
Regis University Regis University

ePublications at Regis University ePublications at Regis University

Regis University Student Publications
(comprehensive collection) Regis University Student Publications

Fall 2006

Coverage Testing in a Production Software Development Coverage Testing in a Production Software Development

Environment Environment

Kent Bortz
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Bortz, Kent, "Coverage Testing in a Production Software Development Environment" (2006). Regis
University Student Publications (comprehensive collection). 416.
https://epublications.regis.edu/theses/416

This Thesis - Open Access is brought to you for free and open access by the Regis University Student Publications
at ePublications at Regis University. It has been accepted for inclusion in Regis University Student Publications
(comprehensive collection) by an authorized administrator of ePublications at Regis University. For more
information, please contact epublications@regis.edu.

https://epublications.regis.edu/
https://epublications.regis.edu/theses
https://epublications.regis.edu/theses
https://epublications.regis.edu/regiscollege_etds
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/416?utm_source=epublications.regis.edu%2Ftheses%2F416&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
School for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

COVERAGE TESTING IN A
PRODUCTION SOFTWARE

DEVELOPMENT
ENVIRONMENT

by

Kent Bortz

A thesis submitted in partial
fulfillment of the requirements

for the degree of

MASTER OF SCIENCE
IN

COMPUTER INFORMATION
TECHNOLOGY

REGIS UNIVERSITY

SCHOOL FOR PROFESSIONAL STUDIES
2006

ABSTRACT

By

Kent Bortz

This project proposes that current testing methodologies used

by standard testing tools are not sufficient to ensure sufficient

test coverage. Test tools provide important and irreplaceable

test data but are not capable of guaranteeing high percentage

of path exposure (coverage). If the code path includes loop

statements like, “if” or “when” then the number of paths to

test grows exponentially. The growth of the code path

becomes exponential when nested decision statements are

considered. The most common methodology used in today’s

testing environment verifies each line of code but does not

verify all path combinations. Testing per line of code can not

guarantee complete test coverage when considering the

variations of nested code paths. The result of lower coverage

is a higher field defect rate that increases the overall product

support costs.

TABLE OF CONTENTS

Table of Contents __i

List of figures ___iii

List of Tables __iv

Acknowledgments __ v

Glossary ___vi

Forward___ vii

Chapter 1: Testing Introduction _____________________________ 3
Intoduction ___ 3
Test Phases __ 7

Integration test __ 9
Function Verification Testing (FVT) ______________________________ 10
System Level Test (SLT) __ 10

Error path testing __ 12
Final Regression__ 13

System Level Serviceability (SLS) Testing _______________________ 14
Manufacturing Verification Test (MVT) ___________________________ 15

Test Criteria ___ 15

Chapter 2: Evolution of Testing_____________________________ 19
Business Model of Testing ___ 19

Personnel Reduction___ 21
Shortened Test Cycle__ 22

Statistical Test Model __ 23
Formal Statistical Verification____________________________________ 24

i

Statistical Testing by Test Phase ________________________________ 25

Chapter 3: SDC Coverage Testing __________________________ 28
Limitations of the SBC coverage testing Model _____________________ 29

The Failure of SDC EXMAP_______________________________________ 31
The Cost of EXMAP __ 34
EXMAP alternative – User Experience Testing____________________ 36

Chapter 4- Filling the EXMAP Void__________________________ 39
Solution Scope __ 39
Solution Requirements __ 40
Statistical Specification Performance Testing ____________________ 42
Design of Specifications ___ 43
Data Analysis ___ 45

Chapter 5 – Statistical Performance Testing at SDC ______ 48
Identification of test controls and variables ______________________ 48
Application of Statistical Specification Performance Testing ______ 50
Performance Data Analysis ______________________________________ 52

SDC Summery Data __ 52
SDC Device Breakdown Data _______________________________ 54

Statistical Performance Test Results _____________________________ 56
Conclusion __ 57

Appendix A: Typical Statistical Test Model Results ___ 59

Table of Formulas__ 62

Test Effectiveness ___ 62
Cost of Test Ratio ___ 62
Overall Test Duration__ 62
Traditional Execution Capability Projection_______________________ 62
Actual Execution Capability Projection ___________________________ 62

 ii

LIST OF FIGURES

Number Page
Figure 1 - SDC Development cycle_______________________________________ 9
Figure 2 – SDC Test cycle __ 11
Figure 3 – Entry criteria matrix ___ 17
Figure 4- Price trend__ 20
Figure 5 - Simple Code Segment _______________________________________ 32
Figure 6 - Comparative code segment __________________________________ 33
Figure 7 - EXMAP Cost per KLOC__ 35

 iii

LIST OF TABLES

Number Page
Table 1 - EXMAP Actual ______________________________________ 36

Table 2 - Generic Control Data Results __________________________ 46

Table 3 - Parsed Data Table __________________________________ 51

Table 4 - SDC Specification Summery Report _____________________ 53

Table 5 - SDC Device Breakdown Data __________________________ 55

 iv

ACKNOWLEDGMENTS

I would like to thank my wife, Kimberly who without her

support and belief in my abilities I would have failed long ago.

 v

GLOSSARY

Functional Verification Test (FVT). Traditionally a test
preformed in a development organization before releasing
code/hardware to Formal Test.

System Level Test (SLT). Longest duration test cycle.
Often, this test suite is considered formal test and is
preformed by test groups external to the development team.

Manufacturing Verification Test (MVT). A short duration
test preformed to verify hardware software before shipment
to the customer.

Microcode. A computer program that resides on hardware
and the end-user does not directly interact with

Unit Test (UT). A simple test preformed by the
development teams.

Code. The set of instructions that are written by a software
developer that are deployed on the given hardware platform.

Development. The team and/or effort to produce a solution
that satisfies customer requirements while operating in the
development organizations frame work.

KLOC. Thousand Lines Of Code. Metric used to define code
size and gauge test effectiveness

General Availability (GA). The final milestone where a
product becomes available to the customer.

 vi

 vii

FORWARD

 This project is based on an actual hardware/software

development company. In order to mitigate revealing any

intellectual property the company will be referred to as

Software Development Company or SDC. The data that is

presented is only representative of actual data used. The

representative data is accurate within the confines of this

project and can be used for comparative calculations.

 3

C h a p t e r 1 : T e s t i n g I n t r o d u c t i o n

INTODUCTION

Software testing is necessary part of any development

approach. Traditional as well as object-oriented software

development approaches both require software testing. What

is the purpose of testing? The simplest answer is; “to execute

code in order to find program errors (Wittaker, 2000).” As

anyone who has written even a simple piece of code can

attest too, errors are inevitable. No mater how experienced

the developer or simple the code assignment, errors will

exists (Wittaker, 2000).

The simple objective of executing code to find program

errors is achieved by different methods depending on the

desired outcome. Early software testing was narrow in focus

and simple in it methods (Horgan, 1994). These early testing

methods were sufficient because software was not complex

and the environments that the software was deployed in were

highly controlled (Musa, 1975). As computing started to

 4

become more common in business, the tasks required of

software became more complex and varied. The requirement

for software to become more robust also required software

testing suites and testers to become more sophisticated.

The first digital computers were used almost exclusively

for basic numerical problems. The primary concern of the

programmers was representing the necessary algorithm,

which commonly involved breaking the problem down into

sequential steps (Miller, 1992). Early super computers were

limited by their capacity and programmers had to work

around daunting capacity and performance issues.

Accordingly compact, fast-running code was necessary, even

if testing became more difficult. With early code development

readability and portability were hardly considerations at all.

