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Abstract 

Women Partnering is non-profit organization that helps women who are 

financially vulnerable. This organization establishes relationships with the women 

and connects them to support services. This project created a software system to 

support Women Partnering’s daily operations and reporting needs, which 

replaced the previous manually intensive, paper-based system. There were 

many problems with the previous paper-based system including the following: 

data duplication, data not readily available, and lack of a reporting capability.  

Besides these problems, the previous system was not expected to support 

anticipated growth.  

The student followed a Test-Driven Development Methodology while building 

the software system. This is the first time that the student has used Test-Driven 

Development on a project. To help with his understanding, he compared and 

contrasted this methodology to the Zachman Framework Methodology. The 

student knew that he also had to secure the application, so he researched the 

Rijndael cipher. 

The analysis, design, and testing is handled differently in Test-Driven 

Development. Testing happens first, and the design captures the requirements. 

The student found Test-Driven Development lacking in a few areas, so he used 

other tools that are not part of the methodology like entity relationship diagrams 

and a data dictionary. Since the student was new to Test-Driven Development, 

he shares his many lessons on this project in hopes to helping others to avoid 
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the same pitfalls. The project’s next steps include getting help integrated and 

possible integration with other support agencies.  

Test-Driven Development is not a tool that should be used on all development 

projects. Rather, Test-Driven Development works best when the requirements 

are not clear, when the development team is smaller, and when the requirements 

are changing frequently. Most importantly, this methodology works well when the 

users are willing and able to participate throughout the entire project. The student 

suggests that software developers remain flexible in their tool choice in order to 

better serve their projects and avoid project failure. 
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Chapter I. Introduction 
A. Problem statement  

Women Partnering is a non-profit organization, which has been created 

through an endowment of the Sisters of St. Francis of Colorado Springs. Women 

Partnering helps women who are financially at risk. For example, if a women 

partner is about to loose her job because her car is broken down, then Women 

Partnering helps her get her car repaired. While Women Partnering directly helps 

some women partners out financially, this is not their main goal. Rather, they 

establish relationships with the women partners and connect them with support 

agencies. Their goal is to build long term relationships with the women in order to 

address their basic needs, to help them become self-sufficient, and to enrich their 

lives spiritually.  

Women Partnering interacts with volunteers, donors, apartment managers, 

and support agencies in order to help women. When the student first interviewed 

Women Partnering, there were 100 women partners, 60 different support 

agencies, numerous donors and apartment managers, and a handful of 

volunteers. Women Partnering ran their organization primarily on Excel 

Spreadsheets and paper forms. Given the volume of women partners and 

support agencies alone, Women Partnering benefited by automating their data 

collection and other management activities. 

B. Review of Previous Situation 
Women Partnering used a few Excel spreadsheets and many paper forms to 

run their operations. This mostly paper-based system quickly became inadequate 

as the number of women partners, volunteers, donors, and support agencies 
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increased. The paper-based system was very manual and introduced errors to 

include data duplication, lack of timely retrieval of the data, and instances of 

paper forms getting filled out more than once for the same women partner, 

donor, support agencies, etc.  

Women Partnering actively pursues funding through grants. As such, they 

supply reports with their grant applications. Likewise, some grants require 

periodic reports to be submitted. The grant reporting was difficult for Women 

Partnering to produce because the data was not easy to compile. Staff members 

and volunteers scanned all file folders and Excel Spreadsheets to compile the 

statistics needed for the grants. It was possible for the paper forms to be missed 

altogether or to be counted multiple times. Also, the women partner information 

in the file folders and in the Excel Spreadsheets was sometimes out of sync with 

each other. The volume of data, along with how the data was recorded, became 

a hindrance to applying for grants.  

Women Partnering encountered the traditional problems when working with 

the paper forms, which were stored in filing cabinets. The staff could not readily 

locate the information when needed. The staff returned many calls because the 

information was filed away. Sometimes, the files were misfiled or were left on 

someone else’s desk. Additionally, the staff was not able to easily identify new 

women partner contacts from the existing ones. When this occurred, a new file 

folder was created and personal information was collected again from the women 

partner.  Later, it may have been discovered that the women partner was not a 
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new partner at all, but rather an existing one. In the end, the staff was spending 

time filing, recreating, and locating paperwork instead of helping their partners.  

The previous situation faced by Women Partnering did not enforce any 

business rules. Business rules are important to the business and to the 

information systems that may implement them. As defined by the Business Rule 

Group, “a business rule is a statement that defines or constrains some aspect of 

the business. It is intended to assert business structure, or to control, or influence 

the behavior of the business” (5). In many cases, the Women Partnering’s forms 

were partially filled in. In several cases, the basic information about a women 

partner was missing like their name. All Women Partnering knew was that they 

helped someone out, but could not really say who they were helping. This 

missing information could not be used for grant reporting.  

Paper-based systems do not enforce business rules. Women Partnering had 

a few complex business rules. For example, some support agencies offered 

support to certain ethnicities, had limits on number of times they would help, 

and/or had income limits. These rules could not be enforced by the paper-based 

system. Thus, the staff had to be memorized them.  Sometimes the staff 

mistakenly sent partners to agencies where they were not eligible to receive 

support. 

C. Review of the Previous Automation Attempt 
Women Partnering had was a previous attempt at solving them problems. 

The previous attempt was built by another individual. The previous attempt was 

an Access database application. Apparently, the database application was never 

completed. Thus, Women Partnering never used it. The Access database 
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contained only a few useless test records. Even though the previous attempt did 

not directly relate to the newer system, it was useful to understand the issues 

that Women Partnering experienced with it. This way the issues are avoided in 

the new system. The automation attempt had data entry, business rule 

enforcement, and relationship management issues. 

A brief synopsis of the data entry issues follows. The flow of the data entry 

forms made it awkward to use. Pressing the tab key will move focus to the next 

control, which it did in the previous automation attempt. However, the next 

control that received focus did not always make sense. In a column of 3 controls, 

the first, third, and then the second column’s control received focus. Likewise, 

there were a couple of cases were the focus jumped up to a control on top of the 

screen after leaving a control on the bottom of the screen. Then, the focus would 

return back to a control on the bottom of the screen. This jumping around made 

the system awkward to use. 

Another data entry issue dealt with required fields, which could have been 

calculated. For example, the main form required the user to enter the number of 

children in one place and then enter the actual children’s information elsewhere. 

Thus, it was possible to tell the previous system that a partner had 34 children, 

yet only have the 2 of the children’s information entered. Worse, yet, the system 

saved the data this way. The number of children can be calculated based upon 

all of the children’s information entered. Further, the count of children would 

never disagree with the actual number of children entered into the system.  
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The worse kinds of data entry issues are ones that corrupt or destroy the 

data. The previous attempt was plagued with data corruption issues. Agencies 

that the women partner previous sought out help from could be entered into the 

system, but was never saved in the database. Likewise, the partner’s marital 

status retained the previously viewed record’s value, which would then be saved. 

This would leave the wrong marital status stored in the database. 

D. Goals of project 
The project’s goal was to address the business problems by creating an 

integrated, computer-based system for Women Partnering. Further, Women 

Partnering’s issues with the previous automation attempt were to be avoided. 

The key deliverables for this project included a computer application and a 

networked database. The new system gave Women Partnering a system 

managing for the various interactions between the women partners, volunteers, 

donors, and support agencies. Instead of recording the data on paper forms, this 

project centralized all the data into one repository – the database. The database 

accommodates anticipated growth better than the previous paper-based system. 

With the new system, time spent tracking information about partners and other 

entities will decrease and shift over to time spent on helping the women partners. 

Also, the staff will become more productive when first learning the system. The 

system enforced the business rules instead of having the staff memorize them. 

