
Regis University Regis University

ePublications at Regis University ePublications at Regis University

Regis University Student Publications
(comprehensive collection) Regis University Student Publications

Fall 2006

Unlocking Test-Driven Development Unlocking Test-Driven Development

Chris H. Knapp
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Knapp, Chris H., "Unlocking Test-Driven Development" (2006). Regis University Student Publications
(comprehensive collection). 389.
https://epublications.regis.edu/theses/389

This Thesis - Open Access is brought to you for free and open access by the Regis University Student Publications
at ePublications at Regis University. It has been accepted for inclusion in Regis University Student Publications
(comprehensive collection) by an authorized administrator of ePublications at Regis University. For more
information, please contact epublications@regis.edu.

https://epublications.regis.edu/
https://epublications.regis.edu/theses
https://epublications.regis.edu/theses
https://epublications.regis.edu/regiscollege_etds
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/389?utm_source=epublications.regis.edu%2Ftheses%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
School for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

Regis University

School for Professional Studies

Master of Science

In

Computer Information Technology

Unlocking Test-Driven Development

Thesis

Version 1.0

Chris H. Knapp

August 9, 2006

i

Certification of Authorship

Regis University
School for Professional Studies

MSCIT Program

Certification of Authorship of Professional Project Work

Submitted to: Tim McKenzie

Student’s Name: Chris Knapp

Date of Submission: July 30th, 2006

Title of Submission: Unlocking Test-Driven Development

Certification of Authorship: I hereby certify that I am the author of this document
and that any assistance I received in its preparation is fully acknowledged and
disclosed in the document. I have also cited all sources from which I obtained
data, ideas or words that are copied directly or paraphrased in the document.
Sources are properly credited according to accepted standards for professional
publications. I also certify that this paper was prepared by me for the purpose of
partial fulfillment of requirements for the MSC 696 or MSC 696B course.

Student’s Signature: ______________________________________

 ii

696B Faculty and Advisor Approval page

Regis University
School for Professional Studies

MSCIT Program

Advisor/MSC 696 or MSC 696B Faculty Approval Form

Student’s Name: Chris Knapp

Professional Project Title: Unlocking Test-Driven Development

Advisor, MSC 696 and MSC 696B Faculty Declaration: I have advised this
student through the Professional Project Process and approve of the final
document as acceptable to be submitted as fulfillment of partial completion of
requirements for the MSC 696 or MSC 696B course. The student has received
project approval from MSC 696A faculty and has followed due process in the
completion of the project and subsequent documentation.

Advisor

Michael Nims 08-01-2006
Name Signature Date

MSC 696 or MSC 696B Faculty Approval

Tim McKenzie August 6, 2006
Name Signature Date

 iii

Revision History

Revision
Number Date Key Changes

0.0 03/14/2005 Initial draft from the 696A class.
0.1 05/10/2006 Continued to flush out the draft.
0.2 07/05/2006 Draft submitted during week 1 of 696B class
0.3 07/16/2006 Draft submitted during week 2 of 696B class

The following changes were made:
• Wrote missing/incomplete sections in Lessons Learned.
• Moved the cipher research from in Lessons Learned to

Methodology.
• Dropped the project design chapter since it was for the

initial approach of using a waterfall SDLC flow.
• Dropped the project testing chapter – it’s redundant with

another chapter.
• Added legends to all figures that required them.

0.4 07/30/2006 Revision submitted during week 5 of 696B class
• Updated the Acknowledgement.
• Edited the Abstract and the introduction.
• Updated the style used for heading one, which affects the

chapter heading.
• Moved the crypto research into the

research/methodology chapter.
• Move the project management text into the lessons

learned.
• General editing of all text.
• Rewrote the conclusion chapter.

1.0 08/09/2006 • Added in signatures from advisor and 696B instructor.
• Minor formatting changes to fix issues when converting

this file over to PDF format.

 iv

Acknowledgements

The student acknowledges his loving and patient wife Cara. She

generously sacrificed her time with her husband. This gave him more time for

writing the thesis and for developing Women Partnering’s software system.

v

Abstract

Women Partnering is non-profit organization that helps women who are

financially vulnerable. This organization establishes relationships with the women

and connects them to support services. This project created a software system to

support Women Partnering’s daily operations and reporting needs, which

replaced the previous manually intensive, paper-based system. There were

many problems with the previous paper-based system including the following:

data duplication, data not readily available, and lack of a reporting capability.

Besides these problems, the previous system was not expected to support

anticipated growth.

The student followed a Test-Driven Development Methodology while building

the software system. This is the first time that the student has used Test-Driven

Development on a project. To help with his understanding, he compared and

contrasted this methodology to the Zachman Framework Methodology. The

student knew that he also had to secure the application, so he researched the

Rijndael cipher.

The analysis, design, and testing is handled differently in Test-Driven

Development. Testing happens first, and the design captures the requirements.

The student found Test-Driven Development lacking in a few areas, so he used

other tools that are not part of the methodology like entity relationship diagrams

and a data dictionary. Since the student was new to Test-Driven Development,

he shares his many lessons on this project in hopes to helping others to avoid

 vi

the same pitfalls. The project’s next steps include getting help integrated and

possible integration with other support agencies.

Test-Driven Development is not a tool that should be used on all development

projects. Rather, Test-Driven Development works best when the requirements

are not clear, when the development team is smaller, and when the requirements

are changing frequently. Most importantly, this methodology works well when the

users are willing and able to participate throughout the entire project. The student

suggests that software developers remain flexible in their tool choice in order to

better serve their projects and avoid project failure.

 vii

Table of Contents

Certification of Authorship .. i

696B Faculty and Advisor Approval page .. ii

Revision History... iii

Acknowledgements.. iv

Abstract .. v

Table of Contents...vii

List of Figures .. ix

List of Tables .. x

Chapter I. Introduction .. 1

A. Problem statement ... 1

B. Review of Previous Situation .. 1

C. Review of the Previous Automation Attempt.. 3

D. Goals of project .. 5

E. Barriers and/or issues... 6

F. Project Scope... 7

G. Definition of terms... 7

Chapter II. Methodology Research... 8

A. Zachman Framework.. 9

1. Zachman Framework Benefits .. 10

2. Zachman Framework Issues... 13

B. Test-Driven Development ... 14

1. Test-Driven Development Benefits.. 15

2. Test-Driven Development Issues .. 19

C. Securing the System... 24

1. Asymmetric Cipher Algorithms.. 25

2. Symmetric Cipher Algorithms ... 25

3. Rijndael Cipher... 27

D. Methodology Research Conclusion... 30

E. Contributions Made .. 31

F. Planned Methodology... 31

1. Analysis Phase... 32

2. Design Phase... 32

3. Construction Phase .. 32

4. Testing Phase .. 33

5. Implementation Phase.. 33

G. Actual Methodology .. 33

1. Write Unit Test ... 34

2. Write Functional Code.. 34

3. Refactor ... 35

Chapter III. Test Driving Test-Driven Development ... 36

A. Project Analysis.. 36

B. Handling of the Design ... 37

C. When Testing Occurs ... 39

D. Business Rules... 40

E. Data Dictionary... 41

F. Application Construction Challenges... 45

G. Application Construction ... 47

Chapter IV. Lessons Learned ... 49

A. The Infamous Note Field... 49

B. The Need for Good Test Design ... 50

C. The Ins and Outs of Data Binding ... 52

D. Testing in the Weeds.. 56

 viii

E. Securing the Application ... 56

F. In the Dark with Failed Tests... 57

G. Work That Project!!!.. 60

Chapter V. Conclusion ... 63

A. What Should Have Been Done Differently... 63

B. Did the project meet initial expectations? .. 64

C. What would be the next stage of evolution for the project if continued? 65

D. Conclusion ... 66

E. Recommendation ... 67

Chapter VI. Annotated Bibliography .. 69

Chapter VII. Appendixes.. 72

A. Intellisense Works in C# ... 72

B. Intellisense Not Working in C++.. 73

C. Example NUnit Screen ... 74

D. The Zachman Framework... 75

E. Testing Status in NUnit ... 76

F. Form Incorrectly Painted... 77

G. Fully Painted User Interface.. 78

H. Form Used to Organize Unit Tests.. 79

I. Attaching to another Process .. 80

J. Staff Form .. 81

 ix

List of Figures

Figure 1 – Marshalling a Method Call onto another Thread.. 24

Figure 2 – Common Tests... 38

Figure 3 – Test Infrastructure .. 51

Figure 4 – Method that has a "Test" attribute... 52

Figure 5 – oleDbDataAdapter_RowUpdating ... 53

Figure 6 – oleDbDataAdapter_RowUpdated.. 54

Figure 7 – Group Box with Radio Buttons.. 55

Figure 8 – Initial Project Schedule ... 60

Figure 9 – Actual Project Schedule.. 61

x

List of Tables

Table 1 – Definitions ... 7

Table 2 – Data Dictionary Excerpt ... 42

Table 3 – partner_note Database Table .. 50

Table 4 – Padding Solution for the Rijndael Cipher.. 57

1

Chapter I. Introduction
A. Problem statement

Women Partnering is a non-profit organization, which has been created

through an endowment of the Sisters of St. Francis of Colorado Springs. Women

Partnering helps women who are financially at risk. For example, if a women

partner is about to loose her job because her car is broken down, then Women

Partnering helps her get her car repaired. While Women Partnering directly helps

some women partners out financially, this is not their main goal. Rather, they

establish relationships with the women partners and connect them with support

agencies. Their goal is to build long term relationships with the women in order to

address their basic needs, to help them become self-sufficient, and to enrich their

lives spiritually.

Women Partnering interacts with volunteers, donors, apartment managers,

and support agencies in order to help women. When the student first interviewed

Women Partnering, there were 100 women partners, 60 different support

agencies, numerous donors and apartment managers, and a handful of

volunteers. Women Partnering ran their organization primarily on Excel

Spreadsheets and paper forms. Given the volume of women partners and

support agencies alone, Women Partnering benefited by automating their data

collection and other management activities.

B. Review of Previous Situation
Women Partnering used a few Excel spreadsheets and many paper forms to

run their operations. This mostly paper-based system quickly became inadequate

as the number of women partners, volunteers, donors, and support agencies

 2

increased. The paper-based system was very manual and introduced errors to

include data duplication, lack of timely retrieval of the data, and instances of

paper forms getting filled out more than once for the same women partner,

donor, support agencies, etc.

Women Partnering actively pursues funding through grants. As such, they

supply reports with their grant applications. Likewise, some grants require

periodic reports to be submitted. The grant reporting was difficult for Women

Partnering to produce because the data was not easy to compile. Staff members

and volunteers scanned all file folders and Excel Spreadsheets to compile the

statistics needed for the grants. It was possible for the paper forms to be missed

altogether or to be counted multiple times. Also, the women partner information

in the file folders and in the Excel Spreadsheets was sometimes out of sync with

each other. The volume of data, along with how the data was recorded, became

a hindrance to applying for grants.

Women Partnering encountered the traditional problems when working with

the paper forms, which were stored in filing cabinets. The staff could not readily

locate the information when needed. The staff returned many calls because the

information was filed away. Sometimes, the files were misfiled or were left on

someone else’s desk. Additionally, the staff was not able to easily identify new

women partner contacts from the existing ones. When this occurred, a new file

folder was created and personal information was collected again from the women

partner. Later, it may have been discovered that the women partner was not a

 3

new partner at all, but rather an existing one. In the end, the staff was spending

time filing, recreating, and locating paperwork instead of helping their partners.

The previous situation faced by Women Partnering did not enforce any

business rules. Business rules are important to the business and to the

information systems that may implement them. As defined by the Business Rule

Group, “a business rule is a statement that defines or constrains some aspect of

the business. It is intended to assert business structure, or to control, or influence

the behavior of the business” (5). In many cases, the Women Partnering’s forms

were partially filled in. In several cases, the basic information about a women

partner was missing like their name. All Women Partnering knew was that they

helped someone out, but could not really say who they were helping. This

missing information could not be used for grant reporting.

Paper-based systems do not enforce business rules. Women Partnering had

a few complex business rules. For example, some support agencies offered

support to certain ethnicities, had limits on number of times they would help,

and/or had income limits. These rules could not be enforced by the paper-based

system. Thus, the staff had to be memorized them. Sometimes the staff

mistakenly sent partners to agencies where they were not eligible to receive

support.