Early coding was almost exclusively “bit-level”; data was

directly controlled at the hardware level by the coder (Musa,

1975). The typical result was spaghetti style coding and was

very difficult to trace and debug.

Over time machines grew faster and more powerful.

With the addition of capacity and speed programs were used

for a wider range of tasks. Computer programs could now

 5

include compilers and operating systems. These new

applications did little real world number crunching but did

create a number of nested decision points (Wittaker, 2000).

This led to the next stage of software design, top-down

procedural design input (Boris, 1990). Pascal is an example

of a language that uses the top-down approach. The

spaghetti style code of the first generation computers was

now replaced with the top-down approach. This means that

the “goto” structure of the first generation machines was

replaced by the structured flow of top-down (Boris, 1990).

This made testing simpler because errors could be traced

much more quickly and simply. By the 1980s, languages like

C++ had been developed to allow the implementation of

object-oriented design in a wide variety of situations (Horgan,

1994).

The real danger of a code error, also called a defect, is

not the glaring problems that crash a system or prevent

compiling. The real danger comes from defects that are not

catastrophic and only happen under very specific conditions

resulting in slightly skewed results. This type of error results

in output that looks correct but is flawed. Error-path defects

 6

are the most difficult class of defects for a coder/tester to

find. These defects result from incorrect inputs being applied

to the code. It is impossible for a coder to be able to

anticipate how his/her code will react to all possible input

(Boris, 1990).

Testing should be considered as a part of the

development process. Often coders feel that testing is

separate from code development and are hesitant to include

test early, when the most good can be done. To understand

the testing requirements for both object-oriented software

development and traditional software development the history

of the issues needs to be understood.

The development of more complex software testing was

helped along by American quality initiatives of the 1980’s.

Six-Sigma, Order-I, and STEP all reaffirmed the need to verify

code before delivery to the customer (Cheung, 1980). No

matter, the quality method chosen the goal of software

testing is to verify function and content. Although the

primary metric used to gauge testing effectiveness is,

“defects captured per KLOC”, the primary goal of testing is

not to create quality. It is impossible to predict were every

 7

defect exists in a body of code and therefore it is impossible

to find every defect input (Boris, 1990). A common mistake

made by many it is to assume that if something is tested

there will not be any defects in the code. This of course is

contrary to the primary goal of testing, verifying function and

content.

The desire to find all defects is irresistible and

considerable resources have been spent in the software

testing domain to achieve 100% defect exposure (Miller,

1992). The most widely used test suite that attempts to

expose all defects is coverage testing. This testing method

falls short of its goal for fundamental reasons that will be

explained later. When used in conjunction with other test

suites across various test phases coverage testing may

uncover defects invisible to the other suites.

TEST PHASES

 Software testing does not only occur after all software

development has been completed. Software Development

Company’s testing is broken into different phases and code

enters into each phase based on the progress of the

development cycle (see figure 1). The earliest testing phase

is Unit Testing (Miller, 1992). This phase is preformed by the

software engineer who wrote the code. Unit testing is

preformed to verify a discreet segment of code that has not

been integrated with other code segments (Hong, 2002).

Unit testing is only intended to verify a single function in a

code segment and the input and output values are often

limited to true or false condition statements (Hong, 2002).

 8

 9

Figure 1 - SDC Development cycle

Integration test

 After the code mass has reached a point where

independent code segments can be married together to form

meaningful function groups integration test is required.

Depending on the development/test group structure

integration test may be considered a part of the development

organization or the test organization. The intent of

integration testing is to verify the integration of finite

functions into a macro-function (Hong, 2002). This

verification is a logical follow on to unit testing but tests

multiple functions and how the functions interact as a whole.

Integration test will generate defects but they should not be

considered as indicators of product quality as the code being

tested is a collection a partial functions that are being tested

together (Cheung, 1980). Not until formal test is entered can

defect data be used to calculate quality numbers or coverage

percentages.

 10

Function Verification Testing (FVT)

 Once enough functions have been developed Function

Verification Testing (FVT) can be started (Piwowerski, 1993).

FVT is intended to verify logical function groups. A common

analogy used with software development and test is that of

automotive manufacture. This analogy fits well to explain FVT

testing. Unit test is similar to making sure a bolt will fit into a

required hole. This test is simple and very limited.

Integration testing is analogous to verifying that a fender will

fit onto the car. FVT takes what was accomplished in Unit

Testing and Integration Testing to a higher level. In the

automotive analogy FVT would group functions logically and

test them together. An automotive FVT test would be to

verify that the engine starts or the head lights turn on.

Function testing is meant to verify code function groups but

not the entire solution (Duran, 1980).

System Level Test (SLT)

System Level Test (SLT) is intended to verify the entire code

package from the perspective of the user (James, 1980). The

SLT cycle is the longest and most involved test cycle (Elaine,

1990). In the automotive analogy SLT would be the road

test. This is the test cycle where all the various code

functions come together and are verified in an environment

that simulates real world use. The SLT cycle is composed of

various test suites (Elaine, 1990). These test suites are

intended to verify as many code paths as possible.

Figure 2 – SDC Test cycle

 11

 12

Traditionally, this is when coverage testing also takes place.

Figure 2, shows what a typical SLT test is composed of. The

durations of each test suite are relative and vary drastically

from one test cycle to another. The primary test suite that

takes place during SLT is good path testing (Duran, 1980).

The focus of good path testing is to verify how the code will

react in a customer environment during normal use (Elaine,

1990). Good path requires the code to be tested in an

environment that simulates the customer environment as

closely as possible and used data pushing tools as its primary

source of input to exercise the code. The input is intended to

all be “good” and errors conditions not are expected (Duran,

1980). During good path testing if an error condition is

achieved then defect reports are generally created to log the

event. The defect rate generated during good path is the

primary source of product quality numbers and reliability

calculations (Musa, 1975).

ERROR PATH TESTING

 Error path testing is used to verify that the code can

detect bad input or output data and error conditions are

 13

appropriate (Wittaker, 2000). This testing uses bugging

devices and data pushers intended to create errors. With the

automotive analogy this testing is when you see vehicles

driving on wet courses or swerving at high speed to avoid a

traffic cone. Error path testing is intended to verify that the

code can perform in the worst conditions and is able to detect

a data error (Wittaker, 2000). When a data error is detected

the code should take the correct action and log the problem.

The defects that are generated in this phase of testing are a

challenge to debug as the conditions that were used to enter

into the error condition must be fully understood.

FINAL REGRESSION

 Once Good path and Error path testing have been

completed a final version of code is created. This version

called, the Golden Master, contains fixed to the defects found

during the previous SLT phases of testing. The Golden Master

is the code development teams’ best effort as a final,

production ready code drop. The Golden Master is subjected

to a custom build SLT test suite that is based on the failures

 14

seen during the SLT prime testing. Once the final regression

testing is complete then SLT is complete.

System Level Serviceability (SLS) Testing

 System Level Serviceability (SLS) Testing is used to

verify documentation that will be used to service the

software. The primary mechanism for software support is the

service point of entry. The service point of entry is where the

code recognized a problem and alerts the user or service

agent. Once a service point has been created the error

should be logged and as much data captured as possible.

Thorough SLS testing will verify that all problems are:

1. Logged – A meaningful entry is made into the

error report

2. Notification is sent – Depending on the error and

customer service contract the user of a support

center may be contacted when an error occurs.

3. Data logging takes place – Error data must be

collected at the time of an error.

 15

4. External documentation verification – The

problem determination guides must be verified

and shown that they help resolve any problems.