While not a Women Partnering goal, the student had a goal to incorporate one 

cipher algorithm. By doing so, the student hoped to become more familiar with 

cryptography and its use in a computer system.  
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The project’s success is measured by the quality of the system. Women 

Partnering believes that a high quality system will be easy to use. Yet, quality is 

subjective. However, the student approached the quality concern by placing an 

emphasis on testing. The student feels that quality is a concern of Women 

Partnering because there was a previous failed attempt at automating Women 

Partnering. Women Partnering never used the previous automation attempt 

because of the quality issues. The student agrees with Women Partnering that a 

quality system is one that will be useful to them. 

E. Barriers and/or issues  
Women Partnering is a non-profit organization. As such, funds available to 

this project were non-existent. There were no time constraints imposed by 

Women Partnering. In fact, they preferred to implement this project slowly even 

though they are experiencing exponential growth. However, the student planned 

to have a technical solution in place by the end of September 2006. This time 

constraint was self-imposed to be able to complete academic requirements for 

graduation. 
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F. Project Scope 
The project ended when the following criteria were satisfied: 

Deliverable Criterion Description 
Academic Lessons learned 
Academic Published Thesis 
Academic Thesis Presentation 

Technical Solution At least 80% of the Women Partnering staff is trained 
Technical Solution Future project ideas 
Technical Solution Future Project Ideas turned over to Women Partnering 

Technical Solution Programmer’s Manual turned over to Women 
Partnering 

Technical Solution User’s Manual turned over to Women Partnering 
Technical Solution Working system installed at Women Partnering 

G. Definition of terms 
The various terms used throughout this document are defined in alphabetical 

order in Table 1 – Definitions. 

Table 1 – Definitions 

Term Definition 
AES Advanced Encryption Standard 
DES Data Encryption Standard 
Entity Relationship Diagram A diagram that is used as a communication device. The diagram 

presents entities and the various attributes associated with the 
entities. Additionally, an entity relationship diagram shows how 
the various entities relate to each other. 

ERD An abbreviation for an entity relationship diagram.  See Entity 
Relationship Diagram. 

NUnit A software program that is used to automate the running of unit 
tests. 

PKI Public Key Infrastructure 
TDD An abbreviation for Test-Driven Development. 
Woman Partner A woman who is financially vulnerable. 
XP Extreme Programming. 
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Chapter II. Methodology Research 
Software development means several things to different people. To some, 

software development is an art form. By applying creativity and ingenuity, a 

developer can create the next big software title. In this case, the developer feels 

that an engineering-like approach to software development can be too confining. 

Yet to others, an engineering-like approach is exactly what software development 

is suppose to be – following strict processes is the only way to build software 

systems. Sometimes this makes sense. For example, creating software that 

helps fly the space shuttle has to work flawlessly. In this case, there are millions 

of dollars at stake plus lives depending on the software working correctly. 

However, in the end, neither approach is right for all software development 

projects. Both approaches have numerous successes as well as numerous 

failures. The underlying problem here is software development is just not easy. 

What works for one situation does not work for all situations. There are many 

factors that influence the outcome of your software development project. Besides 

people, the software development life cycle that you follow is one of the biggest 

decisions that you can make on the project. Choose wisely.  

Two software development life cycles will be analyzed in this paper. They are 

the Zachman Framework and Test-Driven Development (TDD). The goal is to 

highlight the strengths and weaknesses. What modern software developers must 

understand is that one has to be insightful and flexible enough to adapt the 

software development processes to the situation at hand. However, in order to 

adapt the software development processes used, one must first understand their 



 9 

strengths and weaknesses. Only then can the developer steer their project away 

from crashing into the rocks of failure. 

A. Zachman Framework 
First off, the Zachman Framework is considered. While most other software 

development life cycles are split up into phases and then further broken up into 

steps, the Zachman Framework views software development from a different 

point of view. Here, the Zachman Framework considers the perspective of those 

involved and topic areas (Hay “Requirement”, 1). In fact, the grid used to 

describe the Zachman Framework is laid out with perspectives on one axis and 

the topic areas in the other. The Zachman Framework is shown in the Chapter 

VII.D – The Zachman Framework. The topic areas contain more areas than are 

traditionally considered during software development. Software developers tend 

to focus in on the functionality provided by the system and the data that is to be 

processed. So, then, the Zachman Framework helps remind us that the where, 

who, when, and why are also important when building software. At the 

intersections between the perspectives and the topic areas are the building 

blocks of an information system (Whitten, 52).  These building blocks become 

more detailed as you move closer to the bottom of the framework. Thus, the 

Zachman Framework offers many of us a natural way of thinking about 

information systems. 

Besides defining a framework to organize our thinking about an information 

system, the Zachman Framework defines an enterprise-wide architecture as 

described by one author: 
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The architecture serves as an "enterprise blueprint." It is a repository for 
designs and specifications of physical data structures and applications, as 
well as business plans, data models, and process models. Furthermore, it 
serves as a map of all the linkages among business initiatives, data 
required to support those initiatives, business processes that use the data, 
and physical information systems that support data requirements and 
processes. (Perkins, 8) 

The enterprise-wide approach provides a holistic view of a business and its 

information systems. It is comprehensive and rigorous whereby a full set of plans 

and documentation are produced (Wikipedia Enterprise, 1). Thus, the Zachman 

Framework is a process-heavy and a documentation-heavy software 

development life cycle.  The planner’s perspective is the top layer within the 

architecture. Plans are created and become more detailed and technical as the 

plans proceed from the top perspective down to the bottom one. Another way of 

looking at it is that the planners plan, the business owners provide requirements, 

which then are translated into the architecture view by performing requirements 

analysis and so on until all the details of the system are captured in 

documentation. Then, the system can be built. So, the Zachman Framework 

follows a waterfall type of flow through the software development life cycle. The 

main difference from the traditional waterfall software development life cycle is 

that the Zachman Framework addresses an enterprise-wide view and not just an 

individual project. 

1. Zachman Framework Benefits 
The Zachman framework benefits from the emphasis on perspectives. 

Perspectives are important, but are sometimes ignored! For example, it is just 

silly to write a paper without knowing who the audience is. Likewise, this can be a 
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problem with software development. The various models and diagrams are 

created throughout the process of building software. Presenting an entity-

relationship diagram to top-level executives just does not make any sense.  With 

the Zachman framework, identifying the intended audience is exactly where the 

perspectives come into play.  The top-level executives will not understand the 

entity-relationship diagram, but the database designers will.  So, the perspectives 

help make sure that the software building block is directed towards the correct 

audience. With the correct audience, the software developer is able to the clearly 

understand the processes, data, and interfaces, which the system must contend 

with by being able to effectively communicate with the project stakeholders. 

With the Zachman Framework addressing an enterprise-wide view of the 

information and systems, it should be worked by larger software development 

teams. It does not rely on the tacit knowledge of the team members. Instead, it 

relies on the knowledge captured in the form of plans and diagrams. If a key 

team member leaves the company, then the knowledge pool is still intact. Thus, 

the Zachman Framework is not affected by employee turnover, which can hurt 

agile teams. Further, a new employee can quickly come up to speed and be a 

valuable team member quicker by reading the documentation. On the flip side, 

the Zachman Framework does not seem to be viable software development life 

cycle when the team is small and there is a large backlog of projects. In this 

case, the team will spend all of its time documenting changes instead of 

delivering projects. 
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Another benefit for the Zachman Framework is it is less likely to create 

duplication in data and in systems than an agile method would. The enterprise-

wide view of systems and information offer a single top-down view. This prevents 

duplication of information and systems from getting built. The Zachman 

Framework creates a master set of documentation that incorporates all 

information and systems. If there is a question about a particular topic area, then 

the answers can be ascertained by consulting the next layer up in the framework. 

This removes assumptions from the project and removes the guesswork that 

leads to duplication. 

When there is a potential for loss of life or where a significant amount of 

money is at stake, the Zachman Framework is better choice for a software 

development life cycle. For example, software that sends someone to the moon, 

software running in a satellite, or software running a life-support system in a 

hospital environment has to work. The practitioners produce documentation, 

review it, and double-check it for any errors.  Further, they build contingency 

plans to address project risks. 

