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ABSTRACT 

By 

Kent Bortz 

 
This project proposes that current testing methodologies used 

by standard testing tools are not sufficient to ensure sufficient 

test coverage.  Test tools provide important and irreplaceable 

test data but are not capable of guaranteeing high percentage 

of path exposure (coverage).  If the code path includes loop 

statements like, “if” or “when” then the number of paths to 

test grows exponentially.  The growth of the code path 

becomes exponential when nested decision statements are 

considered.  The most common methodology used in today’s 

testing environment verifies each line of code but does not 

verify all path combinations.  Testing per line of code can not 

guarantee complete test coverage when considering the 

variations of nested code paths.  The result of lower coverage 

is a higher field defect rate that increases the overall product 

support costs. 
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GLOSSARY 

Functional Verification Test (FVT).   Traditionally a test 
preformed in a development organization before releasing 
code/hardware to Formal Test. 

System Level Test (SLT).   Longest duration test cycle.  
Often, this test suite is considered formal test and is 
preformed by test groups external to the development team. 

Manufacturing Verification Test (MVT).  A short duration 
test preformed to verify hardware software before shipment 
to the customer. 

Microcode.  A computer program that resides on hardware 
and the end-user does not directly interact with 

Unit Test (UT).  A simple test preformed by the 
development teams. 

Code.   The set of instructions that are written by a software 
developer that are deployed on the given hardware platform. 

Development.   The team and/or effort to produce a solution 
that satisfies customer requirements while operating in the 
development organizations frame work.  

KLOC.   Thousand Lines Of Code.  Metric used to define code 
size and gauge test effectiveness 

General Availability (GA).  The final milestone where a 
product becomes available to the customer.   
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FORWARD 

 This project is based on an actual hardware/software 

development company.  In order to mitigate revealing any 

intellectual property the company will be referred to as 

Software Development Company or SDC.  The data that is 

presented is only representative of actual data used.  The 

representative data is accurate within the confines of this 

project and can be used for comparative calculations. 
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C h a p t e r  1 :  T e s t i n g  I n t r o d u c t i o n  

INTODUCTION 

Software testing is necessary part of any development 

approach.  Traditional as well as object-oriented software 

development approaches both require software testing.  What 

is the purpose of testing?  The simplest answer is; “to execute 

code in order to find program errors (Wittaker, 2000).”  As 

anyone who has written even a simple piece of code can 

attest too, errors are inevitable.  No mater how experienced 

the developer or simple the code assignment, errors will 

exists (Wittaker, 2000). 

The simple objective of executing code to find program 

errors is achieved by different methods depending on the 

desired outcome.  Early software testing was narrow in focus 

and simple in it methods (Horgan, 1994).  These early testing 

methods were sufficient because software was not complex 

and the environments that the software was deployed in were 

highly controlled (Musa, 1975).  As computing started to 
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become more common in business, the tasks required of 

software became more complex and varied.  The requirement 

for software to become more robust also required software 

testing suites and testers to become more sophisticated.  

The first digital computers were used almost exclusively 

for basic numerical problems.  The primary concern of the 

programmers was representing the necessary algorithm, 

which commonly involved breaking the problem down into 

sequential steps (Miller, 1992).  Early super computers were 

limited by their capacity and programmers had to work 

around daunting capacity and performance issues.  

Accordingly compact, fast-running code was necessary, even 

if testing became more difficult.  With early code development 

readability and portability were hardly considerations at all.  

Early coding was almost exclusively “bit-level”; data was 

directly controlled at the hardware level by the coder (Musa, 

1975).  The typical result was spaghetti style coding and was 

very difficult to trace and debug. 

Over time machines grew faster and more powerful.  

With the addition of capacity and speed programs were used 

for a wider range of tasks. Computer programs could now 
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include compilers and operating systems.  These new 

applications did little real world number crunching but did 

create a number of nested decision points (Wittaker, 2000).  

This led to the next stage of software design, top-down 

procedural design input (Boris, 1990).    Pascal is an example 

of a language that uses the top-down approach.  The 

spaghetti style code of the first generation computers was 

now replaced with the top-down approach.  This means that 

the “goto” structure of the first generation machines was 

replaced by the structured flow of top-down (Boris, 1990). 

This made testing simpler because errors could be traced 

much more quickly and simply. By the 1980s, languages like 

C++ had been developed to allow the implementation of 

object-oriented design in a wide variety of situations (Horgan, 

1994).   

The real danger of a code error, also called a defect, is 

not the glaring problems that crash a system or prevent 

compiling.  The real danger comes from defects that are not 

catastrophic and only happen under very specific conditions 

resulting in slightly skewed results.  This type of error results 

in output that looks correct but is flawed.  Error-path defects 
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are the most difficult class of defects for a coder/tester to 

find.  These defects result from incorrect inputs being applied 

to the code.  It is impossible for a coder to be able to 

anticipate how his/her code will react to all possible input 

(Boris, 1990).  

Testing should be considered as a part of the 

development process.  Often coders feel that testing is 

separate from code development and are hesitant to include 

test early, when the most good can be done. To understand 

the testing requirements for both object-oriented software 

development and traditional software development the history 

of the issues needs to be understood.     

The development of more complex software testing was 

helped along by American quality initiatives of the 1980’s.  

Six-Sigma, Order-I, and STEP all reaffirmed the need to verify 

code before delivery to the customer (Cheung, 1980).  No 

matter, the quality method chosen the goal of software 

testing is to verify function and content.  Although the 

primary metric used to gauge testing effectiveness is, 

“defects captured per KLOC”, the primary goal of testing is 

not to create quality.  It is impossible to predict were every 
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defect exists in a body of code and therefore it is impossible 

to find every defect input (Boris, 1990).  A common mistake 

made by many it is to assume that if something is tested 

there will not be any defects in the code.  This of course is 

contrary to the primary goal of testing, verifying function and 

content.   

The desire to find all defects is irresistible and 

considerable resources have been spent in the software 

testing domain to achieve 100% defect exposure (Miller, 

1992).  The most widely used test suite that attempts to 

expose all defects is coverage testing.  This testing method 

falls short of its goal for fundamental reasons that will be 

explained later.  When used in conjunction with other test 

suites across various test phases coverage testing may 

uncover defects invisible to the other suites. 

TEST PHASES     

 Software testing does not only occur after all software 

development has been completed.  Software Development 

Company’s testing is broken into different phases and code 



 

enters into each phase based on the progress of the 

development cycle (see figure 1).   The earliest testing phase 

is Unit Testing (Miller, 1992).  This phase is preformed by the 

software engineer who wrote the code.  Unit testing is 

preformed to verify a discreet segment of code that has not 

been integrated with other code segments (Hong, 2002).  

Unit testing is only intended to verify a single function in a 

code segment and the input and output values are often 

limited to true or false condition statements (Hong, 2002). 
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Figure 1 - SDC Development cycle 

Integration test 

 After the code mass has reached a point where 

independent code segments can be married together to form 

meaningful function groups integration test is required.  