Manufacturing Verification Test (MVT)

 Manufacturing verification testing is the only testing

that takes place outside the Development/Test environment

(Piwowerski, 1993). MVT traditionally takes place at the

manufacturing facility and is used to verify Hardware and

software for manufacturability. MVT verifies that the software

can be loaded on the hardware and a very basic bring up test

suite is preformed. MVT is a short duration and simple test

that generally does not generate a significant number of

defects.

TEST CRITERIA

 Regardless of the testing phase criteria needs to be

established (Miller, 1992)(Horgan, 1994). Testing criteria is

generally broken into entry/exit and pass/fail requirements.

As an example is a Functional Verification Test is to be

 16

preformed the entry criteria must first be met. Entry criteria

are defined by the respective test group and agreed to by the

appropriate development group. The entry verification of all

test phases is run as a T0 regression test. Figure 3 shows a

typical entry criteria matrix. A typical FVT test entry

verification test would be limited to verifying that a subset of

function is available and working in the code (Wittaker,

2000). Not until the formal pass/fail portion of testing does

the full expected code function get tested.

NO Availability/ Function not workingAvailableStorage Pool Manipulation, Creation, Deletion

NO Availability/ Function not workingAvailableVolume Creation/Deletion/Assignment

NO Availability/ Function not workingAvailableDisk State Degradation

NO Availability/ Function not workingAvailableSubsystem State Degradation

NO Availability/ Function not workingAvailableJob Control

NO Availability/ Function not workingAvailable with 1.1 release 4/05Disk Sparing

NO Availability/ Function not workingAvailable with 1.1 release 4/05Health and Fault Management

NO Availability/ Function not workingAvailable with 1.1 release 4/05Instrumentation Version

NO Availability/ Function not workingAvailable with 1.1 release 4/05Common Initiator ports

NO Availability/ Function not workingWill not be available for 2005 ReleasesAccess Point

NO Availability/ Function not workingAvailableSAS Target Port

NO Availability/ Function not workingWill not be available for 2005 ReleasesSecurity HTTP

NO Availability/ Function not workingAvailableDevice Credentials

NO Availability/ Function not workingAvailableiSCSI Target

NO Availability/ Function not workingAvailableFC Target Port

NO Availability/ Function not workingAvailableLocation

NO Availability/ Function not workingAvailableMasking and Mapping

NO Availability/ Function not workingAvailableBlock Services

AvailableAvailableMultiple Computer System

AvailableAvailablePhysical Package

AvailableAvailableDisk Drive /Disk Drive Lite

AvailableAvailableArray

AvailableAvailableServer

Test ResultDevelopment ResponseVerification Requirements (Profile/Sub Profile Name)

Figure 3 – Entry criteria matrix

 Pass/fail criteria are also determined by the test group

and are generated by documents such as the functional

specification, marketing requirements and development

design documentation. Unlike the entry verification portion of

a test phase the pass/fail portion is unique to each test phase.

 17

 18

For example, SLS pass/fail requirements are far different from

those of SLT. The pass/fail criteria are used by the test

groups to define the test exit criteria.

 19

C h a p t e r 2 : E v o l u t i o n o f T e s t i n g

 Computer technology has become woven into every

aspect of human society (Horgan, 1994). The reliance on

computer technology has placed ever higher demands on

hardware and software testing (Wittaker, 2000). The

requirement for low defect incident rates in released products

has forced testing to evolve (Miller, 1992). Testing

techniques used in the past have been outmoded by more

modern and effective methods. Cost, consumer

requirements, and rapid technical change are the driving

forces behind the evolution of testing.

BUSINESS MODEL OF TESTING

 At both the consumer and the business level, the cost of

computing has dropped drastically dropped and the reliability

and performance has increased. Over the past 30 years the

average cost of computing has exponentially decreased (New

Economy, 2006). Figure 4, shows the exponential dive of

computing costs (New Economy, 2006). The push to

continually reduce price and improve in all other measurable

aspects has forced development teams to look for efficiency

improvements within their processes. Test has not been

excluded from the market driven pressures to shorten test

schedules and cut costs while decreasing field defect rates

(Wittaker, 2000). To meet market demands genuine

solutions must be implemented to be successful. Reducing

cost by simply cutting headcount or improving time to market

by reducing testing schedules are examples of short sighted

business based solutions that are destine to fail.

Figure 4- Price trend

 20

 21

Personnel Reduction

 Personal reduction can only be successful if the person

hours spent on the product are more efficient and effective

(Piwowerski, 1993), (Wittaker, 2000). Automation is one of

the leading solutions being adopted by industry to effectively

reduce test headcount. The use of automation does not

remove all human elements from data analysis but relives

personnel from mundane and repetitive tasks. One example

of automation being used in a test environment is defect

detection. Historically, a technician would sit in front of a

consol and monitor a test waiting for an error. Automation

removes the technician and replaces him/her with an

automated support system to monitor multiple tests at the

same time. When an error occurs the data logs are collected

and the test engineering team can perform failure analysis.

Automation has a higher rate of first time failure detection

because the human characteristics of fatigue and boredom

are no longer an issue. This translates to a lower defect

incident rate for released products.

 22

Shortened Test Cycle

 Market demands often require a products

development/test schedule to be compressed. The driving

issues behind schedule compression include beating a

competitor to market, meeting specific revenue targets or

remedy known field issues with pervious releases. Regardless

of the root of the requirement to compress the schedule

burden placed on the development and test teams are the

same. The function that is expected to be delivered does not

change but the amount of time the development and test

teams have to work with is shortened. Solutions like

automation can help but are may not be enough to keep a

shortened schedule (Wittaker, 2000). The most effective

solution would be similar to the manufacturing process of JIT

(Just In Time). This manufacturing model increases

manufacturing efficiency by having good delivered to each

manufacturing process only when needed. The JIT model

directly translates to software testing. Instead of waiting for

large and complex code segments to be delivered for test;

smaller less complex segments can be delivered more often

(Boris, 1990). This will allow test to start earlier in the

 23

development process and detect problems sooner. All the

traditional test stations like FVT and SLT are present but the

amount of time allotted to each will be proportionally

shortened. The combined effect is an overall shorter test and

development cycle. The danger of this approach is the

integration of discreet functions into larger more complex

function happens later in the test cycle. Pushing function

integration out in the schedule caries the risk finding a

catastrophic integration defect so late in the development

cycle that GA will have to be delayed.

Statistical Test Model

 Automation and function delivery management are only a

part of the evolution of testing. Statistical testing is

becoming a standard in most major test labs because the use

of normalized data allows trends that would be invisible with

traditional methods to become apparent (Miller, 1992). By

utilizing usage and performance data, statistics can be applied

directly the testing function, resulting in a reduction of

 24

redundant testing and allowing test to focus on the portions of

the software with the biggest impact on the system, and

reducing the overall test schedule. These improvements can

significantly decrease the amount of resources required for

software testing (Hong, 2002). Statistical testing can also be

used to determine when it is time to stop testing a software

product, through reliability and entropy metrics. Strategically

designed application of statistical testing can improve

reliability measures and reduce the levels of uncertainty

present in the testing.

 Formal Statistical Verification

 A statistical model test is composed of both white-box

and black-box testing used to establish if code or a code

segment conforms to the established functional specifications.