Another area considered is team size. With the Zachman Framework 

being a process-heavy software development life cycle, there are many 

documents created. At the very least there is one document per system building 

block, which means that there are at least sixty documents that are maintained. 

Why is the answer not thirty documents since there are thirty building blocks? 

Well, it is true that there are at least thirty documents, but there are two copies of 

each document– one is for “as is” system; another is for the “to be” system. The 
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other assumption made is that there is only one piece of documentation per 

building block, which is unlikely. It would be impossible to describe the 

information system for the enterprise in just one document per building block. 

Even if you could, the document would be voluminous. One advantage of having 

all of this documentation is that project communications are easier. The need for 

face-to-face communication is reduced when the knowledge contained within the 

documents can be shared with whoever needs the information. Thus, the 

Zachman Framework can easily support larger team sizes, but may over tax a 

smaller team especially if they are working in a rapidly changing environment 

where the requirements are changing. They would do nothing but changing the 

documents.   

2. Zachman Framework Issues 
The Zachman Framework may failure in dynamic environments. In a dynamic 

environment, the business changes may cause the requirements to change 

rapidly. With this situation, the Zachman Framework documentation is always in 

flux. The team may not be able to keep up with the changes. Keeping the 

documentation current, the team’s need for discipline gets in the way of keeping 

up with the shifting business directions. However, the Zachman Framework is 

perfectly suited in environments where this is not rapid and dynamic changes. 

As stated before, the Zachman framework is a very appealing approach 

because it offers a natural way of thinking about information and software 

development.  However, as Simsion points out, there are several issues with it: 

1) lacks pursuit of alternative classification of data by practitioners; 2) a tactical 
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approach can be more successful than an enterprise approach; and 3) where is 

the evidence that the framework really works? (8). Even though the Zachman 

framework is a viable software development life cycle, it is becoming dated. 

Zachman first conceived the framework back in 1987. As such, the student had 

hard time finding current information about the Zachman Framework. It is getting 

overshadowed by more recent approaches to software development – namely, 

extreme programming, which is touched upon next. 

B. Test-Driven Development 
Test-Driven Development (TDD) is considered next. It is an agile 

approach to developing software. Agile programming is also known as extreme 

programming. Contrary to the Zachman Framework, the agile software 

development life cycles are not documentation based. Instead, they focused on 

getting the software in the hands of the users. “Agile methods are an outgrowth 

of rapid prototyping and rapid development experiences as well as the 

resurgence of the philosophy that programming is a craft rather than an industrial 

process” (Boehm, 16). Using the Test-Driven Development approach to 

developing software, the testing comes first. This seems a little backward at first. 

How can you test the system if you have not gone through the traditional 

waterfall phases of analysis, design, and code? Well, Doshi points out that Test-

Driven Development is not about testing – it is about “evolving the design to meet 

the requirements” (1).  

So, how does Test-Driven Development work? Well, there are a few easy 

steps one must follow: 1) write a test; 2) write code to pass the test; and 3) 

refractor the code to remove duplication to make it simpler, more flexible, and 
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easier to understand (Stott, 2). Sometimes others split up the second step into 

two parts: write just enough code so that everything complies, but the test fails 

(Wikipedia Test, 10) and then one should finish the code getting the test to pass.   

1. Test-Driven Development Benefits 
Test-Driven Development (TDD) creates a prototype. Prototyping has many 

benefits. First of all, they can help with clarifying and completing the 

requirements, exploring design alternatives, and implementing layers 

progressively (Wiegers, 234). The use of prototypes has direct relationships with 

many of the agile concepts. First, Wiegers states, “Envisioning a future software 

system and articulating its requirements is hard to do” (233). Building a prototype 

helps figure out what the system is to do.  With the agile approach, it also 

recognizes that users may not know what they want until they see it. Using a 

simple design, quickly getting the system into the hands of the customer, and 

recognizing that the requirements may change is much like prototyping. Both 

prototyping and the agile approach try to engage the users early to elicit their 

input. Effort should be minimized when creating a prototype, which supports the 

agile concept of fast delivery cycles.  Additionally, a prototype can be elaborated 

into the final system through multiple iterations. This is just like the agile concepts 

of fast cycle/frequent deliveries. 

As with other extreme programming techniques, TDD identifies quality 

attributes. Users and system builders tend to focus in on what the system is to do 

(Wiegers, 216). They overlook the quality attributes of availability, efficiency, 

flexibility, integrity, interoperability, reliability, robustness, usability, 
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maintainability, portability, reusability, and testability. Further, the quality 

attributes can distinguish between a mediocre system and a great system. The 

student does not see any direct relationship between the non-functional 

requirements and the agile concepts, which are embrace change, fast 

cycle/frequent delivery, simple design, refactoring, pair programming, 

retrospective, tacit knowledge, and test-driven development. However, the 

student can infer some relationships. First, “Quality attributes are difficult to 

define” (Wiegers, 216). Therefore, by following the agile concept of fast 

cycle/frequent delivery, one can uncover missing quality attributes early and 

reduce the risk of delivering a mediocre system in the end. Second, following the 

agile concept of simple design directly supports the quality attribute of 

maintainability. However, maintainability might not be a priority to the users. If the 

priority is robustness, portability, or flexibility, then the simple design will not 

support the user’s requirements.  So, the agile concepts are sometimes in 

alignment with the quality attributes. 

In TDD, assigning priorities to each requirement is important. This helps 

the system get implemented when there are limited resources. The requirement 

priorities integrate well with the test-driven development. Higher priority 

requirements will be implemented first. This gives the users the greatest benefit 

at the beginning of the project. Test-Driven Development is indifferent to shifting 

priorities. The newer set of priorities will be included in the next iteration. This is 

one of the agile concepts of adaptability. 
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As for ideal team size, test-driven development favors smaller teams. 

Since test-driven development is an extreme programming software development 

life cycle, a lightweight process is emphasized. This means there is little to no 

documentation. Besides, why write documentation when you are going to have to 

maintain and no one is really going to read it any way? At least, that is what the 

extreme programmer thinks. Now, with that being said, the student believes that 

the test-driven development can be supported in larger teams because the 

system design is documented in unit tests. So, test-driven development fairs 

better than other extreme software development life cycles in larger teams. It 

relies on communications between the team members to be more face-to-face. 

This means that test-driven development works great for small to medium sized 

teams. The number of communication points between all members team grows 

exponentially for each team member added. On a large team, the number of 

communication points will be large. 

The test driven development is made possible only through the use of 

automated unit test program like JUnit or NUnit. See Chapter VII.C – Example 

NUnit Screen for an example. Most of the unit test tools are freely available on 

the Internet, so no additional funds are needed by the project. These test tools 

are able to run an entire suite of unit tests and report back any encountered 

errors. The student used NUnit as the unit test tool for his project, which is written 

in C#. NUnit uses the red, yellow, and green colors to indicate the status of the 

tests. Red is failure; yellow is an ignored test; and green for a properly working 

tests. The ability to run the unit tests frequency and quickly is a plus for test 
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driven development. Any code changes that break the functionality are caught 

within minutes of the code changes. The developers making the change can the 

fix the error while the code change is still fresh in his/her thoughts.  

Stott also points out that “the long gaps between the design, coding, and 

testing phases are gone, thus making for a much better learning environment” 

(3). This quick feed back from the unit test tool has several benefits. First, the 

development gains confidence in the changes knowing that the changes will not 

break the overall design of the system. This is especially helpful to a new 

software developer joining a team. Second, the software developer is able to 

make changes to the code (think – refactor the code) to make the improvements 

and remove duplications knowing that he or she has not broken the interface. 

Thirdly, the unit tests are accumulated over time to create a regression test bed. 