C. Review of the Previous Automation Attempt
Women Partnering had was a previous attempt at solving them problems.

The previous attempt was built by another individual. The previous attempt was

an Access database application. Apparently, the database application was never

completed. Thus, Women Partnering never used it. The Access database

 4

contained only a few useless test records. Even though the previous attempt did

not directly relate to the newer system, it was useful to understand the issues

that Women Partnering experienced with it. This way the issues are avoided in

the new system. The automation attempt had data entry, business rule

enforcement, and relationship management issues.

A brief synopsis of the data entry issues follows. The flow of the data entry

forms made it awkward to use. Pressing the tab key will move focus to the next

control, which it did in the previous automation attempt. However, the next

control that received focus did not always make sense. In a column of 3 controls,

the first, third, and then the second column’s control received focus. Likewise,

there were a couple of cases were the focus jumped up to a control on top of the

screen after leaving a control on the bottom of the screen. Then, the focus would

return back to a control on the bottom of the screen. This jumping around made

the system awkward to use.

Another data entry issue dealt with required fields, which could have been

calculated. For example, the main form required the user to enter the number of

children in one place and then enter the actual children’s information elsewhere.

Thus, it was possible to tell the previous system that a partner had 34 children,

yet only have the 2 of the children’s information entered. Worse, yet, the system

saved the data this way. The number of children can be calculated based upon

all of the children’s information entered. Further, the count of children would

never disagree with the actual number of children entered into the system.

 5

The worse kinds of data entry issues are ones that corrupt or destroy the

data. The previous attempt was plagued with data corruption issues. Agencies

that the women partner previous sought out help from could be entered into the

system, but was never saved in the database. Likewise, the partner’s marital

status retained the previously viewed record’s value, which would then be saved.

This would leave the wrong marital status stored in the database.

D. Goals of project
The project’s goal was to address the business problems by creating an

integrated, computer-based system for Women Partnering. Further, Women

Partnering’s issues with the previous automation attempt were to be avoided.

The key deliverables for this project included a computer application and a

networked database. The new system gave Women Partnering a system

managing for the various interactions between the women partners, volunteers,

donors, and support agencies. Instead of recording the data on paper forms, this

project centralized all the data into one repository – the database. The database

accommodates anticipated growth better than the previous paper-based system.

With the new system, time spent tracking information about partners and other

entities will decrease and shift over to time spent on helping the women partners.

Also, the staff will become more productive when first learning the system. The

system enforced the business rules instead of having the staff memorize them.

While not a Women Partnering goal, the student had a goal to incorporate one

cipher algorithm. By doing so, the student hoped to become more familiar with

cryptography and its use in a computer system.

 6

The project’s success is measured by the quality of the system. Women

Partnering believes that a high quality system will be easy to use. Yet, quality is

subjective. However, the student approached the quality concern by placing an

emphasis on testing. The student feels that quality is a concern of Women

Partnering because there was a previous failed attempt at automating Women

Partnering. Women Partnering never used the previous automation attempt

because of the quality issues. The student agrees with Women Partnering that a

quality system is one that will be useful to them.

E. Barriers and/or issues
Women Partnering is a non-profit organization. As such, funds available to

this project were non-existent. There were no time constraints imposed by

Women Partnering. In fact, they preferred to implement this project slowly even

though they are experiencing exponential growth. However, the student planned

to have a technical solution in place by the end of September 2006. This time

constraint was self-imposed to be able to complete academic requirements for

graduation.

 7

F. Project Scope
The project ended when the following criteria were satisfied:

Deliverable Criterion Description
Academic Lessons learned
Academic Published Thesis
Academic Thesis Presentation

Technical Solution At least 80% of the Women Partnering staff is trained
Technical Solution Future project ideas
Technical Solution Future Project Ideas turned over to Women Partnering

Technical Solution Programmer’s Manual turned over to Women
Partnering

Technical Solution User’s Manual turned over to Women Partnering
Technical Solution Working system installed at Women Partnering

G. Definition of terms
The various terms used throughout this document are defined in alphabetical

order in Table 1 – Definitions.

Table 1 – Definitions

Term Definition
AES Advanced Encryption Standard
DES Data Encryption Standard
Entity Relationship Diagram A diagram that is used as a communication device. The diagram

presents entities and the various attributes associated with the
entities. Additionally, an entity relationship diagram shows how
the various entities relate to each other.

ERD An abbreviation for an entity relationship diagram. See Entity
Relationship Diagram.

NUnit A software program that is used to automate the running of unit
tests.

PKI Public Key Infrastructure
TDD An abbreviation for Test-Driven Development.
Woman Partner A woman who is financially vulnerable.
XP Extreme Programming.

 8

Chapter II. Methodology Research
Software development means several things to different people. To some,

software development is an art form. By applying creativity and ingenuity, a

developer can create the next big software title. In this case, the developer feels

that an engineering-like approach to software development can be too confining.

Yet to others, an engineering-like approach is exactly what software development

is suppose to be – following strict processes is the only way to build software

systems. Sometimes this makes sense. For example, creating software that

helps fly the space shuttle has to work flawlessly. In this case, there are millions

of dollars at stake plus lives depending on the software working correctly.

However, in the end, neither approach is right for all software development

projects. Both approaches have numerous successes as well as numerous

failures. The underlying problem here is software development is just not easy.

What works for one situation does not work for all situations. There are many

factors that influence the outcome of your software development project. Besides

people, the software development life cycle that you follow is one of the biggest

decisions that you can make on the project. Choose wisely.

Two software development life cycles will be analyzed in this paper. They are

the Zachman Framework and Test-Driven Development (TDD). The goal is to

highlight the strengths and weaknesses. What modern software developers must

understand is that one has to be insightful and flexible enough to adapt the

software development processes to the situation at hand. However, in order to

adapt the software development processes used, one must first understand their

 9

strengths and weaknesses. Only then can the developer steer their project away

from crashing into the rocks of failure.

A. Zachman Framework
First off, the Zachman Framework is considered. While most other software

development life cycles are split up into phases and then further broken up into

steps, the Zachman Framework views software development from a different

point of view. Here, the Zachman Framework considers the perspective of those

involved and topic areas (Hay “Requirement”, 1). In fact, the grid used to

describe the Zachman Framework is laid out with perspectives on one axis and

the topic areas in the other. The Zachman Framework is shown in the Chapter

VII.D – The Zachman Framework. The topic areas contain more areas than are

traditionally considered during software development. Software developers tend

to focus in on the functionality provided by the system and the data that is to be

processed. So, then, the Zachman Framework helps remind us that the where,

who, when, and why are also important when building software. At the

intersections between the perspectives and the topic areas are the building

blocks of an information system (Whitten, 52). These building blocks become

more detailed as you move closer to the bottom of the framework. Thus, the

Zachman Framework offers many of us a natural way of thinking about

information systems.

Besides defining a framework to organize our thinking about an information

system, the Zachman Framework defines an enterprise-wide architecture as

described by one author:

 10

The architecture serves as an "enterprise blueprint." It is a repository for
designs and specifications of physical data structures and applications, as
well as business plans, data models, and process models. Furthermore, it
serves as a map of all the linkages among business initiatives, data
required to support those initiatives, business processes that use the data,
and physical information systems that support data requirements and
processes. (Perkins, 8)

The enterprise-wide approach provides a holistic view of a business and its

information systems. It is comprehensive and rigorous whereby a full set of plans

and documentation are produced (Wikipedia Enterprise, 1). Thus, the Zachman

Framework is a process-heavy and a documentation-heavy software

development life cycle. The planner’s perspective is the top layer within the

architecture. Plans are created and become more detailed and technical as the

plans proceed from the top perspective down to the bottom one. Another way of

looking at it is that the planners plan, the business owners provide requirements,

which then are translated into the architecture view by performing requirements

analysis and so on until all the details of the system are captured in

documentation. Then, the system can be built. So, the Zachman Framework

follows a waterfall type of flow through the software development life cycle. The

main difference from the traditional waterfall software development life cycle is

that the Zachman Framework addresses an enterprise-wide view and not just an

individual project.

1. Zachman Framework Benefits
The Zachman framework benefits from the emphasis on perspectives.

Perspectives are important, but are sometimes ignored! For example, it is just

silly to write a paper without knowing who the audience is. Likewise, this can be a

 11

problem with software development. The various models and diagrams are

created throughout the process of building software. Presenting an entity-

relationship diagram to top-level executives just does not make any sense. With

the Zachman framework, identifying the intended audience is exactly where the

perspectives come into play. The top-level executives will not understand the

entity-relationship diagram, but the database designers will. So, the perspectives

help make sure that the software building block is directed towards the correct

audience. With the correct audience, the software developer is able to the clearly

understand the processes, data, and interfaces, which the system must contend

with by being able to effectively communicate with the project stakeholders.

With the Zachman Framework addressing an enterprise-wide view of the

information and systems, it should be worked by larger software development

teams. It does not rely on the tacit knowledge of the team members. Instead, it

relies on the knowledge captured in the form of plans and diagrams. If a key

team member leaves the company, then the knowledge pool is still intact. Thus,

the Zachman Framework is not affected by employee turnover, which can hurt

agile teams. Further, a new employee can quickly come up to speed and be a

valuable team member quicker by reading the documentation. On the flip side,

the Zachman Framework does not seem to be viable software development life

cycle when the team is small and there is a large backlog of projects. In this

case, the team will spend all of its time documenting changes instead of

delivering projects.

 12

Another benefit for the Zachman Framework is it is less likely to create

duplication in data and in systems than an agile method would. The enterprise-

wide view of systems and information offer a single top-down view. This prevents

duplication of information and systems from getting built. The Zachman

Framework creates a master set of documentation that incorporates all

information and systems. If there is a question about a particular topic area, then

the answers can be ascertained by consulting the next layer up in the framework.

This removes assumptions from the project and removes the guesswork that

leads to duplication.

When there is a potential for loss of life or where a significant amount of

money is at stake, the Zachman Framework is better choice for a software

development life cycle. For example, software that sends someone to the moon,

software running in a satellite, or software running a life-support system in a

hospital environment has to work. The practitioners produce documentation,

review it, and double-check it for any errors. Further, they build contingency

plans to address project risks.

Another area considered is team size. With the Zachman Framework

being a process-heavy software development life cycle, there are many

documents created. At the very least there is one document per system building

block, which means that there are at least sixty documents that are maintained.

Why is the answer not thirty documents since there are thirty building blocks?

Well, it is true that there are at least thirty documents, but there are two copies of

each document– one is for “as is” system; another is for the “to be” system. The

 13

other assumption made is that there is only one piece of documentation per

building block, which is unlikely. It would be impossible to describe the

information system for the enterprise in just one document per building block.

Even if you could, the document would be voluminous. One advantage of having

all of this documentation is that project communications are easier. The need for

face-to-face communication is reduced when the knowledge contained within the

documents can be shared with whoever needs the information. Thus, the

Zachman Framework can easily support larger team sizes, but may over tax a

smaller team especially if they are working in a rapidly changing environment

where the requirements are changing. They would do nothing but changing the

documents.

2. Zachman Framework Issues
The Zachman Framework may failure in dynamic environments. In a dynamic

environment, the business changes may cause the requirements to change

rapidly. With this situation, the Zachman Framework documentation is always in

flux. The team may not be able to keep up with the changes. Keeping the

documentation current, the team’s need for discipline gets in the way of keeping

up with the shifting business directions. However, the Zachman Framework is

perfectly suited in environments where this is not rapid and dynamic changes.

As stated before, the Zachman framework is a very appealing approach

because it offers a natural way of thinking about information and software

development. However, as Simsion points out, there are several issues with it:

1) lacks pursuit of alternative classification of data by practitioners; 2) a tactical

 14

approach can be more successful than an enterprise approach; and 3) where is

the evidence that the framework really works? (8). Even though the Zachman

framework is a viable software development life cycle, it is becoming dated.

Zachman first conceived the framework back in 1987. As such, the student had

hard time finding current information about the Zachman Framework. It is getting

overshadowed by more recent approaches to software development – namely,

extreme programming, which is touched upon next.