The goal of white and black box statistical testing is to use

statistical techniques to ensure software quality and to

provide quantitative measures of stability, reliability, and

conformance to specifications. White-box testing assumes

that the code is complete enough for examination and

conformity measurements (Boris, 1990). Black-box testing is

intended to only test code from the user’s point of view

 25

through the defined interface (Boris, 1990). Black-box

testing is inherently a superficial test and makes deriving

quantifiable data difficult.

 By implementing the collection of test generated data

into operational profiles, developers can utilize statistics to

direct how the testing resources are applied, thereby reducing

redundant testing, focusing testing on portions of the

software with the biggest impact on the system, and reducing

the amount of testing required overall. These improvements

can significantly decrease the amount of resources required

for software testing. Statistical testing can also be used to

determine when it is time to stop testing a software product,

through reliability and entropy metrics. Strategically

designed application of statistical testing can improve

reliability measures and reduce the levels of uncertainty

present in the testing.

Statistical Testing by Test Phase

 Each testing phase has a specific goal and the use and

type of statistical model differs between each. For a

statistical test to be successful the function specifications

 26

need to be defined. It is the requirement for clearly defined

specifications that excludes the use of statistical testing from

some early testing. This early testing is usually considered a

pre-formal test and includes developer based testing. Pre-

formal test should be limited to go/no go testing due to the

diminutive range of function returns and lack of defined

specifications.

 Functional Verification Test is the earliest phase of formal

testing where a statistical test can be successfully introduced.

The function delivered to FVT is grouped and complex

operations can be preformed. In the case of maintenance

releases the entire code function of plan will be available for

testing. A function verification test by nature is a white-box

testing environment (Boris, 1990). The code front-end would

generally not be available during an FVT test. Appendix A

shows what the statistical data would look like for a

device/microcode function verification test. A statistical test

would more accurately describe the codes performance during

FVT. The decision to release the code to other test functions

 27

would be based on quantitative data and not simple the test

schedule.

 System Level, Service Level and Manufacturing

Verification testing operate in a black-box testing mode.

These tests do not measure the performance within a function

or device but as a system as a whole. Black-box testing uses

a statistical model like white-box testing but at a higher level.

The specifications that are tested with black-box are more

based on user experience (Piwowerski, 1993). This limits the

use of statistical testing to only the quantitative portions of

each test.

 28

C h a p t e r 3 : S D C C o v e r a g e T e s t i n g

 Code coverage evaluation involves identifying the

segments of code that are not executed with multiple runs of

a program. Coverage testing is a measure of the proportion

of a program exercised by a test suite, usually expressed as a

percentage. Theoretically 100% coverage can be achieved

but is not practical in real testing. Testers use the coverage

test percent to help ensure that a substantial portion has

been executed. Coverage measurement is critical to

evaluate the effectiveness of the test. The most basic level

of test exposure is code coverage testing and path coverage

is the most methodical form of coverage testing. Some

intermediate levels of test coverage exist, but are rarely used.

The coverage model used by SDC is traditional code

coverage. Traditional code coverage tools are integrated as

the code is being developed. Each code segment or code

path will have a hook added that the coverage tool will

monitor for. The added code hook provides and index

counter to record which statements are executed. The

inserted code hook remains in the executable throughout the

 29

testing process. The inserted coverage test code is only

used during the execution of the of each code path.

LIMITATIONS OF THE SBC COVERAGE TESTING MODEL

 Coverage testing at Software Development Company is

fraught with same problems seen industry wide. When a

path is not being executed the code coverage hooks are not

used to generate any test data. The coverage hooks are

static and are present throughout the code. The addition of

the code hooks can affect execution time and code behavior.

Altering execution time changes error timing windows.

Because released code will not include any coverage hooks

the test level code does not accurately represent the release

code. SDC has had a problem when calculating the number

of hooks expected by the test group. Because the coverage

hooks are added either by the development team or when

the code is compiled the total number of hooks is highly

dependant on developer buy in to the coverage test process.

Each code segment owner is responsible for adding coverage

 30

hooks the compiler recognizes for each command in the code

segment. There is no accurate method to ensure that each

hook is accurately incorporated. In the early 1990’s SDC

developed a coverage testing system named Execution Time

Mapping Tool (EXMAP). EXMAP was an attempt to apply

coverage theory into a more usable system that could be

deployed company wide (Piwowerski, 1993). At the time of

the first implementation of EXMAP the SDC code portfolio

was considerably smaller and narrow in function. The SDC

software offering was limited primarily to device driver

support software and some vendor applications when EXMAP

was first implemented. Over time SDC turned its corporate

focus from hardware development to offering a full support

solution. By 2000, SDC offered a full solution package for

mid to enterprise class customers. This refocusing required

the SDC development team to develop a broader and more

complex function set for all its products. With the increase

in function, EXMAP no longer could be used as a coverage

tool. Code size moved from an average of 20-30 KLOC to

500+ KLOCK. The human and machine overhead required to

run EXMAP had become too high and it was abandoned.

 31

With the removal of EXMAP SDC code coverage testing had

been limited to long duration user experience test runs.

Long duration user experience test runs were intended to

flush out code defects by running the code in a black box

manner long enough that each function/path had been

executed. The use of long duration user experience testing

has caused a steady increase in defects per KLOC year to

year.

The Failure of SDC EXMAP

 The current average SDC new function release is ~500

KLOC for enterprise class products. Each KLOC is comprised

of hundreds of simple code functions that pass values to

other functions. Each code segment can contain multiple

code paths/hooks. Figure 5, represents the simple code

segment:

 If P then F1 else F2.

This function states that if the value assigned to P is equal to

the value entered then the value for F1 is returned and if the

value entered is not P then the value for F2 is returned.

Figure 5 - Simple Code
Segment

The Figure 5 code segment is only one line but is spawns two

separate functions. With the addition of more condition

statements a logically simple code segment can become much

more complex to test with the SDC MAPEX coverage model.

Figure 6 shows the code segment;

 32

Begin
 input (x, y);
 while (x > 0 and y>. 0) do
 if (x> y)
 then x: = x - y
 else y: = y - x
 endif
 endwhile;
 output (x + y);
end

This code segment uses two inputs X, Y. If X and Y are

greater than 0 and X is greater than Y then X is equal to X-Y.

If Y is greater than X then Y is equal to Y-X. The value

returned is X + Y post the above calculation.

Figure 6 - Comparative code segment

 33

 34

Even though the function shown in Figure 6 is only 9 lines it

branches 3 calculations and 9 comparison functions. A single

KLOC comprised of functions similar to Figure 6 would

generate 1000 comparison functions and 300 calculations.

The SDC EXMAP coverage model required code developers to

place a hook at each function. If coders are 99% accurate

when placing code hooks in a 500 KLOC release

approximately 5000 functions would be missed. No matter

how long EXMAP was run the 5000 missing hooks would not

be executed and because EXMAP required testers to use hook

data supplied by developers, the test team would never be

aware of the missing hooks in the code.

The Cost of EXMAP

 The cost of EXMAP to SBC incorporates more than the

daily burden rate of machine time and person hours to

support it. The cost of any failed testing model is the cost to

fix/repair/replace defects released to customers. Figure 7

shows the cost of EXMAP as SBC’s code releases became

larger and more complex.

SBC EXMAP Model Costs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

KLOC Missed Functions at 99% Field Defects $ Cost Per Defect

Figure 7 - EXMAP Cost per KLOC

Figure 7, assumes that each developer will be 99% accurate

when placing hooks into the code and a single field defect will

occur with every 100 missed function hooks. Each defect is

estimated to cost $1000 to fix/repair/replace. Actual field

defect cost rates are closely held financial information. The

estimated $1000 per defect cost is extremely conservative.

