
Regis University Regis University

ePublications at Regis University ePublications at Regis University

Regis University Student Publications
(comprehensive collection) Regis University Student Publications

Summer 2009

Runtime Automated Detection of Out of Process Resource Runtime Automated Detection of Out of Process Resource

Management in the X Windowing System Management in the X Windowing System

Caolan McNamara
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
McNamara, Caolan, "Runtime Automated Detection of Out of Process Resource Management in the X
Windowing System" (2009). Regis University Student Publications (comprehensive collection). 7.
https://epublications.regis.edu/theses/7

This Thesis - Open Access is brought to you for free and open access by the Regis University Student Publications
at ePublications at Regis University. It has been accepted for inclusion in Regis University Student Publications
(comprehensive collection) by an authorized administrator of ePublications at Regis University. For more
information, please contact epublications@regis.edu.

https://epublications.regis.edu/
https://epublications.regis.edu/theses
https://epublications.regis.edu/theses
https://epublications.regis.edu/regiscollege_etds
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/7?utm_source=epublications.regis.edu%2Ftheses%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
College for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

Out of Process Resource Mismanagement: 1

Runtime Automated Detection of Out of Process

Resource Mismanagement in the X Windowing System

Caolán McNamara

Regis University

School for Professional Studies

Master of Science in Software and Information Systems

Out of Process Resource Mismanagement: 2

Dedication

Martin Mellody 1975-2009

Out of Process Resource Mismanagement: 1

Table of Contents

Abstract .. 4

Runtime Automated Detection of Out of Process Resource Mismanagement in the X Windowing

System.. 5

Problem Statement .. 6

Purpose of Thesis .. 6

Case Study... 7

Assumptions and Goals ... 7

Exploring the problem space.. 9

Overview of the X Window System.. 9

Remote X Resources ... 10

Implementation Note... 12

Problem Summary... 12

Existing Technology... 13

X Window Resource Usage Technology... 13

Analysis and Debugging Technology.. 14

Solution Architectures.. 18

Common Features ... 18

DSO Interposition ... 20

Dedicated Valgrind tool... 22

Final Hybrid Architecture.. 25

API.. 27

Implementation... 28

Testing.. 30

Test Harness .. 30

Field Testing .. 31

Detecting Known Issues ... 32

Detecting Unknown Issues ... 33

Conclusions.. 35

Future Work ... 36

Concluding Remarks.. 38

Works Cited.. 40

Appendix A: Test Matrix Results... 44

Colormap: Leak... 44

Cursor: Leak .. 44

Font: Leak ... 45

Pixmap: Leak... 45

Window: Leak ... 46

Colormap: Double-release... 46

Cursor: Double-release.. 47

Font: Double-release ... 47

Pixmap: Double-release .. 48

Window: Double-release ... 48

Colormap: Use after release .. 49

Cursor: Use after release ... 50

Font: Use after release... 50

Pixmap: Use after release .. 51

Window: Use after release... 51

Colormap: Use before acquire... 52

Cursor: Use before acquire.. 53

Font: Use before acquire ... 53

Pixmap: Use before acquire .. 54

Window: Use before acquire ... 54

Colormap: No Errors ... 55

Cursor: No Errors .. 55

Font: No Errors.. 55

Pixmap: No Errors... 55

Window: No Errors ... 55

Appendix B: DSO Interposition... 57

Appendix C: Dedicated Valgrind Tool ... 59

Appendix D: DSO-side Of Hybrid Solution .. 61

Appendix E: Using Origin Tracking .. 62

Appendix F: Annotated Bibliography.. 63

Abstract

Software applications typically allocate and deallocate resources during their lifetime. Resources

can be categorized into two broad groups, in-process and out-of-process resources where in-process

resources are local resources directly managed by a client, while out-of-process resources are

remotely managed by a client which instructs a server to allocate and deallocate the resource on its

behalf.

Out-of-process resources do not reside in a clients address space which poses an extra layer of

complexity in attempting to debug their misuse.

This thesis presents an automatic run-time solution to the problem of detecting and reporting source

code locations of application client mismanagement of out-of-process resources for a specific case-

study of the X Windowing System which lends itself to use in the wider general case.

Runtime Automated Detection of Out of Process Resource

Mismanagement in the X Windowing System

When Software applications allocate and deallocate resources during their lifetime it is

common for programmers to accidentally:

1. Fail to deallocate resources after use has been completed

2. Attempt to re-use a resource that has been deallocated

3. Attempt to use a resource that has not yet been allocated

Attempting to re-use a deallocated resource, or an unallocated resource generally results in some

type of failure of the flawed software. Failure to deallocate resources causes resource leaks; over

time these resource leaks can starve the system of available resources leading eventually to failure

in either the afflicted software, or another application attempting to gain sufficient resources to

function. On modern operating systems most resources in use by an application are released on exit,

but long-lived applications such as web-browsers or office-suites can accumulate enough leaked

resources over their life-time to noticeable degrade the overall system performance.

The misuse of in-process resources such as memory and file handles is well documented and

understood (Dumitran, 2007), (Maebe, Ronsse, De Bosschere, 2004). A number of programmers'

tools exist to detect when a handle to an in-process resource was lost without first deallocating the

resource, or when an operation has been attempted on an invalid handle. Such tools can display the

location within the source code where this has occurred. Some tools can also additionally track the

use of resources over the life-time of a process, and also report the location where an invalid

resource handle became invalid, or where a leaked handle was originally allocated.

Problem Statement

The problem of out-of-process resources is similar , but one with an extra layer of

complexity in that client software instructs a server to allocate or deallocate a resource on the

client’s behalf rather than making a direct in-progress allocation or deallocation. Analogous to

in-process resources, out-of-process resources are controlled by the client but differ in that the

resources do not reside in the address space of the client process. While they are typically

deallocated by the server on loss of connection of the client, long lived clients can cause the same

type of resource leaks for server resources as can happen with in-process resources. Attempting to

use an unallocated or released resource may cause the server to report the error to the client, or to

terminate the client, but errors may be reported asynchronously, i.e. the application may not be

informed immediately after use of an invalid handle that it was invalid but instead at some later

stage, making it more difficult to associate the error with the location that triggered the error.

To resolve these problems the client-side programmer needs detailed and reliable

information which is relevant to detecting and solving these out-of-process resource errors, i.e. the

source-code location within the program where the initial error was introduced and where the error

was manifested.

Purpose of Thesis

This thesis presents a solution to detecting and reporting the source code locations of misuse

of out-of-process resources. To determine and implement as a programmers' aid for a specific case

study of the X Windowing System, a mechanism for detecting and locating when and where handles

to the server-side resources have:

1. been lost without a directive to instruct the server to deallocate the associated resource

2. been used after a deallocation directive

3. been used without an allocation directive

The techniques deployed in this tooling can be applied to the wider general case of generic client-

side analysis of client-side controlled resources which exist in an out-of-process server.

Case Study

The X Windowing System is one method for providing a Graphical User Interface (GUI) s

on UNIX and UNIX-like operating systems. It is an example of a client-server architecture where

resources are allocated by a server on instruction by clients, which may or may not be on the same

machine as the server. Consequently, X resource leaks and misuse are difficult to identify and locate

(McCullagh, 2008). Tools exist (Allum, 2003) to indicate that an application is exhibiting

suspicious resource growth which likely indicates the presence of a leak, but not to identify where

within the client source code that this potential leak occurs, nor to report on any other class of

resource misuse.

Assumptions and Goals

The basic assumption is that the tool must be deployed on the client-side rather than

server-side in order to supply client-side source-code locations through use of the debugging

symbols of the client application binary.

The other major assumption is that the tooling should require no modification of the

application itself. As motivation for tooling which requires no modification of the application to be

debugged an example target application which could benefit from such analysis is OpenOffice.org,

which on contemporary hardware requires approximately 5 to 6 hours to build. Requiring a

complete rebuild in order to instrument it to enable detection of out-of-process resource errors

would be an inordinate up-front burden on the programmer.

The goal is a successfully implemented mechanism which is capable of operating on

http:OpenOffice.org

 unmodified real-world large application binaries such as those of the OpenOffice.org office suite or

Firefox web browser and accurately report source-level locations of X resource client-side

mismanagement during runtime.

http:OpenOffice.org

Exploring the problem space

Overview of the X Window System

The X Window System, a trademark of The Open Group, is a client/server architecture

where multiple client applications connect to an X server (Gettys & Scheifler, 2002). The

applications are the clients, they communicate with a X server which controls the physical graphic

display. Clients issue requests to the server which executes them on the clients behalf, e.g. drawing

requests, window creation, window destruction etc, while the X server relays user interaction

events to the client, e.g. mouse clicks, keyboard events, etc. (Manrique, 2001).

The term X Window System does not indicate any specific product or implementation, but

instead is defined by The Open Group as a set of protocol and application programmer interface

(API) specifications. A X server is not specified beyond the X Protocol which defines the structure

of the data which is shipped to and from that server. The X Window System been implemented by

multiple vendors to create multiple interoperable implementations. In this study the implementation

used was the XOrg Foundations's Open Source public implementation, though no non-standard

features of this implementation were used which do not exist in all other implementations of the X

Window System provided by other vendors.

The crucial architectural feature of the X model is that it doesn't constrain the client to

execute on the same machine as the server, the communication protocol can work over a network as

well as over a local inter-process channel. In either local or remote case the client and server operate

in different address spaces, and communicate over a serialized protocol, rather than execute in the

same local address space.

The X Window System specifies a C subroutine library, named Xlib, which supplies a base

layer API for drawing and windowing operations. Applications link against Xlib, issue direct in­

process calls to the Xlib API, and Xlib takes care of converting those API calls into the underlying

X Protocol which is shipped across to the out-of-process X server though some communication

pathway hidden to the client.

As an example, the following illustration shows multiple client applications making use of

Xlib's XDrawArc function which Xlib converts to the X Protocol and ships it over the network to a

remote server which renders the arcs to the screen it controls.

Illustration 1: X Window Architecture

Remote X Resources

The problem to be solved is to diagnose on the client-side, the misuse of remote resources

controlled by the client that exist in the X server. At the client-side, these resources are identified by

a simple integer number, i.e. “many Xlib functions will return an integer resource ID, which ... refer

to objects stored on the X server” (Gettys & Scheifler, 2002). These remote resources which are

controlled by the local client via these integer handles can be of type Window, Pixmap, Cursor, Font

and Colormap.

Window: A window is a region of the screen which can be shown or hidden (mapped or

unmapped).

Pixmap: “An off-screen graphics object. Pixmaps can be used in most graphics functions

interchangeably with windows and are used in various graphics operations to define patterns or

tiles” (Gettys & Scheifler, 2002). A Pixmap can be copied to a window, so Pixmaps often used in

double-buffering to rapidly update a Window without repeating a series of drawing operations.

Cursor: An image that is shown for a mouse pointer, as opposed to a text entry caret that

indicates the current text insertion point.

Font: These server side fonts are considered deprecated in favour of client-side fonts, but

their use is still supported. Server-side fonts reduced the amount of data that must be transmitted

from client to server, but limited clients to the fonts available on the server (Herrb & Hopf, 2005).

Colormap: “The colormap is a small table with entries specifying the RGB values of the

currently available colors” (Lee, 1992). Colormaps are of most use in 8 or 16 bit displays where the

number of colours that could be shown at one time is limited. Their use with more common 24 and

32 bit contemporary displays is less of a factor than historically

Window and Pixmaps are collectively known as Drawables and are often interchangeable

for various graphic operations. A major difference is that Windows are always in a hierarchy while

Pixmaps are not. Every application Window has a parent, and destroying a parent automatically

destroys all children of that parent. The Xlib API to create a Pixmap requires an existing Drawable

to be provided but the resulting Pixmap is not a child of that Drawable and not placed in a

hierarchy. A Pixmap is not destroyed when the reference Drawable is destroyed.

Given the deprecated state of server-side fonts and the increasing unlikelihood of a need to

use Colormaps the most commonly used server side resources are Pixmaps, Windows and Cursors.