B. Test-Driven Development
Test-Driven Development (TDD) is considered next. It is an agile

approach to developing software. Agile programming is also known as extreme

programming. Contrary to the Zachman Framework, the agile software

development life cycles are not documentation based. Instead, they focused on

getting the software in the hands of the users. “Agile methods are an outgrowth

of rapid prototyping and rapid development experiences as well as the

resurgence of the philosophy that programming is a craft rather than an industrial

process” (Boehm, 16). Using the Test-Driven Development approach to

developing software, the testing comes first. This seems a little backward at first.

How can you test the system if you have not gone through the traditional

waterfall phases of analysis, design, and code? Well, Doshi points out that Test-

Driven Development is not about testing – it is about “evolving the design to meet

the requirements” (1).

So, how does Test-Driven Development work? Well, there are a few easy

steps one must follow: 1) write a test; 2) write code to pass the test; and 3)

refractor the code to remove duplication to make it simpler, more flexible, and

 15

easier to understand (Stott, 2). Sometimes others split up the second step into

two parts: write just enough code so that everything complies, but the test fails

(Wikipedia Test, 10) and then one should finish the code getting the test to pass.

1. Test-Driven Development Benefits
Test-Driven Development (TDD) creates a prototype. Prototyping has many

benefits. First of all, they can help with clarifying and completing the

requirements, exploring design alternatives, and implementing layers

progressively (Wiegers, 234). The use of prototypes has direct relationships with

many of the agile concepts. First, Wiegers states, “Envisioning a future software

system and articulating its requirements is hard to do” (233). Building a prototype

helps figure out what the system is to do. With the agile approach, it also

recognizes that users may not know what they want until they see it. Using a

simple design, quickly getting the system into the hands of the customer, and

recognizing that the requirements may change is much like prototyping. Both

prototyping and the agile approach try to engage the users early to elicit their

input. Effort should be minimized when creating a prototype, which supports the

agile concept of fast delivery cycles. Additionally, a prototype can be elaborated

into the final system through multiple iterations. This is just like the agile concepts

of fast cycle/frequent deliveries.

As with other extreme programming techniques, TDD identifies quality

attributes. Users and system builders tend to focus in on what the system is to do

(Wiegers, 216). They overlook the quality attributes of availability, efficiency,

flexibility, integrity, interoperability, reliability, robustness, usability,

 16

maintainability, portability, reusability, and testability. Further, the quality

attributes can distinguish between a mediocre system and a great system. The

student does not see any direct relationship between the non-functional

requirements and the agile concepts, which are embrace change, fast

cycle/frequent delivery, simple design, refactoring, pair programming,

retrospective, tacit knowledge, and test-driven development. However, the

student can infer some relationships. First, “Quality attributes are difficult to

define” (Wiegers, 216). Therefore, by following the agile concept of fast

cycle/frequent delivery, one can uncover missing quality attributes early and

reduce the risk of delivering a mediocre system in the end. Second, following the

agile concept of simple design directly supports the quality attribute of

maintainability. However, maintainability might not be a priority to the users. If the

priority is robustness, portability, or flexibility, then the simple design will not

support the user’s requirements. So, the agile concepts are sometimes in

alignment with the quality attributes.

In TDD, assigning priorities to each requirement is important. This helps

the system get implemented when there are limited resources. The requirement

priorities integrate well with the test-driven development. Higher priority

requirements will be implemented first. This gives the users the greatest benefit

at the beginning of the project. Test-Driven Development is indifferent to shifting

priorities. The newer set of priorities will be included in the next iteration. This is

one of the agile concepts of adaptability.

 17

As for ideal team size, test-driven development favors smaller teams.

Since test-driven development is an extreme programming software development

life cycle, a lightweight process is emphasized. This means there is little to no

documentation. Besides, why write documentation when you are going to have to

maintain and no one is really going to read it any way? At least, that is what the

extreme programmer thinks. Now, with that being said, the student believes that

the test-driven development can be supported in larger teams because the

system design is documented in unit tests. So, test-driven development fairs

better than other extreme software development life cycles in larger teams. It

relies on communications between the team members to be more face-to-face.

This means that test-driven development works great for small to medium sized

teams. The number of communication points between all members team grows

exponentially for each team member added. On a large team, the number of

communication points will be large.

The test driven development is made possible only through the use of

automated unit test program like JUnit or NUnit. See Chapter VII.C – Example

NUnit Screen for an example. Most of the unit test tools are freely available on

the Internet, so no additional funds are needed by the project. These test tools

are able to run an entire suite of unit tests and report back any encountered

errors. The student used NUnit as the unit test tool for his project, which is written

in C#. NUnit uses the red, yellow, and green colors to indicate the status of the

tests. Red is failure; yellow is an ignored test; and green for a properly working

tests. The ability to run the unit tests frequency and quickly is a plus for test

 18

driven development. Any code changes that break the functionality are caught

within minutes of the code changes. The developers making the change can the

fix the error while the code change is still fresh in his/her thoughts.

Stott also points out that “the long gaps between the design, coding, and

testing phases are gone, thus making for a much better learning environment”

(3). This quick feed back from the unit test tool has several benefits. First, the

development gains confidence in the changes knowing that the changes will not

break the overall design of the system. This is especially helpful to a new

software developer joining a team. Second, the software developer is able to

make changes to the code (think – refactor the code) to make the improvements

and remove duplications knowing that he or she has not broken the interface.

Thirdly, the unit tests are accumulated over time to create a regression test bed.

Currently, the student has 3300 unit tests that run in about 10 minutes. The unit

tests can be organized into suites of unit tests. Further, the unit tests can be

place into different categories. The software developer has the option to run all

the unit tests, a certain suit of tests, or any combinations of unit test categories.

Combinations of tests that the student created are unit tests for all user

interfaces, business rules, and database transactions. These unit tests consist of

57,102 lines of code. This student disagrees with Doshi in that a unit test can

interact with files and databases. Doshi’s point of view states: “A test that does

not operate in isolation is not a unit test. It is safe to assume that a test that

connects to the network or a database or a real file is not a unit test” (1). The

student has designed techniques for working with the database whereby the

 19

database is returned back to an initial before the next unit test runs. Thus, the

unit tests are isolated from one another and the unit tests works even though it

connects to a database.

Contrary to Zachman Framework, test-driven development is not a

process-heavy software development life cycle. Instead, it is based upon a

lightweight process known as extreme programming. In extreme programming,

the knowledge is tactical. The knowledge lies in the brains of the development

staff and not on paper. Besides, why waste time documenting the system

requirements and designs if they are going to change? Why not just plan on them

changing? Test-driven development emphases an interactive process of writing

the unit test, write the code, and refactor the code all along you are running the

unit test at each step.

Contrary to the Zachman Framework, Test-Driven Development is well suited

for dynamic environments where the requirements are changing quickly. Since

there is little or no documentation, the test-driven practitioners can quickly adjust

direction with minimal impact. Further, some users are unable to fully describe

what they want system to do. They may not know what they want until they are

able to see the system in action. Because the test-driven development uses an

iterative process, changes and user feedback can be fed into the next interaction

of development.

2. Test-Driven Development Issues
The extra lines of code written for unit tests are overhead. They will never get

deployed into a production environment, nor do they satisfy any functional needs

 20

of the users. After all, they are unit tests. In total, the student’s project had

102,643 lines of code of which 57,102 of them are unit tests. Thus, the project’s

unit test overhead is 56%. While this might seem excessive, the student’s unit

test overhead is a little over what is considered normal. Jon Udell states, “The

overhead can be substantial, however, because the test framework that ensures

a program's correctness may require as many lines of code as the program itself”

(2). Even the test-driven development approach founder, Kent Beck, had a 50%

overhead of functional code and unit test code for a large project he worked on

(Ambler “Introduction”, 20). In a world where being first to market can make or

break a business, having an additional 50% lines of code just does not make

sense at first. However, looking at what the 50% lines of code offers in terms of

benefits, and then it does not look so bad. One just has to take into account in

the project plan that TDD will result in more lines of code generated than using

other methodologies.

Besides the additional lines-of-code overhead, there are a couple of other

issues with test driven development. This student has spent years developing

programs using object-orientated techniques and structured, top-down

techniques. What the student found is that he tended to focus on building the

system bottom-up while following the test-driven development approach.

Meaning, he was stuck in the details. Later, he would discover that the functional

code did not make sense into the overall solution, yet it was tested thoroughly!

For example, he created unit tests for a dataset on a particular table and wrote all

the functional code working for that table. Later, he went to integrate that dataset

 21

into the final solution and discovered that it was not needed. Part of a day was

lost working on the unit tests and the functional code. Like Doshi states, “Each

unit test corresponds to a single requirement that the code must satisfy” (1).

However, when the requirements are not clear, then there is a chance that you

are writing throwaway code. This is where the student should have followed is

one of the extreme programming concept of “you aren’t going to need it” or the

YAGNI (Boehm, 41). Just like the student, any software developer can get

distracted with the problem at hand only to find out later that the wrong problem

was solved. This is why confirming the requirements as you go are important in

TDD.

A possible weakness of the test-driven development is that it does not take an

enterprise-wide view of the information and systems. Instead, the development

cycle is focused on just one project, which can lead to the system being built in

its own “silo.” The silo effect means that there can be duplication of functionality

and data between the various systems within an organization. Yes, being that it

may, this weakness can be turned into strength as compared to the Zachman

Framework. “A tactical approach to data management, based on individual high-

value initiatives, is likely to be more successful than one centered on an

enterprise architecture” (Simsion, 9). Test-driven development definitely supports

tactical approaches.

Another minor weakness of the test-driven development approach is it not

based on documentation. Thus if a key member leaves, his knowledge leaves

with him. Or does it? Yes, it is true, that when the team member leaves the

 22

group, his knowledge leaves with him. However, provided that this team member

has followed the test-driven approach, he has written unit tests, which captures

his knowledge in the form of unit tests. So, his knowledge about the next steps

and his business knowledge are no longer available. However, at least he has

written tests that a new employee is able to run. Further, the unit tests capture

the requirements of the system. When the new team member has changed the

code, he/she is given immediate feedback if something was adversely affected

by the changes.

With test-driven development, everything cannot be tested. For example, user

interfaces are a stumbling point. Visual aspects about the screen layout require a

human verification. A unit test cannot tell if the zip code field on the screen is too

small and is not displaying the complete contents of the field. Further, there are

other concepts that defy unit testing. For example, does the tab order make

sense? What should the tool tip say when the mouse hovers over a control? Are

the report contents correct? Some believe that the user interface is completely

un-testable by the unit tests. However, there are some aspects that lend

themselves to unit testing. For example, when populating the search field with a

valid value and then pressing the search button -- the screen should display the

correct data. All of these actions, even the pressing of the search button, can be

put into a unit test which can be written so that the correct data is displayed back

after the search button has been pressed.

Seeing the actual user interfaces as the unit test tool runs the tests is a

challenge, which the student was able to overcome. Without doing anything

 23

special, you will see the form partially painted on the screen as the test runs. See

Chapter VII.F – Form Incorrectly Painted for an example. In order to see the user

interface fully painted on the screen, two tasks are required. First, run the user

interface in a separate thread. This will allow the user interface to properly draw

itself. If you stop here, you will get random errors as the unit tests run. After much

research and headaches, the student discovered that the unit test tool, running in

a separate thread from the form, should not execute any methods on the form

directly. “Never directly access a property or invoke a method of a

System.Windows.Forms.Control object or any object that inherits from this class

if there is any chance that the code running in a thread different from the thread

that created the control” (Balena, 332). Under the covers, the issue is that the

form is not thread safe. The student did not know this, so the random errors

plagued the student’s unit tests for months. The second task is to use the Form’s

Invoke method and pass in the delegate to the method that you wish to execute.

See Figure 1 – Marshalling a Method Call onto another Thread for an example

for how this is done. Once you implement the two steps as outlined, you will see

a fully painted user interfaces as the unit test runs. See Chapter VII.G – Fully

Painted User Interface for an example of this.

 24

Figure 1 – Marshalling a Method Call onto another Thread

#region SetField

/// <summary>

/// This method is used to set a field’s data on the form running on

a different thread.