Currently, the student has 3300 unit tests that run in about 10 minutes. The unit 

tests can be organized into suites of unit tests. Further, the unit tests can be 

place into different categories. The software developer has the option to run all 

the unit tests, a certain suit of tests, or any combinations of unit test categories. 

Combinations of tests that the student created are unit tests for all user 

interfaces, business rules, and database transactions. These unit tests consist of 

57,102 lines of code. This student disagrees with Doshi in that a unit test can 

interact with files and databases. Doshi’s point of view states: “A test that does 

not operate in isolation is not a unit test. It is safe to assume that a test that 

connects to the network or a database or a real file is not a unit test” (1). The 

student has designed techniques for working with the database whereby the 
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database is returned back to an initial before the next unit test runs. Thus, the 

unit tests are isolated from one another and the unit tests works even though it 

connects to a database.  

Contrary to Zachman Framework, test-driven development is not a 

process-heavy software development life cycle. Instead, it is based upon a 

lightweight process known as extreme programming. In extreme programming, 

the knowledge is tactical. The knowledge lies in the brains of the development 

staff and not on paper. Besides, why waste time documenting the system 

requirements and designs if they are going to change? Why not just plan on them 

changing? Test-driven development emphases an interactive process of writing 

the unit test, write the code, and refactor the code all along you are running the 

unit test at each step. 

Contrary to the Zachman Framework, Test-Driven Development is well suited 

for dynamic environments where the requirements are changing quickly. Since 

there is little or no documentation, the test-driven practitioners can quickly adjust 

direction with minimal impact. Further, some users are unable to fully describe 

what they want system to do. They may not know what they want until they are 

able to see the system in action. Because the test-driven development uses an 

iterative process, changes and user feedback can be fed into the next interaction 

of development. 

2. Test-Driven Development Issues 
The extra lines of code written for unit tests are overhead. They will never get 

deployed into a production environment, nor do they satisfy any functional needs 
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of the users. After all, they are unit tests. In total, the student’s project had 

102,643 lines of code of which 57,102 of them are unit tests. Thus, the project’s 

unit test overhead is 56%. While this might seem excessive, the student’s unit 

test overhead is a little over what is considered normal. Jon Udell states, “The 

overhead can be substantial, however, because the test framework that ensures 

a program's correctness may require as many lines of code as the program itself” 

(2). Even the test-driven development approach founder, Kent Beck, had a 50% 

overhead of functional code and unit test code for a large project he worked on 

(Ambler “Introduction”, 20).  In a world where being first to market can make or 

break a business, having an additional 50% lines of code just does not make 

sense at first. However, looking at what the 50% lines of code offers in terms of 

benefits, and then it does not look so bad. One just has to take into account in 

the project plan that TDD will result in more lines of code generated than using 

other methodologies. 

Besides the additional lines-of-code overhead, there are a couple of other 

issues with test driven development. This student has spent years developing 

programs using object-orientated techniques and structured, top-down 

techniques. What the student found is that he tended to focus on building the 

system bottom-up while following the test-driven development approach. 

Meaning, he was stuck in the details. Later, he would discover that the functional 

code did not make sense into the overall solution, yet it was tested thoroughly! 

For example, he created unit tests for a dataset on a particular table and wrote all 

the functional code working for that table. Later, he went to integrate that dataset 
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into the final solution and discovered that it was not needed. Part of a day was 

lost working on the unit tests and the functional code. Like Doshi states, “Each 

unit test corresponds to a single requirement that the code must satisfy” (1). 

However, when the requirements are not clear, then there is a chance that you 

are writing throwaway code. This is where the student should have followed is 

one of the extreme programming concept of “you aren’t going to need it” or the 

YAGNI (Boehm, 41). Just like the student, any software developer can get 

distracted with the problem at hand only to find out later that the wrong problem 

was solved. This is why confirming the requirements as you go are important in 

TDD. 

A possible weakness of the test-driven development is that it does not take an 

enterprise-wide view of the information and systems. Instead, the development 

cycle is focused on just one project, which can lead to the system being built in 

its own “silo.” The silo effect means that there can be duplication of functionality 

and data between the various systems within an organization. Yes, being that it 

may, this weakness can be turned into strength as compared to the Zachman 

Framework. “A tactical approach to data management, based on individual high-

value initiatives, is likely to be more successful than one centered on an 

enterprise architecture” (Simsion, 9). Test-driven development definitely supports 

tactical approaches.  

Another minor weakness of the test-driven development approach is it not 

based on documentation. Thus if a key member leaves, his knowledge leaves 

with him. Or does it? Yes, it is true, that when the team member leaves the 
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group, his knowledge leaves with him. However, provided that this team member 

has followed the test-driven approach, he has written unit tests, which captures 

his knowledge in the form of unit tests. So, his knowledge about the next steps 

and his business knowledge are no longer available. However, at least he has 

written tests that a new employee is able to run. Further, the unit tests capture 

the requirements of the system. When the new team member has changed the 

code, he/she is given immediate feedback if something was adversely affected 

by the changes.  

With test-driven development, everything cannot be tested. For example, user 

interfaces are a stumbling point. Visual aspects about the screen layout require a 

human verification. A unit test cannot tell if the zip code field on the screen is too 

small and is not displaying the complete contents of the field. Further, there are 

other concepts that defy unit testing. For example, does the tab order make 

sense? What should the tool tip say when the mouse hovers over a control? Are 

the report contents correct?  Some believe that the user interface is completely 

un-testable by the unit tests. However, there are some aspects that lend 

themselves to unit testing. For example, when populating the search field with a 

valid value and then pressing the search button -- the screen should display the 

correct data. All of these actions, even the pressing of the search button, can be 

put into a unit test which can be written so that the correct data is displayed back 

after the search button has been pressed. 

Seeing the actual user interfaces as the unit test tool runs the tests is a 

challenge, which the student was able to overcome. Without doing anything 
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special, you will see the form partially painted on the screen as the test runs. See 

Chapter VII.F – Form Incorrectly Painted for an example. In order to see the user 

interface fully painted on the screen, two tasks are required. First, run the user 

interface in a separate thread. This will allow the user interface to properly draw 

itself. If you stop here, you will get random errors as the unit tests run. After much 

research and headaches, the student discovered that the unit test tool, running in 

a separate thread from the form, should not execute any methods on the form 

directly. “Never directly access a property or invoke a method of a 

System.Windows.Forms.Control object or any object that inherits from this class 

if there is any chance that the code running in a thread different from the thread 

that created the control” (Balena, 332). Under the covers, the issue is that the 

form is not thread safe. The student did not know this, so the random errors 

plagued the student’s unit tests for months. The second task is to use the Form’s 

Invoke method and pass in the delegate to the method that you wish to execute. 

See Figure 1 – Marshalling a Method Call onto another Thread for an example 

for how this is done. Once you implement the two steps as outlined, you will see 

a fully painted user interfaces as the unit test runs. See Chapter VII.G – Fully 

Painted User Interface for an example of this. 
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Figure 1 – Marshalling a Method Call onto another Thread 

#region SetField 

/// <summary> 

/// This method is used to set a field’s data on the form running on 

a different thread. 

/// </summary> 

/// <param name="setter">The setter method</param> 

/// <param name="new_data">The new data</param> 

protected void SetField(SetFieldData setter, string new_data) 

{ 


object [] args = new object[] {new_data}; 

runnableForm.Invoke( setter, args); 


} 

#endregion SetField


C. Securing the System 
Regardless of the exact methodology followed by a software developer, one 

must apply measures to secure the system. The system that is not secure is 

open to attack, which can lead to loss of sensitive data, corruption of data, and 

loss of system availability. While system security was not a direct requirement 

levied against this project by Women Partnering, the student understood the 

importance of making sure that defensive measures were needed in their 

system.  

The student knew that one form of defensive measure was to encrypt data 

within the system.  Then, the student considered what ciphers were available. A 

cipher is a form of cryptography that is used to encrypt and decrypt messages. 