Depending on the development/test group structure 

integration test may be considered a part of the development 

organization or the test organization.  The intent of 

integration testing is to verify the integration of finite 

functions into a macro-function (Hong, 2002).  This 

verification is a logical follow on to unit testing but tests 

multiple functions and how the functions interact as a whole.  

Integration test will generate defects but they should not be 

considered as indicators of product quality as the code being 

tested is a collection a partial functions that are being tested 

together (Cheung, 1980).  Not until formal test is entered can 

defect data be used to calculate quality numbers or coverage 

percentages.   
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Function Verification Testing (FVT) 

 Once enough functions have been developed Function 

Verification Testing (FVT) can be started (Piwowerski, 1993).  

FVT is intended to verify logical function groups.  A common 

analogy used with software development and test is that of 

automotive manufacture.  This analogy fits well to explain FVT 

testing.  Unit test is similar to making sure a bolt will fit into a 

required hole.  This test is simple and very limited.  

Integration testing is analogous to verifying that a fender will 

fit onto the car.  FVT takes what was accomplished in Unit 

Testing and Integration Testing to a higher level.  In the 

automotive analogy FVT would group functions logically and 

test them together.  An automotive FVT test would be to 

verify that the engine starts or the head lights turn on.  

Function testing is meant to verify code function groups but 

not the entire solution (Duran, 1980). 

System Level Test (SLT) 

System Level Test (SLT) is intended to verify the entire code 

package from the perspective of the user (James, 1980).  The 

SLT cycle is the longest and most involved test cycle (Elaine, 



 

1990).  In the automotive analogy SLT would be the road 

test.  This is the test cycle where all the various code 

functions come together and are verified in an environment 

that simulates real world use.  The SLT cycle is composed of 

various test suites (Elaine, 1990).  These test suites are 

intended to verify as many code paths as possible.   

 

Figure 2 – SDC Test cycle 
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Traditionally, this is when coverage testing also takes place.  

Figure 2, shows what a typical SLT test is composed of.  The 

durations of each test suite are relative and vary drastically 

from one test cycle to another.  The primary test suite that 

takes place during SLT is good path testing (Duran, 1980).  

The focus of good path testing is to verify how the code will 

react in a customer environment during normal use (Elaine, 

1990).  Good path requires the code to be tested in an 

environment that simulates the customer environment as 

closely as possible and used data pushing tools as its primary 

source of input to exercise the code.  The input is intended to 

all be “good” and errors conditions not are expected (Duran, 

1980).  During good path testing if an error condition is 

achieved then defect reports are generally created to log the 

event.  The defect rate generated during good path is the 

primary source of product quality numbers and reliability 

calculations (Musa, 1975).  

ERROR PATH TESTING 

 Error path testing is used to verify that the code can 

detect bad input or output data and error conditions are 
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appropriate (Wittaker, 2000).  This testing uses bugging 

devices and data pushers intended to create errors.  With the 

automotive analogy this testing is when you see vehicles 

driving on wet courses or swerving at high speed to avoid a 

traffic cone.  Error path testing is intended to verify that the 

code can perform in the worst conditions and is able to detect 

a data error (Wittaker, 2000).  When a data error is detected 

the code should take the correct action and log the problem.  

The defects that are generated in this phase of testing are a 

challenge to debug as the conditions that were used to enter 

into the error condition must be fully understood.   

FINAL REGRESSION 

 Once Good path and Error path testing have been 

completed a final version of code is created.  This version 

called, the Golden Master, contains fixed to the defects found 

during the previous SLT phases of testing.  The Golden Master 

is the code development teams’ best effort as a final, 

production ready code drop.  The Golden Master is subjected 

to a custom build SLT test suite that is based on the failures 
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seen during the SLT prime testing.  Once the final regression 

testing is complete then SLT is complete. 

System Level Serviceability (SLS) Testing 

 System Level Serviceability (SLS) Testing is used to 

verify documentation that will be used to service the 

software.  The primary mechanism for software support is the 

service point of entry.  The service point of entry is where the 

code recognized a problem and alerts the user or service 

agent.  Once a service point has been created the error 

should be logged and as much data captured as possible.  

Thorough SLS testing will verify that all problems are: 

1. Logged – A meaningful entry is made into the 

error report 

2. Notification is sent – Depending on the error and 

customer service contract the user of a support 

center may be contacted when an error occurs. 

3. Data logging takes place – Error data must be 

collected at the time of an error. 
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4. External documentation verification – The 

problem determination guides must be verified 

and shown that they help resolve any problems. 

Manufacturing Verification Test (MVT) 

 Manufacturing verification testing is the only testing 

that takes place outside the Development/Test environment 

(Piwowerski, 1993).  MVT traditionally takes place at the 

manufacturing facility and is used to verify Hardware and 

software for manufacturability.  MVT verifies that the software 

can be loaded on the hardware and a very basic bring up test 

suite is preformed.  MVT is a short duration and simple test 

that generally does not generate a significant number of 

defects. 

TEST CRITERIA 

 Regardless of the testing phase criteria needs to be 

established (Miller, 1992)(Horgan, 1994).  Testing criteria is 

generally broken into entry/exit and pass/fail requirements.  

As an example is a Functional Verification Test is to be 
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preformed the entry criteria must first be met.  Entry criteria 

are defined by the respective test group and agreed to by the 

appropriate development group.  The entry verification of all 

test phases is run as a T0 regression test.  Figure 3 shows a 

typical entry criteria matrix.  A typical FVT test entry 

verification test would be limited to verifying that a subset of 

function is available and working in the code (Wittaker, 

2000).  Not until the formal pass/fail portion of testing does 

the full expected code function get tested. 



 

NO Availability/ Function not workingAvailableStorage Pool Manipulation, Creation, Deletion

NO Availability/ Function not workingAvailableVolume Creation/Deletion/Assignment

NO Availability/ Function not workingAvailableDisk State Degradation

NO Availability/ Function not workingAvailableSubsystem State Degradation

NO Availability/ Function not workingAvailableJob Control

NO Availability/ Function not workingAvailable with 1.1 release 4/05Disk Sparing

NO Availability/ Function not workingAvailable with 1.1 release 4/05Health and Fault Management

NO Availability/ Function not workingAvailable with 1.1 release 4/05Instrumentation Version

NO Availability/ Function not workingAvailable with 1.1 release 4/05Common Initiator ports

NO Availability/ Function not workingWill not be available for 2005 ReleasesAccess Point

NO Availability/ Function not workingAvailableSAS Target Port

NO Availability/ Function not workingWill not be available for 2005 ReleasesSecurity HTTP

NO Availability/ Function not workingAvailableDevice Credentials

NO Availability/ Function not workingAvailableiSCSI Target

NO Availability/ Function not workingAvailableFC Target Port

NO Availability/ Function not workingAvailableLocation

NO Availability/ Function not workingAvailableMasking and Mapping

NO Availability/ Function not workingAvailableBlock Services

AvailableAvailableMultiple Computer System

AvailableAvailablePhysical Package

AvailableAvailableDisk Drive /Disk Drive Lite

AvailableAvailableArray

AvailableAvailableServer

Test ResultDevelopment ResponseVerification Requirements (Profile/Sub Profile Name)

 

Figure 3 – Entry criteria matrix 

 Pass/fail criteria are also determined by the test group 

and are generated by documents such as the functional 

specification, marketing requirements and development 

design documentation.  Unlike the entry verification portion of 

a test phase the pass/fail portion is unique to each test phase.  