/// </summary>

/// <param name="setter">The setter method</param>

/// <param name="new_data">The new data</param>

protected void SetField(SetFieldData setter, string new_data)

{

object [] args = new object[] {new_data};

runnableForm.Invoke(setter, args);

}

#endregion SetField

C. Securing the System
Regardless of the exact methodology followed by a software developer, one

must apply measures to secure the system. The system that is not secure is

open to attack, which can lead to loss of sensitive data, corruption of data, and

loss of system availability. While system security was not a direct requirement

levied against this project by Women Partnering, the student understood the

importance of making sure that defensive measures were needed in their

system.

The student knew that one form of defensive measure was to encrypt data

within the system. Then, the student considered what ciphers were available. A

cipher is a form of cryptography that is used to encrypt and decrypt messages.

For this project’s purposes, the messages are a few of the data elements passed

between the application and the database. A few of the fields in the database are

stored encrypted, so that the data cannot be ascertained by running a query

against the database.

 25

Cipher algorithms are classified into asymmetric or symmetric ciphers

(Cross, 499-500). Further, symmetric ciphers are subdivided into steam ciphers

and block ciphers.

1. Asymmetric Cipher Algorithms
Asymmetric algorithm requires two keys. The two keys are mathematically

related and usually involve very large prime integers. A message encrypted with

one key can only be decrypted with the other key. Asymmetric algorithms are

used primarily in public key infrastructures (PKI). One of the two keys is

considered the private key. Private keys should be secured and not to be

disclosed to anyone else. The other key is the public, which is available to

anyone who needs to communicate with the private key owner. Asymmetric

algorithms are considerably slower than symmetric algorithms especially when

the message sizes are larger.

2. Symmetric Cipher Algorithms
Besides asymmetric algorithms, there are symmetric algorithms. There are

more symmetric algorithms than there are asymmetric algorithms. The reason is

symmetric algorithms are faster than asymmetric algorithms and because

symmetric algorithms only require a single key. Thus, symmetric algorithms are

simpler to develop. The single key in symmetric algorithms is called the secret

key, which is used to encipher (encryption) and decipher (decryption). One

challenge with symmetric algorithms is how to securely share the secret key

between the message sender and the message receiver. The pro for symmetric

 26

algorithms is speed; while the con is that they are vulnerable to brute-force

attacks (Cross, 500).

Symmetric encryption algorithms can be further sub divided into stream

ciphers and block ciphers. Regardless of this sub-division, the symmetric

encryption algorithms still require one key for the encrypting and decrypting the

message.

First, stream ciphers process small individual units, usually bits, during the

encipher/decipher cycle. Because stream ciphers process small pieces of data,

they are faster than block ciphers (Cross, 506). In stream ciphers, a key is

combined with the plain text to produce the cipher text. It is interesting to note

that any particular plaintext will be encrypted differently depending its location

within the plaintext (RSA Stream, 1). This is not the case with block ciphers. The

same plaintext message in block 1 and block 2003 will have the same cipher

text! One desirable property of the stream cipher is one-time pads. A one-time

pad means that the secret key is used once and then is discarded (RSA Stream,

3). With each new plaintext to be enciphered, a random secret key will be used.

The one-time pad helps to defend against statistical attacks. Stream ciphers

using a constant secret key are vulnerable to statistical attacks (Cross, 103).

One example of a stream cipher is the RC4 encryption algorithm, which is used

in the Wireless Encryption Protocol.

Block ciphers differ from stream ciphers in that they manipulate a large block

of data. The block itself can be variable length. However, once a block length is

chosen, it is used throughout the entire encipher/decipher process. Each block is

 27

processed using the same algorithm and the same key. However, the key is

usually broken into pieces and each part is used during the iterations. The key to

be applied during each interaction is called the key schedule. The

encipher/decipher process within block ciphers can be iterated, which means that

the process is repeated a number of times (RSA Iterated, 1). When iterations are

involved, the block cipher is called an iterated block cipher (RSA Iterated, 1).

Regardless of the key schedule used during each round, the block length

remains fixed.

3. Rijndael Cipher
The student wanted to explore the Rijndael algorithm. Two Belgian

cryptographers named Joan Daemen and Vincent Rijmen created the Rijndael

algorithm. The Rijndael algorithm was submitted and eventually approved for the

United States Government’s Advance Encryption Standard (AES) in November

of 2001. The creators had three goals in mind when creating the Rijndael cipher:

resist against all known attacks, speed and code compactness, and design

simplicity (Daemen, 8). The Rijndael cipher can be implemented in software and

hardware including devices that lack processing power like smartcards.

As for how the Rijndael algorithm is classified, it is considered to be a

symmetric algorithm (Wikipedia “Block”, 1). One key is used for ciphering and

deciphering the message. The Rijndael algorithm is further classified as being a

block cipher. While Rijndael supports larger block sizes and key sizes, AES

confines the block sizes to 128 bits (Wikipedia “Advanced”, 5). Each block is

represented as a matrix. The number of rows in each block is fixed to be 4 rows.

 28

As for the number of columns, the exact number depends on the block size

divided by 32 (Daemen, 8). So, under AES, the number of columns equals 4.

Additionally, the cipher key is also represented as a block. Again, the number of

rows in the cipher key block is fixed at 4 rows. Just like the cipher data block, the

number of columns is calculated. The number of columns is equal to the key size

divided by 32 (Daemen, 9). Under AES, the key sizes can be 128, 192, and 256

bits (Wikipedia “Advanced”, 5). The three key sizes are known as AES-128,

AES-192, and AES-256. The numbers of columns in the key cipher blocks are 4,

6, or 8 under the AES specification.

Once the cipher data block and the key cipher block have been determined,

the data is loaded into the blocks and the cipher process starts. The Rijndael

cipher processes a number of rounds depending on the key size. So, in addition

to be being a block cipher, the Rijndael cipher is considered to be an iterated

block cipher. In AES, 10 rounds are used for the 128-bit key, 12 rounds for the

192-bit keys, and 14 rounds of the 256-bit keys (Wikipedia “Advanced”, 16). Each

round, except the last, consists of 4 steps: subbytes, shiftrows, mixcolumns, and

addroundkey. By design, the last round omits the addroundkey step.

“[Ferguson, Schroeppel, and Whiting] know of no other ‘serious’ block

cipher that has an algebraic description that is anywhere near as simple as the

one for Rijndael” (6). So, what does this all mean? The answer is simply that the

Rijndael is simple to implement (following the 4 steps in each round) and can be

expressed via a simple algebraic formula. However, Rijndael is a very hard-core

cipher! Under the AES implementation of Rijndael, there are 3 key sizes: 128,

 29

192, and 256 bits. Therefore, there are 3.4 x 1038 possible keys using a 128-bit

key, 6.2 x 1057possible keys using a 192-bit key, and 1.1 x 1077 possible keys

using a 256-bit key (Computer, 15). To put another way, consider the following:

Assuming that one could build a machine that could recover a DES key in a
second (i.e., try 255 keys per second), then it would take that machine
approximately 149 thousand-billion (149 trillion) years to crack a 128-bit AES
key. To put that into perspective, the universe is believed to be less than 20
billion years old (Computer, 16).

The above takes into account the smallest key size as specified by the AES.

With the cipher complexity and number of possible keys in AES’s version

of the Rijndael cipher, it is expected to have a useful life of twenty year’s time

(Computer, 18). This of course assumes that the only attack possible is a brute

force attack. Additionally, it does not take into account any further advances in

CPU processor speeds. However, the student thinks that the next twenty year’s

worth of CPU processor increases will do little to reduce the brute-force

timeframe of 149 trillion years by any significant measurable amount.

Since the Rijndael cipher was proposed to National Institute of Standards

and Technology (NIST) for the AES standard back in 1996, the Rijndael cipher

has been under review by crypto analyst around the world. Crypto analyst

considers a cipher break as any technique that is faster than the brute force

approach (Wikipedia Advanced, 15). “As of 2005, no successful attacks against

AES have been recognized” (Wikipedia “Advanced”, 13). However, there has

been a claim made that there is a break, but this claim failed to be verified. This

so-called attack was called the XSL attack. Time will tell if Rijndael is a viable

cipher for the next twenty years.

 30

Initially, the Rijndael cipher was only to be used for the US Government’s

non-classified data. However, in 2003, the Rijndael cipher can be used for

classified data at all key lengths (Wikipedia, Advanced, 11). Further, it can be

used for securing top-secret data as long as the 192-bit or 256-bit key lengths

are used. The Rijndael cipher seems very secure. Besides being a government

standard, it may gain enough momentum to be considered the worldwide

standard for data encryption.

D. Methodology Research Conclusion
This chapter looked at two different approaches to software development

life cycles. First, the Zachman Framework was looked it. It offered a

comprehensive view of the business and of its information systems. The

architecture of enterprise can be broken down into different perspectives and into

various topic areas. Just like the traditional waterfall software development life

cycle, the Zachman Framework’s holistic view of software development follows

the same flow. The Framework forces the software developers to view more than

processes and data. It also looks to other concerns like when, where, and why.

The Zachman Framework is a very natural approach to viewing and building

software for the enterprise.

As a newer software development life cycle, test-driven development has

its roots in extreme program. Here, the focus is writing a test case for the

software – even before the software has been written. This is awkward to get use

to, but the benefits are many. Creating the unit tests first, this forces one to think

through the interface first before writing the actual software. Further, unit tests

provide quick feedback to the developers when they have negatively impacted

 31

the design of the overall system. This is especially helpful to newer team

members. Overtime, the unit tests become a regression test bed for the entire

system. Using a unit test tool like NUnit automates the execution of the unit tests.

This chapter also looked at the Rijndael crypto. It is classified as a

symmetrical crypto meaning that it uses one key for both encrypting and

decrypting the message. Further, the Rijndael is a block cipher that is very

secure and is resistant to all known attacks. The Rijndael cipher is secure

enough and simple enough to be used in the overall implementation of the

Women Partnering’s system.

E. Contributions Made
This project contributes to the industry by having a student new to Test-

Driven Development follow the process to create a small system for a non-profit

organization. The strengths and weaknesses of the methodology are pointed out.

With Test-Driven Development being relatively new, it is compared and

contrasted against the older Zachman Framework to see if how it measures up.

Further, the student recounts many of the lessons that he learned along the

away. This way, the student hopes that the reader will avoid the same pitfalls

encountered and will be able to further build upon the student’s experiences and

advance TDD.

F. Planned Methodology
Initially, the student had planned on following a waterfall software

development life cycle as identified below.

 32

1. Analysis Phase
During the analysis phase, the existing system was to be studied. Input from

Women Partnering is critical during the analysis phase. Planned activities

included reviewing of the existing system, reviewing existing forms, conducting

interviews, and observing current business activities. Throughout the analysis

phase, understanding of the existing business and problems was to be

documented. The requirements for the new system will be captured in a

requirement specification document. It is expected that Women Partnering

approved the requirement specification document before continuing on with the

next phase of the project. Upon signoff, the feasibility criteria would be defined.

These criteria would help identify a viable candidate solution.

2. Design Phase
The recommended candidate solution along with the requirement

specification is the inputs in to the design phase. The design’s goal is to create a

system blueprint. The design phase’s key deliverables are a network design

specification and an application design specification. Women Partnering would

need to approve the design specifications before proceeding to the Construction

phase.

3. Construction Phase
The construction phase executes all plans. The system is constructed, the

database is defined, and any changes applied to the network. Also during this

phase, a programmer's manual and network documentation would be written and

turned over to Women Partnering before the end of the Construction phase.

 33

4. Testing Phase
Concurrent to the Construction phase, unit and system testing would be

conducted. The Testing Phase would produce a test plan and test results.

Testing ensures that all requirements have been included in the system and

properly work. Women Partnering would need to approve the test plan before

finishing the testing phase.

5. Implementation Phase
The implementation phase is where the new application, database, and

network changes were made available to Women Partnering. Prior to the actual

implementation, Women Partnering would need to approve the implementation

plan that was written during this phase. As part of the implementation phase,

training materials would be written. Also, training sessions for the staff would

occur.