Of these Pixmaps are inherently the easiest to allow to leak or otherwise misuse. They are off­

screen so failing to release them has obvious visual effect and as Drawables their similarly to

Windows might erroneously suggest that they are destroyed automatically when the reference

Drawable used to create them is itself destroyed. The server-side footprint of a Pixmap varies

according to their dimensions and colour depth, and large numbers of pixmaps can consume

significant amount of server-side memory. Pixmaps leaks has been shown to cause very serious

resource starvation in X applications (Giraldeau, Dault & des Ligneris. 2006, McCullagh, 2008 &

Erikson, 2009) leading to an inability of the X Server to provide new Pixmaps to any clients.

Implementation Note

Destroying a window automatically destroys all child Windows, this differs from the

destruction of other resources. In order to correctly report on Windows which were created but not

destroyed an implementation will have to capture the hierarchical relationship between windows in

order to flag children of a destroyed parent as themselves destroyed.

Problem Summary

Resources appear on the client side as integer ids. Those integer resource handles are

provided to an application as the result of calls through the Xlib library which communicates to a

out-of-process X server. There are five classes of resource handles, one associated with a hierarchy

where destruction of a parent results in destruction of children.

Existing Technology

X Window Resource Usage Technology

Xrestop: “Xrestop uses the X-Resource extension to provide 'top' like statistics of each

connected X11 client's server side resource usage. It is intended as a developer tool to aid more

efficient server resource usage and debug server side leakage” (Allum, 2003).

Some sample output is shown below

xrestop - Display: localhost:0
Monitoring 40 clients. XErrors: 0
Pixmaps: 81195K total, Other: 181K total, All: 81376K total

res-base Wins GCs Fnts Pxms Misc Pxm mem Other Total PID Identifier
4600000 81 175 1 806 149 25856K 10K 25867K 10413 OpenOffice.org Impress
1c00000 1376 67 1 54 80 3608K 36K 3645K 2390 gtk-window-decorator
4000000 532 307 1 190 542 2868K 33K 2901K 2671 Graphics - Mozilla Firefox
0e00000 26 39 0 18 76 169K 3K 172K 2415 wnck-applet
4c00000 28 50 1 16 45 87K 3K 91K 11328 xlib.pdf
2c00000 12 39 0 14 35 3K 2K 5K 2357 Evolution Mail and Calendar
1200000 43 47 0 20 56 1K 3K 5K 2310 Panel
1000000 6 28 0 2 176 8B 4K 4K 2302 gnome-settings-daemon
3a00000 6 28 1 1 20 4B 2K 2K 2493 tomboy
1600000 12 52 0 2 29 8B 2K 2K 2492 notification-area-applet
1a00000 4 28 0 2 34 8B 1K 1K 2347 gnome-power-manager
3800000 6 37 0 2 13 5B 1K 1K 2496 clock-applet
2a00000 2 3 0 2 47 5B 1K 1K 2373 notification-daemon
3200000 4 28 0 2 12 8B 1K 1K 2345 applet.py
2200000 4 28 0 2 12 8B 1K 1K 2348 Bluetooth Applet
2000000 4 28 0 2 12 8B 1K 1K 2346 NetworkManager Applet
1e00000 4 28 0 2 12 8B 1K 1K 2352 gnome-volume-control-applet
3000000 5 28 0 1 10 4B 1K 1K 2418 Trash Applet

The X Resource Extension allows the quantity of each type of resource and the memory

associated with them to be queried from the X server by a client. It provides access to the

information known to the X server about resource utilization. It can be used to identify suspicious

behaviour in an application which may indicate a resource leak, but it can only report what the X

server knows, and the out-of-process X server does not, and can not, know where within the

applications source code the resource leak may exist. For the same reason it does not, and is not

intended to, report on use of deallocated or unallocated resouces.

The XRes lead developer Matthew Allum (2008) plans “future work involving event

generation on resource creation/destruction”, which might provide some degree of X server-side

support for a speculative client-side debugging tool to be informed of these events. This further

extension does not exist as of the time of writing, and conceptually there remains the difficultly on

receipt of an event by a debugger to map these proposed, and possibly asynchronous, events back to

the source code location within a client which indirectly triggered the creation/destruction event via

the server.

Analysis and Debugging Technology

There is not a great deal of existing literature on the specific problem addressed by this

thesis, but there is proven technology used to solve similar problems which provide insights and

possible technological frameworks which could be adapted for use to implement a solution.

Dtrace: “DTrace provides a powerful infrastructure to permit administrators, developers,

and service personnel to concisely answer arbitrary questions about the behavior of the operating

system and user programs” (Sun Microsystems, 2009).

Dtrace has been shown (Cantrill, Shapiro & Leventhal, 2004) capable of being used to

server-side dynamically instrument a running X server to detect unusual activity and isolate the

individual connection from the offending client. And to then be used client-side to instrument that

client and detect the Xlib library calls which are known to map to that server behaviour.

DTrace is a script-able framework available only for the Solaris operating system which can

be used to query and report on a large number of kernel and user-level events that an application

triggers without modifications to the application itself. As a toolkit it is possible to speculate that

DTrace has sufficient features to be used to implement tooling which captures client-side Xlib

function calls, examine their arguments and track what resources have been created, but not

destroyed and identify use of deallocated/reallocated resources. But no such implementation is

documented to exist. The tie to the Solaris operating system makes implementing a solution based

on DTrace equally limited to Solaris.

Purify: A commercial program that “developers and testers use to find memory leaks and

access errors” (Hastings & Joyce 1992). Purify is a dynamic binary analysis tool that reports errors

at run-time of the application being tested. Before execution the application is re-linked by purify in

order to rewrite the binary to intercept attempts to read and write memory and track if an attempt to

read/write is on an invalid or uninitialized area of memory.

Purify solves the analogous problem of detecting misuse of memory as an in-process

resource and can report on memory leaks, but has no mechanism for extension nor is Purify's source

available for modification to base an adaptation which could perform the same task for

out-of-process resources.

DSO interposition: Programmers commonly block code together into libraries. Libraries

whose code is bound to at run-time rather than at link time, and which can therefore be shared

between multiple applications at the same time are termed shared libraries, or Dynamic Shared

Objects (Drepper, 2006). The Xlib library is one such library. Among the features of a Dynamic

Shared Object (DSO) is the capacity to override individual functions that an application would call

from a DSO by providing at application launch-time another shared library with functions of the

same signature as those found in the normal library. The dynamic linker can be trivially requested to

resolve attempts to find dynamic symbols against the provided shared library before searching the

standard libraries.

Another feature of a DSO is that there is an API to explicitly search for functions by name in

a named shared library and bind function pointers to them. By combining the two techniques a

shared library can be written which can be interposed between the application and the normal

shared library. The interposed library can provide methods which override the standard library,

carry out additional work, and forward the method onwards to the standard library.

DSO interposition is a generic technique which has been successfully applied to solving a

wide range of similar problems, e.g. detecting and fixing file descriptor leaks (Dumitran, 2007) and

profiling Xlib function calls (Curry, 1994).

Support for extracting the source code file and line number from within a shared library to

determine where within the application the call originated is then available through the use of the

backtrace function call provided by the Linux standard C library and mapping the resulting data

with existing debug information tools (McNamara, 2007).

Valgrind: “A programmable framework for creating program supervision tools such as bug

detectors and profilers. It executes supervised programs using dynamic binary translations, giving it

total control over their every part ... without the need for recompilation or relinking prior to

execution” (Nethercote & Seward 2003). Valgrind is a basis on which various execution analysis

tools can be built. The best known tool is Memcheck which can detect: use of uninitialized memory,

use of deallocated memory, use of unallocated memory and memory leaks. Unlike purify the source

is available and modification is allowed. Valgrind is extensible and a number of diverse tools have

been successfully implemented using the Valgrind core.

Valgrind, unlike the tracing framework Dtrace, and unlike other dynamic binary

instrumentation frameworks such as ATOM (Rivastava & Eustace, 2004) or PIN (Luk, et.al, 2005),

supports origin tracking. Origin tracking enables the location of where an invalid value was initially

injected into the program flow and is the mechanism by which the Valgrind tool Memcheck

implements identifying the line of code where an invalid pointer was initially assigned to a

variable.

Without origin tracking, an analysis tool can report that an invalid value has been operated

on, and show the immediate stack-trace at that point. The immediate history of where the value was

passed down from is clear from a stack trace, but the history of propagation of the value from the

point where it was initially assigned an invalid point to the entry point of the stack-trace is not

known. With origin tracking, the question of why a value is invalid can be answered by recording

program locations where unusable values are assigned and storing this information in place of the

unusable values themselves, facilitating the automatic support of propagating the origin information

for an invalid value piggy-backed on the value itself has it propagates through the program flow,

making it available at error detection time to report the origin of the invalid value.

Valgrind's extensible nature, proven real-world suite of tools based on it, powerful origin

tracking and accessible documentation makes it a very attractive foundation for building program

analysis tooling.

Solution Architectures

There are a number of possible approaches to solving the problem of tracking use of remote

resources in order to report to the programmer the source-code location within the program of leaks

and misuses of them. The specific capabilities required are the capabilities to report, without

recompilation of the application, the source-code locations of:

1. where a leaking resource was allocated

2. where an invalid resource was operated on

3. where an invalid resource was previously deallocated or initially incorrectly allocated

This section illustrates the possible solution architectures, their individual strengths and weaknesses

and examines their capabilities to fulfil the stated goals.

Common Features

The common feature of all approaches is the necessity to detect and capture the resource

allocation, resource deallocation, and resource utilization events, and the source-code origin of

those events. Each solution needs to record allocation and deallocation events, and to examine

utilization events in order to compare the utilized resource against previously allocated and

deallocated resources.

Resources are identified in a client by integer values, and are therefore basically

indistinguishable from any other integer value used by the application. To track them the

mechanism by which they enter into the application must be captured. There are two major options

for capturing this information for the specific case study of the X Window System: at the X

Protocol level where the information from the X server is received, or at the level of Xlib API entry

points.

Illustration 2: Normal Application Stack

Capturing at entry point to Xlib library calls has the advantage that the same technique is

applicable to a far wider set of similar problems where integer handles enter the application space

through specific API function calls, while protocol level capture is more difficult as protocol

schemes differ to a higher degree than function calls whose arguments and return values vary

according to the API, but always adhere to the same ABI (Application Binary Interface) for a given

platform.

A representative sample of the Xlib API is shown below.

Pixmap XCreatePixmap(Display *display, Drawable d, unsigned int width,
unsigned int height, unsigned int depth)

int XFreePixmap(Display *display, Pixmap pixmap)
int XFillRectangle(Display *display, Drawable d, GC gc, int x, int y,

unsigned int width, unsigned int height)

XCreatePixmap is the sole resource acquisition call in the Xlib that creates a Pixmap,

XFreePixmap is sole resource destruction call, and XFillRectangle is one of a large number of

operations that operate on a Drawable (either a Window or Pixmap). This is the general pattern for

most resources, though some resources have multiple acquisition API calls and some have multiple

destruction calls. Appendix A is a comprehensive list of the resource acquisition and destruction

API calls.

All proposed solutions outlined depend on intercepting the Xlib API calls, parsing their

arguments, and comparing utilized resource ids against resource ids extracted from intercepted

acquire and destruction calls.

DSO Interposition

Calls to dynamic libraries such as Xlib can be intercepted by interposition (Curry, 1994)

where a replacement library can be interposed between client and the normal dynamic library. The

DSO Interposition technique can be used to implement an interposed library which overrides the

functions found in libX11 that are of relevance to the case-study goals.

A DSO Interposition solution consists of:

1.	 For each resource creation/destruction API call collect a callstack within the interposed

library.

2.	 Keep a map of the associated resources to those callstacks.

3.	 Forward the calls from replacement library to the real Xlib

4.	 Wrap the remainder of the Xlib API to test passed resource arguments against the maps of

allocated and unallocated resources.

5.	 On detection of use of a deallocated or unallocated resource display an error including the

call-stack of the detected location of the error and output and the code locations where they

were created and destroyed when known.

6. On exit of the application output all callstacks of allocated resources which have had no

matching deallocation call during the applications lifetime.

Illustration 3: Interposed Solution Stack

Given the representative sample of the API shown above, a sketch of the key components of

the implementation is shown in Appendix B. This solution is relatively fast. The only substantial

overhead is that caused by the execution of the replacement library functions. What this solution is

capable of doing is:

1.	 detect and report the location of re-use of a released resources, report the location of the

previous release of that resource, and report the location of the initial acquisition of the now

released resource.