 17
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For example, SLS pass/fail requirements are far different from 

those of SLT.  The pass/fail criteria are used by the test 

groups to define the test exit criteria. 

 



 

 19

C h a p t e r  2 :  E v o l u t i o n  o f  T e s t i n g  

  Computer technology has become woven into every 

aspect of human society (Horgan, 1994).  The reliance on 

computer technology has placed ever higher demands on 

hardware and software testing (Wittaker, 2000).  The 

requirement for low defect incident rates in released products 

has forced testing to evolve (Miller, 1992).  Testing 

techniques used in the past have been outmoded by more 

modern and effective methods.  Cost, consumer 

requirements, and rapid technical change are the driving 

forces behind the evolution of testing. 

BUSINESS MODEL OF TESTING 

 At both the consumer and the business level, the cost of 

computing has dropped drastically dropped and the reliability 

and performance has increased.  Over the past 30 years the 

average cost of computing has exponentially decreased (New 

Economy, 2006).  Figure 4, shows the exponential dive of 



 

computing costs (New Economy, 2006).  The push to 

continually reduce price and improve in all other measurable 

aspects has forced development teams to look for efficiency 

improvements within their processes.  Test has not been 

excluded from the market driven pressures to shorten test 

schedules and cut costs while decreasing field defect rates 

(Wittaker, 2000).  To meet market demands genuine 

solutions must be implemented to be successful.  Reducing 

cost by simply cutting headcount or improving time to market 

by reducing testing schedules are examples of short sighted 

business based solutions that are destine to fail.   

 

Figure 4- Price trend 

 20



 

 21

Personnel Reduction 

 Personal reduction can only be successful if the person 

hours spent on the product are more efficient and effective 

(Piwowerski, 1993), (Wittaker, 2000).  Automation is one of 

the leading solutions being adopted by industry to effectively 

reduce test headcount.  The use of automation does not 

remove all human elements from data analysis but relives 

personnel from mundane and repetitive tasks.  One example 

of automation being used in a test environment is defect 

detection.  Historically, a technician would sit in front of a 

consol and monitor a test waiting for an error.  Automation 

removes the technician and replaces him/her with an 

automated support system to monitor multiple tests at the 

same time.  When an error occurs the data logs are collected 

and the test engineering team can perform failure analysis.  

Automation has a higher rate of first time failure detection 

because the human characteristics of fatigue and boredom 

are no longer an issue.  This translates to a lower defect 

incident rate for released products. 
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Shortened Test Cycle 

  Market demands often require a products 

development/test schedule to be compressed.  The driving 

issues behind schedule compression include beating a 

competitor to market, meeting specific revenue targets or 

remedy known field issues with pervious releases.  Regardless 

of the root of the requirement to compress the schedule 

burden placed on the development and test teams are the 

same.  The function that is expected to be delivered does not 

change but the amount of time the development and test 

teams have to work with is shortened.  Solutions like 

automation can help but are may not be enough to keep a 

shortened schedule (Wittaker, 2000).  The most effective 

solution would be similar to the manufacturing process of JIT 

(Just In Time).  This manufacturing model increases 

manufacturing efficiency by having good delivered to each 

manufacturing process only when needed.  The JIT model 

directly translates to software testing.  Instead of waiting for 

large and complex code segments to be delivered for test; 

smaller less complex segments can be delivered more often 

(Boris, 1990).  This will allow test to start earlier in the 
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development process and detect problems sooner.  All the 

traditional test stations like FVT and SLT are present but the 

amount of time allotted to each will be proportionally 

shortened.  The combined effect is an overall shorter test and 

development cycle.  The danger of this approach is the 

integration of discreet functions into larger more complex 

function happens later in the test cycle.  Pushing function 

integration out in the schedule caries the risk finding a 

catastrophic integration defect so late in the development 

cycle that GA will have to be delayed.   

Statistical Test Model 

 Automation and function delivery management are only a 

part of the evolution of testing.   Statistical testing is 

becoming a standard in most major test labs because the use 

of normalized data allows trends that would be invisible with 

traditional methods to become apparent (Miller, 1992).  By 

utilizing usage and performance data, statistics can be applied 

directly the testing function, resulting in a reduction of 
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redundant testing and allowing test to focus on the portions of 

the software with the biggest impact on the system, and 

reducing the overall test schedule.  These improvements can 

significantly decrease the amount of resources required for 

software testing (Hong, 2002).  Statistical testing can also be 

used to determine when it is time to stop testing a software 

product, through reliability and entropy metrics.  Strategically 

designed application of statistical testing can improve 

reliability measures and reduce the levels of uncertainty 

present in the testing. 

 Formal Statistical Verification 

  A statistical model test is composed of both white-box 

and black-box testing used to establish if code or a code 

segment conforms to the established functional specifications.  

The goal of white and black box statistical testing is to use 

statistical techniques to ensure software quality and to 

provide quantitative measures of stability, reliability, and 

conformance to specifications. White-box testing assumes 

that the code is complete enough for examination and 

conformity measurements (Boris, 1990). Black-box testing is 

intended to only test code from the user’s point of view 
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through the defined interface (Boris, 1990).  Black-box 

testing is inherently a superficial test and makes deriving 

quantifiable data difficult.   

  By implementing the collection of test generated data 

into operational profiles, developers can utilize statistics to 

direct how the testing resources are applied, thereby reducing 

redundant testing, focusing testing on portions of the 

software with the biggest impact on the system, and reducing 

the amount of testing required overall.  These improvements 

can significantly decrease the amount of resources required 

for software testing.  Statistical testing can also be used to 

determine when it is time to stop testing a software product, 

through reliability and entropy metrics.  Strategically 

designed application of statistical testing can improve 

reliability measures and reduce the levels of uncertainty 

present in the testing. 

Statistical Testing by Test Phase 

  Each testing phase has a specific goal and the use and 

type of statistical model differs between each.  For a 

statistical test to be successful the function specifications 
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need to be defined.  It is the requirement for clearly defined 

specifications that excludes the use of statistical testing from 

some early testing.  This early testing is usually considered a 

pre-formal test and includes developer based testing.  Pre-

formal test should be limited to go/no go testing due to the 

diminutive range of function returns and lack of defined 

specifications.   

  Functional Verification Test is the earliest phase of formal 

testing where a statistical test can be successfully introduced.  