G. Actual Methodology
As some point during the initial analysis, the student became aware that it

was very hard for Women Partnering to express the requirements of the system

upfront. Generally, they would know what they wanted when they saw it. So, the

initially planned methodology was not going to work on this project. Rather, the

student needed to follow a methodology that got the system in the hands of the

users, so that the requirements could be confirmed. Further, because of the

emphasis of quality as a system goal that was expressed by Women Partnering,

the student discovered that Test-Driven Development would be a better

methodology and would be able to meet the needs of this project. Test-Driven

 34

Development (TDD) consists of iterations of 3 steps as described in the following

paragraphs. Further, the 3 steps are repeated until the system is done.

1. Write Unit Test
Before writing any functional code in the system, the developer has to write

the unit test for a requirement first. This is a different mindset that many

developers are use to – testing is the last thing you do before the system gets

implemented into a production environment. By writing the unit test first, this

forces the developer to think through the interface. Interfaces are the means by

which the system building blocks work together to satisfy the needs of the users,

yet they are not emphasized in other methodologies as they are in TDD. Instead,

the code behind the interface draws the developer’s attention first. TDD

emphasizes the interface by having the developer write a unit test to test the

interface before anything else is written. At this point the unit test should fail. In

fact, the unit test should not even compile because there is no functional code

written yet. If desired, the functional code can be written as a stub, which means

the interface exists but there is no code written beyond that. By writing a stub,

this gets the system to the point where it can at least compile without errors.

2. Write Functional Code
Once the test has been written, the functional code should be written. This

step is pretty basic – get the interface operational. At this point, the quality of the

code is not important. Rather, achieving the desired outcome is important. The

desire outcome of this step is getting the unit test to a passed status.

 35

3. Refactor
One of the neatest aspects with TDD occurs in the refactor step. In this step,

the developer’s attention turns to cleaning up the code that he/she just wrote. In

other methodologies, this step is non-existent. The refactor steps forces the

developer to consider the design of the functional code and make changes to

enhance the quality of the code, the efficiency of the code, and the robustness of

the code. Regardless of the changes made during the refactor step, the

developer can run (and should frequently run) the unit test that he/she wrote in

the first step to validate that the test still produces the intended results.

 36

Chapter III. Test Driving Test-Driven Development
A. Project Analysis

Analysis is the study of the existing system and problem domain. Without

analysis, the problem domain would not be fully understood. The information

technology industry is plagued with failed attempts at solving the business

problem. “And some three quarters of all large systems are ‘operating failures’

that either do not function as intended or are not used at all” (Gibbs, 43). To

compound this problem even further is the fact that “Systems have become

larger and more complex than ever before” (Christensen, 5). Today’s

environment also demands that these larger and more complex systems get

created faster and faster to keep up the increased levels of competition.

Analysis is also important because it lays the foundation for the rest of the

software development life cycle processes. Under the Zachman Framework, the

requirement specification is produced during the analysis phase. “Nowhere more

than in the requirements process do the interests of all the stakeholders in a

software or system project intersect” (Wiegers, 4). All stakeholders use the

requirements specification to build, to test, to design, to market, to write user

documentation, etc. Any problems introduced during the analysis phase will

cause potential rework in later phases or cause the project to cancel. Of course,

the rework will cause the schedule to slip, demand extra resources, and/or

changes to the project scope. Further, the rework can have a cascading affect on

the rest of the system – just like tossing a stone into a lake can cause a rippling

effect throughout the entire lake.

 37

Once the problem is fully understood, only then can a clear and simple

solution be realized. Yet, analysis can be very hard to perform. Different

stakeholders have conflicting options on the business problems and the intended

solution. Further, the business problem evolves as the analysis is performed.

This is exactly what happened in this project. Women Partnering launched a

series of classes called Spiritual Networking right in the middle of the analysis.

The Zachman Framework’s approach of completing the analysis before

proceeding with the system design would not have worked on this project. The

requirements were not well understood and consequently were hard for Women

Partnering to express. With the TDD approach, the requirements are captured in

unit tests as the system is built. This form of prototyping allowed for the

requirements to be validated as the system was being built. Further, any

requirement conflicts were flushed out as soon as they were implemented into

unit tests.

B. Handling of the Design
As mentioned before, Test-Driven Development is an extreme programming

technique for developing software. It is a lightweight process where the emphasis

is on speed and getting the software in the hands of the customer quickly. Test-

Driven Development captures the design of the system in the tests, which are

written before the functional code is written. This forces the developer to hone in

on the interface first. After the intent of the interface is captured in the test, the

developer will then write the code that implements the interface.

As an example of how the design is captured in the tests, the student followed

several of one author’s suggestions to improve the overall C# design. In

 38

particular, Wagner suggests that one should always provide ToString() method to

help with others being able to understand the contents of your types (38). So, the

student created an interface call IToString, which all tests dealing with user-

defined types implemented. This interface ensured that the ToString method was

tested. Further, making sure that it is tested means that all user-defined types

had to follow the guideline of always providing the ToString method on all user-

defined types. Later, the student combined the IToString interface with

inheritance. The student found that all presentation layer tests could inherit from

a base presentation layer tests class whereby the IToString interface was

implemented. This was also true for the business logic layer tests and all

database access layer tests. So, it made sense to extract all the common tests

like the test that made sure the ToString method was provided into a common

tests class as shown in Figure 2 – Common Tests.

Figure 2 – Common Tests

F o rm H a s 1 F ie ld

C o m m o n T e s ts F o rm M g rH a s 1 F ie ld

D B H a s 1 F ie ld

L e g e n d :

c la s s

b a s e c la s s
E x te n d s

As for the design within the Zachman Framework, it is more documentation

based. The design is not activity used to make sure the system is functioning

correctly. Further, with the design based in documentation, it can easily become

out of sync with the system. The student has experienced many projects where

 39

the design documentation could not be trusted 100% of the time. Many

developers resorted to trusting the actual code in lieu of reading the design

documentation. The student works in an environment where many systems

evolve through hundreds of projects throughout the years. The design

documentation is specific to each project. In the end, there is not one complete

view of the system design. Further, referencing a design published one year ago

may not represent an accurate picture of the system today. Was there another

project that changed the design between this older design and what is there

today? This question plagues the approach of having the designs documented.

Because of the possible staleness of the design documentation, this highlights

the beauty of the test-driven development. Remember that the unit tests capture

the design. The tests are created over time. At any point in time, the entire test

suite can be executed to ensure that the design is intact and is valid.

C. When Testing Occurs
Testing is the biggest difference between Test-Driven Development and

Zachman Frame methodologies. The testing of the system occurs throughout the

entire life cycle of the system when using Test-Driven Development. This pay as

you go approach to testing identifies errors at the point in time when the error is

introduced. This has the benefit of having the coding change still being fresh in

his/her thoughts. It is well known that testing improves the quality of the system

(Smith, 1) (Murphy, 1). “By reducing the feedback loop, the time between

creating something and validating it, you will clearly reduce the cost of change”

(Ambler “Examining”, 3). Further, the feedback loop is compressed because in

 40

test-driven development, only small steps are taken (Ambler “Introduction”, 3). It

is interesting to note that the Zachman Framework does not explicitly define

when or even if testing should occur. Instead, it focuses on the analysis and

design of the system. However, given that the Zachman Framework focuses on

an enterprise-wide view of the business captured in models, the student infers

that testing would occur at the end of the project. This means that testing does

not follow the pay as you go model. As Ambler points out, the danger of this is

that the cost of change grows exponentially as the project progresses when

following a waterfall type of software development (“Examining”, 3).

D. Business Rules
As defined by the Business Rule Group, “a business rule is a statement that

defines or constrains some aspect of the business. It is intended to assert

business structure, or to control, or influence the behavior of the business”

(Business Rule Group, 5). One cannot ignore the business rules and still be

successful. Yet, under the TDD approach, business rules are not formally

addressed by the methodology. It is the student’s belief that business rules are to

be expressed as requirements, which are then later transformed into unit tests.

As for business rules under the Zachman Framework, entity relationship

diagrams (ERDs) start to capture the business rules. An ERD shows the various

data entities and how they relate to each other. However, they do not describe

everything that is needed to know about the entities existence. In fact, data

models like ERDs depict structure of the data, but they do not depict how or

when the entities are to be used (Hay “What”, 1). In other words, data models fail

 41

to depict business rules. At least the Zachman Framework does account for the

“how” and “when” aspects in other topic areas within the Framework.

E. Data Dictionary
The student created a data dictionary for this project. This proved to be

useful, and provided many benefits to this project. Besides helping the student

learn about Women Partnering’s data, the data dictionary laid the foundation for

creating the database. “Usually [data dictionary] means a table in a database that

stores the names, field types, length, and other characteristics of the fields in the

database tables” (Foldoc, 3). However, manually created data dictionaries work

just as well. Even before having a database and tables, a data dictionary can

help with user-to-developer communications and help with many of the other

software development processes.

This project used a data dictionary to help with the project analysis. A data

dictionary is “a shared repository that defines the meaning, data type, length,

format, necessary precision, and allowed range or list of values for all data

elements or attributes used in an application” (Wiegers, 190). While there seems

to be no industry standard for creating a data dictionary, Wiegers describes a

data dictionary syntax that is able to account for primitive data elements,

composition, iterations, and selections (190-191). See Table 2 – Data Dictionary

Excerpt for a few examples. Any definition that includes “= * text *” identifies a

primitive data element. As for composition entry, see the “Budget Worksheet”

entry in Table 2 – Data Dictionary Excerpt. Here, the budget worksheet consists

of multiple elements: current budget, proposed budget, budget recommendation,

budget prepared date, and budget other information. Further, there can be 1, 2,

 42

or 3 budget recommendations. The Min: Max {data element} notation represents

iteration or multiple instances of a data element. The budget worksheet entry

also contains an optional element – budget other information. Any element

delimited by parentheses indicates that the data element is optional. The last

class of entry is a selection entry. Here, there is a fixed list of possible data

values. A selection entry is formatted as follows: [possible value 1 | possible

value 2 | possible value 3]. In Table 2 – Data Dictionary Excerpt, “Ethnicity” can

take on any one of the listed values.

Table 2 – Data Dictionary Excerpt

Dictionary
Entry Definition Where

Referenced
Budget
Recommendation

= * Consist of free form text up to 500
characters. *

• Budget Worksheet

Budget Worksheet = Current Budget
+ Proposed Budget
+ 1-3 {Budget Recommendation}
+ Budget Prepared Date
+ (Budget Other Information)

Ethnicity = [African American | Asian | Caucasian |
Hispanic | Mixed | Samoan | West Indies |
Native American]

• Application
• Child Ethnicity
• Partner Ethnicity
• Phone intake form
• Women Partner

Profile
Zip = * The postal code, which is a 5 or 9 numeric

digits number. May have a “-“ character
between the 5th and 6th digit. *

• Address

The data dictionary helped the student become familiar with the data used by

Women Partnering. Additionally, the data dictionary forced the student to make

sure that he fully understood what each data element was and where it was

used. The student extended the Data Dictionary to also include the existing forms

and spreadsheets used by Women Partnering. This was helpful when the

 43

business process flow was explained to the student. The student was able to

more clearly understand the process flow when referring to the data dictionary to

see what data was being worked on. The data dictionary was also helpful to point

out inconsistencies. Various data elements were recorded as being a check

number while on other forms the same data element was recorded as dollar

amounts. By sitting down with the data dictionary and the various stakeholders at

Women Partnering, the inconsistencies were resolved. Further, the data

dictionary helped point out synonyms used by Women Partnering. For example,

employment was recorded on the budget worksheet as being a “salary from the

employer” while employment was recorded on the application form as being the

“name of the employer” that the women partner worked for. For another example,

on some forms “disabled” was used while on others “handicapped” was used.

Additionally, the Data Dictionary helped the student seek out and understand the

acronyms used by Women Partnering. For example, “SSD” was used on several

forms, but referred to as “Social Security Disability” during interviews. As Wiegers

points out, “the data dictionary should define items from the problem domain to

facilitate communications between the customers and the development team”

(61). The usefulness of the Data Dictionary to this project was remarkable. One

added benefit that a data dictionary provides is documenting the data definitions,

which “sometimes lead to functional requirements that the user community did

not request directly” (Wiegers, 124).

Using a data dictionary was very useful on this project. The student was able

to discover associations, synonyms, and homonyms within the data elements

 44

that would have gone undiscovered if the student followed a pure TDD approach.