For this project’s purposes, the messages are a few of the data elements passed 

between the application and the database. A few of the fields in the database are 

stored encrypted, so that the data cannot be ascertained by running a query 

against the database. 
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Cipher algorithms are classified into asymmetric or symmetric ciphers 

(Cross, 499-500). Further, symmetric ciphers are subdivided into steam ciphers 

and block ciphers.  

1. Asymmetric Cipher Algorithms 
Asymmetric algorithm requires two keys. The two keys are mathematically 

related and usually involve very large prime integers. A message encrypted with 

one key can only be decrypted with the other key. Asymmetric algorithms are 

used primarily in public key infrastructures (PKI). One of the two keys is 

considered the private key. Private keys should be secured and not to be 

disclosed to anyone else. The other key is the public, which is available to 

anyone who needs to communicate with the private key owner. Asymmetric 

algorithms are considerably slower than symmetric algorithms especially when 

the message sizes are larger. 

2. Symmetric Cipher Algorithms 
Besides asymmetric algorithms, there are symmetric algorithms. There are 

more symmetric algorithms than there are asymmetric algorithms. The reason is 

symmetric algorithms are faster than asymmetric algorithms and because 

symmetric algorithms only require a single key. Thus, symmetric algorithms are 

simpler to develop. The single key in symmetric algorithms is called the secret 

key, which is used to encipher (encryption) and decipher (decryption). One 

challenge with symmetric algorithms is how to securely share the secret key 

between the message sender and the message receiver. The pro for symmetric 
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algorithms is speed; while the con is that they are vulnerable to brute-force 

attacks (Cross, 500). 

Symmetric encryption algorithms can be further sub divided into stream 

ciphers and block ciphers. Regardless of this sub-division, the symmetric 

encryption algorithms still require one key for the encrypting and decrypting the 

message. 

First, stream ciphers process small individual units, usually bits, during the 

encipher/decipher cycle.  Because stream ciphers process small pieces of data, 

they are faster than block ciphers (Cross, 506). In stream ciphers, a key is 

combined with the plain text to produce the cipher text. It is interesting to note 

that any particular plaintext will be encrypted differently depending its location 

within the plaintext (RSA Stream, 1).  This is not the case with block ciphers. The 

same plaintext message in block 1 and block 2003 will have the same cipher 

text! One desirable property of the stream cipher is one-time pads. A one-time 

pad means that the secret key is used once and then is discarded (RSA Stream, 

3). With each new plaintext to be enciphered, a random secret key will be used. 

The one-time pad helps to defend against statistical attacks. Stream ciphers 

using a constant secret key are vulnerable to statistical attacks (Cross, 103). 

One example of a stream cipher is the RC4 encryption algorithm, which is used 

in the Wireless Encryption Protocol. 

Block ciphers differ from stream ciphers in that they manipulate a large block 

of data. The block itself can be variable length. However, once a block length is 

chosen, it is used throughout the entire encipher/decipher process. Each block is 
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processed using the same algorithm and the same key. However, the key is 

usually broken into pieces and each part is used during the iterations. The key to 

be applied during each interaction is called the key schedule. The 

encipher/decipher process within block ciphers can be iterated, which means that 

the process is repeated a number of times (RSA Iterated, 1). When iterations are 

involved, the block cipher is called an iterated block cipher (RSA Iterated, 1). 

Regardless of the key schedule used during each round, the block length 

remains fixed. 

3. Rijndael Cipher 
The student wanted to explore the Rijndael algorithm. Two Belgian 

cryptographers named Joan Daemen and Vincent Rijmen created the Rijndael 

algorithm. The Rijndael algorithm was submitted and eventually approved for the 

United States Government’s Advance Encryption Standard (AES) in November 

of 2001. The creators had three goals in mind when creating the Rijndael cipher: 

resist against all known attacks, speed and code compactness, and design 

simplicity (Daemen, 8). The Rijndael cipher can be implemented in software and 

hardware including devices that lack processing power like smartcards. 

As for how the Rijndael algorithm is classified, it is considered to be a 

symmetric algorithm (Wikipedia “Block”, 1). One key is used for ciphering and 

deciphering the message. The Rijndael algorithm is further classified as being a 

block cipher. While Rijndael supports larger block sizes and key sizes, AES 

confines the block sizes to 128 bits (Wikipedia “Advanced”, 5). Each block is 

represented as a matrix. The number of rows in each block is fixed to be 4 rows. 
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As for the number of columns, the exact number depends on the block size 

divided by 32 (Daemen, 8).  So, under AES, the number of columns equals 4. 

Additionally, the cipher key is also represented as a block.  Again, the number of 

rows in the cipher key block is fixed at 4 rows. Just like the cipher data block, the 

number of columns is calculated. The number of columns is equal to the key size 

divided by 32 (Daemen, 9). Under AES, the key sizes can be 128, 192, and 256 

bits (Wikipedia “Advanced”, 5).  The three key sizes are known as AES-128, 

AES-192, and AES-256. The numbers of columns in the key cipher blocks are 4, 

6, or 8 under the AES specification. 

Once the cipher data block and the key cipher block have been determined, 

the data is loaded into the blocks and the cipher process starts. The Rijndael 

cipher processes a number of rounds depending on the key size. So, in addition 

to be being a block cipher, the Rijndael cipher is considered to be an iterated 

block cipher. In AES, 10 rounds are used for the 128-bit key, 12 rounds for the 

192-bit keys, and 14 rounds of the 256-bit keys (Wikipedia “Advanced”, 16). Each 

round, except the last, consists of 4 steps: subbytes, shiftrows, mixcolumns, and 

addroundkey. By design, the last round omits the addroundkey step. 

“[Ferguson, Schroeppel, and Whiting] know of no other ‘serious’ block 

cipher that has an algebraic description that is anywhere near as simple as the 

one for Rijndael” (6). So, what does this all mean? The answer is simply that the 

Rijndael is simple to implement (following the 4 steps in each round) and can be 

expressed via a simple algebraic formula. However, Rijndael is a very hard-core 

cipher! Under the AES implementation of Rijndael, there are 3 key sizes: 128, 
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192, and 256 bits. Therefore, there are 3.4 x 1038 possible keys using a 128-bit 

key, 6.2 x 1057possible keys using a 192-bit key, and 1.1 x 1077 possible keys 

using a 256-bit key (Computer, 15). To put another way, consider the following: 

Assuming that one could build a machine that could recover a DES key in a 
second (i.e., try 255 keys per second), then it would take that machine 
approximately 149 thousand-billion (149 trillion) years to crack a 128-bit AES 
key. To put that into perspective, the universe is believed to be less than 20 
billion years old (Computer, 16). 

The above takes into account the smallest key size as specified by the AES. 

With the cipher complexity and number of possible keys in AES’s version 

of the Rijndael cipher, it is expected to have a useful life of twenty year’s time 

(Computer, 18). This of course assumes that the only attack possible is a brute 

force attack. Additionally, it does not take into account any further advances in 

CPU processor speeds. However, the student thinks that the next twenty year’s 

worth of CPU processor increases will do little to reduce the brute-force 

timeframe of 149 trillion years by any significant measurable amount. 

Since the Rijndael cipher was proposed to National Institute of Standards 

and Technology (NIST) for the AES standard back in 1996, the Rijndael cipher 

has been under review by crypto analyst around the world. Crypto analyst 

considers a cipher break as any technique that is faster than the brute force 

approach (Wikipedia Advanced, 15). “As of 2005, no successful attacks against 

AES have been recognized” (Wikipedia “Advanced”, 13). However, there has 

been a claim made that there is a break, but this claim failed to be verified. This 

so-called attack was called the XSL attack.  Time will tell if Rijndael is a viable 

cipher for the next twenty years.  
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Initially, the Rijndael cipher was only to be used for the US Government’s 

non-classified data. However, in 2003, the Rijndael cipher can be used for 

classified data at all key lengths (Wikipedia, Advanced, 11). Further, it can be 

used for securing top-secret data as long as the 192-bit or 256-bit key lengths 

are used. The Rijndael cipher seems very secure. Besides being a government 

standard, it may gain enough momentum to be considered the worldwide 

standard for data encryption. 