The function delivered to FVT is grouped and complex 

operations can be preformed.  In the case of maintenance 

releases the entire code function of plan will be available for 

testing.  A function verification test by nature is a white-box 

testing environment (Boris, 1990).  The code front-end would 

generally not be available during an FVT test.  Appendix A 

shows what the statistical data would look like for a 

device/microcode function verification test.    A statistical test 

would more accurately describe the codes performance during 

FVT.  The decision to release the code to other test functions 
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would be based on quantitative data and not simple the test 

schedule. 

  System Level, Service Level and Manufacturing 

Verification testing operate in a black-box testing mode.  

These tests do not measure the performance within a function 

or device but as a system as a whole.  Black-box testing uses 

a statistical model like white-box testing but at a higher level.  

The specifications that are tested with black-box are more 

based on user experience (Piwowerski, 1993).  This limits the 

use of statistical testing to only the quantitative portions of 

each test.  

 

 

 



 

 28

C h a p t e r  3 :  S D C  C o v e r a g e  T e s t i n g  

 Code coverage evaluation involves identifying the 

segments of code that are not executed with multiple runs of 

a program.  Coverage testing is a measure of the proportion 

of a program exercised by a test suite, usually expressed as a 

percentage.  Theoretically 100% coverage can be achieved 

but is not practical in real testing.  Testers use the coverage 

test percent to help ensure that a substantial portion has 

been executed.  Coverage measurement is critical to 

evaluate the effectiveness of the test.  The most basic level 

of test exposure is code coverage testing and path coverage 

is the most methodical form of coverage testing. Some 

intermediate levels of test coverage exist, but are rarely used.  

The coverage model used by SDC is traditional code 

coverage.  Traditional code coverage tools are integrated as 

the code is being developed.  Each code segment or code 

path will have a hook added that the coverage tool will 

monitor for.  The added code hook provides and index 

counter to record which statements are executed.  The 

inserted code hook remains in the executable throughout the 
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testing process.  The inserted coverage test code is only 

used during the execution of the of each code path.  

LIMITATIONS OF THE SBC COVERAGE TESTING MODEL 

 Coverage testing at Software Development Company is 

fraught with same problems seen industry wide.  When a 

path is not being executed the code coverage hooks are not 

used to generate any test data.  The coverage hooks are 

static and are present throughout the code.  The addition of 

the code hooks can affect execution time and code behavior.  

Altering execution time changes error timing windows.  

Because released code will not include any coverage hooks 

the test level code does not accurately represent the release 

code.  SDC has had a problem when calculating the number 

of hooks expected by the test group.  Because the coverage 

hooks are added either by the development team or when 

the code is compiled the total number of hooks is highly 

dependant on developer buy in to the coverage test process.  

Each code segment owner is responsible for adding coverage 



 

 30

hooks the compiler recognizes for each command in the code 

segment.  There is no accurate method to ensure that each 

hook is accurately incorporated.  In the early 1990’s SDC 

developed a coverage testing system named Execution Time 

Mapping Tool (EXMAP).  EXMAP was an attempt to apply 

coverage theory into a more usable system that could be 

deployed company wide (Piwowerski, 1993).  At the time of 

the first implementation of EXMAP the SDC code portfolio 

was considerably smaller and narrow in function.  The SDC 

software offering was limited primarily to device driver 

support software and some vendor applications when EXMAP 

was first implemented.  Over time SDC turned its corporate 

focus from hardware development to offering a full support 

solution.  By 2000, SDC offered a full solution package for 

mid to enterprise class customers.  This refocusing required 

the SDC development team to develop a broader and more 

complex function set for all its products.  With the increase 

in function, EXMAP no longer could be used as a coverage 

tool.  Code size moved from an average of 20-30 KLOC to 

500+ KLOCK.  The human and machine overhead required to 

run EXMAP had become too high and it was abandoned.  
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With the removal of EXMAP SDC code coverage testing had 

been limited to long duration user experience test runs.  

Long duration user experience test runs were intended to 

flush out code defects by running the code in a black box 

manner long enough that each function/path had been 

executed.  The use of long duration user experience testing 

has caused a steady increase in defects per KLOC year to 

year. 

The Failure of SDC EXMAP 

 The current average SDC new function release is ~500 

KLOC for enterprise class products.  Each KLOC is comprised 

of hundreds of simple code functions that pass values to 

other functions.  Each code segment can contain multiple 

code paths/hooks.  Figure 5, represents the simple code 

segment:   

    If P then F1 else F2.    

This function states that if the value assigned to P is equal to 

the value entered then the value for F1 is returned and if the 

value entered is not P then the value for F2 is returned.   



 

 

Figure 5 - Simple Code 
Segment 

The Figure 5 code segment is only one line but is spawns two 

separate functions.  With the addition of more condition 

statements a logically simple code segment can become much 

more complex to test with the SDC MAPEX coverage model.  

Figure 6 shows the code segment; 
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Begin 
   input (x, y); 
      while (x > 0 and y>. 0) do 
        if (x> y) 
           then x: = x - y 
           else y: = y - x 
        endif 
      endwhile; 
  output (x +  y); 
end 
 

This code segment uses two inputs X, Y.  If X and Y are 

greater than 0 and X is greater than Y then X is equal to X-Y.  

If Y is greater than X then Y is equal to Y-X.  The value 

returned is X + Y post the above calculation.  

 

Figure 6 - Comparative code segment 
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Even though the function shown in Figure 6 is only 9 lines it 

branches 3 calculations and 9 comparison functions.  A single 

KLOC comprised of functions similar to Figure 6 would 

generate 1000 comparison functions and 300 calculations.  

The SDC EXMAP coverage model required code developers to 

place a hook at each function.  If coders are 99% accurate 

when placing code hooks in a 500 KLOC release 

approximately 5000 functions would be missed.  No matter 

how long EXMAP was run the 5000 missing hooks would not 

be executed and because EXMAP required testers to use hook 

data supplied by developers, the test team would never be 

aware of the missing hooks in the code.   

The Cost of EXMAP 

 The cost of EXMAP to SBC incorporates more than the 

daily burden rate of machine time and person hours to 

support it.  The cost of any failed testing model is the cost to 

fix/repair/replace defects released to customers.  Figure 7 

shows the cost of EXMAP as SBC’s code releases became 

larger and more complex. 



 

SBC EXMAP Model Costs
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Figure 7 - EXMAP Cost per KLOC 

Figure 7, assumes that each developer will be 99% accurate 

when placing hooks into the code and a single field defect will 

occur with every 100 missed function hooks.  Each defect is 

estimated to cost $1000 to fix/repair/replace.  Actual field 

defect cost rates are closely held financial information.  The 

estimated $1000 per defect cost is extremely conservative.  

When a field defect is found, SBC will involve entire code and 

test team to create and validate the fix and the fix will be 

bundled and released as a new code level.  A defect will 
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consume resources from development, test, manufacturing, 

customer support, and management before being released to 

the field.    Table 1, shows a conservative $1000 per defect 

and a theoretical 99% accuracy for placing coverage hooks.  