2. report resources acquired but never released

3. detect and report the location of use of an uninitialized resource

However, what this solution is incapable of doing is report the location where a utilized

uninitialized resource was initially assigned its invalid value. By operating solely on a API

interception level its impossible to detect the introduction of a value into the application that does

not pass through the interposed library. The call-stack at the time of use of an uninitialized value

may by happen-chance include the origin of the initial introduction of the invalid value, but in

general the only mechanism capable of reporting the location of the origin of introduction of an

uninitialized or invalidly initialized client-side integer handle is through some form of binary

instrumentation origin tracking (Bond, et.al, 2007).

Dedicated Valgrind tool

The key of Valgrind in the context of the overall goal, on error detection, to report the

location of introduction of an uninitialized resource handle to equal fidelity to that of reporting the

location of deallocation and prior allocation of a now invalid handle, is Valgrind's origin tracking

feature. Conveniently, the Valgrind framework provides mechanisms to generate and store

callstacks on request and map them back to source code and line numbers. Valgrind also provides a

DSO function wrapping mechanism. Both of these convenience mechanisms remove the necessity

within the DSO Interposition technique to implement that additional infrastructure.

However running the entire client application through the Valgrind dynamic binary

instrumentation framework is not without its costs. Running an application under Valgrind is at least

5 times slower than native execution, though this compares well to other similar dynamic binary

interpreter frameworks such as Pin and DynamoRIO (Valgrind Developers, 2009).

A solution implemented using the Valgrind framework to create a dedicated tool to achive

the case-study goals consists of:

1. Wrap the Xlib API within a new Valgrind tool.

2.	 For each resource creation/destruction API call request the Valgrind core to store a callstack.

3.	 Keep a map of the associated resources to those callstacks.

4.	 For the remainder of the Xlib API test passed resource arguments against the maps of

allocated and unallocated resources.

5.	 On detection of use of a deallocated resource instruct the Valgrind core to display the

callstack of the detection location and display the cached acquisition and destruction

callstacks.

6.	 On detection of use of an unallocated or otherwise invalid resource instruct the Valgrind

core to display the callstack of the detection location and request from Valgrind the origin

tracking information from Valgrind for that integer value and display the origin location

where that value was introduced.

7.	 On exit of the application output all callstacks of allocated resources which have had no

matching deallocation call during the applications lifetime.

Illustration 4: Dedicated Valgrind Tool Stack

Given a representative sample of the API shown above, a sketch of the key components of

the implementation is shown in Appendix C. This solution is capable of meeting the immediate

goals, it can

1.	 detect and report the location of re-use of a released resources, report the location of the

previous release of that resource, and report the location of the initial acquisition of the now

released resource.

2.	 report resources acquired but never released and report the location of the acquisition

3.	 detect and report the location of use of an uninitialized resource, and report the location or

the origin of that invalid value.

Using the Valgrind dynamic binary instrumentation framework gains the ability to detect

origin information for uninitialized values, at the cost of increased runtime over, but retaining the

ability to execute on unmodified binaries. However, such a custom tool is hard-coded to the case­

study and is not amenable to easy extension to the wider case. To extend the tool to handle different

APIs or other classes of similar problems it must be manually extended.

Final Hybrid Architecture

An optimal solution that supports origin tracking is a Valgrind-based tool which offers an

extensible route to easily handle similar problems. An open design decision is whether to offer a

tool which can just be used to check for out-of-process resource misuse, albeit one that is extensible

to multiple situations, or to extend the existing Valgrind memory checking tool Memcheck.

Memcheck tests for analogous in-process memory allocations/deallocations, detects use of

unallocated memory and deallocated memory and reports on memory leaks. Memcheck has also

been extended to track file descriptors and report on double closes of file descriptors, use of closed

and unopened file descriptors and report on file descriptors that are never closed. Extending

Memcheck to support reporting of arbitrary resource leaks and misuse via an extensible interface

has the advantage of providing a tool which is capable of reporting multiple classes of both in-

process and out-of-process errors at the same time, giving the end programmer a single, simpler

mechanism to test for resource leaks and misuse regardless of the type of resource.

The final architecture which supports these desirable features consists of modifications to

Memcheck to support tracking and reporting on arbitrary resources

1.	 A Memcheck API which can be used by code executed inside the Valgrind runtime dynamic

binary instrumentation.

2.	 A set of interposed DSOs each of which implements a wrapper around the underlying

libraries which provide and consume the resource handles and communicate when executed

under Valgrind with the extended Memcheck tool using the Memcheck API to inform

Memcheck of the resources created, destroyed and request validation of each resource use.

The in-process resource checks on memory and file descriptors of Memcheck are unaffected

by these extensions.

Illustration 5: Final Valgrind Stack

The architectural diagram illustrates the basic concepts of the design. The target application

runs under the extended Memcheck Valgrind tool, and Memcheck makes its normal tests on all

memory and file descriptor uses. Calls to the various APIs are intercepted by the interposed DSOs

which use runtime Memcheck hooks to inform Memcheck of the client's use of integer handles to

out-of-process resources and categorize them as acquire, release or use operations.

So informed, the extended Memcheck can then report on out-of-process resources

equivalently to in-process ones. The use of an interposed DSO to inform Memcheck of resource

events enables a relatively easy extension mechanism to simply create additional wrapper DSOs for

similar situations to the case-study which can reuse the generic Memcheck logic.

API

Valgrind supports an API which can be used by code executed inside the Valgrind runtime

dynamic binary instrumentation, i.e. VALGRIND_DO_CLIENT_REQUEST which an application

running under a given Valgrind tool can use to communicate with the controlling Valgrind instance,

e.g.

VALGRIND_DO_CLIENT_REQUEST(..., VG_USERREQ__MAKE_MEM_UNDEFINED, _qzz_addr,
_qzz_len, ...);

to inform Memcheck that a given range of memory should be considered undefined. Using this API

as a basis, support for informing Memcheck of remote resources can be added though the creation

of an API of:

VG_USERREQ__ACQUIRE_RESOURCE(handle, type, parent)

VG_USERREQ__USE_RESOURCE(handle, type)

VG_USERREQ__RELEASE_RESOURCE(handle, type)

Where a type is a simple integer id to disambiguate resources with potentially the same id but of

different types, e.g. Font versus Pixmap.

The semantics are that the destruction of a parent id as passed to extended Memcheck with

VG_USERREQ__ACQUIRE_RESOURCE in the creation on a child implies the automatic

destruction of all children of that parent id. Pixmaps which require the existence of another

Drawable in their creation API by this rule do not inform Memcheck that the reference Drawable is

a parent, but instead pass a NULL id as a parentless resource. Adding some complexity to this area

is that the Xlib API provides a XDestroySubwindows() which destroys the children of a window,

but not the window itself. To support this concept, the Memcheck API additionally requires a

VG_USERREQ__RELEASE_SUBRESOURCES(handle, type) API call.

Implementation

Many Xlib API calls take Drawables as arguments, in order to support checking the validity

of arguments passed to such methods both Window and Pixmaps must be considered. The simplest

solution is to specify that the type argument in VG_USERREQ__USE_RESOURCE is a bitfield

where types can be ORed together to indicate that any of the types specified is legal for use.

Unlike the architecture proposed for a dedicated Valgrind tool, these APIs are primarily for

use within an interposed DSO to provide it with a way to communicate with the extended

Memcheck Valgrind tool when the application it is linked to is executing under Valgrind. The

extended Memcheck has the task of tracking the resource usage, while the DSO has the task of

feeding the events into Memcheck. A representative section of the DSO side of the implementation

to handle a subset of the API that demonstrates acquiring a resource, releasing a resource, and

capturing the use of a resource which may be of multiple types is shown in Appendix D.

The crucial components on the extended Memcheck are the handlers for these events, and

the built-in Memcheck support for origin tracking and stacktrace recording. The handlers for the

events in this hybrid model follows the same pattern as shown for the dedicated tool in Appendix C,

while a simplified demonstration of the use of origin tracking to report the location where an

uninitialized value entered the program flow is shown in Appendix E to illustrate the key issues for

the VG_USERREQ__USE_RESOURCE handler.

The corresponding handlers for the acquire and release operations store the stack traces of

these events and associated them with the handle id. The release handler also makes use of the use

handler in order to report on double releases, or releases of acquired resources.

The Memcheck-side is completely unaware of and independent of the Xlib API. It deals

solely in terms of integers being flagged by the external helper DSO as handles to remote resources.

The helper DSO provides the hierarchical information for each handle in order for Memcheck to

infer that acquired child handles have become invalid.

A feature of the X Windowing System that adds a certain degree of complexity to the

specific case study is that all Windows must be the child of some other window. A clients toplevel

window therefore must itself be the child of some other window, i.e. the root window of the

hierarchy is not created by the client, but instead exists before the instantiation of the client but the

client may, and in practice already certainly must, operate on its resource handle. A number of other

instances of this situation where a client makes use of resource ids not created by itself, either as

parents for windows or for querying for shared desktop resources, exist.

In order to not trigger false positives of resource misuse reports on use of resources before

allocation, these resource handles must be explicitly excluded by the interposed DSO from the use

events reported to Memcheck. Examples include operations on the SelectionOwner window id in

order to paste content from one application to another, or creation of a toplevel window as a child of

the DefaultRootWindow id. In these two examples non-destructive operations on those window ids

should be filtered out before reporting to Memcheck to suppress false positives, while attempts to

destroy those windows can be allowed to pass through to Memcheck to be reported as invalid

operations.

The generic Memcheck extension supports sufficient operations to capture the relations

between resources that are necessary to maintain a model of the validity and life-cycle of remote X

Windowing resources in order to report meaningful information about their misuse. But it is

insulated from the details and semantics of that particular case study API. It is unaware of the actual

API in use and sufficiently flexible to be reused without modification by alternative interposition

DSOs which implement different remote resource APIs that follow a similar acquire/release pattern.

This architecture enables individual quirks of the API to be handled within each

supplementary DSO, such as the Xlib SelectionOwner window issue, without compromising the

relative simplicity of the general purpose reusable core.

Testing

Test Harness

To create a comprehensive test-suite to prove that the tooling is sufficient to handle all

detectable scenarios, the Xlib API must be analyzed to determine the number of different possible

remote resources, the calls to acquire them, the calls to release them and aspects of the semantics of

use.

Manual inspection of the API and associated documentation (Gettys & Scheifler, 2002)

shows six possible server-side resources, Colormaps, Cursors, Fonts, Pixmaps, Windows and

Graphic Contexts. Of these six possibilities, inspection of Graphic Contexts shows that the client-

side integer handle for the server-side Graphic Contexts can only be acquired or released as part of a

local structure which is dynamically allocated or deallocated by the Xlib internals. As such, using

the final architecture of an extended Memcheck solution, misuse of this category of remote resource

will be already automatically detected through the standard Memcheck local memory tests. Leaks,

use before acquisition and use after release, will all be captured by the standard local tests, so this

category of resource can be discarded from consideration.

The Xlib API can then be categorized into calls that return or take a handle to a remote

resource versus those that don't. In this case the second category is clearly not relevant and can be

discarded. The first category can be further subdivided into acquire calls, release calls, subrelease

calls and usage calls.

The API calls that return or take a remote resource can be further categorized into primitive

and utility calls. Utility calls are those calls which do not directly operate on the resource, but pass

the resource through other intermediate API calls. The remaining API calls, which do not

decompose into other APIS calls, are our primitives. These comprise the the subset of calls that are

necessary to intercept in the interposed DSO, the utility calls can be discarded from consideration as

their use of remote resources is delegated to the primitives. As a concrete example the

XCreateFontCursor API call is a utility function which wraps XCreateGlyphCursor and so does not

need to be explicitly intercepted.

The test-harness then consists of tests that exercise capture of every primitive entry point to

acquire and release each remaining category of resource. Each category of resource requires tests to

validate:

1. No errors: That legal use of the resource does not trigger a false positive

2. Leak: That omission of a release call is detected

3. Use before acquire: That use of an never-valid handle is detected

4. Use after release: That use of a released handle is detected

5. Double Free: That an attempt to release an already released handle is detected.

Strictly speaking double-frees are a sub category of “Use after release”. But is an important

grouping worthy of explicit test-cases as historically the local memory equivalent of duplicate use

of the “free” memory release call has been a source of many security exploits (MITRE, 2009).