When a field defect is found, SBC will involve entire code and

test team to create and validate the fix and the fix will be

bundled and released as a new code level. A defect will

 35

 36

consume resources from development, test, manufacturing,

customer support, and management before being released to

the field. Table 1, shows a conservative $1000 per defect

and a theoretical 99% accuracy for placing coverage hooks.

The cost of EXMAP becomes exponentially more expensive

with each KLOC added to each release.

KLOC Missed Functions at 99% Field Defects $ Cost Per Defect
1 10 0.1 $ 100.00
2 20 0.2 $ 200.00
4 40 0.4 $ 400.00

12 120 1.2 $ 1,200.00
24 240 2.4 $ 2,400.00
72 720 7.2 $ 7,200.00

144 1440 14.4 $ 14,400.00
432 4320 43.2 $ 43,200.00

Table 1 - EXMAP Actual

EXMAP alternative – User Experience Testing

 By the late 1990’s the EXMAP deficiencies forced SBC to

abandon it and find an alternative. The growth and

fragmentation of the different business organizations within

the SBC hierarchy did not lend its self to adopting a universal

testing model. Each development and test team adopted a

coverage model that fit best. The primary driver behind all

computing growth since the mid 1990’s has been better

performance at a lower cost. Market factors forced

 37

development and test teams to choose a coverage model that

allowed them to churn code as fast as possible with the

lowest burn rate. A majority of the SDC test and

development teams adopted a long run user experience test

coverage model. This model removes most performance and

coverage metrics from the test environment. Code is tested

in a black box fashion for the duration of the test. The

concept driving user experience testing is creating a testing

model that mimics customer use of the code. Because

customer behavior is assumed by the testing model, any

defects a customer would encounter in the field should be

found during testing.

 The philosophy of long term user experience testing as

SBC applies it is fundamentally flawed. Long run user

experience testing does have a shorter duration and because

no specialized skills are required to design the test, the

personnel burn rate is lower. This does not consider the cost

of a defect when found in the field. By 2002, the computing

boom had slowed and mid to enterprise class customers were

no longer willing to contend with defects. Computing at the

 38

enterprise level and below, had become commoditized and

deep rooted corporate alliances where now being questioned

over code quality. SBC struggled to maintain the customer

base and grow market share while industry analysts dogged

each wave of product releases. One of the primary

contributors to struggling SBC code quality is over investment

in user experience testing. The user experience testing model

assumes that the customer behavior is predictable and can be

contained in the model. Assuming the user experience model

covers 95% of all the customers 50 customers in 1000 will

encounter a defect. Based on the calculations form above

this conservative estimate would cost $50,000. The dollar

cost per defect for the user experience model does not

include the cost of lost market share. A customer that

encounters a single defect will likely run into more than one

defect because the user experience model attempts to predict

the user behavior. If a user encounters a defect they are

likely operating outside the model boundaries and will

encounter multiple defects. Multiple defects drive the mid to

enterprise level customer to a competitor solution and shrink

SBC’s market share.

 39

C h a p t e r 4 - F i l l i n g t h e E X M A P V o i d

 The removal of support for EXMAP marked the end of a

homogenous company wide coverage testing method for

SDC. As each division within SDC devised its own coverage

testing model and market demand for price competitive code

releases resulted in customer experience testing. The failure

of customer experience testing contributed to the shrinking

market share and rising field defect rates and associated

costs. As SDC continued to move forward with larger and

more complex releases the need for coverage testing

methods that do not require the overhead of EXMAP to

maintain and is more thorough that user experience testing.

Solution Scope

 SDC is a multinational development company supplying

a full range of technology to all segments of the industry.

The coverage replacement for EXMAP and the current

customer user experience model being proposing is limited to

midrange data storage device development and testing. The

 40

solution that is posed would apply across the SDC

development environment.

Solution Requirements

 EXMAP failed because is relied heavily on developers to

place hooks correctly in the code. As code releases became

larger the inaccuracy of hook placement was magnified until

EXMAP became unreliable and costly to maintain. The user

experience testing model relied too heavily on the test team

replicating customer behavior to be practical. As the market

changes the demand for high quality code releases will

continue to increase. The coverage test tools used by SDC

are not capable of providing customers with the low defect

rates they demand. For a solution to be effective, defect

rates are not the only issue that needs to be considered. The

next code coverage solution must also take into account

business aspects such as cost to develop/maintain and

operation overhead. In a large company like SDC with a

broad portfolio the transportability of the coverage tool across

divisions must also be considered. For a solution to meet

 41

the current and foreseeable requirements of a coverage

testing tool for SDC it must meet the following:

• No coverage hooks - Future SDC test coverage

solutions can not rely on coverage hooks to be placed in

the code. EXMAP failed because it relied on developers

to place coverage hooks in the code as the developed it.

Even if the SDC coders are extremely accurate placing

hooks a 1% error rate translated into hundreds of

possible defects reaching the field.

• Robust – SDC currently has multiple coverage tools in

use across the company. SDC needs a tool that is

robust enough to be deployed across the organization.

The tool will need to be generic enough to be used on

all products can provide specific coverage testing for

the products it is used to test.

• No assumption based model – The user based

experience model currently used by SDC attempts to

predict the behavior of a customer. As the customer

base grows the number of customers that fall outside

 42

the models coverage also grows. SBC must have a

coverage model that does attempt to quantify customer

behavior.

Statistical Specification Performance Testing

 The requirements for a coverage testing tool apply to all

software/hardware companies that are attempting to gain

market share in the commoditized computing market. The

market move from speed and capacity at the cost of quality

to a market that demands higher quality has changed the

demands placed on test groups. The demand for shorter

testing cycles and higher quality has pushed the SDC testing

organizations to the brink of failure. The reorganization of

test cycle components and utilization of faulty test tools has

resulted in lower quality products across SDC.

 One available tool that meets the SDC requirements of

not requiring code hooks, being robust and not predicting

customer behavior is Statistical Specification Performance

Testing. This type of testing relies of the specifications for a

product to be well defined and available to the test team

 43

before test start. Statistical specification performance

testing uses product specifications to define the boundaries of

the coverage testing. The specifications used to define each

boundary must be quantitative and be limited to defining a

single aspect of the product performance. The primary

assumption is that is all the boundaries are defined as

specifications and the code contained within each specification

control boundary will perform as expected in the field. This

type of testing does not replace classical error path testing

but can be used to augment it as the error response can be

quantified and each boundary tested. Statistical specification

performance testing requires the data sample size to be large

enough to show the performance of the code and how closely

it meets the specifications.

Design of Specifications

 A specifications needs to provide reasonable feedback

on aspects of a product that result in better performance or

reliability. Using a quantifiable level of detail is critical to

defining each specification and control. For example, a

diagram of instruction timings for a CPU is not an adequate

 44

specification, although it is extremely detailed. CPU clock

speed also is not an adequate point of measure

measurement, although it is quantifiable and simple to

summarize.

 The primary element of a specification is that it should

have built in control. After each specification that is going to

be tested is chosen, other variables should be eliminated. If a

variable can not be eliminated then more analysis of the

specification control needs to be preformed. An example of

eliminating variables outside the specification control is if

comparing storage device speed, all tests need to be

preformed on the same data files and same host machine.