The cost of EXMAP becomes exponentially more expensive 

with each KLOC added to each release.   

KLOC Missed Functions at 99% Field Defects  $ Cost Per Defect  
1 10 0.1  $                   100.00  
2 20 0.2  $                   200.00  
4 40 0.4  $                   400.00  

12 120 1.2  $                1,200.00  
24 240 2.4  $                2,400.00  
72 720 7.2  $                7,200.00  

144 1440 14.4  $              14,400.00  
432 4320 43.2  $              43,200.00  

Table 1 - EXMAP Actual  

EXMAP alternative – User Experience Testing  

  By the late 1990’s the EXMAP deficiencies forced SBC to 

abandon it and find an alternative.  The growth and 

fragmentation of the different business organizations within 

the SBC hierarchy did not lend its self to adopting a universal 

testing model.  Each development and test team adopted a 

coverage model that fit best.  The primary driver behind all 

computing growth since the mid 1990’s has been better 

performance at a lower cost.  Market factors forced 
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development and test teams to choose a coverage model that 

allowed them to churn code as fast as possible with the 

lowest burn rate.  A majority of the SDC test and 

development teams adopted a long run user experience test 

coverage model.  This model removes most performance and 

coverage metrics from the test environment.  Code is tested 

in a black box fashion for the duration of the test.  The 

concept driving user experience testing is creating a testing 

model that mimics customer use of the code.  Because 

customer behavior is assumed by the testing model, any 

defects a customer would encounter in the field should be 

found during testing.   

  The philosophy of long term user experience testing as 

SBC applies it is fundamentally flawed.  Long run user 

experience testing does have a shorter duration and because 

no specialized skills are required to design the test, the 

personnel burn rate is lower.  This does not consider the cost 

of a defect when found in the field.  By 2002, the computing 

boom had slowed and mid to enterprise class customers were 

no longer willing to contend with defects.  Computing at the 
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enterprise level and below, had become commoditized and 

deep rooted corporate alliances where now being questioned 

over code quality.  SBC struggled to maintain the customer 

base and grow market share while industry analysts dogged 

each wave of product releases.  One of the primary 

contributors to struggling SBC code quality is over investment 

in user experience testing.  The user experience testing model 

assumes that the customer behavior is predictable and can be 

contained in the model.  Assuming the user experience model 

covers 95% of all the customers 50 customers in 1000 will 

encounter a defect.  Based on the calculations form above 

this conservative estimate would cost $50,000.  The dollar 

cost per defect for the user experience model does not 

include the cost of lost market share.  A customer that 

encounters a single defect will likely run into more than one 

defect because the user experience model attempts to predict 

the user behavior.  If a user encounters a defect they are 

likely operating outside the model boundaries and will 

encounter multiple defects.  Multiple defects drive the mid to 

enterprise level customer to a competitor solution and shrink 

SBC’s market share.    
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C h a p t e r  4 -  F i l l i n g  t h e  E X M A P  V o i d  

 The removal of support for EXMAP marked the end of a 

homogenous company wide coverage testing method for 

SDC.  As each division within SDC devised its own coverage 

testing model and market demand for price competitive code 

releases resulted in customer experience testing.  The failure 

of customer experience testing contributed to the shrinking 

market share and rising field defect rates and associated 

costs.  As SDC continued to move forward with larger and 

more complex releases the need for coverage testing 

methods that do not require the overhead of EXMAP to 

maintain and is more thorough that user experience testing. 

Solution Scope 

 SDC is a multinational development company supplying 

a full range of technology to all segments of the industry.  

The coverage replacement for EXMAP and the current 

customer user experience model being proposing is limited to 

midrange data storage device development and testing.  The 
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solution that is posed would apply across the SDC 

development environment.   

Solution Requirements 

 EXMAP failed because is relied heavily on developers to 

place hooks correctly in the code.  As code releases became 

larger the inaccuracy of hook placement was magnified until 

EXMAP became unreliable and costly to maintain. The user 

experience testing model relied too heavily on the test team 

replicating customer behavior to be practical.   As the market 

changes the demand for high quality code releases will 

continue to increase.  The coverage test tools used by SDC 

are not capable of providing customers with the low defect 

rates they demand.  For a solution to be effective, defect 

rates are not the only issue that needs to be considered.  The 

next code coverage solution must also take into account 

business aspects such as cost to develop/maintain and 

operation overhead.  In a large company like SDC with a 

broad portfolio the transportability of the coverage tool across 

divisions must also be considered.    For a solution to meet 
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the current and foreseeable requirements of a coverage 

testing tool for SDC it must meet the following: 

• No coverage hooks - Future SDC test coverage 

solutions can not rely on coverage hooks to be placed in 

the code.  EXMAP failed because it relied on developers 

to place coverage hooks in the code as the developed it.  

Even if the SDC coders are extremely accurate placing 

hooks a 1% error rate translated into hundreds of 

possible defects reaching the field. 

•  Robust – SDC currently has multiple coverage tools in 

use across the company.  SDC needs a tool that is 

robust enough to be deployed across the organization.  

The tool will need to be generic enough to be used on 

all products can provide specific coverage testing for 

the products it is used to test. 

• No assumption based model – The user based 

experience model currently used by SDC attempts to 

predict the behavior of a customer.  As the customer 

base grows the number of customers that fall outside 
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the models coverage also grows.  SBC must have a 

coverage model that does attempt to quantify customer 

behavior. 

Statistical Specification Performance Testing 

  

 The requirements for a coverage testing tool apply to all 

software/hardware companies that are attempting to gain 

market share in the commoditized computing market.  The 

market move from speed and capacity at the cost of quality 

to a market that demands higher quality has changed the 

demands placed on test groups.  The demand for shorter 

testing cycles and higher quality has pushed the SDC testing 

organizations to the brink of failure.  The reorganization of 

test cycle components and utilization of faulty test tools has 

resulted in lower quality products across SDC.   

 One available tool that meets the SDC requirements of 

not requiring code hooks, being robust and not predicting 

customer behavior is Statistical Specification Performance 

Testing.  This type of testing relies of the specifications for a 

product to be well defined and available to the test team 
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before test start.    Statistical specification performance 

testing uses product specifications to define the boundaries of 

the coverage testing.  The specifications used to define each 

boundary must be quantitative and be limited to defining a 

single aspect of the product performance.  The primary 

assumption is that is all the boundaries are defined as 

specifications and the code contained within each specification 

control boundary will perform as expected in the field.  This 

type of testing does not replace classical error path testing 

but can be used to augment it as the error response can be 

quantified and each boundary tested.  Statistical specification 

performance testing requires the data sample size to be large 

enough to show the performance of the code and how closely 

it meets the specifications.   