The source of the resulting test cases derived from the above analysis and the corresponding

output from the modified Memcheck can be found in Appendix A. For the purposes of the

test-harness, all acquire and release paths are exercised, but due to the space required only a

representative selection of the API that operates on each category of resource is selected.

Field Testing

The project goal is that the tooling is sufficient to detect resource misuse in unmodified

real-world large application binaries. A reasonable target is OpenOffice.org, a large office suite

available for Linux and other UNIX operating systems which has been shown to suffer from X

http:OpenOffice.org

resource leaks in the past and suspected of resource leaks at present.

Detecting Known Issues

McCullagh (2008) opened a bug against OpenOffice.org 2.3 to report “both Impress and

Writer crashing thin clients where a large amount of image data is placed in the document. The

application pushes the pixmap image data across onto the X server which is forced to allocate

memory to store it”. Traditional debugging discovered that the root cause was a remote X Pixmap

leak where matching a XFreePixmap call on the result of XCreatePixmap was missing and

subsequently solved for OpenOffice.org 2.4. The difficulty in manually discovering the origin of

this leak was a prime motivation for this thesis.

This bug is known to be a Pixmap leak and the location of the leak also known, so it

provides a real-world scenario in a large application which the tooling should theoretically be able

to discover and report accurately on. The error report can be compared against the known location

of the error to validate the results.

For the purposes of the experiment the bugfix was reverted from a local copy of

OpenOffice.org 3.1 to recreate the leak and the binary started under the modified Memcheck tooling

and immediately quit after start up was completed. OpenOffice.org successfully executed under the

framework, and at normal program termination the following trace was output by the tooling:

==13354== Resource 0x46002fb of class 2 never released, acquired at
==13354== at 0x400E2A6: XCreatePixmap (xr_intercepts.c:255)
==13354== by 0x548154F: SalGraphics::DrawAlphaBitmap(SalTwoRect const&,

SalBitmap const&, SalBitmap const&, OutputDevice const*)
(salgdilayout.cxx:793)

==13354== by 0x541322D: OutputDevice::ImplDrawAlpha(Bitmap const&,
AlphaMask const&, Point const&, Size const&, Point const&, Size const&)
(outdev2.cxx:1983)

==13354== by 0x5413CF8: OutputDevice::ImplDrawBitmapEx(Point const&, Size
const&, Point const&, Size const&, BitmapEx const&, unsigned long)
(outdev2.cxx:891)

==13354== by 0x54141FA: OutputDevice::DrawBitmapEx(Point const&, Size const&,
Point const&, Size const&, BitmapEx const&) (outdev2.cxx:788)

==13354== by 0x53E1C6E: ImplImageBmp::Draw(unsigned short, OutputDevice*,
Point const&, unsigned short, Size const*) (impimage.cxx:550)

==13354== by 0x54145B7: OutputDevice::DrawImage(Point const&, Image const&,

http:OpenOffice.org
http:OpenOffice.org
http:OpenOffice.org
http:OpenOffice.org

unsigned short) (outdev2.cxx:1204)

The reported source-code location of “salgdilayout.cxx:793” identified the following line of

code

Pixmap aAlphaPM = XCreatePixmap(pXDisplay, hDrawable_, rTR.mnDestWidth,

rTR.mnDestHeight, 8);

which correctly identifies the source of the known bug where the handle returned by this

XCreatePixmap was never destroyed with a matching XFreePixmap, accumulating X Server

resources leading to an eventual resource starvation.

Detecting Unknown Issues

The modifications were shown to be capable of discovering the known issue, but another

issue was also reported on exit from a basic start-up and exit cycle, i.e.:

==29004== Resource 0x4800015 of class 8 never released, acquired at
==29004== at 0x400E4CE: XCreatePixmapCursor (xr_intercepts.c:292)
==29004== by 0xC7A2196: x11::SelectionManager::createCursor(char const*,

char const*, int, int, int, int) (X11_selection.cxx:277)
==29004== by 0xC7A4624: x11::SelectionManager::initialize(

com::sun::star::uno::Sequence<com::sun::star::uno::Any> const&)
(X11_selection.cxx:443)

==29004== by 0xC7A4AD5: x11::SelectionManagerHolder::initialize(
com::sun::star::uno::Sequence<com::sun::star::uno::Any> const&)

(X11_selection.cxx:3973)

Some investigation of this report showed that the detection of an additional leak is accurate.

The Cursors created through XCreatePixmapCursor at the reported location had no matching

XFreeCursor call creating a very small previously unknown leak. Due to this discovery a fix was

created and submitted for inclusion into OpenOffice.org 3.2 (McNamara, 2009).

The known bug reported by McCullagh is not the only reported bug where xrestop indicated

the likely presence of an X resource leak. Erickson (2009) also reported a bug discovered in

OpenOffice.org 2.4.1 where “Working in OpenOffice Impress/Presentation is fine until starting

"Slide Show", which caches excessive amounts of pixmap data to thin-client memory. This is bad

because thin clients generally have very little amount of RAM (64-128MB is typical), and when all

of the RAM is exhausted by something like excessive pixmap memory usage, the session simply

http:OpenOffice.org
http:OpenOffice.org

crashes outright, causing data loss.”

The symptoms reported are similar to the bug reported by McCullagh but were unchanged

by the fix for that problem. The root problem was unknown, but xrestop showed an increase of two

Pixmaps and a Window after every new use of the slide show making this example a candidate for

investigation with this tooling. Running the presentation software under the tooling and starting and

exiting the Slide Show provided a vast stack trace, an abbreviated version of which appears here

that contains the major stack frames, that identifies the locations where an X resource related to

starting a slide show has leaked.

==29471== Resource 0x4400c14 of class 2 never released, acquired at
==29471== at 0x400E2A6: XCreatePixmap (xr_intercepts.c:255)
==29471== by 0x62C468F: gdk_pixmap_new (in

/usr/lib/libgdk-x11-2.0.so.0.1700.0)
==29471== by 0x54F4588: Window::ImplInit(Window*, long long,

SystemParentData*) (window.cxx:824)
==29471== by 0x548A789: ImplBorderWindow::ImplInit(Window*, long long,

unsigned short, SystemParentData*) (brdwin.cxx:1887)
==29471== by 0x548A89A: ImplBorderWindow::ImplBorderWindow(Window*,

SystemParentData*, long long, unsigned short) (brdwin.cxx:1922)
==29471== by 0x5500D79: WorkWindow::ImplInit(Window*, long long,

SystemParentData*) (wrkwin.cxx:76)
==29471== by 0x55010B3: WorkWindow::WorkWindow(Window*, long long)

(wrkwin.cxx:124)
==29471== by 0xD6BAA37: sd::SlideShow::StartFullscreenPresentation()

(slideshow.cxx:1204)
==29471== by 0xD6BABF1: sd::SlideShow::startWithArguments(

com::sun::star::uno::Sequence<com::sun::star::beans::PropertyValue> const&)
(slideshow.cxx:838)

Examining the reported stack to discover the owner of the acquired Pixmaps reported to be

leaked showed that the object (WorkWindow in the stacktrace above) referencing the remote

resources was not itself correctly released. Once discovered the a simple fix for the leak was

submitted for consideration for inclusion in OpenOffice.org 3.2 (McNamara, 2009).

These results show that the tooling is practical to use with a large real-world application,

discovers and reports accurately on X resource misuse, dramatically reducing the effort required to

identify the existence and source-code location of the introduction of those errors.

http:OpenOffice.org

Conclusions

The presented solution operates on unmodified binaries and reports locations where a

resource was acquired but not released and locations where invalid resource handles are used. On

use of an invalid resource handle, the location where the resource was either previously deallocated

or where the uninitialized handle was introduced into the program flow are shown. There are vital

pieces of information to guide the programmer in solving the detected flaws.

The tooling is not tied to one specific category of out-of-process resource tracking and can

be extended to support any similar situation where client-side code manages out-of-process

resources through an API which can be intercepted. Multiple DSOs to intercept different APIs can

coexist at runtime communicating with the central hub to support checking multiple APIs at the

same time.

What has been demonstrated by this thesis is a practical architecture and set of techniques to

enable building debugging tools that are aware of out-of-process resources which otherwise can not

be seen by current in-process resource monitoring debugging tools such as traditional bounds

checkers and memory checkers. The architecture has been shown to be capable of successfully

automatically discovering and correctly reporting errors on misuse of remote resources in the X

Windowing System case-study to an equivalent degree of quality as performed by a standard

Valgrind Memcheck tool for in-process memory errors.

Future Work

There is scope for future work in both the specific X Resource tracking tool plugin and the

wider resource tracking architecture.

Image Grabs on Drawables: Specific to the X Window case the tooling could be improved

by adding features to the API interceptor to capture image grabs of Drawables at destruction time to

provide a view of them in a debugging GUI to help visually identify what was last referenced by a

handle if it is later used after becoming invalid. Similarly at exit time the tooling could be extended

to take image grabs of the contents of leaked Drawables.

The core generic part of the tool could be enhanced to help isolate difficult to debug

problems that are not specific to the X Windowing System.

Instrument a particular execution path: A trigger mechanism to control where API

interception begins and ends during a clients lifecycle would enable verifying that a given execution

path's resource utilization matches expectations. A particular execution path might not leak

resources from the perspective that all resources are eventually released, but it may be considered to

logically leak (Maebe, 2004) where resources should have been released earlier than they eventually

are. Support for resource checking between check points would enable detection of such logical

leaks.

Time stamping: Enable recording time-stamp information for operations on resource

handles and enable supporting arbitrary queries to search for long lived resources that are unused

for long periods of time prior to eventual destruction. Getting access to this information would

enable discovery of potential lost resource optimization opportunities.

Support Reparenting Resources: Some API calls may reparent a resource where a given

resource is moved from one part of the hierarchy to another. There is currently no support for this

feature, so there is the theoretical possibility of a resource being reported as leaking when it has in

fact be reparented under another resource which was subsequently destroyed automatically

destroying its subresources.

Implement More API Interceptors: The case-study implemented one interposed DSO for

one API, creating extra plugins for other APIs that control remote resource through handles (e.g.

APIs that control remote database resources) would exercise the core to identify if the supported

semantics of acquire, release, and sub-release are sufficient for the general case or if further

extensions to the internal API is required to support additional concept used by other APIs, e.g.

speculatively a given API might include a call to destroy an entire category of resources, a concept

which the current core doesn't support.

Formal API description language: Manually examining the Xlib API documentation to

determine whether a call that returns a resource places a responsibility to release ownership of that

resource to the caller or not, and if so, what is the correct release function was fraught with

difficulty, e.g the documentation for. XCreateFontCursor makes no mention if the returned Cursor

should be released by a client and no mention of a corresponding release function, but a

XFreeCursor call is separately documented and references XCreateFontCursor. Wrapping the APIs

by manually writing wrapping functions with the same signatures as the API that forward to the true

API is a tedious task that should be possible to mostly automate.

A formal API description language with support for indicating which out parameters are the

responsibility of the caller to release and with what matching API would resolve these ambiguities.

Such a language should have notation for indicating if out parameters are part of a hierarchical

model where children are automatically destroyed on destruction of a parent and mechanisms for

describing how an API call may modify the resource hierarchy, e.g. API calls that remove a child

from one hierarchical tree and add it to another. A language along these lines would enable

automated processing of APIs to generate interposition DSOs without tedious manual parsing of

documentation and provide a common language that further tools that perform dynamic and static

analysis of software could reuse.

Concluding Remarks

This thesis has presented a practical architecture for tracking out-of-process resources

residing in a server, but controlled by a client, in order to automatically at client-side report on

resource leaks and other misuses by an individual client. The techniques shown can be applied to

the general case of improving the quality of Client/Server Architectures where equivalent defects

can otherwise go undetected, for example:

Remote Procedure Calls: Remote Procedure Call (RPC) technology enables clients to

execute procedures in another address space, typically on a remote server. Server-side resources

created or controlled over RPC by a client are vulnerable to the same defects as described in the

case-study. The techniques shown here can be used to extract acquire/release ownership rules of

resources controlled by a given RPC API and married to the demonstrated model in order to

similarly detect volition of ownership rules of remote resources. APIs based on conceptually similar

out-of-process middleware technology such as Common Object Model or CORBA are equally

vulnerable to clients accidentally either exhausting server-side resources, or exhausting the

maximum available allocation for a single client. Applications based on these remote invocation

technologies can benefit from debugging tools that automatically track their remote resource

utilization and report client-side locations of remote resource leaks and misuse.