D. Methodology Research Conclusion 
This chapter looked at two different approaches to software development 

life cycles. First, the Zachman Framework was looked it. It offered a 

comprehensive view of the business and of its information systems. The 

architecture of enterprise can be broken down into different perspectives and into 

various topic areas. Just like the traditional waterfall software development life 

cycle, the Zachman Framework’s holistic view of software development follows 

the same flow. The Framework forces the software developers to view more than 

processes and data. It also looks to other concerns like when, where, and why. 

The Zachman Framework is a very natural approach to viewing and building 

software for the enterprise. 

As a newer software development life cycle, test-driven development has 

its roots in extreme program. Here, the focus is writing a test case for the 

software – even before the software has been written. This is awkward to get use 

to, but the benefits are many. Creating the unit tests first, this forces one to think 

through the interface first before writing the actual software. Further, unit tests 

provide quick feedback to the developers when they have negatively impacted 
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the design of the overall system. This is especially helpful to newer team 

members. Overtime, the unit tests become a regression test bed for the entire 

system. Using a unit test tool like NUnit automates the execution of the unit tests. 

This chapter also looked at the Rijndael crypto.  It is classified as a 

symmetrical crypto meaning that it uses one key for both encrypting and 

decrypting the message. Further, the Rijndael is a block cipher that is very 

secure and is resistant to all known attacks. The Rijndael cipher is secure 

enough and simple enough to be used in the overall implementation of the 

Women Partnering’s system. 

E. Contributions Made 
This project contributes to the industry by having a student new to Test-

Driven Development follow the process to create a small system for a non-profit 

organization. The strengths and weaknesses of the methodology are pointed out. 

With Test-Driven Development being relatively new, it is compared and 

contrasted against the older Zachman Framework to see if how it measures up. 

Further, the student recounts many of the lessons that he learned along the 

away. This way, the student hopes that the reader will avoid the same pitfalls 

encountered and will be able to further build upon the student’s experiences and 

advance TDD. 

F. Planned Methodology 
Initially, the student had planned on following a waterfall software 

development life cycle as identified below. 
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1. Analysis Phase 
During the analysis phase, the existing system was to be studied. Input from 

Women Partnering is critical during the analysis phase. Planned activities 

included reviewing of the existing system, reviewing existing forms, conducting 

interviews, and observing current business activities. Throughout the analysis 

phase, understanding of the existing business and problems was to be 

documented.  The requirements for the new system will be captured in a 

requirement specification document. It is expected that Women Partnering 

approved the requirement specification document before continuing on with the 

next phase of the project. Upon signoff, the feasibility criteria would be defined. 

These criteria would help identify a viable candidate solution.  

2. Design Phase 
The recommended candidate solution along with the requirement 

specification is the inputs in to the design phase. The design’s goal is to create a 

system blueprint. The design phase’s key deliverables are a network design 

specification and an application design specification. Women Partnering would 

need to approve the design specifications before proceeding to the Construction 

phase. 

3. Construction Phase 
The construction phase executes all plans. The system is constructed, the 

database is defined, and any changes applied to the network. Also during this 

phase, a programmer's manual and network documentation would be written and 

turned over to Women Partnering before the end of the Construction phase. 
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4. Testing Phase 
Concurrent to the Construction phase, unit and system testing would be 

conducted. The Testing Phase would produce a test plan and test results. 

Testing ensures that all requirements have been included in the system and 

properly work. Women Partnering would need to approve the test plan before 

finishing the testing phase.  

5. Implementation Phase 
The implementation phase is where the new application, database, and 

network changes were made available to Women Partnering. Prior to the actual 

implementation, Women Partnering would need to approve the implementation 

plan that was written during this phase. As part of the implementation phase, 

training materials would be written. Also, training sessions for the staff would 

occur. 

G. Actual Methodology 
As some point during the initial analysis, the student became aware that it 

was very hard for Women Partnering to express the requirements of the system 

upfront. Generally, they would know what they wanted when they saw it. So, the 

initially planned methodology was not going to work on this project. Rather, the 

student needed to follow a methodology that got the system in the hands of the 

users, so that the requirements could be confirmed. Further, because of the 

emphasis of quality as a system goal that was expressed by Women Partnering, 

the student discovered that Test-Driven Development would be a better 

methodology and would be able to meet the needs of this project. Test-Driven 
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Development (TDD) consists of iterations of 3 steps as described in the following 

paragraphs. Further, the 3 steps are repeated until the system is done. 

1. Write Unit Test 
Before writing any functional code in the system, the developer has to write 

the unit test for a requirement first. This is a different mindset that many 

developers are use to – testing is the last thing you do before the system gets 

implemented into a production environment. By writing the unit test first, this 

forces the developer to think through the interface. Interfaces are the means by 

which the system building blocks work together to satisfy the needs of the users, 

yet they are not emphasized in other methodologies as they are in TDD. Instead, 

the code behind the interface draws the developer’s attention first. TDD 

emphasizes the interface by having the developer write a unit test to test the 

interface before anything else is written. At this point the unit test should fail. In 

fact, the unit test should not even compile because there is no functional code 

written yet. If desired, the functional code can be written as a stub, which means 

the interface exists but there is no code written beyond that. By writing a stub, 

this gets the system to the point where it can at least compile without errors.  

2. Write Functional Code 
Once the test has been written, the functional code should be written. This 

step is pretty basic – get the interface operational. At this point, the quality of the 

code is not important. Rather, achieving the desired outcome is important. The 

desire outcome of this step is getting the unit test to a passed status. 
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3. Refactor 
One of the neatest aspects with TDD occurs in the refactor step. In this step, 

the developer’s attention turns to cleaning up the code that he/she just wrote. In 

other methodologies, this step is non-existent. The refactor steps forces the 

developer to consider the design of the functional code and make changes to 

enhance the quality of the code, the efficiency of the code, and the robustness of 

the code. Regardless of the changes made during the refactor step, the 

developer can run (and should frequently run) the unit test that he/she wrote in 

the first step to validate that the test still produces the intended results. 
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Chapter III. Test Driving Test-Driven Development 
A. Project Analysis 

Analysis is the study of the existing system and problem domain. Without 

analysis, the problem domain would not be fully understood. The information 

technology industry is plagued with failed attempts at solving the business 

problem. “And some three quarters of all large systems are ‘operating failures’ 

that either do not function as intended or are not used at all” (Gibbs, 43). To 

compound this problem even further is the fact that “Systems have become 

larger and more complex than ever before” (Christensen, 5). Today’s 

environment also demands that these larger and more complex systems get 

created faster and faster to keep up the increased levels of competition.  

Analysis is also important because it lays the foundation for the rest of the 

software development life cycle processes. Under the Zachman Framework, the 

requirement specification is produced during the analysis phase. “Nowhere more 

than in the requirements process do the interests of all the stakeholders in a 

software or system project intersect” (Wiegers, 4). All stakeholders use the 

requirements specification to build, to test, to design, to market, to write user 

documentation, etc. Any problems introduced during the analysis phase will 

cause potential rework in later phases or cause the project to cancel. Of course, 

the rework will cause the schedule to slip, demand extra resources, and/or 

changes to the project scope. Further, the rework can have a cascading affect on 

the rest of the system – just like tossing a stone into a lake can cause a rippling 

effect throughout the entire lake.  
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Once the problem is fully understood, only then can a clear and simple 

solution be realized. Yet, analysis can be very hard to perform. Different 

stakeholders have conflicting options on the business problems and the intended 

solution. Further, the business problem evolves as the analysis is performed. 