Comparing the read/write performance of Storage Device A

that is connected up to a slow host machine, and Storage

Device B that is attached to a faster host machine will not

result in usable data about the storage devices. Conversely,

performing testing on two different types of host systems can

generate data used to characterize the storage devices

performance if the specification controls are adequate. For

example, Storage Device A has inefficient AIX attachment

 45

drivers, but Storage Device B has horrible LINUX attachment

drivers. Isolating the storage device from the driver

performance data is impractical, and since the device

attachment drivers are possibly proprietary, it might also be

impossible. If specification controls are not sufficient the

generated test data is meaningless. Without defining the

specification controls and eliminating the test variables

adequately the storage device statistical performance test

generated useless data when testing across two host

platforms.

Data Analysis

 Because test control specifications are a major influence

in the GA of a product test designers can not be swayed by

pressure to pass a product or alter data controls and

variables. Table 2, shows the results to a statistical

specification performance test for a storage device. The data

is broken down between device and % performance to each

control. Each device can perform to 100% of the specification

of each control. The data in Table 2, assumes that all

variables have been bounded by the control data and that

 46

enough data has been collected for each device to be

statically meaningful. The results for each device are

calculated from the entire data set for each control.

 Example Control Data Combined Results
 % % % % %

I/O Device Control 1 Control 2 Control 3 Control 4 Control 5
381 0.0 2.4 6.4 34.7 56.5
716 0.0 0.0 0.3 13.3 86.4

8810 0.0 0.6 8.9 27.2 63.4
8880 0.1 3.3 14.9 27.9 53.9
9038 0.2 1.1 6.4 42.1 50.3
9104 0.0 0.7 5.2 22.3 71.8
1931 0.1 2.2 3.5 2.3 92.0
2548 1.4 3.3 8.3 13.5 73.6
9078 0.0 0.8 7.2 26.3 65.7
9605 47.8 0.0 0.0 0.0 0.0
9032 1.3 1.5 3.6 7.1 86.5
9028 0.4 3.1 2.4 1.0 93.1
9029 0.0 0.0 0.0 0.0 100.0
1930 0.0 0.0 0.0 0.0 100.0
8813 0.0 0.0 0.0 0.0 100.0
9066 0.0 0.0 0.0 0.0 100.0
9080 0.0 0.0 0.0 0.0 100.0
9015 0.0 0.0 0.0 0.0 100.0

Table 2 - Generic Control Data Results

The control percent is calculated by how closely the device

meets the specified control value. The example data shows

that no single device achieved meeting each control

specification. Some devices did achieve 100% satisfaction of

the specifications but preformed poorly in all other control

 47

specifications. This indicates that the devices are not meeting

the specified control values and an underlying defect is

causing specification performance issues.

 48

C h a p t e r 5 – S t a t i s t i c a l P e r f o r m a n c e
T e s t i n g a t S D C

 The application of Statistical Specification Performance

testing as an alternative to the current coverage testing

model, user experience testing, was limited to a small <50

sample of SDC data storage devices. The data storage

devices are established and previously released devices at the

time of testing. No hardware changes were made for the

duration of the Statistical Specification Performance testing.

During testing the firmware code base on each device was a

previously released level that had been evaluated and had

been running in customer accounts for approximately 8

months prior to the start of the Statistical Specification

Performance Testing.

Identification of test controls and variables

 The identification of control specifications for the SDC

data storage devices was straight forward. The physical

storage devices had been in the field for over 3 years and

represented the 2nd generation of the specific physical form

factor used for the device type. A 3rd generation device had

 49

been release approximately 18 month prior to test start.

Because the vintage of the physical devices the testing did

not include physical testing. The Statistical Specification

Performance Testing was limited to evaluating the firmware

that resided on the storage devices. Any mechanical issues

that did arise were accounted for in the data and assumed to

be due to drive age. There was no possibility to benchmark

the mechanical aspects of the drive due to vintage and all

mechanical failures were scrubbed from the data. The intent

of the Statistical Specification Performance Test was to

evaluate the firmware and not to debug hardware issues of

the data storage device.

 The storage devices expected performance was well

documented in both external and internal publication. The

external publications specified performance data like capacity,

speed and reliability. Internally published specifications

detailed performance data that included error path

information and degraded performance specifications. The

specifications given in this document are only representative

and are not the actual performance data for any SDC device.

 50

 The test control performance data was all related to

physical device performance. The test controls can be

classified into two categories; internally and externally

observable. The externally observable test controls was

performance data that could be observed from outside the

data storage device. Bytes written, bytes read and capacity

are representative of externally observable performance data.

Internal test control performance data included error rates

and incorrectly written data blocks. All internal performance

data was collected in a device log page that could be parsed

and the data read. The external data was collected via host

data driver applications.

Application of Statistical Specification Performance

Testing

 Statistical Specification Performance Testing first

required an application to be written that would collect the

performance data for all the devices. This applications

operated by using File Transfer Protocol (FTP) to capture

performance logs from the host running the data drivers for

each device and the device logs from each data storage

 51

device. Once the performance logs were collected from the

host and the devices; the performance data was parsed out

and uploaded into a DB2 database. This process could be

automated, but for this first run test it was left as a manual

process.

 Once that data was uploaded into the database the data

could be accessed by a standard database query. Each

database entry was for a complete data run of a device.

Table 3; shows a truncated database entry for a singe device.

D
evice

R
un

W
rt G

B

R
D

 G
b

E
rror rate 1

E
rror R

ate 2

S
tops

D
ata skip

E
rror W

rt
E

rror R
d

P
rem

 w
t

P
erm

 rd
Tem

p w
t

Tem
p rd

D
evice error

659
DataRun1_ASME___I
1_970D 33.8 498.3

24,92
5,533

40,597,7
58 0 4 0 0 0 0 0 0 0

Table 3 - Parsed Data Table

The header information was added to each data query and is

not contained in the actual database. The parsed data was

used to quantify performance for each device.

 52

Performance Data Analysis

 After the data was collected, parsed and extracted from

the database it would be ready for analysis. Once the data is

parsed for each device; the data is placed in a spreadsheet

for analysis. A spreadsheet is the best option for SDC

because it is a tool the test team was familiar with and it

allowed calculations to be preformed on rapidly. The output

from the spreadsheet was broken into two sections. The first

section was an overall summery of device data and the

second was a breakdown by device.

SDC Summery Data

 The data summery chart shows how much was read

and written, and the calculated error rates. Table 4, shows

the overall summery for the group of SDC data storage

devices used in testing. The data summery chart shows data

broken two sections. The bytes section shows how much

data was processed collectively for all the devices in the test

group. This section is exclusively externally observable and

does not require calculations beyond totaling that bytes

processed for each device. The rates section uses data

 53

parsed from the data device log pages and is calculated. This

section calculated each rate based on the number of

occurrences for each event divided by the amount of data

processed. The column labeled “SPEC” defines what the

control specification value is.

Test: SDC Generic Summary
CODE Level: R123456
Date: 2006-01-01

(bytes) SDC Data Device
Mb WT 60957.6

Mb RD 207849.3

 Cycles 1280
Total Mb processed 268806.9

(rates) SPEC
Skip Data 195.38 < 0.8 0.00

Data Write Stop 131.0 < 197 0.97

Error 1 2.2E+005 5E+006 22.48

Error 2 1.9E+004 1E+005 5.14

Permanent Errors

Data In 30478.8 1E+005 0.33

Data Out 51962.3 1E+006 1.92

Temporary Errors

TEMP_WT 224.1 100 0.45

TEMP_RD 831.4 250 0.30

Total Perms 6
Table 4 - SDC Specification Summery Report

If the calculated rate falls outside the specified rate limit it is

highlighted in red. Any red highlighted data shows that a

 54

control specification is out of spec and a possible defect

exists. Data that is not in specification would tell the test

engineer that more investigation is needed. The test

engineer would then use the device breakdown section of the

spread sheet to see more detail than what is available from

the data summary chart.

