to demonstrate the relative efficiency 

of the Valgrind approach. The capabilities of Valgrind to let a tool “remember something about the 

history of every memory location and/or value in memory” is a powerful aid to support tracking the 

origins of a value to determine e.g. if that value is the result of a procedure which caused a remote 

resource to be allocated or if the value presented to a deallocation procedure was already presented 

to such a procedure. 

Nethercote, N., Walsh, R., Fitzhardinge, J. (2006). Building Workload Characterization Tools with 

Valgrind. IEEE International Symposium on Workload Characterization. IEEE. 

This extensive tutorial on Valgrind introduces the Valgrind dynamic binary analysis and 

instrumentation framework. Among its features, this tutorial documents the abilities of Valgrind to 

replace arbitrary functions or wrap functions and crucially to track the value of any location in 



 

 

 

  

   

  

 

 

 

 

  

 

 

  

 

memory or in a register, i.e. “Tools that shadow every register and/or memory location with a 

metavalue that says something about it”. The tutorial provides example of use of shadow values and 

provides the necessary documentation for implementing a new Valgrind tool which requires the 

ability both interpose between an application and shared library and to track a handle value through 

the life-time of an application to determine where it was originally initialized. 
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application running on one machine can display to another one, each physical display is managed 

by an X Server. As a consequence of the client-server nature and a desire for efficiency, certain 

basic resources are stored by the server and created and destroyed on request by the clients, “the 

basic resources provided by the server are windows, fonts, mouse cursors, and off-screen images. 

Clients request creation of a resource by supplying appropriate parameters; the server allocates the 

resource and returns a 29-bit unique identifier used to represent it”.  It is acknowledged that clients 

are likely to forget to instruct the server to destroy a resource so “the maximum lifetime of a 

resource is always tied to the connection over which it was created. Thus, when a client terminates, 

all of the resources it created are destroyed automatically”. But clearly the design is one where 

application and the display resource manager are not within the same instruction space, or even 

necessarily on the same machine, and that un-released resources are retained for the life-time of the 

application. So a resource leaking long-lived application can exhaust the server of resources. This 

overview paper on the X Window system explains the architecture of the system and explains the 

life-cycle and location of the basic X Window resource types. 

Srivastava, A., Eustace A. (2004). ATOM: a system for building customized program analysis tools.  
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ATOM, Analysis Tools with OM[timization System], is presented as a framework for 

building program analysis tools which provides the common instrumentation code required by such 

tools. Using ATOM information can be “directly passed from the application program to the 

analysis routines through simple procedure calls” and can be used for memory recording and 

profiling along with cache simulation, evaluating branch prediction and pipeline simulation. ATOM 

(like Pin and Valgrind) is intended to provide a framework that takes care of the details of binary 

instrumentation to allow a tool developer to focus on “what information is to be collected and how 

to process it”. ATOM however doesn't provide the higher level shadow memory that Valgrind 

provides, though it does provide detailed low-level mechanisms for accurate compiler and CPU



designer profiling simulation measurements. 
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