Remote Database Connectivity: The Open Database Connectivity (ODBC) API is a

standard that allows a client to access remote databases. Basic errors in client-side ODBC

applications are capable of creating effective leaks at server side where a client request causes

memory to be allocated in the server but the client omits the call that directs the server to release the

memory e.g. “only the SQL_DROP option of the SQLFreeStmt API actually frees all memory

associated with the handle. SQL_CLOSE and SQL_UNBIND do not ... each statement handle

allocated by the application also results in memory allocated on the server” (IBM, 2008). Similar

possibilities exist in other mechanisms for accessing remote databases, e.g. Java Database

Connectivity and ActiveX Data Object.

Wrapping the remote database APIs to record which calls return handles to acquired remote

resources that need to be explicitly released with specific calls would enable the client-side

programmer to detect and debug these errors.

Works Cited

Allum, M. (2003). XResTop is A 'top' like tool for monitoring X Client server resource usage.

Retrieved Jul 16, 2009 from http://www.freedesktop.org/wiki/Software/xrestop

Allum, M. (2008). Xres. Retrieved Jul 16, 2009 from

http://www.x.org/wiki/PeopleProjectsPresentation

Bond, M.D., Nethercote, N., Kent, S.W., Guyer, S.Z., McKinley, K.S. (2007). Tracking bad apples:

reporting the origin of null and undefined value errors. Proceedings of the 22nd annual ACM

SIGPLAN conference on Object-oriented programming systems and applications. ACM.

Cantrill, B.M., Shapiro, M.W., Leventhal, H.L. (2004). Dynamic Instrumentation of Production

Systems. Proceedings of the USENIX 2004 Technical Program. USENIX. Retrieved Feb 17,

2009 from

http://www.usenix.org/event/usenix04/tech/general/full_papers/cantrill/cantrill_html/

Curry, T.W. (1994). Profiling and Tracing Dynamic Library Usage via Interposition. Proceedings of

the USENIX Summer 1994 Technical Conference. USENIX. Retrieved Feb 17, 2009 from

http://www.usenix.org/publications/library/proceedings/bos94/full_papers/curry.ps

Drepper, U. (2006). How To Write Shared Libraries. Retrieved Jul 16, 2009 from

http://people.redhat.com/drepper/dsohowto.pdf

Dumitran, D. (2007). Fixing File Descriptor Leaks. Master's thesis, Massachusetts Institute of

Technology. Retrieved Feb 17, 2009 from http://dspace.mit.edu/handle/1721.1/41645

Erickson, J. (2009). Starting "Slide Show" caches pixmap data excessively, crashing thin clients.

Retrieved Jul 10, 2009 from http://qa.openoffice.org/issues/show_bug.cgi?id=97906

http://qa.openoffice.org/issues/show_bug.cgi?id=97906
http://dspace.mit.edu/handle/1721.1/41645
http://people.redhat.com/drepper/dsohowto.pdf
http://www.usenix.org/publications/library/proceedings/bos94/full_papers/curry.ps
http://www.usenix.org/event/usenix04/tech/general/full_papers/cantrill/cantrill_html
http://www.x.org/wiki/PeopleProjectsPresentation
http://www.freedesktop.org/wiki/Software/xrestop

Gettys, J., Scheifler, R.W. (2002). Xlib - C Language X Interface. X Consortium. Retrieved Feb 18,

2009 from http://www.xfree86.org/current/xlib.pdf

Giraldeau, F., Dault, J.M, des Ligneris, B. (2006, September). MILLE-XTERM and LTSP. Linux

Journal. Specialized Systems Consultants, Inc. Seattle, WA.

Hastings, R., Joyce, B. (1992). Purify: Fast detection of memory leaks and access errors.

Proceedings of the Winter USENIX Conference. USENIX. Retrieved Feb 17, 2009 from

http://opera.cs.uiuc.edu/probe/reference/debug/dynamic/purify_92.pdf

Herrb, M., Hopf. M. (2005). New Evolutions in the X Window System. Proceedings of

EuroBSDCon 2005.

IBM (2008). ODBC S1001 / HY001 Memory Allocation Failure. Retrieved Aug 18, 2009 from

http://www­

01.ibm.com/support/docview.wss?uid=nas12baf94c1a1ddbef48625660a0075db8a

Lee, K. (1992). Graphics Effects by Manipulating X Colormaps. The X Journal, May 1992.

Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J, Hazelwood,

K. (2005). Pin: building customized program analysis tools with dynamic instrumentation.

Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and

implementation. ACM.

Maebe, J., Ronsse, M., De Bosschere , K. (2004). Precise detection of memory leaks. Second

International Workshop on Dynamic Analysis. IEEE.

Manrique, D. (2001). X Window System Architecture Overview HOWTO. Retrieved Jul 16, 2009

from http://www.faqs.org/docs/Linux-HOWTO/XWindow-Overview-HOWTO.html

McCullagh, G. (2008) OOo caches large pixmaps to X server, crashing the X server. Retrieved Aug

http://www.faqs.org/docs/Linux-HOWTO/XWindow-Overview-HOWTO.html
http://www
http://opera.cs.uiuc.edu/probe/reference/debug/dynamic/purify_92.pdf
http://www.xfree86.org/current/xlib.pdf

18, 2008 from http://www.openoffice.org/issues/show_bug.cgi?id=85321

McNamara, C. (2007). backtraces and prelink. Retrieved Jul 16, 2009 from

http://blogs.linux.ie/caolan/2007/04/16/backtraces-and-prelink/

McNamara, C. (2009). dtrans: xresource leaks. Retrieved Jul 29, 2009 from

http://qa.openoffice.org/issues/show_bug.cgi?id=102133

McNamara, C. (2009). sd: BasicViewFactory leaks windows. Retrieved Jul 10, 2009 from

http://qa.openoffice.org/issues/show_bug.cgi?id=102142

MITRE. (2009). Common Weakness Enumeration 415: Double Free. Retrieved Jul 27, 2009 from

http://cwe.mitre.org/data/definitions/415.html

Nethercote, N., Seward, J. (2007). Valgrind: a framework for heavyweight dynamic binary

instrumentation. Proceedings of the 2007 ACM SIGPLAN conference on Programming

language design and implementation. ACM.

Nethercote, N., Seward, J. (2007). How to shadow every byte of memory used by a program.

Proceedings of the 3rd international conference on Virtual execution environments. ACM.

Nethercote, N., Walsh, R., Fitzhardinge, J. (2006). Building Workload Characterization Tools with

Valgrind. IEEE International Symposium on Workload Characterization. IEEE.

Rayside, D. Mendel, L. (2007). Object Ownership Profiling: A Technique for Finding and Fixing

Memory Leaks . Proceedings of the twenty-second IEEE/ACM international conference on

Automated software engineering. ACM.

Scheifler, R.W., Gettys, J. (1986). The X Window system. Transactions on Graphics (TOG), 5(2).

ACM.

Srivastava, A., Eustace A. (2004). ATOM: a system for building customized program analysis tools.

http://cwe.mitre.org/data/definitions/415.html
http://qa.openoffice.org/issues/show_bug.cgi?id=102142
http://qa.openoffice.org/issues/show_bug.cgi?id=102133
http://blogs.linux.ie/caolan/2007/04/16/backtraces-and-prelink
http://www.openoffice.org/issues/show_bug.cgi?id=85321

SIGPLAN Notices, 39(4). ACM.

Sun Microsystems (2009). BigAdmin System Administration Portal - DTrace. Retrieved Jul 16,

2009 from http://www.sun.com/bigadmin/content/dtrace/

Valgrind Developers (2009). Valgrind Documentation, Release 3.4.0. Retrieved Aug 18, 2009 from

http://valgrind.org/docs/manual/valgrind_manual.pdf

http://valgrind.org/docs/manual/valgrind_manual.pdf
http://www.sun.com/bigadmin/content/dtrace

 Appendix A: Test Matrix Results

Colormap Cursor Font Pixmap

Leak Detected 0 errors Detected 0 errors Detected 0 errors Detected 0 errors
Detected 1 leak Detected 1 leak Detected 1 leak Detected 1 leak

Double Release Detected 1 error Detected 1 error Detected 1 error Detected 1 error
Detected 0 leaks Detected 0 leaks Detected 0 leaks Detected 0 leaks

Use after release Detected 1 error Detected 1 error Detected 1 error Detected 1 error
Detected 0 leaks Detected 0 leaks Detected 0 leaks Detected 0 leaks

Use before acquire Detected 1 error Detected 1 error Detected 1 error Detected 1 error
Detected 0 leaks Detected 0 leaks Detected 0 leaks Detected 0 leaks

No Errors Detected 0 errors Detected 0 errors Detected 0 errors Detected 0 errors
Detected 0 leaks Detected 0 leaks Detected 0 leaks Detected 0 leaks

Colormap: Leak

#include <X11/Xlib.h>

int main(void)
{

Display *dpy = XOpenDisplay(NULL);
Colormap map = XcreateColormap(dpy, /*Never released*/

DefaultRootWindow(dpy),

DefaultVisual(dpy, DefaultScreen(dpy)), AllocNone);

/*Does not release map, and return-map not released*/
XCopyColormapAndFree(dpy, map);

XCloseDisplay(dpy);
return 0;

}

Resource 0x4c00001 of class 4 never released, acquired at
at 0x400F3F6: XCreateColormap (xr_intercepts.c:484)
by 0x80485C5: main (testLeakColormap.c:6)

Resource 0x4c00002 of class 4 never released, acquired at
at 0x400F4A8: XCopyColormapAndFree (xr_intercepts.c:498)
by 0x80485DD: main (testLeakColormap.c:11)

RESOURCE LEAK SUMMARY:
definitely lost: 2 resources.

Cursor: Leak

#include <X11/Xlib.h>

int main(void)
{

Display *dpy = XOpenDisplay(NULL);
XColor acolor;
XColor bcolor;

Window

Detected 0 errors
Detected 1 leak
Detected 1 error
Detected 0 leaks
Detected 1 error
Detected 0 leaks
Detected 1 error
Detected 0 leaks
Detected 0 errors
Detected 0 leaks

Pixmap p;
Cursor c;

p = XCreatePixmap(dpy, DefaultRootWindow(dpy), 10, 10, 1);
c = XCreatePixmapCursor(dpy, p, None, &acolor, &bcolor, 0, 0);

XFreePixmap(dpy, p); /*Pixmap released, but cursor isn't and leaks*/

XCloseDisplay(dpy);

return 0;

}

Resource 0x4c00002 of class 8 never released, acquired at
at 0x400EBA5: XCreatePixmapCursor (xr_intercepts.c:356)
by 0x804861A: main (testLeakCursor.c:12)

RESOURCE LEAK SUMMARY:
definitely lost: 1 resources.

Font: Leak

#include <X11/Xlib.h>

int main(void)
{

Font f;
Display *dpy = XOpenDisplay(NULL);

f = XLoadFont(dpy, "fixed"); /*font never released*/

XCloseDisplay(dpy);
return 0;

}

Resource 0x4c00001 of class 10 never released, acquired at
at 0x400EFE3: XLoadFont (xr_intercepts.c:416)
by 0x8048520: main (testLeakFont.c:8)

RESOURCE LEAK SUMMARY:
definitely lost: 1 resources.

Pixmap: Leak

#include <X11/Xlib.h>

int main(void)
{

Display *dpy = XOpenDisplay(NULL);

XCreatePixmap(dpy, DefaultRootWindow(dpy), 200, 100, 1); /*never released*/

XCloseDisplay(dpy);
return 0;

}

Resource 0x4c00001 of class 2 never released, acquired at
at 0x400E906: XCreatePixmap (xr_intercepts.c:317)
by 0x804856A: main (testLeakPixmap.c:7)

RESOURCE LEAK SUMMARY:
definitely lost: 1 resources.