Design of Specifications  

 A specifications needs to provide reasonable feedback 

on aspects of a product that result in better performance or 

reliability.  Using a quantifiable level of detail is critical to 

defining each specification and control. For example, a 

diagram of instruction timings for a CPU is not an adequate 
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specification, although it is extremely detailed.  CPU clock 

speed also is not an adequate point of measure 

measurement, although it is quantifiable and simple to 

summarize.  

 The primary element of a specification is that it should 

have built in control.  After each specification that is going to 

be tested is chosen, other variables should be eliminated.  If a 

variable can not be eliminated then more analysis of the 

specification control needs to be preformed.  An example of 

eliminating variables outside the specification control is if 

comparing storage device speed, all tests need to be 

preformed on the same data files and same host machine.  

Comparing the read/write performance of Storage Device A 

that is connected up to a slow host machine, and Storage 

Device B that is attached to a faster host machine will not 

result in usable data about the storage devices.  Conversely, 

performing testing on two different types of host systems can 

generate data used to characterize the storage devices 

performance if the specification controls are adequate.  For 

example, Storage Device A has inefficient AIX attachment 
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drivers, but Storage Device B has horrible LINUX attachment 

drivers.  Isolating the storage device from the driver 

performance data is impractical, and since the device 

attachment drivers are possibly proprietary, it might also be 

impossible.  If specification controls are not sufficient the 

generated test data is meaningless.  Without defining the 

specification controls and eliminating the test variables 

adequately the storage device statistical performance test 

generated useless data when testing across two host 

platforms.   

Data Analysis 

 Because test control specifications are a major influence 

in the GA of a product test designers can not be swayed by 

pressure to pass a product or alter data controls and 

variables.   Table 2, shows the results to a statistical 

specification performance test for a storage device.  The data 

is broken down between device and % performance to each 

control.  Each device can perform to 100% of the specification 

of each control.  The data in Table 2, assumes that all 

variables have been bounded by the control data and that 
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enough data has been collected for each device to be 

statically meaningful.  The results for each device are 

calculated from the entire data set for each control.  

  Example Control Data Combined Results 
  % % % % % 

I/O Device Control 1 Control 2 Control 3 Control 4 Control 5 
381 0.0 2.4 6.4 34.7 56.5
716 0.0 0.0 0.3 13.3 86.4

8810 0.0 0.6 8.9 27.2 63.4
8880 0.1 3.3 14.9 27.9 53.9
9038 0.2 1.1 6.4 42.1 50.3
9104 0.0 0.7 5.2 22.3 71.8
1931 0.1 2.2 3.5 2.3 92.0
2548 1.4 3.3 8.3 13.5 73.6
9078 0.0 0.8 7.2 26.3 65.7
9605 47.8 0.0 0.0 0.0 0.0
9032 1.3 1.5 3.6 7.1 86.5
9028 0.4 3.1 2.4 1.0 93.1
9029 0.0 0.0 0.0 0.0 100.0
1930 0.0 0.0 0.0 0.0 100.0
8813 0.0 0.0 0.0 0.0 100.0
9066 0.0 0.0 0.0 0.0 100.0
9080 0.0 0.0 0.0 0.0 100.0
9015 0.0 0.0 0.0 0.0 100.0

Table 2 - Generic Control Data Results  

The control percent is calculated by how closely the device 

meets the specified control value.  The example data shows 

that no single device achieved meeting each control 

specification.  Some devices did achieve 100% satisfaction of 

the specifications but preformed poorly in all other control 
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specifications.  This indicates that the devices are not meeting 

the specified control values and an underlying defect is 

causing specification performance issues. 
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C h a p t e r  5  –  S t a t i s t i c a l  P e r f o r m a n c e  
T e s t i n g  a t  S D C  

  The application of Statistical Specification Performance 

testing as an alternative to the current coverage testing 

model, user experience testing, was limited to a small <50 

sample of SDC data storage devices.  The data storage 

devices are established and previously released devices at the 

time of testing.  No hardware changes were made for the 

duration of the Statistical Specification Performance testing.  

During testing the firmware code base on each device was a 

previously released level that had been evaluated and had 

been running in customer accounts for approximately 8 

months prior to the start of the Statistical Specification 

Performance Testing. 

Identification of test controls and variables  

 The identification of control specifications for the SDC 

data storage devices was straight forward.  The physical 

storage devices had been in the field for over 3 years and 

represented the 2nd generation of the specific physical form 

factor used for the device type.  A 3rd generation device had 
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been release approximately 18 month prior to test start.  

Because the vintage of the physical devices the testing did 

not include physical testing.  The Statistical Specification 

Performance Testing was limited to evaluating the firmware 

that resided on the storage devices.  Any mechanical issues 

that did arise were accounted for in the data and assumed to 

be due to drive age.  There was no possibility to benchmark 

the mechanical aspects of the drive due to vintage and all 

mechanical failures were scrubbed from the data.  The intent 

of the Statistical Specification Performance Test was to 

evaluate the firmware and not to debug hardware issues of 

the data storage device. 

 The storage devices expected performance was well 

documented in both external and internal publication.  The 

external publications specified performance data like capacity, 

speed and reliability.  Internally published specifications 

detailed performance data that included error path 

information and degraded performance specifications.  The 

specifications given in this document are only representative 

and are not the actual performance data for any SDC device. 
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 The test control performance data was all related to 

physical device performance.  The test controls can be 

classified into two categories; internally and externally 

observable.  The externally observable test controls was 

performance data that could be observed from outside the 

data storage device.  Bytes written, bytes read and capacity 

are representative of externally observable performance data.  

Internal test control performance data included error rates 

and incorrectly written data blocks.  All internal performance 

data was collected in a device log page that could be parsed 

and the data read.  The external data was collected via host 

data driver applications.   

Application of Statistical Specification Performance 

Testing  

 Statistical Specification Performance Testing first 

required an application to be written that would collect the 

performance data for all the devices.  This applications 

operated by using File Transfer Protocol (FTP) to capture 

performance logs from the host running the data drivers for 

each device and the device logs from each data storage 
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device.  Once the performance logs were collected from the 

host and the devices; the performance data was parsed out 

and uploaded into a DB2 database.  This process could be 

automated, but for this first run test it was left as a manual 

process.   

 Once that data was uploaded into the database the data 

could be accessed by a standard database query.  Each 

database entry was for a complete data run of a device.  

Table 3; shows a truncated database entry for a singe device. 
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Table 3 - Parsed Data Table 

The header information was added to each data query and is 

not contained in the actual database.  The parsed data was 

used to quantify performance for each device. 
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Performance Data Analysis 

 After the data was collected, parsed and extracted from 

the database it would be ready for analysis.  Once the data is 

parsed for each device; the data is placed in a spreadsheet 

for analysis.  A spreadsheet is the best option for SDC 

because it is a tool the test team was familiar with and it 

allowed calculations to be preformed on rapidly.  The output 

from the spreadsheet was broken into two sections.  The first 

section was an overall summery of device data and the 

second was a breakdown by device.   