If the Zachman Framework was followed, the student believes that the same

discoveries would have been made.

The data dictionary was very useful for the student to get immersed into all

the various data elements that Women Partnering tracks. In total, there were 35

forms, spreadsheets, reports, and pamphlets that were inspected to locate the

data elements. While the process of going through the 35 separate artifacts of

information was time consuming, it was at least thorough. The data dictionary

was created through this inspection process. Quickly, the student became aware

of a few data elements that were called one thing on one form and then called

something else on another form. For example, the terms “salary” and “income”

were confused. During an interview with one of the Women Partnering staff

members, income is defined as salary, food stamps, child support, etc. While in

another case, income is defined as funds received from a place of employment.

On the Partner Profile form, salary was mention when the correct term should

have been income.

Another inconsistency that the data dictionary helped to uncover is the use of

age versus date of birth. Some forms asked for age while other forms asked for

date of birth. The problem with using age is that it is temporal – it is accurate only

for the current year. Often times, Women Partnering is asked to report statistics

when perusing grant money. Part of the statistics includes age breakdown of the

women helped. This means that the age recorded by Women Partnering

produces erroneous statistics. Women Partnering has since converted over to

 45

tracking the partner’s date of birth instead of age. Through a simple calculation,

the age statistics will now be accurate.

There are two things that went wrong with the data dictionary. First, the

student sorted all the data dictionary entries. This made it very cumbersome for

the walkthrough with the users. They were familiar with the existing forms and

the contents of the forms. Discussing the data elements out of context made it

hard to for the users to describe the data elements. The student changed the

data dictionary to include the various forms, spreadsheets, and other artifacts

with drill down capability. This made it easier for the users to describe each of the

data elements by having the context included in the data dictionary. The second

challenge with using the data dictionary is that the student started off trying to

abstract granular data elements into larger structures. These larger structures

were named and where not familiar to the users. However, the larger structures

were a step towards data normalization.

F. Application Construction Challenges
Since the student was most familiar with C++, he started construction of the

system in the C++ language. However, the student’s C++ experience was on a

UNIX server. Women Partnering’s new system was Windows-based and not

UNIX based. The significance of this is that a Windows-based programming was

unfamiliar to the student. With his C++ skills, the student sat down to learn how

to do C++ programming in Windows.

This proved to be very difficult for this student who had little Window’s

programming experience. First of all, the student had to learn a different mindset

for programming in an event-based model. With Window’s programming, the

 46

programmer writes code within the various control’s events. For example, the

programmer needs to write code to respond to button clicks, form loads, mouse

moves, etc. The exact timing of knowing the window events and when the

events fired is crucial to being an effective Windows programmer. The student’s

Windows experience was dated. Previously, the student did a few projects

working with Visual Basic about 5 years prior to attempting this project.

Second of all, debugging a Windows-based program proved to be challenging

especially coming from a non-event based model. In a non-event based model,

as in an UNIX environment, the program overall structure is easier to understand.

Primarily this is because you can see the lines of code being executed from

beginning to end. In Windows, your program becomes an extension to the

Windows operating system. Moving your mouse or clicking on an item is first

passed to the Window’s operating system where it is converted into an event. A

Windows program identifies the events that it wishes to subscribe to. With each

event, custom code is written to respond to the event. Once finished with the

custom code, the Window’s operating system takes back control until it passes

another event to your program. In short, if you watched your program run from

beginning to end, you would only see bits and pieces of your program run.

The third challenge encountered was that the C++ for Windows has a robust,

low-level application level interface (API) that proved to be difficult to learn. When

the student wanted Windows to perform a task, he had to figure out which

function to call and to properly format the augments to the function call. This

 47

sounds pretty basic, but often times the function calls required pointers to

functions. The function pointers are difficult to work with.

With these challenges in mind, the student wanted to be able to finish this

project without having to go through a significant learning curve. So, the student

explored using C++ for the .NET environment instead of using C++ for Windows.

The student found the C++ /.NET combination easier to use. Yet, other

challenges were encountered. The biggest challenge was that coding examples

for the .NET almost always were for the C# language. When it wasn’t for C#, the

coding examples were in Visual Basis. The student noticed that the C# examples

were close enough to C++ that he was able to read and understand enough to

proceed with coding. The student found that Microsoft extended the C++

language to work specifically the .NET environment. This confused the student.

Further, the student became flustered with understanding the C# examples and

trying to find the C++ equivalent syntax. In the end, the student switched over to

using C# on the .NET platform for this project.

The student noticed that intellisense did not work for the C++ language. See

Chapter VII.B – Intellisense Not Working in C++. Without the intellisense, the

student had to rely on the help and the index to complete the programming

statements. See Chapter VII.A – Intellisense Works in C# for an example of

showing Intellisense helping the student with the parameters of the

oleDbDataAdapter’s Fill method when programming in C#.

G. Application Construction
Because of all the construction issues overcome by the student, the student

was very glad to use TDD as his methodology. The student was able to quickly

 48

adapt the design of the system as the student learned more about Windows

programming without having to redo any documentation. In the past, the

student’s design experiences had shown him that the more he knew about the

target tool set, the better he could tailor design. Now, reflecting back on his

almost complete lack on knowledge for the Windows programming, the student

feels that his Zachman Framework’s designs (assuming that he followed the

Zachman Framework instead of TDD) would have been inadequate and would

have been scrapped several times. This would have resulted in more time lost

redoing documentation.

 49

Chapter IV. Lessons Learned
This chapter outlines lessons learned by the student throughout the project.

Learning from mistakes and issues encountered in the past is a great way of

avoiding them in the future. The student also hopes to share the lessons learned,

so that others can avoid the same mistakes and advance the information

technology body of knowledge.

A. The Infamous Note Field
During development of the project, the student ran into an issue that took an

hour to figure out. The symptom was that all database SQL statements issued

against the partner_note table always returned with a syntax error. The first

thought that the student had was that there was a spelling error or some other

syntax error like a stray punctuation mark embedded in the SQL statements.

Table 3 – partner_note Database Table shows the columns and data types of the

various fields that made up the partner_note table. The student ascertained that

the column “note” was causing the syntax error. The student was using OLEDB

connection to interact with the database. While “note” was allowed as a valid field

name, it caused syntax errors when the SQL statement was passed through the

OLEDB connection. The student proved this by renaming the “note” column to

“message.” After this change, the symptom disappeared.

 50

Table 3 – partner_note Database Table

Column Name Data Type
Prtnr_id Number
Staff_signon Text
Note_date Date/time
Note Text
Note_id Autonumber
Updated_by Text
Updated_on Date/time

B. The Need for Good Test Design
How you design your unit tests can make test-driven development a pain or a

pleasure. Look at the form that is shown in Chapter VII.J – Staff Form. This form

is relatively simple – there are only a couple of data entry fields. The student

proceeded to create a suite of tests to exercise the user interface, the business

logic layer supporting this form, and the dataset implementing the data access

layer. All told, the student had 142 unit tests for the three layers (database layer,

business-rule layer, and the user-interface layer). The student was new to test-

driven development at the time the 142 unit tests were created. The student was

very content with the unit tests. He was content until he realized that he had

another 20 forms that needed almost identical unit tests. The issue was that the

142 tests were not reusable. So, do not forget to refactor your unit test code as

well to avoid the brute force approach of unit testing.

Eventually, the student created a set of classes and interfaces whereby any

user interface, business logic layer, and data access layer can be quickly

incorporated into the unit test bed. See Figure 3 – Test Infrastructure. The

 51

CommonTests class defines a common set of unit tests that all layers have in

common. It also defines a set of routines that facilitate testing.

Figure 3 – Test Infrastructure

Legend:

class

base class
Extends

CommonTests

FormHas1Field FormHas2Fields FormHas3Fields ... FormHas30Fields

FormMgrHas1Field FormMgrHas2Fields FormMgrHas3Fields ... FormMgrHas30Fields

DBHas1Field DBHas2Fields DBHas3Fields ... DBHas30Fields

The next layer of child classes is important as well to good unit test design. This

next layer includes common utilities and tests for testing a user interface, the

business rule layer, and the database layer. Then, from there are child classes

that implement the tests for one field, two fields, three fields, etc. The student

agrees with Balena and Dimauro’s suggestion that you avoid deep class

inheritance structures (58). The NUnit infrastructure prevents a cleaner solution

to the problem of being able to create tests for any number of fields. The issue

with the NUnit infrastructure is that it uses attributes to determine which class

methods to invoke to run the tests. NUnit discovers the attributes by using

reflection into the .NET assemblies. Attributes are defined as part of the method

signature in the C# code as shown in Figure 4 – Method that has a "Test"

attribute on line 5. This design does not allow for more robust unit test designs

using interfaces.

 52

Figure 4 – Method that has a "Test" attribute

1. #region SetField9Test

2. /// <summary>

3. /// This method tests the setter for field 9.

4. /// </summary>

5. [Test]

6. [Category("Accessor/Mutators Tests")]

7. public void SetField9Test()

8. {

9. SetTest(this.MetadataAttr.FieldGoodData, new

GetFieldData(this.GetField9Data), new

SetFieldData(this.SetField9Data), this.MetadataAttr.FieldName,

this.MetadataAttr.FieldReadOnly);

10. }

11.#endregion SetField9Test

C. The Ins and Outs of Data Binding
There are two techniques that one can follow to move data between the

application and the database. First, you can write the code to move the data, but

this is repetitive. The second technique offered is to use data binding. Data

binding “maps a property of an object to a property in the control” (Wagner, 218).

Wagner suggests using data binding over hand writing the code (217-225). The

student agrees with Wagner – let .NET worry about moving the data. Letting the

.NET libraries move the data for you is much easier and saves time by not having

to write the code yourself. However, there are a few pitfalls lurking in data

binding.

First of all, when one encounters a problem with data binding, the error is

hard to debug. Data binding occurs automatically and the details are hidden from

view because the .NET libraries control the moving of the data. This makes it

impossible to debug. One cannot step through the .NET library code. One

common symptom is where a control fails to receive any data from the database.

 53

Figure 5 – oleDbDataAdapter_RowUpdating

private void oleDbDataAdapter_RowUpdating(object sender,

OleDbRowUpdatingEventArgs e)

{

if (e.StatementType == StatementType.Insert ||

e.StatementType == StatementType.Update)

{

if (e.Row[IntakeDetail.EthnicityColNm].ToString() == "-1")

{

ethnicity_is_null = true;

e.Row[IntakeDetail.EthnicityColNm] = System.DBNull.Value;

}

else

{

ethnicity_is_null = false;

}

if (e.Row[IntakeDetail.LivingColNm].ToString() == "-1”)

{

arrangement_is_null = true;

e.Row[IntakeDetail.LivingColNm] = System.DBNull.Value;

}

else

{

arrangement_is_null = false;

}

 }

}

When this occurs, the student found that a null value may have caused data

binding to fail. Here is the situation. The database column was defined to allow

nulls. Further, the data column in the .NET data set also allowed null values.

Next, the student bound the data column to a control. The control stopped

working at this point. The solution was to create two event handlers for handling

the row updating (see Figure 5 – oleDbDataAdapter_RowUpdating) and row

updated (see Figure 6 – oleDbDataAdapter_RowUpdated). Plus, the list box

control had to be updated to plug in a “-1” value when a null value was expected.

These changes allowed the student to set a null value (really a “-1” in the control)

and allow a null value to be inserted into the database. Note: the student had

 54

spent more time figuring out what was required for these two methods than he

would like to have spent.

Figure 6 – oleDbDataAdapter_RowUpdated

#region oleDbDataAdapter_RowUpdated

private void oleDbDataAdapter_RowUpdated(object sender,

OleDbRowUpdatedEventArgs e)

{

if (e.StatementType == StatementType.Insert ||

e.StatementType == StatementType.Update)

{

if (ethnicity_is_null)

{

 e.Row[IntakeDetail.EthnicityColNm] = -1;

}

if (arrangement_is_null)

{

 e.Row[IntakeDetail.LivingColNm] = -1;

}

 e.Row.AcceptChanges();

}

}

#endregion oleDbDataAdapter_RowUpdated

Another area that caused the student to stumble with data binding was the

student’s custom controls. The student created custom controls for check boxes,

combo boxes, text boxes, group/radio button control, and a date-time picker.