Window: Leak

#include <X11/Xlib.h>

int main(void)
{

Display *dpy = XOpenDisplay(NULL);

Window w = XCreateSimpleWindow(dpy, /*never released*/
DefaultRootWindow(dpy),

0, 0, 200, 100, 0,

BlackPixel(dpy, DefaultScreen(dpy)),

WhitePixel(dpy, DefaultScreen(dpy)));

XCloseDisplay(dpy);
return 0;

}

Resource 0x4c00001 of class 1 never released, acquired at
at 0x400DEDE: XCreateSimpleWindow (xr_intercepts.c:174)
by 0x8048610: main (testLeakWindow.c:7)

RESOURCE LEAK SUMMARY:
definitely lost: 1 resources.

Colormap: Double-release

#include <X11/Xlib.h>

int main(void)
{

XColor c;
Display *dpy = XOpenDisplay(NULL);
Colormap map = XCreateColormap(dpy, DefaultRootWindow(dpy),

DefaultVisual(dpy, DefaultScreen(dpy)), AllocNone);

XAllocColor(dpy, map, &c);

XFreeColormap(dpy, map);
XFreeColormap(dpy, map); /* map already released!*/

XCloseDisplay(dpy);
return 0;

}

Resource 0x4c00001 of class 4 used, but is already released
at 0x4031542: XFreeColormap (xr_intercepts.c:510)
by 0x804863D: main (testDoubleFreeColormap.c:13

Release was at
)

at 0x4031542: XFreeColormap (xr_intercepts.c:510)
by 0x8048629: main (testDoubleFreeColormap.c:12)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Cursor: Double-release

#include <X11/Xlib.h>

int main(void)
{

Display *dpy = XOpenDisplay(NULL);
XColor acolor;
XColor bcolor;
Pixmap p;
Cursor c;

p = XCreatePixmap(dpy, DefaultRootWindow(dpy), 10, 10, 1);
c = XCreatePixmapCursor(dpy, p, None, &acolor, &bcolor, 0, 0);

XDefineCursor(dpy, DefaultRootWindow(dpy), c);

XFreeCursor(dpy, c);
XFreeCursor(dpy, c); /*c already released*/
XFreePixmap(dpy, p);

XCloseDisplay(dpy);
return 0;

}

Resource 0x4c00002 of class 8 used, but is already released
at 0x400EDE1: XFreeCursor (xr_intercepts.c:389)
by 0x80486F4: main (testDoubleFreeCursor.c:17

Release was at
)

at 0x400EDE1: XFreeCursor (xr_intercepts.c:389)
by 0x80486E0: main (testDoubleFreeCursor.c:16)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Font: Double-release

#include <X11/Xlib.h>

int main(void)
{

XFontStruct *fontinfo;
Font f;
Display *dpy = XOpenDisplay(NULL);

f = XLoadFont(dpy, "fixed");
fontinfo = XQueryFont(dpy, f);

if (fontinfo)
{

/*XFreeFont automatically calls CloseFont on the fontid*/
XFreeFont(dpy, fontinfo);

}

/*so calling UnloadFont on f is a double-free*/

XUnloadFont(dpy, f); /* f already released */

XCloseDisplay(dpy);
return 0;

}

Resource 0x4a00001 of class 10 used, but is already released
at 0x400F13B: XUnloadFont (xr_intercepts.c:444)
by 0x804860B: main (testDoubleFreeFont.c:17

Release was at
)

at 0x400F1F3: XFreeFont (xr_intercepts.c:457)
by 0x80485F7: main (testDoubleFreeFont.c:14)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Pixmap: Double-release

#include <X11/Xlib.h>

int main(void)
{

Display *dpy = XOpenDisplay(NULL);

Pixmap p = XCreatePixmap(dpy, DefaultRootWindow(dpy), 200, 100, 1);

XFreePixmap(dpy, p);
XFreePixmap(dpy, p); /* p is released!*/

XCloseDisplay(dpy);

return 0;

}

Resource 0x4c00001 of class 2 used, but is already released
at 0x400EA07: XFreePixmap (xr_intercepts.c:333)
by 0x80485C6: main (testDoubleFreePixmap.c:10

Release was at
)

at 0x400EA07: XFreePixmap (xr_intercepts.c:333)
by 0x80485B2: main (testDoubleFreePixmap.c:9)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Window: Double-release

#include <X11/Xlib.h>

int main(void)
{

Display *dpy = XOpenDisplay(NULL);

Window w = XCreateSimpleWindow(dpy, DefaultRootWindow(dpy),
0, 0, 200, 100, 0,
BlackPixel(dpy, DefaultScreen(dpy)),
WhitePixel(dpy, DefaultScreen(dpy)));

XSelectInput(dpy, w, ButtonPressMask | KeyPressMask);
XMapWindow(dpy, w);

XDestroyWindow(dpy, w);
XDestroyWindow(dpy, w); /*w is released!*/

XCloseDisplay(dpy);

return 0;

}

Resource 0x4c00001 of class 1 used, but is already released
at 0x400E164: XDestroyWindow (xr_intercepts.c:209)
by 0x80486CC: main (testDoubleFreeWindow.c:16

Release was at
)

at 0x400E164: XDestroyWindow (xr_intercepts.c:209)
by 0x80486B8: main (testDoubleFreeWindow.c:15)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Colormap: Use after release

#include <X11/Xlib.h>

int main(void)
{

XColor c;
Display *dpy = XOpenDisplay(NULL);
Colormap map = XCreateColormap(dpy, DefaultRootWindow(dpy),

DefaultVisual(dpy, DefaultScreen(dpy)), AllocNone);

XFreeColormap(dpy, map);
XAllocColor(dpy, map, &c); /*map is released!*/

XCloseDisplay(dpy);
return 0;

}

Resource 0x4a00001 of class 4 used, but is already released
at 0x400F5F3: XAllocColor (xr_intercepts.c:521)
by 0x8048629: main (testDeInitializedColormap.c:11

Release was at
)

at 0x400F542: XFreeColormap (xr_intercepts.c:510)
by 0x804860D: main (testDeInitializedColormap.c:10)

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 22 from 2)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Cursor: Use after release

#include <X11/Xlib.h>

int main(void)
{

Display *dpy = XOpenDisplay(NULL);
XColor acolor;
XColor bcolor;
Pixmap p;
Cursor c;

p = XCreatePixmap(dpy, DefaultRootWindow(dpy), 10, 10, 1);
c = XCreatePixmapCursor(dpy, p, None, &acolor, &bcolor, 0, 0);

XFreeCursor(dpy, c);
XDefineCursor(dpy, DefaultRootWindow(dpy), c); /*c is released!*/

XFreePixmap(dpy, p);

XCloseDisplay(dpy);
return 0;

}

Resource 0x4a00002 of class 8 used, but is already released
at 0x400EF18: XDefineCursor (xr_intercepts.c:402)
by 0x80486E0: main (testDeInitializedCursor.c:15

Release was at
)

at 0x400EDE1: XFreeCursor (xr_intercepts.c:389)
by 0x80486A2: main (testDeInitializedCursor.c:14)

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 26 from 2)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Font: Use after release

#include <X11/Xlib.h>

int main(void)
{

XFontStruct *fontinfo;
Font f;
Display *dpy = XOpenDisplay(NULL);

f = XLoadFont(dpy, "fixed");
XUnloadFont(dpy, f);
fontinfo = XQueryFont(dpy, f); /*f is released!*/
if (fontinfo)
{

/*XFreeFont automatically calls CloseFont on the fontid*/
XFreeFont(dpy, fontinfo);

}

XCloseDisplay(dpy);

return 0;
}

Resource 0x4c00001 of class 10 used, but is already released
at 0x400F280: XQueryFont (xr_intercepts.c:469)
by 0x80485EC: main (testDeInitializedFont.c:11

Release was at
)

at 0x400F13B: XUnloadFont (xr_intercepts.c:444)
by 0x80485D8: main (testDeInitializedFont.c:10)

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 26 from 2)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Pixmap: Use after release

#include <X11/Xlib.h>

int main(void)
{

Display *dpy = XOpenDisplay(NULL);
XGCValues values;
GC gc;

Pixmap p = XCreatePixmap(dpy, DefaultRootWindow(dpy), 200, 100, 1);

values.foreground = WhitePixel (dpy, DefaultScreen (dpy));

gc = XCreateGC (dpy, p, GCForeground, &values);

XFreePixmap(dpy, p);
XFillRectangle(dpy, p, gc, 0, 0, 200, 200); /* p is released!*/

XFreeGC(dpy, gc);

XCloseDisplay(dpy);

return 0;

}

Resource 0x4c00001 of class 3 used, but is already released
at 0x400E65C: XFillRectangle (xr_intercepts.c:282)
by 0x8048710: main (testDeInitializedPixmap.c:15

Release was at
)

at 0x400EA07: XFreePixmap (xr_intercepts.c:333)
by 0x80486CB: main (testDeInitializedPixmap.c:14)

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 26 from 2)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Window: Use after release

#include <X11/Xlib.h>

int main(void)
{

Display *dpy = XOpenDisplay(NULL);

Window w = XCreateSimpleWindow(dpy, DefaultRootWindow(dpy),

0, 0, 200, 100, 0,

BlackPixel(dpy, DefaultScreen(dpy)),

WhitePixel(dpy, DefaultScreen(dpy)));

XSelectInput(dpy, w, ButtonPressMask | KeyPressMask);

XMapWindow(dpy, w);

XDestroyWindow(dpy, w);
XSelectInput(dpy, w, ButtonPressMask | KeyPressMask); /*w is released!*/

XCloseDisplay(dpy);
return 0;

}

Resource 0x4c00001 of class 1 used, but is already released
at 0x400E2FE: XSelectInput (xr_intercepts.c:236)
by 0x80486D4: main (testDeInitializedWindow.c:15

Release was at
)

at 0x400E164: XDestroyWindow (xr_intercepts.c:209)
by 0x80486B8: main (testDeInitializedWindow.c:14)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Colormap: Use before acquire

#include <X11/Xlib.h>

int main(void)
{

XColor c; /*uninitialized*/
Colormap map;

Display *dpy = XOpenDisplay(NULL);

XAllocColor(dpy, map, &c); /*c never initialized*/

XFreeColormap(dpy, map);

XCloseDisplay(dpy);
return 0;

}

Uninitialised byte(s) found during client check request
at 0x400F5F3: XAllocColor (xr_intercepts.c:521)
by 0x8048568: main (testNeverInitializedColormap.c:9

Address 0xbed55214 is on thread 1's stack
)

Uninitialised value was created by a stack allocation
at 0x804853A: main (testNeverInitializedColormap.c:4

failed request: BadColor (invalid Colormap parameter)
)

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 22 from 2)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Cursor: Use before acquire

#include <X11/Xlib.h>

int main(void)
{

Display *dpy = XOpenDisplay(NULL);
Cursor c; /*never initialized*/

XDefineCursor(dpy, DefaultRootWindow(dpy), c); /*c never initialized*/

XCloseDisplay(dpy);
return 0;

}

Uninitialised byte(s) found during client check request
at 0x400EF18: XDefineCursor (xr_intercepts.c:402)
by 0x804855A: main (testNeverInitializedCursor.c:8

Address 0xbec60228 is on thread 1's stack
)

Uninitialised value was created by a stack allocation
at 0x804850A: main (testNeverInitializedCursor.c:6

failed request: BadCursor (invalid Cursor parameter)
)

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 26 from 2)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Font: Use before acquire

#include <X11/Xlib.h>

int main(void)
{

XFontStruct *fontinfo;
Font f; /*never initialized*/
Display *dpy = XOpenDisplay(NULL);

fontinfo = XQueryFont(dpy, f); /*f was never initialized*/
if (fontinfo)
{

/*XFreeFont automatically calls CloseFont on the fontid*/
XFreeFont(dpy, fontinfo);

}

XCloseDisplay(dpy);
return 0;

}

Uninitialised byte(s) found during client check request
at 0x400F280: XQueryFont (xr_intercepts.c:469)
by 0x8048560: main (testNeverInitializedFont.c:9)

Address 0xbe805224 is on thread 1's stack
Uninitialised value was created by a stack allocation

at 0x804853A: main (testNeverInitializedFont.c:6)

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 26 from 2)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Pixmap: Use before acquire

#include <X11/Xlib.h>

int main(void)
{

Display *dpy = XOpenDisplay(NULL);
XGCValues values;
GC gc;
Pixmap px; /*never initialized*/

Pixmap p = XCreatePixmap(dpy, DefaultRootWindow(dpy), 200, 100, 1);

values.foreground = WhitePixel (dpy, DefaultScreen (dpy));
gc = XCreateGC (dpy, p, GCForeground, &values);

XFillRectangle(dpy, px, gc, 0, 0, 200, 200); /*px never initialized*/

XFreeGC(dpy, gc);
XFreePixmap(dpy, p);

XCloseDisplay(dpy);
return 0;

}

Uninitialised byte(s) found during client check request
at 0x400E65C: XFillRectangle (xr_intercepts.c:282)
by 0x80486F6: main (testNeverInitializedPixmap.c:15

Address 0xbea8f1b4 is on thread 1's stack
)

Uninitialised value was created by a stack allocation
at 0x80485DA: main (testNeverInitializedPixmap.c:8)

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 26 from 2)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Window: Use before acquire

#include <X11/Xlib.h>

int main(void)
{

Display *dpy = XOpenDisplay(NULL);
Window w; /*never initialized*/

XSelectInput(dpy, w, ButtonPressMask|KeyPressMask); /*w never initialized*/

XCloseDisplay(dpy);
return 0;

}

Uninitialised byte(s) found during client check request
at 0x400E2FE: XSelectInput (xr_intercepts.c:236)
by 0x8048538: main (testNeverInitializedWindow.c:8

Address 0xbef57224 is on thread 1's stack
)

Uninitialised value was created by a stack allocation
at 0x804850A: main (testNeverInitializedWindow.c:6)

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 26 from 2)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Colormap: No Errors

ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 21 from 1)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Cursor: No Errors

ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 21 from 1)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Font: No Errors

ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 21 from 1)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Pixmap: No Errors

ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 21 from 1)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Window: No Errors

ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 21 from 1)

RESOURCE LEAK SUMMARY:
definitely lost: 0 resources.