This is exactly what happened in this project.  Women Partnering launched a 

series of classes called Spiritual Networking right in the middle of the analysis.   

The Zachman Framework’s approach of completing the analysis before 

proceeding with the system design would not have worked on this project. The 

requirements were not well understood and consequently were hard for Women 

Partnering to express. With the TDD approach, the requirements are captured in 

unit tests as the system is built. This form of prototyping allowed for the 

requirements to be validated as the system was being built. Further, any 

requirement conflicts were flushed out as soon as they were implemented into 

unit tests. 

B. Handling of the Design 
As mentioned before, Test-Driven Development is an extreme programming 

technique for developing software. It is a lightweight process where the emphasis 

is on speed and getting the software in the hands of the customer quickly. Test-

Driven Development captures the design of the system in the tests, which are 

written before the functional code is written. This forces the developer to hone in 

on the interface first. After the intent of the interface is captured in the test, the 

developer will then write the code that implements the interface. 

As an example of how the design is captured in the tests, the student followed 

several of one author’s suggestions to improve the overall C# design. In 
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particular, Wagner suggests that one should always provide ToString() method to 

help with others being able to understand the contents of your types (38). So, the 

student created an interface call IToString, which all tests dealing with user-

defined types implemented. This interface ensured that the ToString method was 

tested. Further, making sure that it is tested means that all user-defined types 

had to follow the guideline of always providing the ToString method on all user-

defined types. Later, the student combined the IToString interface with 

inheritance. The student found that all presentation layer tests could inherit from 

a base presentation layer tests class whereby the IToString interface was 

implemented. This was also true for the business logic layer tests and all 

database access layer tests. So, it made sense to extract all the common tests 

like the test that made sure the ToString method was provided into a common 

tests class as shown in Figure 2 – Common Tests. 

Figure 2 – Common Tests 

F o rm H a s 1 F ie ld  

C o m m o n T e s ts  F o rm M g rH a s 1 F ie ld  

D B H a s 1 F ie ld  

L e g  e n d  :  

c la s s  

b a s e  c la s s  
E x  te  n  d  s  

As for the design within the Zachman Framework, it is more documentation 

based. The design is not activity used to make sure the system is functioning 

correctly. Further, with the design based in documentation, it can easily become 

out of sync with the system. The student has experienced many projects where 
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the design documentation could not be trusted 100% of the time. Many 

developers resorted to trusting the actual code in lieu of reading the design 

documentation. The student works in an environment where many systems 

evolve through hundreds of projects throughout the years. The design 

documentation is specific to each project. In the end, there is not one complete 

view of the system design. Further, referencing a design published one year ago 

may not represent an accurate picture of the system today. Was there another 

project that changed the design between this older design and what is there 

today? This question plagues the approach of having the designs documented. 

Because of the possible staleness of the design documentation, this highlights 

the beauty of the test-driven development. Remember that the unit tests capture 

the design. The tests are created over time. At any point in time, the entire test 

suite can be executed to ensure that the design is intact and is valid. 

C. When Testing Occurs 
Testing is the biggest difference between Test-Driven Development and 

Zachman Frame methodologies. The testing of the system occurs throughout the 

entire life cycle of the system when using Test-Driven Development. This pay as 

you go approach to testing identifies errors at the point in time when the error is 

introduced. This has the benefit of having the coding change still being fresh in 

his/her thoughts. It is well known that testing improves the quality of the system 

(Smith, 1) (Murphy, 1). “By reducing the feedback loop, the time between 

creating something and validating it, you will clearly reduce the cost of change” 

(Ambler “Examining”, 3). Further, the feedback loop is compressed because in 
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test-driven development, only small steps are taken (Ambler “Introduction”, 3). It 

is interesting to note that the Zachman Framework does not explicitly define 

when or even if testing should occur. Instead, it focuses on the analysis and 

design of the system. However, given that the Zachman Framework focuses on 

an enterprise-wide view of the business captured in models, the student infers 

that testing would occur at the end of the project. This means that testing does 

not follow the pay as you go model. As Ambler points out, the danger of this is 

that the cost of change grows exponentially as the project progresses when 

following a waterfall type of software development (“Examining”, 3). 

D. Business Rules 
As defined by the Business Rule Group, “a business rule is a statement that 

defines or constrains some aspect of the business. It is intended to assert 

business structure, or to control, or influence the behavior of the business” 

(Business Rule Group, 5).  One cannot ignore the business rules and still be 

successful. Yet, under the TDD approach, business rules are not formally 

addressed by the methodology. It is the student’s belief that business rules are to 

be expressed as requirements, which are then later transformed into unit tests.  

As for business rules under the Zachman Framework, entity relationship 

diagrams (ERDs) start to capture the business rules. An ERD shows the various 

data entities and how they relate to each other. However, they do not describe 

everything that is needed to know about the entities existence. In fact, data 

models like ERDs depict structure of the data, but they do not depict how or 

when the entities are to be used (Hay “What”, 1). In other words, data models fail 
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to depict business rules.  At least the Zachman Framework does account for the 

“how” and “when” aspects in other topic areas within the Framework. 

E. Data Dictionary 
The student created a data dictionary for this project. This proved to be 

useful, and provided many benefits to this project. Besides helping the student 

learn about Women Partnering’s data, the data dictionary laid the foundation for 

creating the database. “Usually [data dictionary] means a table in a database that 

stores the names, field types, length, and other characteristics of the fields in the 

database tables” (Foldoc, 3). However, manually created data dictionaries work 

just as well. Even before having a database and tables, a data dictionary can 

help with user-to-developer communications and help with many of the other 

software development processes.  

This project used a data dictionary to help with the project analysis. A data 

dictionary is “a shared repository that defines the meaning, data type, length, 

format, necessary precision, and allowed range or list of values for all data 

elements or attributes used in an application” (Wiegers, 190).  While there seems 

to be no industry standard for creating a data dictionary, Wiegers describes a 

data dictionary syntax that is able to account for primitive data elements, 

composition, iterations, and selections (190-191).  See Table 2 – Data Dictionary 

Excerpt for a few examples. Any definition that includes “= * text *” identifies a 

primitive data element. As for composition entry, see the “Budget Worksheet” 

entry in Table 2 – Data Dictionary Excerpt. Here, the budget worksheet consists 

of multiple elements: current budget, proposed budget, budget recommendation, 

budget prepared date, and budget other information.  Further, there can be 1, 2, 
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or 3 budget recommendations. The Min: Max {data element} notation represents 

iteration or multiple instances of a data element. The budget worksheet entry 

also contains an optional element – budget other information. Any element 

delimited by parentheses indicates that the data element is optional. The last 

class of entry is a selection entry. Here, there is a fixed list of possible data 

values. A selection entry is formatted as follows: [possible value 1 | possible 

value 2 | possible value 3]. In Table 2 – Data Dictionary Excerpt, “Ethnicity” can 

take on any one of the listed values. 

Table 2 – Data Dictionary Excerpt 

Dictionary 
Entry Definition Where 

Referenced 
Budget 
Recommendation 

= * Consist of free form text up to 500 
characters. * 

• Budget Worksheet 

Budget Worksheet = Current Budget 
+ Proposed Budget 
+ 1-3 {Budget Recommendation} 
+ Budget Prepared Date 
+ (Budget Other Information) 

Ethnicity = [African American | Asian | Caucasian | 
Hispanic | Mixed | Samoan | West Indies | 
Native American] 

• Application 
• Child Ethnicity 
• Partner Ethnicity 
• Phone intake form 
• Women Partner 

Profile 
Zip = * The postal code, which is a 5 or 9 numeric 

digits number. May have a “-“ character 
between the 5th and 6th digit. * 

• Address 

The data dictionary helped the student become familiar with the data used by 

Women Partnering. Additionally, the data dictionary forced the student to make 

sure that he fully understood what each data element was and where it was 

used. The student extended the Data Dictionary to also include the existing forms 

and spreadsheets used by Women Partnering. This was helpful when the 
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business process flow was explained to the student. The student was able to 

more clearly understand the process flow when referring to the data dictionary to 

see what data was being worked on. The data dictionary was also helpful to point 

out inconsistencies. Various data elements were recorded as being a check 

number while on other forms the same data element was recorded as dollar 

amounts. By sitting down with the data dictionary and the various stakeholders at 

Women Partnering, the inconsistencies were resolved. Further, the data 

dictionary helped point out synonyms used by Women Partnering. For example, 

employment was recorded on the budget worksheet as being a “salary from the 

employer” while employment was recorded on the application form as being the 

“name of the employer” that the women partner worked for. For another example, 

on some forms “disabled” was used while on others “handicapped” was used. 