SDC Device Breakdown Data

 Table 5, shows the device breakdown data that

corresponds to the summery data presented in Table 4. The

performance for each device is shown for each control

specifications. Like the Summary Data, any values are out of

specification. The specification values are shown above the

actual device performance values. The data shows the

specific performance for each device. Using this data it is

possible to for the SDC test engineer to pinpoint what control

specification is out of design and on which device and how far

it is out of specification. This will allow the test and

development team to focus on the specific code segment that

the control data corresponds to.

 55

SDC Generic Device
Breakdown
Code
Level R123456

Date: 2006-01-01 Radar Rates
 > 3E2 > 3E2 > .5 < 166 > 10 > 10 > 3E4 > 1E5

Devic
e RUN

Mb
WT

Mb
RD

Total
Mb

Type1_E
RRS

Type2_
ERRS

Skip
Data

WRT_SK
P

Temp
Wrt

Temp
OUT

Perm
IN

Perm
HDW

381 ABABRB00I 2130.4
4687.

5
6817.

9 8.7E+005
1.5E+00

6 532.6 --- 426.1 4687.5 --- ---

716 ABABRB00I 1706.8
5118.

5
6825.

3 9.0E+005
1.9E+00

6 --- 128.7
1706.

8 1023.7 --- ---

8810 ABABRB00I 2990.4
5984.

0
8974.

4 5.2E+005
1.1E+00

6 996.8 128.4 66.5 352.0
2990.

4 ---

9030 ABABRB00I 3845.8
8119.

5
1196

5.3 1.7E+006
9.7E+00

5
1281.

9 128.4 274.7 8119.5 --- ---

8880 ABABRB46_I 3848.1
6839.

9
1068

8.0 1.1E+006
3.4E+00

5 296.0 128.4
1924.

1 977.1 --- ---

9038 ABABRB46_I 2560.5
5551.

9
8112.

4 9.3E+005
1.8E+00

6
2560.

5 128.4 426.8 5551.9 --- ---

9104 ABABRB46_I 3851.1
6842.

6
1069

3.7 9.6E+005
1.5E+00

5 550.2 128.4 770.2 3421.3
1925.

6 ---

1931 ABCWRB00 778.6
1008

4.2
1086

2.8 4.0E+004
8.5E+00

3 389.3 155.1 29.9 916.7 ---
10084.

2

2548 ABCWRB00 615.5
1028

7.8
1090

3.3 7.2E+005
1.8E+00

6 615.5 128.4 --- 1469.7 --- ---

9078 ABCWRB49I 2521.5
4586.

9
7108.

4 2.3E+005
1.9E+00

5 10.3 129.5 504.3 509.7
2521.

5 4586.9

9032 ABCWRBRH 765.4
9969.

5
1073

4.9 5.8E+005
1.1E+00

6 382.7 129.1 382.7 766.9 --- ---

9028 ABCWRBRH 621.0
1206

5.4
1268

6.4 1.2E+006
9.2E+00

5 --- 128.7 310.5
12065.

4 --- ---

9029 ABWWB00A 696.1
1349

8.3
1419

4.4 7.5E+005
2.5E+00

4 --- 128.6 696.1 2699.7 --- ---

1930
ABWWB00A
PP 1250.4

2264
6.0

2389
6.4 6.7E+005

2.4E+00
4 416.8 128.8

1250.
4 514.7 --- ---

8813 ABWWRB00I 6873.7
2103

3.7
2790

7.4 4.1E+006
8.5E+00

6
2291.

2 128.1 --- --- ---
21033.

7

9066 ABWWRB46I 3764.5
1139

2.6
1515

7.1 7.7E+004
4.3E+00

4
1254.

8 131.5 342.2 172.6 --- ---

9080 ABWWRB49I 7728.7
2274

0.8
3046

9.5 1.9E+006
8.0E+00

6 429.4 128.2
3864.

4 5685.2 --- ---

9015 ABWWRBRH 6439.2
1843

0.3
2486

9.5 3.4E+006
5.0E+00

6
2146.

4 128.2 --- --- --- ---
Table 5 - SDC Device Breakdown Data

 56

Statistical Performance Test Results

 The data storage devices that were used for the

statistical performance testing were all at GA level firmware

and hardware release levels. The SDC storage device

firmware had been tested previously with user experience

coverage testing and other testing methods. The storage

device firmware and has encountered defects not detected

during the user experience testing. All field escape defects

were related to data errors when writing to the device. These

errors were not detected in the user experience test because

the test model was not updated correctly to bound the new

data write error recovery sequences that were introduced in

the last release level of firmware.

 The statistical specification test model did not detect

the data write error recovery sequences defect in the device

firmware initially. The mechanism required for the firmware

error recovery defects to be encountered needs a device to

perform marginally. The error recover sequence is not

entered until the device writes data that does not match

 57

checksum. Over the course of the statistical performance test

three devices started to perform marginally. Once the

devices started to perform in a degraded manner the

firmware defects occurred. These defects did not cause a halt

in data flow or cause the device to crash. In Table 5, devices

8810, 9104 and 9078 show the firmware defect. Perm write

was out of specification indicating the device had encountered

a problem during a data write recovery sequence. After more

investigation the data revealed that the statistical

performance test had found the firmware defects missed by

the user experience testing model. Because the defects

required marginal device behavior and the defects were not

catastrophic that the user behavior test did not encounter

these problems. The time required to execute the Statistical

Specification Test was 2 weeks shorter than the User

Experience Testing Model.

Conclusion

 The Statistical Specification Test was successful in

detecting defects that were not detected in the current SDC

user experience testing model. As the SDC mission continues

 58

to grow the need for testing models like the Statistical

Specification Test will grow also. The Statistical Specification

Test succeeds where EXMAP failed. The specification test

model used to verify the SDC data device firmware did not

require the development team to place coverage hooks in the

code like EXMAP. Removing the need for hooks allows the

statistical performance test to accurate independent of KLOC

size. The statistical performance test is also robust enough

that it can be deployed to any product that has defined

specifications and does not have a defined user behavior

model like the current SDC coverage test. The integration of

the Statistical Specification Testing to the SDC test portfolio

will help SDC to grow its market share by reducing the

number of field defects, improving product quality and

maintaining release schedule integrity.