Appendix B: DSO Interposition

Pixmap (*real_XCreatePixmap)(Display *, Drawable , unsigned int ,
unsigned int , unsigned int) = NULL;

Pixmap XCreatePixmap(Display *display, Drawable d, unsigned int width,
unsigned int height, unsigned int depth)

{
Pixmap ret;

if (!real_XCreatePixmap)
*(void **) (&real_XCreatePixmap) = get_func("XCreatePixmap");

ret = (*real_XCreatePixmap)(display, d, width, height, depth);
restrack.acquired_resource(ret);
return ret;

}

int (*real_XFreePixmap)(Display *, Pixmap) = NULL;

int XFreePixmap(Display *display, Pixmap pixmap)
{

int ret;
if (!real_XFreePixmap)

*(void **) (&real_XFreePixmap) = get_func("XFreePixmap");
ret = (*real_XFreePixmap)(display, pixmap);
restrack.released_resource(pixmap);
return ret;

}

int XFillRectangle(Display *display, Drawable d, GC gc, int x, int y, unsigned
int width, unsigned int height)

{
if (!real_XFillRectangle)

*(void **) (&real_XFillRectangle) = get_func("XFillRectangle");
restrack.check_resource(ret);
return (*real_XFillRectangle)(display, d, gc, x, y, width, height);

}

void restracker::acquired_resource(long nId)
{

aAllocatedIds[nId] = backtrace...
aActiveIds[nId] = aAllocatedIds[nId]

}

void restracker::released_resource(long nId)
{

aActiveIds.erase(nId);
aReleasedIds[nId] = backtrace...

}

void restracker::check_resource(long nId)
{

if (nId in aActiveIds)
return; //No error

else
{

fprintf(stderr, "invalid resource %d at", nId);
show_location();
if (nId in aReleasedIds)
{

fprintf(stderr, "Use of DeAllocated resource,"
"resource was allocated at);

aReleasedIds[nId].show_location();
fprintf(stderr, "resource was originally allocated at);
aAllocatedIds[nId].show_location();

}
else

fprintf(stderr, "Use of Unintialized resource");
}

}

Appendix C: Dedicated Valgrind Tool

Pixmap I_WRAP_SONAME_FNNAME_ZZ(libX11ZdsoZdZa,XCreatePixmap)(Display *display,
Drawable d, unsigned int width, unsigned int height, unsigned int depth)

{
unsigned int _qzz_res;
Pixmap ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
CALL_FN_W_5W(ret, fn, display, d, width, height, depth);
restrack.acquired_resource(ret);
return ret;

}

int I_WRAP_SONAME_FNNAME_ZZ(libX11ZdsoZdZa,XFreePixmap)Display *display,
Pixmap pixmap)

{
unsigned int _qzz_res;
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
CALL_FN_W_WW(ret, fn, display, pixmap);
restrack.released_resource(pixmap);
return ret;

}

int I_WRAP_SONAME_FNNAME_ZZ(libX11ZdsoZdZa,XFillRectangle)(Display *display,
Drawable d, GC gc, int x, int y, unsigned int width, unsigned int height)

{
unsigned int _qzz_res;
int ret;
OrigFn fn;
VALGRIND_GET_ORIG_FN(fn);
restrack.check_resource(ret);

return ret;
CALL_FN_W_7W(ret, fn, display, d, gc, x, y, width, height);

}

void restracker::acquired_resource(long nId)
{

aAllocatedIds[nId] = backtrace...
aActiveIds[nId] = aAllocatedIds[nId]

}

void restracker::released_resource(long nId)
{

aActiveIds.erase(nId);
aReleasedIds[nId] = backtrace...

}

void restracker::check_resource(long nId)
{

if (nId in aActiveIds)
return; //No error

else
{

fprintf(stderr, "invalid resource %d at", nId);
show_location();
if (nId in aReleasedIds)

{
fprintf(stderr, "Use of DeAllocated resource,"

"resource was allocated at);
aReleasedIds[nId].show_location();
fprintf(stderr, "resource was originally allocated at);
aAllocatedIds[nId].show_location();

}
else
{

//Use Valgrind Origin Checking to report undefined values

}
VALGRIND_CHECK_VALUE_IS_DEFINED(nId);

}
}

Appendix D: DSO-side Of Hybrid Solution

Pixmap XCreatePixmap(Display *display, Drawable d, unsigned int width,
unsigned int height, unsigned int depth)

{
Pixmap ret;
unsigned int _qzz_res;
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0, VG_USERREQ__USE_RESOURCE, &d,

WINDOW | PIXMAP, 0, 0, 0); \
ret = (*real_XCreatePixmap)(display, d, width, height, depth);
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0, VG_USERREQ__ACQUIRE_RESOURCE, &ret,

PIXMAP, 0, 0, 0);
return ret;

}

int XFreePixmap(Display *display, Pixmap pixmap)
{

int result;
unsigned int _qzz_res;

VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0, VG_USERREQ__RELEASE_RESOURCE,

&pixmap, PIXMAP, 0, 0, 0);

result = (*real_XFreePixmap)(display, pixmap);
return result;

}

int XFillRectangle(Display *display, Drawable d, GC gc, int x, int y,
unsigned int width, unsigned int height)

{
unsigned int _qzz_res;
VALGRIND_DO_CLIENT_REQUEST(_qzz_res, 0, VG_USERREQ__USE_RESOURCE, &d,

WINDOW | PIXMAP, 0, 0, 0);
return (*real_XFillRectangle)(display, d, gc, x, y, width, height);

}

Appendix E: Using Origin Tracking

static void check_use_resource(ThreadId tid, UWord handle_addr, UWord idtype)
{

/*Look up the handle_addr of resource type idtype in our tables of
acquired and not released yet resource*/

XR_Resource *resource = ...

if (!resource) {
/*This resource was never acquired, we need to use origin tracking

to determine where this invalid value originated*/
Addr bad_addr = handle_addr;
UInt otag = 0;
/*An example of priting the stacktrace of the current location*/
VG_(get_and_pp_StackTrace) (tid, 1000);

/*Extrac the origin tracking information for this invalid value*/
if (MC_(clo_mc_level) == 3)

otag = MC_(helperc_b_load1)(bad_addr);

/*Use built-in reporting function to print stacktrace of where
this value entered the program flow*/

MC_(record_user_error) (tid, bad_addr, /*isAddrErr*/False, otag);
}
else if (resource->release_context) {

/* we recorded that this resource was released earlier*/
VG_(get_and_pp_StackTrace) (tid, 1000);
VG_(message)(Vg_UserMsg, "Release was at");
VG_(pp_ExeContext) (resource->release_context);

VG_(maybe_record_error)(tid, 9000, 0, NULL, NULL);
}

}

Appendix F: Annotated Bibliography

Bond, M.D., Nethercote, N., Kent, S.W., Guyer, S.Z., McKinley, K.S. (2007). Tracking bad apples:

reporting the origin of null and undefined value errors. Proceedings of the 22nd annual

ACM SIGPLAN conference on Object-oriented programming systems and applications.

ACM.

The authors present an approach to origin tracking of invalid values at run-time. An invalid

value is typically seen in C/C++ where an uninitialized value has been referenced, or in Java where

a value has been left accidentally null. A bug’s effect is often far from its cause , and in 50% of

cases of a crash due to such an invalid value, the method that introduced the invalid value is not in

the immediate crash, the invalid value may have been propagated through the program by various

assignments and other operations before being presented to the final method where the error

becomes critical. Origin tracking enables automatically tracing through the flow of control to

identify the initial location where the invalid value was introduced. The technique shown for C/C++

programs comes with the caveat that small values less that 32bits are not tracked, and that there is a

small chance that incorrect origin information can be displayed, but that nonetheless “finds origins

for 72% of the 32-bit undefined value errors”. The ability to provide useful information about the

source of a undefined value use is a key usability feature for such debuggers, and this paper

provides a practical technique for achieving that goal.

Cantrill, B.M., Shapiro, M.W., Leventhal, H.L. (2004). Dynamic Instrumentation of Production

Systems. Proceedings of the USENIX 2004 Technical Program. USENIX. Retrieved Feb

17, 2009 from

http://www.usenix.org/event/usenix04/tech/general/full_papers/cantrill/cantrill_html/

This paper, by Sun Solaris kernel developers, describes the Solaris DTrace facility. DTrace

(Dynamic Trace) is a kernel level extension whereby kernel level providers report as to what

http://www.usenix.org/event/usenix04/tech/general/full_papers/cantrill/cantrill_html

instrumentation capabilities they could provide to the DTrace framework. A goal of DTrace is to

have no run-time overhead while it is not enabled, and to be able to selectively enable reporting

capabilities as requested to minimize the overhead of instrumentation on performance. DTrace

providers include reports on entering and exiting function boundaries, lock and unlock primitives,

system calls and time-based profiling callbacks. DTrace provides a D Language which users can use

to specify arbitrary predicates and actions for each reported event with access to various parameters

associated with the triggering event. DTrace shows an approach to selectively instrumenting a

system to monitor particular events for the purposes of debugging system behaviour. The strength

of DTrace is its ability to be scripted with D to combine together providers to form user-defined

instrumentation directives and tracing infrastructure based on the built-in providers.

Curry, T.W. (1994). Profiling and Tracing Dynamic Library Usage via Interposition. Proceedings of

the USENIX Summer 1994 Technical Conference. USENIX. Retrieved Feb 17, 2009 from

http://www.usenix.org/publications/library/proceedings/bos94/full_papers/curry.ps

This technical paper describes the mechanics of dynamic libraries as found on UNIX and

UNIX-like operating systems and how an additional dynamic library can be interposed between an

application and the original destination library. A dynamic library or shared library is a collection of

functions to which an application binds at run-time rather than at compile/link time. The linking

occurs at execution-time and, as a side-effect of this, a replacement library can be interposed

between that library and the application and replacement functions in the replacement library will

be called instead of the original ones. The replacement functions may or may not forward the calls

to the original library. The article describes various uses of the technique for logging parameter calls

or recording call stacks for profiling purposes, e.g. an explicit example shown is that of recording X

Windowing System library calls for profiling. The article provides a set of techniques for

interposing instrumentation between an application and the libraries it uses at run-time without re-

compilation of the application or libraries being instrumented.

http://www.usenix.org/publications/library/proceedings/bos94/full_papers/curry.ps

Dumitran, D. (2007). Fixing File Descriptor Leaks. Master's thesis, Massachusetts Institute of

Technology. Retrieved Feb 17, 2009 from http://dspace.mit.edu/handle/1721.1/41645

This thesis examines the problem of detecting and automatically fixing file descriptor leaks,

to “design, implement, and test a mechanism of automatically closing leaked FDs, thus allowing

applications which leak FDs to continue to operate normally”. The problem of detecting file

descriptor leaks is analogous to that of detecting server-side resource leaks, though different in

terms that file descriptor leaks occur in the same address space as the application that causes them,

but similar in that file descriptors tend to be a relative scarce resource, and a leak in one application

will affect the availability of file descriptors for another application. The approach taken by the

author is to use an interposed shared library to intercept C calls that utilize file descriptors to track

the number of active file descriptors and to decide which file descriptor to force-able close when the

offending application has exhausted the available descriptors. The thesis shows one mechanism for

tracking resources allocated and deallocated through APIs by use of a interposed shared library,

though the target is to provide a mechanism to avoid application failure on resource exhaustion

rather than to provide a debugging tool to identify the location of the leaked resource.