SDC Summery Data 

 The data summery chart shows how much was read 

and written, and the calculated error rates.  Table 4, shows 

the overall summery for the group of SDC data storage 

devices used in testing.  The data summery chart shows data 

broken two sections.  The bytes section shows how much 

data was processed collectively for all the devices in the test 

group.  This section is exclusively externally observable and 

does not require calculations beyond totaling that bytes 

processed for each device.   The rates section uses data 
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parsed from the data device log pages and is calculated.  This 

section calculated each rate based on the number of 

occurrences for each event divided by the amount of data 

processed.  The column labeled “SPEC” defines what the 

control specification value is.   

Test: SDC Generic Summary  
CODE Level: R123456    
Date: 2006-01-01    

     
(bytes) SDC Data Device    
Mb WT 60957.6    

Mb RD 207849.3    

  Cycles 1280
Total Mb processed 268806.9    

(rates)   SPEC   
Skip Data 195.38 < 0.8 0.00

Data Write Stop 131.0 < 197 0.97

Error 1 2.2E+005 5E+006 22.48

Error 2 1.9E+004 1E+005 5.14

Permanent Errors     

Data In 30478.8 1E+005 0.33

Data Out 51962.3 1E+006 1.92

Temporary Errors     

TEMP_WT 224.1 100 0.45

TEMP_RD 831.4 250 0.30

     

Total Perms 6   
Table 4 - SDC Specification Summery Report 

If the calculated rate falls outside the specified rate limit it is 

highlighted in red.  Any red highlighted data shows that a 
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control specification is out of spec and a possible defect 

exists.  Data that is not in specification would tell the test 

engineer that more investigation is needed.  The test 

engineer would then use the device breakdown section of the 

spread sheet to see more detail than what is available from 

the data summary chart. 

SDC Device Breakdown Data   

 Table 5, shows the device breakdown data that 

corresponds to the summery data presented in Table 4.  The 

performance for each device is shown for each control 

specifications.  Like the Summary Data, any values are out of 

specification.  The specification values are shown above the 

actual device performance values.  The data shows the 

specific performance for each device.  Using this data it is 

possible to for the SDC test engineer to pinpoint what control 

specification is out of design and on which device and how far 

it is out of specification.  This will allow the test and 

development team to focus on the specific code segment that 

the control data corresponds to. 
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SDC Generic Device 
Breakdown              
Code 
Level R123456                

Date: 2006-01-01     Radar Rates  
        > 3E2 > 3E2 > .5 < 166 > 10 > 10 > 3E4 > 1E5

Devic
e RUN 

Mb 
WT 

Mb 
RD 

Total 
Mb

Type1_E
RRS 

Type2_
ERRS 

Skip 
Data

WRT_SK
P 

Temp 
Wrt 

Temp 
OUT 

Perm 
IN 

Perm 
HDW

381 ABABRB00I 2130.4 
4687.

5
6817.

9 8.7E+005
1.5E+00

6 532.6 --- 426.1 4687.5 --- --- 

716 ABABRB00I 1706.8 
5118.

5
6825.

3 9.0E+005
1.9E+00

6 --- 128.7
1706.

8 1023.7 --- --- 

8810 ABABRB00I 2990.4 
5984.

0
8974.

4 5.2E+005
1.1E+00

6 996.8 128.4 66.5 352.0 
2990.

4 --- 

9030 ABABRB00I 3845.8 
8119.

5
1196

5.3 1.7E+006
9.7E+00

5
1281.

9 128.4 274.7 8119.5 --- --- 

8880 ABABRB46_I 3848.1 
6839.

9
1068

8.0 1.1E+006
3.4E+00

5 296.0 128.4
1924.

1 977.1 --- --- 

9038 ABABRB46_I 2560.5 
5551.

9
8112.

4 9.3E+005
1.8E+00

6
2560.

5 128.4 426.8 5551.9 --- --- 

9104 ABABRB46_I 3851.1 
6842.

6
1069

3.7 9.6E+005
1.5E+00

5 550.2 128.4 770.2 3421.3 
1925.

6 --- 

1931 ABCWRB00 778.6 
1008

4.2
1086

2.8 4.0E+004
8.5E+00

3 389.3 155.1 29.9 916.7 --- 
10084.

2

2548 ABCWRB00 615.5 
1028

7.8
1090

3.3 7.2E+005
1.8E+00

6 615.5 128.4 --- 1469.7 --- --- 

9078 ABCWRB49I 2521.5 
4586.

9
7108.

4 2.3E+005
1.9E+00

5 10.3 129.5 504.3 509.7 
2521.

5 4586.9

9032 ABCWRBRH 765.4 
9969.

5
1073

4.9 5.8E+005
1.1E+00

6 382.7 129.1 382.7 766.9 --- --- 

9028 ABCWRBRH 621.0 
1206

5.4
1268

6.4 1.2E+006
9.2E+00

5 --- 128.7 310.5 
12065.

4 --- --- 

9029 ABWWB00A 696.1 
1349

8.3
1419

4.4 7.5E+005
2.5E+00

4 --- 128.6 696.1 2699.7 --- --- 

1930 
ABWWB00A
PP 1250.4 

2264
6.0

2389
6.4 6.7E+005

2.4E+00
4 416.8 128.8

1250.
4 514.7 --- --- 

8813 ABWWRB00I 6873.7 
2103

3.7
2790

7.4 4.1E+006
8.5E+00

6
2291.

2 128.1 --- --- --- 
21033.

7

9066 ABWWRB46I 3764.5 
1139

2.6
1515

7.1 7.7E+004
4.3E+00

4
1254.

8 131.5 342.2 172.6 --- --- 

9080 ABWWRB49I 7728.7 
2274

0.8
3046

9.5 1.9E+006
8.0E+00

6 429.4 128.2
3864.

4 5685.2 --- --- 

9015 ABWWRBRH 6439.2 
1843

0.3
2486

9.5 3.4E+006
5.0E+00

6
2146.

4 128.2 --- --- --- --- 
Table 5 - SDC Device Breakdown Data 
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Statistical Performance Test Results 

 The data storage devices that were used for the 

statistical performance testing were all at GA level firmware 

and hardware release levels.  The SDC storage device 

firmware had been tested previously with user experience 

coverage testing and other testing methods.  The storage 

device firmware and has encountered defects not detected 

during the user experience testing.  All field escape defects 

were related to data errors when writing to the device.  These 

errors were not detected in the user experience test because 

the test model was not updated correctly to bound the new 

data write error recovery sequences that were introduced in 

the last release level of firmware. 