 59

APPENDIX A: TYPICAL STATISTICAL TEST MODEL

RESULTS

Test: Software Statistical Test
Summary

Code Level: 123.32

Date: 2006-08-
24

(bytes) Software A
RADAR
INFO

GBWT 210221.3

GBRD 267829.4

 Cycles 2078

Total GB processed 478050.7

(rates) SPEC

Read 163.60 0.5 0.00

Write 129.2 < 138 0.94

Error Type1 1.1E+005 1E+004 0.09

Error Type2 9.2E+003 1E+004 1.09

Function

Data In 629.4 0.5 0.00

Data Out --- 0.5 ---

Permanent Errors

PERM_Write 210221.3 1E+004 0.05

PERM_Read 133914.7 1E+005 0.75

PERM_DEVICE --- 1E+005 ---

Temporary Errors

TEMP_Write 65.6 10 0.15

TEMP_Read 52.4 10 0.19

INVAL_Device Error 588.7

Total Perms Errors 3

 60

Error Rates by test
device

Code
Level 123.32

Date: 2006-08-24 Radar Rates

Specification-

>
>

1E5 > 1E3

>
.4
5

<
130

>
2.4

>60
0 > 8.4 > 9.3 >50 > 4E4 > 1E3 > 1E6

Devic
e RUN GBWT

GBR
D

Total
GB

Error
type

1
Error
type2

S
W

Inv
alid
wrt

Data
in

Dat
a

out

Tem
p

Writ
e

C_TR
D

Inval
RD

Perm
Write

Perm
Read PDEV

809

RWCDJEHMM
OTIONEC__I1
_729 157.2 156.2 313.4

3.2E
+00

4
5.8E+

005 ---
129

.8 --- --- --- 78.1 --- --- --- ---

455

RWCDJEHMM
OTIONEC__I1
_729 157.8 155.1 312.9

1.8E
+00

4
3.7E+

005 ---
131

.1 --- --- --- 155.1 52.2 --- --- ---

51

RWHDJE01IN
TCJ2EC__I1_
729

23337.
2

4460
0.5

67937
.7

1.5E
+00

5
1.1E+

004

10
3.
7

129
.1 --- --- 58.3 66.9 246.2 --- --- ---

55

RWHDJE01IN
TCJ2EC__I1_
729 9312.9

1799
7.7

27310
.6

1.6E
+00

5
6.5E+

004

30
0.
4

128
.9

358.
2 --- 95.0 47.1 1011.5 --- ---

27310
.6

57

RWHDJE01IN
TCJ2EC__I1_
729

11120.
6

2167
8.3

32798
.9

2.2E
+00

5
9.4E+

005

17
1.
1

128
.6 --- --- 97.5

1083.
9 400.0 --- --- ---

60

RWHDJEHMIN
TCJ2EC__I1_
729 9652.6

1910
4.8

28757
.4

1.8E
+00

5
5.9E+

005
79
.1

128
.6 --- --- 53.0 616.3 239.6 --- --- ---

57

RWHDJEHMIN
TCJ2EC__I1_
729 0.0 0.0 0.0 --- --- --- --- --- --- --- --- --- --- --- 0.0

54

RWHDJEHMIN
TCJ2EC__I1_
729

12410.
0

2381
4.0

36224
.0

2.5E
+00

5
3.0E+

005

10
7.
9

128
.6 --- --- 60.2 175.1 262.5 --- --- ---

805
RWHDJEHMIN
TCJ2EC__I1_

11119.
6

2251
9.2

33638
.8

1.8E
+00

9.0E+
002

72
.7

138
.0 --- --- 7.7 7.0 225.8

11119.
6

22519
.2 ---

 61

729 4

67

RWWAJE01D
URBEC____I1
_729 4518.9

3514.
6

8033.
5

1.0E
+00

5
2.2E+

004

22
59
.5

128
.5 --- ---

376.
6 140.6 --- --- --- ---

73

RWWAJE01D
URBEC____I1
_729 4016.4

3012.
2

7028.
6

5.6E
+00

5
3.8E+

006

20
08
.2

128
.2 --- ---

286.
9 --- --- --- --- ---

50

RWWAJE01D
URBEC____I1
_729 4518.9

4518.
9

9037.
8

2.5E
+00

5
7.3E+

005

22
59
.5

128
.4 --- ---

376.
6

1506.
3 --- --- --- ---

 62

 TABLE OF FORMULAS

Test Effectiveness

 (1- (Field Escapes / (Test Defects + Field Escapes)) * 100

= ____%

 (1 – (Field Escapes / KLOC)) * 100 = ___%

Cost of Test Ratio

 Test Cost $ / Pre-GA Test Defects = ___K$ cost per test

defect

 Test Cost $ / KLOC = ___K$ cost per KLOC

Overall Test Duration

 ((Projected duration – Actual duration) / Projected

duration * 100 = ___%

Traditional Execution Capability Projection

((Actual Engine Rate – Projected Engine Rate)/Projected

Engine Rate)*100 = ___%

Actual Execution Capability Projection

 ((Projected Version Duration- Actual Version

Duration)/Projected Version Duration) * 100 = ___%

 63

List of References

Boris Beizer, Software testing techniques (2nd ed.), Van

Nostrand Reinhold Co., New York, NY, 1990.

Elaine Weyuker, The Cost of Data Flow Testing: An Empirical

Study, IEEE Transactions on Software Engineering, v.16

n.2, p.121-128, February 1990.

Hong Zhu , Lingzi Jin , Dan Diaper , Ganghong Bai, Software

requirements validation via task analysis, Journal of

Systems and Software, v.61 n.2, p.145-169, March

2002.

Duran J. W. and Wiorkowski J. J., "Quantifying software

validity by sampling," <i>IEEE Trans. Reliability</i>,

vol. R-29, no. 2, pp. 141-144, June 1980.

Musa J. D., "A theory of software reliability and its

application," IEEE Trans. Software Eng., vol. SE-1, pp.

312-321, Aug. 1975.

 64

Whittaker, James A. What Is Software Testing? And Why Is It

So Hard?, IEEE Software, v.17 n.1, p.70-79, January

2000.

Horgan, Joseph R., Saul London, Achieving software quality

with testing coverage measures, Computer, v.27 n.9,

p.60-69, September 1994.

Miller, Keith W., Noonan Robert E. ,Park, Stephen, David M.

Nicol , Branson W. Murrill , Jeffrey M. Voas, Estimating

the Probability of Failure When Testing Reveals No

Failures, IEEE Transactions on Software Engineering,

v.18 n.1, p.33-43, January 1992.

New Economy. University of Toronto (2006).

http://home.utm.utoronto.ca/~mckee/Index.html.

Cheung, R. C., "A user-oriented software reliability model,"

<i>IEEE Trans. Software Eng.</i>, vol. SE-6, Mar.

1980.

Piwowarski P., Ohba M., Caruso J. , Coverage measurement

experience during function test, IEEE Transactions on

Software Engineering, v.15 n.1, p. 287 - 301, 1993.

 65

 4

	Coverage Testing in a Production Software Development Environment
	Recommended Citation

	IN
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	GLOSSARY
	FORWARD
	Chapter 1: Testing Introduction
	INTODUCTION
	TEST PHASES
	Integration test
	Function Verification Testing (FVT)
	System Level Test (SLT)
	Error Path Testing
	Final Regression

	System Level Serviceability (SLS) Testing
	Manufacturing Verification Test (MVT)

	TEST CRITERIA

	Chapter 2: Evolution of Testing
	BUSINESS MODEL OF TESTING
	Personnel Reduction
	Shortened Test Cycle

	Statistical Test Model
	 Formal Statistical Verification
	Statistical Testing by Test Phase

	Chapter 3: SDC Coverage Testing
	LIMITATIONS OF THE SBC COVERAGE TESTING MODEL
	The Failure of SDC EXMAP
	The Cost of EXMAP
	EXMAP alternative – User Experience Testing

	Chapter 4- Filling the EXMAP Void
	Solution Scope
	Solution Requirements
	Statistical Specification Performance Testing
	Design of Specifications
	Data Analysis

	Chapter 5 – Statistical Performance Testing at SDC
	Identification of test controls and variables
	Application of Statistical Specification Performance Testing
	Performance Data Analysis
	SDC Summery Data
	SDC Device Breakdown Data

	Statistical Performance Test Results
	Conclusion

	APPENDIX A: TYPICAL STATISTICAL TEST MODEL RESULTS
	 TABLE OF FORMULAS
	Test Effectiveness
	Cost of Test Ratio
	Overall Test Duration
	Traditional Execution Capability Projection
	Actual Execution Capability Projection

	