Gettys, J., Scheifler, R.W. (2002). Xlib - C Language X Interface. X Consortium. Retrieved Feb 18,

2009 from http://ftp.xfree86.org/pub/XFree86/current/doc/PDF/xlib.pdf

This reference guide comprehensively documents the “low level C language interface to the

X Window System protocol”. It provides an overview the X Window System and detailed

specifications of the API. It is the definite guide to the functions available in the libX11 library

which acts as an intermediary between X Window applications and the layer which converts these

calls into X Protocols messages which are passed to a remote X Server for eventual execution. Each

argument available for each function is documented, and the possible errors that can be reported.

Allocation routines for remote resources, e.g. XCreatePixmap, XCreateWindow are documented

along with the routines which should be used to cause those remote resources to be released. The

http://ftp.xfree86.org/pub/XFree86/current/doc/PDF/xlib.pdf
http://dspace.mit.edu/handle/1721.1/41645

handle types which refer to remote resources are documented as “integer resource IDs, which

allows you to refer to objects stored on the X server. These can be of type Window, Font, Pixmap,

Colormap, Cursor, and GContext”. This interface reference enables an analysis of the libX11 API to

determine the complete set of methods called locally which affect the allocation and deallocation of

remote resources in the X Window System.

Giraldeau, F., Dault, J.M, des Ligneris, B. (2006, September). MILLE-XTERM and LTSP. Linux

Journal. Specialized Systems Consultants, Inc. Seattle, WA.

The authors describe MILLE-XTERM, a “scalable infrastructure for massive X-terminal

deployment” based around the LTSP (Linux Terminal Server Project) offering where applications

execute on a remote application server and display to a local X-terminal which provides only a X

Server for display of graphics. The article provides an insight into the scalability of such a system,

and provides a sample environment in which to appreciate the dangers of remote resource leaks as

this environment is especially prone to X Server resource leaks and over-utilization, “For instance,

several applications use the X-server memory as a cache memory. Although this is very efficient on

a Linux workstation, it can cause an X-terminal crash when the memory used by the X server is

bigger than the RAM of the terminal”.

Hastings, R., Joyce, B. (1992) Purify: Fast detection of memory leaks and access errors.

Proceedings of the Winter USENIX Conference. USENIX. Retrieved Feb 17, 2009 from

http://opera.cs.uiuc.edu/probe/reference/debug/dynamic/purify_92.pdf

This paper presents Purify, a commercial program that “developers and testers use to find

memory leaks and access errors”. Purify is a DBA, dynamic binary analysis, tool that reports errors

at run-time of the application being tested. Before execution the application is re-linked by purify in

order to rewrite the binary to intercept attempts to read and write memory and tracks if an attempt to

read/writer is on an invalid area of memory, or is a read to an uninitialized block. To track memory

http://opera.cs.uiuc.edu/probe/reference/debug/dynamic/purify_92.pdf

leaks purify annotates every attempt to malloc memory with the address of the function that called

malloc and then uses a variant of garbage collection to ascertain if a given block has been released.

Purify was one of the pioneering debugging applications for successfully tracking memory resource

leaks and errors, this paper provides a basis to compare future generations of tooling against.

Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J, Hazelwood,

K. (2005). Pin: building customized program analysis tools with dynamic instrumentation.

Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and

implementation. ACM.

This paper introduces the Pin system, a framework for building program analysis tools. Pin

allows a tool writer “to analyse an application at the instruction level without detailed knowledge of

the underlying instruction set”. Pin is a run-time binary instrumentation system, the key strengths of

Pin are that is is independent of the underlying instruction set from the perspective of the tool-

writer, and it is relatively fast, i.e. “Valgrind slows the application down by 8.3 times, DynamoRIO

by 5.1 times, and Pin by 2.5 times”. Pin provides APIs to “observe all the architectural state of a

process, such as the contents of registers, memory, and control flow”. Although faster than Valgrind,

Pin is targeted at effectively a lower level of granularity than Valgrind, focused on providing a fast

framework on which tools can investigate the effect of relatively small amounts of code on cache

performance and register usage. Writing a tool to deal with higher level call-level and value-

tracking requirements is comparatively difficult. While the execution speed of Pin is superior to

other offerings, the support for shadow variables to enable invalid value tracking is limited.

Maebe , J., Ronsse, M., De Bosschere , K. (2004). Precise detection of memory leaks. Second

International Workshop on Dynamic Analysis. IEEE.

This paper addresses the problem of reporting the location where memory was lost in a

memory leak. It is acknowledged that many tool exist which can report that memory was leaked,

and report where that memory was allocated, but that it is difficult to report where it was lost. This

paper presents a technique that reports where the memory was allocated, where it was lost, and

where it was last addressed. Leaks are categorized into two categories, those where the block is

allocated and never freed, but a handle always exists to the block. And those where the handle to the

block has been lost. The first termed a logical leak, and the second a physical one. The tooling

described here tracks physical leaks only. By storing the location of each allocation and watching all

memory to attempt to reference count references to those allocations (as opposed to the less

resource intensive mark-and-sweep garbage collection mechanism typically employed by such

tools) the approach described here enables reporting of where the handle to a memory resource was

likely lost. The technique is heavyweight, but reporting the location of the loss of the final reference

to a resource is an invaluable aid in debugging the problem.

Nethercote, N., Seward, J. (2007). Valgrind: a framework for heavyweight dynamic binary

instrumentation. Proceedings of the 2007 ACM SIGPLAN conference on Programming

language design and implementation. ACM.

This paper introduces the Valgrind framework for building debugging and program analysis

tools. Valgrind is a dynamic binary analysis tool which functions at run-time, converting the binary

code of the executable being examined into an intermediate representation, instrumenting that IR by

tools that use the framework (e.g. the Memcheck tracks accesses to uninitialized values), and

converting the IR back to executable format. One key relevant aspect is that “Valgrind supports

function replacement, i.e. it allows a tool to replace any function in a program with an alternative

function. A replacement function can also call the function it has replaced. This allows function

wrapping, which is particularly useful for inspecting the arguments and return value of a function”.

Which raises the possibility of reusing the Valgrind infrastructure to capture, inspect and interrogate

the local calls to libraries that trigger remote services to allocate or use a remote resource handle

similarly to how existing Valgrind tools handle kernel calls whose internal implementation is also

opaque to Valgrind, though for different technical reasons. Valgrind is presented as a framework

which “makes tools relatively easy to write, allows them to be robust, provides powerful

instrumentation capabilities, and allows reasonable performance”. This paper presents the

capabilities of Valgrind and provides technical arguments for the choice of Valgrind as a framework

on which to build new dynamic run-time debugging tools.

Nethercote, N., Seward, J. (2007). How to shadow every byte of memory used by a program.

Proceedings of the 3rd international conference on Virtual execution environments. ACM.

The authors, designers and implementers of the Valgrind debugging framework, present a

technique for for creating efficient dynamic analysis tools that shadow every byte of memory used

by a program with another value that tracks certain information about that byte, e.g. how many

times that byte has been accessed, or where it was initialized from. Shadow memory enables “tools

that use it [to] detect critical errors such as bad memory accesses, data races, and uses of

uninitialised or untrusted data”. The technical mechanism of implementation is shown, and

performance compared against other similar implementations, to demonstrate the relative efficiency

of the Valgrind approach. The capabilities of Valgrind to let a tool “remember something about the

history of every memory location and/or value in memory” is a powerful aid to support tracking the

origins of a value to determine e.g. if that value is the result of a procedure which caused a remote

resource to be allocated or if the value presented to a deallocation procedure was already presented

to such a procedure.

Nethercote, N., Walsh, R., Fitzhardinge, J. (2006). Building Workload Characterization Tools with

Valgrind. IEEE International Symposium on Workload Characterization. IEEE.

This extensive tutorial on Valgrind introduces the Valgrind dynamic binary analysis and

instrumentation framework. Among its features, this tutorial documents the abilities of Valgrind to

replace arbitrary functions or wrap functions and crucially to track the value of any location in

memory or in a register, i.e. “Tools that shadow every register and/or memory location with a

metavalue that says something about it”. The tutorial provides example of use of shadow values and

provides the necessary documentation for implementing a new Valgrind tool which requires the

ability both interpose between an application and shared library and to track a handle value through

the life-time of an application to determine where it was originally initialized.

Rayside, D. Mendel, L. (2007). Object Ownership Profiling: A Technique for Finding and Fixing

Memory Leaks . Proceedings of the twenty-second IEEE/ACM international conference on

Automated software engineering. ACM.

This paper presents an approach to tracking a class of memory leaks. Memory leaks can be

classified into two broad groupings, those where are no longer reachable (which can be detected in

languages that support the principle by garbage collection and thus automatically released) and

those which remain reachable (and so are not candidates for garbage collection) but are no longer

required or used by the program thereafter, i.e. no longer “observably reachable” junk objects. The

authors approximate detecting such junk objects by recording when an object has last been the

target of a method call or has had its values read or written, an object which continues to exist but

no longer affects the execution of the program becomes a stale object, and a junk object candidate.

The technique used for Java object ownership profiling prompts consideration of applying the same

technique to detect which scarce server resources in a client-server application which, while not

leaked resources because the client retains a reference to them and releases eventually, could be

released at a far earlier stage and returned to the pool of available server resources.

Scheifler, R.W., Gettys, J. (1986). The X Window system. Transactions on Graphics (TOG), 5(2).

ACM.

This paper provides a comprehensive overview of the X Window system and documents the

key design features. The X Window system is a client-server network transparent architecture, an

application running on one machine can display to another one, each physical display is managed

by an X Server. As a consequence of the client-server nature and a desire for efficiency, certain

basic resources are stored by the server and created and destroyed on request by the clients, “the

basic resources provided by the server are windows, fonts, mouse cursors, and off-screen images.

Clients request creation of a resource by supplying appropriate parameters; the server allocates the

resource and returns a 29-bit unique identifier used to represent it”. It is acknowledged that clients

are likely to forget to instruct the server to destroy a resource so “the maximum lifetime of a

resource is always tied to the connection over which it was created. Thus, when a client terminates,

all of the resources it created are destroyed automatically”. But clearly the design is one where

application and the display resource manager are not within the same instruction space, or even

necessarily on the same machine, and that un-released resources are retained for the life-time of the

application. So a resource leaking long-lived application can exhaust the server of resources. This

overview paper on the X Window system explains the architecture of the system and explains the

life-cycle and location of the basic X Window resource types.

Srivastava, A., Eustace A. (2004). ATOM: a system for building customized program analysis tools.

SIGPLAN Notices, 39(4). ACM.

ATOM, Analysis Tools with OM[timization System], is presented as a framework for

building program analysis tools which provides the common instrumentation code required by such

tools. Using ATOM information can be “directly passed from the application program to the

analysis routines through simple procedure calls” and can be used for memory recording and

profiling along with cache simulation, evaluating branch prediction and pipeline simulation. ATOM

(like Pin and Valgrind) is intended to provide a framework that takes care of the details of binary

instrumentation to allow a tool developer to focus on “what information is to be collected and how

to process it”. ATOM however doesn't provide the higher level shadow memory that Valgrind

provides, though it does provide detailed low-level mechanisms for accurate compiler and CPU­

designer profiling simulation measurements.

	Runtime Automated Detection of Out of Process Resource Management in the X Windowing System
	Recommended Citation

	McNamara final.pdf