 The statistical specification test model did not detect 

the data write error recovery sequences defect in the device 

firmware initially.  The mechanism required for the firmware 

error recovery defects to be encountered needs a device to 

perform marginally.  The error recover sequence is not 

entered until the device writes data that does not match 
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checksum.  Over the course of the statistical performance test 

three devices started to perform marginally.  Once the 

devices started to perform in a degraded manner the 

firmware defects occurred.  These defects did not cause a halt 

in data flow or cause the device to crash.  In Table 5, devices 

8810, 9104 and 9078 show the firmware defect.  Perm write 

was out of specification indicating the device had encountered 

a problem during a data write recovery sequence.  After more 

investigation the data revealed that the statistical 

performance test had found the firmware defects missed by 

the user experience testing model.  Because the defects 

required marginal device behavior and the defects were not 

catastrophic that the user behavior test did not encounter 

these problems.  The time required to execute the Statistical 

Specification Test was 2 weeks shorter than the User 

Experience Testing Model.    

Conclusion   

 The Statistical Specification Test was successful in 

detecting defects that were not detected in the current SDC 

user experience testing model.  As the SDC mission continues 
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to grow the need for testing models like the Statistical 

Specification Test will grow also.  The Statistical Specification 

Test succeeds where EXMAP failed.  The specification test 

model used to verify the SDC data device firmware did not 

require the development team to place coverage hooks in the 

code like EXMAP.  Removing the need for hooks allows the 

statistical performance test to accurate independent of KLOC 

size.  The statistical performance test is also robust enough 

that it can be deployed to any product that has defined 

specifications and does not have a defined user behavior 

model like the current SDC coverage test.  The integration of 

the Statistical Specification Testing to the SDC test portfolio 

will help SDC to grow its market share by reducing the 

number of field defects, improving product quality and 

maintaining release schedule integrity.  
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APPENDIX A:  TYPICAL STATISTICAL TEST MODEL 

RESULTS 

Test: Software Statistical Test 
Summary 

Code Level: 123.32     

        

Date: 2006-08-
24     

        

        

(bytes) Software A 
RADAR 
INFO   

GBWT 210221.3     

GBRD 267829.4     

    Cycles 2078 

Total GB processed 478050.7     

(rates)   SPEC   

Read 163.60 0.5 0.00 

Write 129.2 < 138 0.94 

Error Type1 1.1E+005 1E+004 0.09 

Error Type2 9.2E+003 1E+004 1.09 

Function       

Data In 629.4 0.5 0.00 

Data Out --- 0.5 --- 

Permanent Errors       

PERM_Write 210221.3 1E+004 0.05 

PERM_Read 133914.7 1E+005 0.75 

PERM_DEVICE --- 1E+005 --- 

Temporary Errors       

TEMP_Write 65.6 10 0.15 

TEMP_Read 52.4 10 0.19 

INVAL_Device Error 588.7     

        

Total Perms Errors 3    
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Error Rates by test 
device                          

Code 
Level 123.32                               

Date: 2006-08-24       Radar Rates  

  
Specification-

>        
> 

1E5 > 1E3 

> 
.4
5 

< 
130 

> 
2.4 

>60
0 > 8.4 > 9.3 >50 > 4E4 > 1E3 > 1E6 

Devic
e RUN GBWT 

GBR
D 

Total 
GB 

Error 
type

1 
Error 
type2 

S
W 

Inv
alid 
wrt 

Data 
in 

Dat
a 

out 

Tem
p 

Writ
e 

C_TR
D 

Inval 
RD 

Perm 
Write 

Perm 
Read PDEV 

809 

RWCDJEHMM
OTIONEC__I1
_729 157.2 156.2 313.4 

3.2E
+00

4 
5.8E+

005 --- 
129

.8 --- --- --- 78.1 --- --- --- --- 

455 

RWCDJEHMM
OTIONEC__I1
_729 157.8 155.1 312.9 

1.8E
+00

4 
3.7E+

005 --- 
131

.1 --- --- --- 155.1 52.2 --- --- --- 

51 

RWHDJE01IN
TCJ2EC__I1_
729 

23337.
2 

4460
0.5 

67937
.7 

1.5E
+00

5 
1.1E+

004 

10
3.
7 

129
.1 --- --- 58.3 66.9 246.2 --- --- --- 

55 

RWHDJE01IN
TCJ2EC__I1_
729 9312.9 

1799
7.7 

27310
.6 

1.6E
+00

5 
6.5E+

004 

30
0.
4 

128
.9 

358.
2 --- 95.0 47.1 1011.5 --- --- 

27310
.6 

57 

RWHDJE01IN
TCJ2EC__I1_
729 

11120.
6 

2167
8.3 

32798
.9 

2.2E
+00

5 
9.4E+

005 

17
1.
1 

128
.6 --- --- 97.5 

1083.
9 400.0 --- --- --- 

60 

RWHDJEHMIN
TCJ2EC__I1_
729 9652.6 

1910
4.8 

28757
.4 

1.8E
+00

5 
5.9E+

005 
79
.1 

128
.6 --- --- 53.0 616.3 239.6 --- --- --- 

57 

RWHDJEHMIN
TCJ2EC__I1_
729 0.0 0.0 0.0 --- --- --- --- --- --- --- --- --- --- --- 0.0 

54 

RWHDJEHMIN
TCJ2EC__I1_
729 

12410.
0 

2381
4.0 

36224
.0 

2.5E
+00

5 
3.0E+

005 

10
7.
9 

128
.6 --- --- 60.2 175.1 262.5 --- --- --- 

805 
RWHDJEHMIN
TCJ2EC__I1_

11119.
6 

2251
9.2 

33638
.8 

1.8E
+00

9.0E+
002 

72
.7 

138
.0 --- --- 7.7 7.0 225.8 

11119.
6 

22519
.2 --- 
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729 4 

67 

RWWAJE01D
URBEC____I1
_729 4518.9 

3514.
6 

8033.
5 

1.0E
+00

5 
2.2E+

004 

22
59
.5 

128
.5 --- --- 

376.
6 140.6 --- --- --- --- 

73 

RWWAJE01D
URBEC____I1
_729 4016.4 

3012.
2 

7028.
6 

5.6E
+00

5 
3.8E+

006 

20
08
.2 

128
.2 --- --- 

286.
9 --- --- --- --- --- 

50 

RWWAJE01D
URBEC____I1
_729 4518.9 

4518.
9 

9037.
8 

2.5E
+00

5 
7.3E+

005 

22
59
.5 

128
.4 --- --- 

376.
6 

1506.
3 --- --- --- --- 

 



 

 62

 TABLE OF FORMULAS 

Test Effectiveness 

 (1- (Field Escapes / (Test Defects + Field Escapes)) * 100 

= ____% 

 (1 – (Field Escapes / KLOC)) * 100 = ___% 

Cost of Test Ratio 

 Test Cost $ / Pre-GA Test Defects = ___K$ cost per test 

defect 

 Test Cost $ / KLOC = ___K$ cost per KLOC 

Overall Test Duration 

 ((Projected duration – Actual duration) / Projected 

duration * 100 = ___% 

Traditional Execution Capability Projection  

((Actual Engine Rate – Projected Engine Rate)/Projected 

Engine Rate)*100 = ___% 

Actual Execution Capability Projection  

 ((Projected Version Duration- Actual Version 

Duration)/Projected Version Duration) * 100 = ___% 
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