Each of these controls facilitated data binding. The technique that the student

followed was to create a hidden text box, which is where the data binding

property was bound. Then, changes to the text box would be propagated out to

the primary control(s). For example, take the group box/radio buttons as shown

in Figure 7 – Group Box with Radio Buttons. Behind the scenes there is a text

box. When the contents of the text box changes, one of the radio buttons needs

to be checked. Likewise, clicking on one of the radio buttons needs to update the

 55

value stored in the text box since it is the control that is bound to the database.

Once again the student fell into a data-binding trap. Initially, the student set the

text box’s visible property to false, which in essence turned off data binding on

the control. As a solution, the control’s visible property had to be set to true, yet

place the control behind another control on the screen. In essences, the control

was not visible. This allowed data binding to be turned on, which allowed the

data to flow between the control and the database.

Figure 7 – Group Box with Radio Buttons

The student encountered a third data-binding pitfall – data binding did not

occur when expected. The student found out the hard way that binding a control

to the dataset does not mean that there is going to be data in the control. This is

true even if the bound dataset is populated with data. This caused problems with

unit testing. All of your unit tests will fail if you only instantiate the form that uses

data binding. Why? There is not data in your controls because data binding has

not been activated. The student discovered that data binding is turned on only

when the form has been loaded. This caused a problem because the student had

developed a validation routine that would fire against controls that had no data.

 56

The solution was to disable the validation routines until the form was loaded.

However, showing the form, which fires the form-load event, has its own set of

issues with unit testing as discussed previously.

D. Testing in the Weeds
“TDD is performed from the bottom up by sequentially applying a series of

simple solutions to small problems that eventually evolves into a design” (Stott,

55). This sounds good, but does it actually work? The student purposely followed

the test-driven development mantra of “red-green-refactor” only to find that the

student had developing something that was fully tested, but sometimes was not

needed. The unit tests exercised a small chunk of code or building block. As

more and more of the building blocks are put together, one is suppose to end up

with a working system that meets the users’ expectations. This student criticizes

this approach to system development. The reason being is this: just because you

have hundreds of building blocks does not mean that you will end up with a

working system. For that matter, you may not even end up with a system! The

student found himself making good progress building unit tests and system code

only to eventually find out that he wandered off track days beforehand. As you

can imagine, this is very frustrating. The student had to remember to step out of

the test-driven mindset, look up over the weeds, and consider the big picture.

Only by doing this top-down assessment was the student able to stay on course

in building a system that was well tested.

E. Securing the Application
The Rijndael cipher was used to store the encrypted user passwords and

women partner’s social security numbers in the database. One problem

 57

encountered using the Rijndael cipher pertained to the fact that it is a block

cipher. Errors encountered with the cipher occurred when the plaintext length

passed to the cipher was shorter than the block size. See Table 4 – Padding

Solution for the Rijndael Cipher for how the student solved this issue.

Table 4 – Padding Solution for the Rijndael Cipher

Mode Code Explanation
Encrypt symmetricKey.Padding =

PaddingMode.Zeros;
If the plain text is shorter that the
block size, pad the plain text with
zeros up to the correct block size.

Decrypt Regex.Replace(plainText,
@"\0", "");

After decrypting the cipher text,
make sure to remove the zeros
that may have been added when
encrypting the plain text.

F. In the Dark with Failed Tests
When the unit tests failed in the NUnit, sometimes the error message was

enough to know what was needed to fix the error. These types of failed tests

were the most desirable ones – ones that can be fixed quickly without hindering

the progress on the project. Further, these types of errors did not require digging

around the code to discover the issue.

The next type of failed tests was more of a nuisance. The student

encountered some failed tests were the fix was not readily apparent. This type of

failed tests required the student to step through code to debug the issue.

Remember: the unit tests are not part of the production code, so one cannot step

through the production application to identify the issue with the test. The student

ended up creating a non-production form, which used a menu bar. The menu

options called the various unit tests. By doing so, the student was able to set the

project containing the unit test forms as the startup project and run the

 58

application, which then loaded the test form. See Chapter VII.H – Form Used to

Organize Unit Tests for a sample screen snapshot of the unit test form. With the

form running, the student was then able to walk through the unit test code using

the Visual Studio debugger to locate the issue.

The last type of failed tests was the most troublesome. Every once in a while,

one or more tests would fail when the student ran the entire suite of unit tests, yet

these same tests would pass when ran individually. The student knew that the

unit tests are suppose to be independent from one another, but there is nothing

in place to enforce this golden rule of test-driven development. To the student’s

knowledge, there are no tests that were dependent on one another. However,

there were two situations encountered by the student. First of all, there was a

dependency within the unit tests and the setup and/or teardown methods. The

setup and teardown methods were used to return the test back to an initial state.

The student was in the dark when these types of failed unit tests were

encountered. Because the combination of interactions was not known, using the

previous technique of placing the unit test on the unit test form did not to work. A

second situation that appeared regularly occurred where the constructor of the

class encountered an exception. When this occurs within NUnit, NUnit attempts

to call the constructor again – this causes the exception to be thrown again. In

the end, the entire set of tests would fail with the only feedback is that the test

had failed.

The biggest discovery made to help combat this last type of failed tests was

the ability to attach to a running process. See Chapter VII.I — Attaching to

 59

another Process. The beauty of this is that you can attach to the NUnit process

and watch it invoke your tests. By doing this, you can see the code as it

executes and see the order of the various tests as they are called. Before the

student discovered this ability to attach to a process, the student would have to

guess at the sequence of events that caused the tests to fail. Debugging the

NUnit process can be challenging. The best thing to do is to set break points in

your code. Then wait for the debugger to stop in your code to debug your unit

tests. The student installed a copy of the NUnit source code and tried to debug

the NUnit process. This proved to be very challenging because the NUnit

application runs in one application domain while your unit tests runs in another.

One benefit of multiple application domains is that the application running in one

application domain is completely protected from the other application in the

second application domain that may fail (Troelsen, 463). Because of complete

isolation, the two applications have to use the .NET remoting protocol in order to

communicate back and forth (Troelsen, 463). Debugging the .NET remoting

interaction between NUnit and the unit tests is very difficult. Before abandoning

stepping through the NUnit source code in the debugger, the student found that a

complete copy of unit tests is created in the temporary directory called the

shadow copy. The student found the location for the shadow copy and

discovered about 500 copies of the application or about 9 month’s worth of unit

testing that was sitting on the disk drive. Running the Disk Cleanup process from

Microsoft cleaned up these shadowed copies.

 60

With the discovery of being able to attach to a process in order to debug it,

the student came into the light and was able to quickly identify all issues with the

failed unit tests.

G. Work That Project!!!
The student’s initial project time line included the software development for

Women Partnering, the thesis/research, and the two classes required for

graduation. A summary view of the initial time line is shown in Figure 8 – Initial

Project Schedule. Everything was to be complete by year’s end of 2004.

Figure 8 – Initial Project Schedule

The actual project timeline as shown in Figure 9 – Actual Project Schedule

tells a completely different story. The project was definitely not a smooth one

where everything executes according to plan. On the contrary, this project

encountered numerous problems.

 61

Figure 9 – Actual Project Schedule

The student wished that he could have worked on this project from beginning

to end without having any delays. This project officially started in March 2004 and

was planned to finish in September 2006. The project was not too large or too

difficult to cause the project to be a 2 and ½ year project. The student’s

commitment to the project was the one thing that really caused the project to take

so long. Not working on the project for a week or two, left the student trying to

figure out where he left off. So, the student now knows to take better notes. This

is necessary so that if there is a project delay the student can return to the

project running and not waste days figuring out where he left off.

Beyond the sometimes spotty effort to keep the project moving, the student’s

next biggest issue causing delay was the student’s lack of experience with

programming in a Window’s environment. The change to event-driven

programming proved to be rather challenging for the student who has over ten

years programming in an UNIX server environment. The challenge was in

learning about the events and when the events where raised by the Windows

environment and/or by the program itself. A further challenge was becoming

 62

immersed into the Active Data Objects .NET. This set of libraries is feature rich

and different enough to the student that there was a steep learning curve.

The student initially started with trying to build the system using C++ and the

WIN32 API. As this proved to be a significant learning curve, the switch was

made to C++ and the .NET environment. Here the learning curve was not so

steep. However, because of the lack of documentation and examples of using

C++ in the .NET environment, the student again switched to a different set of

development tools. This time it was C# and the .NET environment. The student

found the transition over to C# from his C++ background was actually pretty

easy. More important though was the wealth of documentation and programming

examples available to the student. These flatten the learning curve even further.

Yet, each time the student switched languages, the project was delayed further.

 63

Chapter V. Conclusion
A. What Should Have Been Done Differently

The student should have done a couple of things differently on this project.

First, communication between the student and Women Partnering was not

always the greatest. The student would go off and work on the project for weeks

and months at a time without communicating what was going on with the project.

To make matters even worst, there were periods of time that the project was not

actively worked on. When this happened, there were no communications with

Women Partnering at all. The student needs to communicate what is going on

with the project at all times, and communicate what is going on with external

influences that caused delays in the project. The communications with the users

is critical to TDD’s success. As an extreme programming methodology, TDD

relies on quick, short iterations, which pulls the users into the process and

flushes out the system that they want. The lack of communications hampered the

student following a pure TDD approach.

A second item that should have been done differently was that the student

should not have initially committed to delivering the system on an aggressive

schedule. This is true especially with the student’s lack of experience in a

Window’s development. The student is very thankful for Women Partnering’s

patience. Women Partnering allowed the student to work through the learning

curve and deliver a system to them long after when first committed. The student

wished he had taken Window’s programming classes as part of his course work

to help ease the student into Window’s programming. At the very least, the

 64

classes could have helped set a realistic schedule for a Window’s based

programming project.

In hindsight, coming up with a master plan before wandering off building unit

tests would have been wiser. While the unit test is suppose to capture a

requirement in TDD, there are still many other design factors that are not covered

directly by requirements. For example, one design factor that should have been

considered throughout the project was class design. All too often with the

student’s experience with TDD was that he would just go off and build unit tests

and functional code to support the tests – not giving any focus to overall class

design. Class reuse, class inheritance, and consideration for class interfaces fell

by the wayside because focus was placed on getting the unit tests created.

Perhaps, the student should have considered class design more frequently

during the refactoring step.

B. Did the project meet initial expectations?
Expectations in the beginning of a project often times do not match what is

built. This is a pretty natural occurrence. As a project starts up, you are working

with ideas and visions. Some thoughts may even contradict each other, because

input is taken from all stakeholders. As the software development lifecycle

progresses, the ideas and visions are transformed into a working system. There

are two perspectives if the project meets the initial expectations: 1) from the

perspective of Women Partnering; 2) from the perspective of the student.

Women Partnering’s initial expectations have been met. They wanted to get

away from a primarily paper-based system. The built system eliminates many

different forms as well as several different spreadsheets. The information needed

 65

by Women Partnering is now readily available to them – making them more

efficient in helping women in the community. Further, Women Partnering’s

expectation for a system that is well tested has been fully met.

As for the student’s expectations, the initial expectations contrast significantly

to what was delivered. As pointed out before, the student initially started with

trying to build the system using C++/WIN32 API, but switch over to C++/.NET

and eventually finished the application in C#/.NET. The programming languages

prior to C#/.NET proved to have steep learning curves. The student is very

thankful for a .NET feature called language independence. This allowed the easy

transition from C++ over to C#. The student was able to run C# classes that

inherited from C++ classes. Additionally, one .NET assembly written in C++

worked seamlessly with another .NET assembles written in the C# language.

Language independence allowed the student to ease over to writing C# without

having to completely scrap his previous work in C++. The student was able to

test drive C# little by little until the student was comfortable enough to convert all

classes over to the C# language.

C. What would be the next stage of evolution for the project if continued?
The next stage of the project can be to add in the ability to manage the

classes offered by Women Partnering and by Sister’s of St. Francis of Colorado

Springs, Colorado. The classes help the women partners learn skills to better

their lives. The student sees opportunity for setting up class schedules combined

with teacher schedules and to eventually allow for women to enrollment in the

classes by visiting web pages.

http:C#/.NET

 66

Second, the ability to press the F1 key and receive help would be valuable.

The student initially planned to deliver help with the project, but this was removed

from scope in order to align this project’s completion with finishing his Master’s

degree. So, for a next step in the system, help pages should be integrated with

system. The student started to include help pages into the application. The

compiled help pages are part of the installation package for the system. There

are only 2 entries in the help index, so the bulk of the help pages would have to

be flushed out.

Another possible next step would be to network together the various support

agencies with which Women Partnering works with. This would allow for

information sharing, which would allow the support agencies (including Women

Partnering) to be able to help the women faster than they do today. There would

be no need for women to fill out applications at each support agency visited.

Instead, their information will be available on-line with the description of the help

that they require.

D. Conclusion
Test-Driven Development was used to build a small-to-medium sized system

for Women Partnering. The student followed the process of writing the unit tests

before any functional code was written. The student admired the focus on the

interfaces captured in unit tests. While this process worked great for developing a

system, the student deviated from TDD by creating a couple of documents that

are usually associated with a waterfall, plan-based methodology. For example,

the student deviated from TDD by creating a data dictionary and entity

relationship diagrams. These other tools allowed to the student to view the

 67

system from other points of view, which is exactly what the Zachman Framework

forces you to do. The student learned aspects from the data dictionary and entity

relationship diagrams that may not have been discovered using a pure TDD

approach.

It has been refreshing using TDD as the methodology for building Women

Partner’s system. The student spent more time programming than writing

requirement specifications, design documents, and other artifacts associated with

the more traditional waterfall methodologies. The student is no different than

other programmers in that he prefers programming over writing documentation.

However, the student feels that TDD is not the software methodology that should

be used on all software development projects. Rather, TDD is just another tool

that software developers have available to them. Today’s software developers

need to be flexible and be able to use the correct tool for the particular project at

hand. Using the wrong tool can cause the project to fail. TDD works well where

the requirements are not well understood, where the users have a hard time

articulating the requirements, where the environment is dynamic with frequently

changing requirements, where the team size is smaller, and most importantly

where the users are willing to be engaged throughout the entire project.

E. Recommendation
The student suggests that software developers remain flexible in their tool

choice in order to better serve there projects and avoid project failure. Test-

Driven Development should not be used on all projects. Similarly, the Zachman

Framework should not be used on all projects. Today’s software developers must

be cross-trained on many methodologies and be able to adapt their approach to

 68

their particular project’s needs in order to be successful with today’s larger,

complex development projects.

 69

Chapter VI. Annotated Bibliography

Ambler, Scott W. “Examining the Agile Cost of Change Curve.” Ambysoft.

February 12, 2006. Retrieved from

http://www.agilemodeling.com/essays/costOfChange.htm on May 3,

2006.

Ambler, Scott W. “Introduction to Test Driven Development (TDD).” AmbySoft.
May 4, 2006. Retrieved from http://www.agiledata.org/essays/tdd.html on
May 4, 2006.

Balena, Franceso and Giuseppe Dimauro. “Practical Guidelines and Best

Practices for Microsoft Visual Basic and Visual C# Developers.”

Redmond: Microsoft, 2005.

Boehm, Barry and Richard Turner. “Balancing Agility and Discipline: A Guide
for the Perplexed.” Boston: Pearson 2004.

Business Rule Group. “What is a Business Rule?” 2004. Retrieved from

http://www.businessrulesgroup.org/brgdefn.htm on March 16, 2005.

Christensen, Mark J. and Richard H. Thayer. “The Project Manager’s Guide to
Software Engineering’s Best Practices”. Los Alamitos: IEEE Computer
Society, 2001

Computer Security Division of the NIST. “Advanced Encryption Standard

(AES): Questions and Answers”. January 28, 2002. Retrieved from

http://csrc.nist.gov/CryptoToolkit/aes/aesfact.html on April 24, 2005.

Cross, Michael, Norris L. Johnson Jr., Tony Piltzecker, and et. al. “Security+:
Study Guide & DVD Training System.” Rocklan: Syngress, 2002.

Daemen, Joan, and Vincent Rijmen. “The Rijndael Block Cipher: AES

Proposal”. March 9, 1999. Retrieved from

http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf on April 24,

2005.

Doshi, Gunjan. “Test-Driven Development Quick Reference Guide.”

Instrumental Services Inc. 2005-2006. Retrieved from

http://www.testdriven.com/files/doshi/TestDrivenDevelopmentReference
Guide.pdf on April 15, 2006.

Ferguson, Niels, Richard Schroeppel, and Doug Whiting. “A simple algebraic
representation of Rijndael.” Retrieved from
http://www.macfergus.com/pub/rdalgeq.pdf on April 10, 2005.

http://www.agilemodeling.com/essays/costOfChange.htm
http://www.agiledata.org/essays/tdd.html
http://www.businessrulesgroup.org/brgdefn.htm
http://csrc.nist.gov/CryptoToolkit/aes/aesfact.html
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf
http://www.testdriven.com/files/doshi/TestDrivenDevelopmentReference
http://www.macfergus.com/pub/rdalgeq.pdf

 70

FOLDOC. “Data Dictionary”. April 24, 2001. Retrieved from
http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?query=data+dictionary on
March 14, 2005.

Gibbs, W. W., “Software’s Chronic Crisis” from Scientific American. Sept.
1994. pp. 86-95. Reprinted in Software Engineering. Volume 1: The
Development Process. 2nd ed. Editors Thayer, Richard H. and Merlin
Dofrman. Hoboken: John Wiley, 2002.

Hay, David C. “Requirement Analysis: From Business Views to Architecture.”
Upper Saddle River: Pearson, 2003.

Hay, David C. “What Data Models Can’t Do.” Essential Strategies, Inc. 1998.
Retrieved from http://www.essentialstrategies.com/ on March 16, 2005.

Murphy, Craig. “Improving Application Quality Using Test-Driven Development
(TDD). Originally published in the Spring 2005 issue of Methods & Tools.
Retrieved from
http://www.methodsandtools.com/archive/archive.php?id=20 on May 3,
2006.

Perkins, Alan. “Implementing the Zachman Framework for Enterprise
Architecture: Visible Tools and Services Help Implement the Zachman
Framework for Enterprise Architecture!” Visible Systems Corporation,
1997. Retrieved from
http://www.ies.aust.com/~visible/papers/Zachman.html on April 15, 2006.

RSA Laboratories. “What is a Stream Cipher?” 2004. Retrieved from
http://www.rsasecurity.com/rsalabs/node.asp?id=2174 on April 24, 2005.

RSA Laboratories. “What is an Iterated Block Cipher?” 2004. Retrieved from
http://www.rsasecurity.com/rsalabs/node.asp?id=2169 on April 24, 2005.

Simsion, Graeme, Simsion & Associates / University of Melbourne. “What’s
Wrong with the Zachman Framework?” 2005. Also, published in
TDAN.com January 2005. Retrieved from
http://www.tdan.com/i031fe02.htm on April 15, 2006.

Smith, Steven A. “Get Test Infected with NUnit: Unit Test Your .Net Data
Access Layer.” October 2003. Retrieved from
http://msdn.microsoft.com/library/default.asp?url=/library/en­
us/dnaspp/html/aspnet-testwithnunit.asp on May 3, 2006.

http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?query=data+dictionary
http://www.essentialstrategies.com/
http://www.methodsandtools.com/archive/archive.php?id=20
http://www.ies.aust.com/~visible/papers/Zachman.html
http://www.rsasecurity.com/rsalabs/node.asp?id=2174
http://www.rsasecurity.com/rsalabs/node.asp?id=2169
http://www.tdan.com/i031fe02.htm
http://msdn.microsoft.com/library/default.asp?url=/library/en-

 71

Stott, Will and James Newkirk. “Improve the Design and Flexibility of Your
Project with Extreme Programming Techniques.” MSDN Magazine:
The Microsoft Journal for Developers. April 2004. Retrieved from
http://msdn.microsoft.com/msdnmag/issues/04/04/ExtremeProgramming/
default.aspx on May 1, 2006.

Troelsen, Andrew. “C# and .NET Platform.” 2nd ed. New York: Apress, 2003.

Udell, Jon. (Nov 1, 2004) Source code analysis breaks new ground - New
tools and accelerated research bodes well for future
software. In InfoWorld, 26, p12. Retrieved December 13,
2005, from Computer Database via Thomson Gale:
http://find.galegroup.com/itx/infomark.do?&contentSet=IAC-
Documents&type=retrieve&tabID=T002&prodId=CDB&docId=A1238717
22&source=gale&userGroupName=pike&version=1.0.

Wagner, Bill. “Effective C#: 50 Specific Ways to Improve Your C#.” Scott
Meyers ed. Boston: Addison, 2005.

Whitten, Jeffrey L, Lonnie D. Bentley, and Kevin C. Dittman. “System Analysis
and Design Methods.” 5th ed. New York: McGraw-Hill, 2001.

Wiegers, Karl E. “Software Requirements. Practical Techniques for Gathering
and Managing Requirements Throughout the Product Development
Cycle”. 2nd ed. Redmond: Microsoft Press, 2003.

Wikipedia. “Advanced Encryption Standard.” April 7, 2005. Retrieved from
http://en.wikipedia.org/wiki/Rijndael on April 10, 2005.

Wikipedia. “Block Cipher.” March 26, 2005. Retrieved from
http://en.wikipedia.org/wiki/Block_cipher on April 10, 2005.

Wikipedia. “Enterprise Architecture.” April 12, 2006. Retrieved from
http://en.wikipedia.org/wiki/Enterprise_architecture on April 17, 2006.

Wikipedia. “Test-Driven Development.” April 15, 2006. Retrieved from
http://en.wikipedia.org/wiki/Test_driven_development on April 15, 2006.

Zachman, John A. “Enterprise Architecture: A Framework.” Retrieved from
http://www.zifa.com/ on April 15, 2006.

http://msdn.microsoft.com/msdnmag/issues/04/04/ExtremeProgramming/
http://find.galegroup.com/itx/infomark.do?&contentSet=IAC-
http://en.wikipedia.org/wiki/Rijndael
http://en.wikipedia.org/wiki/Block_cipher
http://en.wikipedia.org/wiki/Enterprise_architecture
http://en.wikipedia.org/wiki/Test_driven_development
http://www.zifa.com/

 72

Chapter VII. Appendixes

A. Intellisense Works in C#

Here the cursor is on line 69 in a C# source file. Microsoft’s Intellisense pops

up a tool tip that shows the parameters for the OleDbDataAdapter’s Fill method.

This is very helpful for someone who doesn’t remember or is learning the

parameters as they type.

 73

B. Intellisense Not Working in C++

In this example, the cursor is on line 16 of the C++ file. Microsoft’s Intellisense

fails to display the parameters for the OleDbDataAdapter’s Fill method. See

Chapter VII.A – Intellisense Works in C# for an example for where the

Intellisense does work.

 74

C. Example NUnit Screen

NUnit is a unit test tool, which is able to run the unit tests and report the

status of the test. Shown here, there is one test that failed. All others have

passed.

75

D
.

Th
e

Za
ch

m
an

 F
ra

m
ew

or
k

(Z
ac

hm
an

)

76

E. Testing Status in NUnit

This example screen shows the NUnit screen where there are six failed tests.

 77

F. Form Incorrectly Painted

Because of issues with events, the form was not properly painted. The text

describes how to resolve this issue.

 78

G. Fully Painted User Interface

As the NUnit runs your tests, the user forms are displayed with all the fields

being populated. Without following the steps as outlined in this paper, the fields

are not displayed correctly when the user form is run by the unit test.

 79

H. Form Used to Organize Unit Tests

This form was used by the student to organize all unit tests, so that he could

run any test without having to run the NUnit tool. This was necessary to be able

to debug the unit tests from within the Visual Studio Environment (i.e. without

having to attach to the NUnit process).

 80

I. Attaching to another Process

Sometimes, it was necessary to attach to the NUnit process in order to watch

the interactions between unit tests.

 81

J. Staff Form

This form is just one of the forms created by the student.

	Unlocking Test-Driven Development
	Recommended Citation

	Microsoft Word - 44E7DF0D-1F85-08A756.doc