Additionally, the Data Dictionary helped the student seek out and understand the 

acronyms used by Women Partnering. For example, “SSD” was used on several 

forms, but referred to as “Social Security Disability” during interviews. As Wiegers 

points out, “the data dictionary should define items from the problem domain to 

facilitate communications between the customers and the development team” 

(61). The usefulness of the Data Dictionary to this project was remarkable. One 

added benefit that a data dictionary provides is documenting the data definitions, 

which “sometimes lead to functional requirements that the user community did 

not request directly” (Wiegers, 124).  

Using a data dictionary was very useful on this project. The student was able 

to discover associations, synonyms, and homonyms within the data elements 
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that would have gone undiscovered if the student followed a pure TDD approach. 

If the Zachman Framework was followed, the student believes that the same 

discoveries would have been made.   

The data dictionary was very useful for the student to get immersed into all 

the various data elements that Women Partnering tracks. In total, there were 35 

forms, spreadsheets, reports, and pamphlets that were inspected to locate the 

data elements. While the process of going through the 35 separate artifacts of 

information was time consuming, it was at least thorough. The data dictionary 

was created through this inspection process. Quickly, the student became aware 

of a few data elements that were called one thing on one form and then called 

something else on another form. For example, the terms “salary” and “income” 

were confused. During an interview with one of the Women Partnering staff 

members, income is defined as salary, food stamps, child support, etc. While in 

another case, income is defined as funds received from a place of employment. 

On the Partner Profile form, salary was mention when the correct term should 

have been income. 

Another inconsistency that the data dictionary helped to uncover is the use of 

age versus date of birth. Some forms asked for age while other forms asked for 

date of birth. The problem with using age is that it is temporal – it is accurate only 

for the current year. Often times, Women Partnering is asked to report statistics 

when perusing grant money. Part of the statistics includes age breakdown of the 

women helped.  This means that the age recorded by Women Partnering 

produces erroneous statistics. Women Partnering has since converted over to 
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tracking the partner’s date of birth instead of age. Through a simple calculation, 

the age statistics will now be accurate. 

There are two things that went wrong with the data dictionary. First, the 

student sorted all the data dictionary entries. This made it very cumbersome for 

the walkthrough with the users. They were familiar with the existing forms and 

the contents of the forms.  Discussing the data elements out of context made it 

hard to for the users to describe the data elements. The student changed the 

data dictionary to include the various forms, spreadsheets, and other artifacts 

with drill down capability. This made it easier for the users to describe each of the 

data elements by having the context included in the data dictionary. The second 

challenge with using the data dictionary is that the student started off trying to 

abstract granular data elements into larger structures. These larger structures 

were named and where not familiar to the users. However, the larger structures 

were a step towards data normalization. 

F. Application Construction Challenges 
Since the student was most familiar with C++, he started construction of the 

system in the C++ language. However, the student’s C++ experience was on a 

UNIX server.  Women Partnering’s new system was Windows-based and not 

UNIX based. The significance of this is that a Windows-based programming was 

unfamiliar to the student. With his C++ skills, the student sat down to learn how 

to do C++ programming in Windows. 

This proved to be very difficult for this student who had little Window’s 

programming experience. First of all, the student had to learn a different mindset 

for programming in an event-based model.  With Window’s programming, the 
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programmer writes code within the various control’s events. For example, the 

programmer needs to write code to respond to button clicks, form loads, mouse 

moves, etc.  The exact timing of knowing the window events and when the 

events fired is crucial to being an effective Windows programmer.  The student’s 

Windows experience was dated. Previously, the student did a few projects 

working with Visual Basic about 5 years prior to attempting this project. 

Second of all, debugging a Windows-based program proved to be challenging 

especially coming from a non-event based model.  In a non-event based model, 

as in an UNIX environment, the program overall structure is easier to understand. 

Primarily this is because you can see the lines of code being executed from 

beginning to end. In Windows, your program becomes an extension to the 

Windows operating system. Moving your mouse or clicking on an item is first 

passed to the Window’s operating system where it is converted into an event. A 

Windows program identifies the events that it wishes to subscribe to. With each 

event, custom code is written to respond to the event. Once finished with the 

custom code, the Window’s operating system takes back control until it passes 

another event to your program. In short, if you watched your program run from 

beginning to end, you would only see bits and pieces of your program run. 

The third challenge encountered was that the C++ for Windows has a robust, 

low-level application level interface (API) that proved to be difficult to learn. When 

the student wanted Windows to perform a task, he had to figure out which 

function to call and to properly format the augments to the function call. This 
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sounds pretty basic, but often times the function calls required pointers to 

functions. The function pointers are difficult to work with.  

With these challenges in mind, the student wanted to be able to finish this 

project without having to go through a significant learning curve. So, the student 

explored using C++ for the .NET environment instead of using C++ for Windows. 

The student found the C++ /.NET combination easier to use. Yet, other 

challenges were encountered. The biggest challenge was that coding examples 

for the .NET almost always were for the C# language. When it wasn’t for C#, the 

coding examples were in Visual Basis. The student noticed that the C# examples 

were close enough to C++ that he was able to read and understand enough to 

proceed with coding. The student found that Microsoft extended the C++ 

language to work specifically the .NET environment. This confused the student. 

Further, the student became flustered with understanding the C# examples and 

trying to find the C++ equivalent syntax.  In the end, the student switched over to 

using C# on the .NET platform for this project. 

The student noticed that intellisense did not work for the C++ language. See 

Chapter VII.B – Intellisense Not Working in C++. Without the intellisense, the 

student had to rely on the help and the index to complete the programming 

statements.  See Chapter VII.A – Intellisense Works in C# for an example of 

showing Intellisense helping the student with the parameters of the 

oleDbDataAdapter’s Fill method when programming in C#.  

G. Application Construction 
Because of all the construction issues overcome by the student, the student 

was very glad to use TDD as his methodology. The student was able to quickly 
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adapt the design of the system as the student learned more about Windows 

programming without having to redo any documentation.  In the past, the 

student’s design experiences had shown him that the more he knew about the 

target tool set, the better he could tailor design. Now, reflecting back on his 

almost complete lack on knowledge for the Windows programming, the student 

feels that his Zachman Framework’s designs (assuming that he followed the 

Zachman Framework instead of TDD) would have been inadequate and would 

have been scrapped several times. This would have resulted in more time lost 

redoing documentation. 
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Chapter IV. Lessons Learned 
This chapter outlines lessons learned by the student throughout the project. 

Learning from mistakes and issues encountered in the past is a great way of 

avoiding them in the future. The student also hopes to share the lessons learned, 

so that others can avoid the same mistakes and advance the information 

technology body of knowledge. 

A. The Infamous Note Field 
During development of the project, the student ran into an issue that took an 

hour to figure out. The symptom was that all database SQL statements issued 

against the partner_note table always returned with a syntax error. The first 

thought that the student had was that there was a spelling error or some other 

syntax error like a stray punctuation mark embedded in the SQL statements. 

Table 3 – partner_note Database Table shows the columns and data types of the 

various fields that made up the partner_note table. The student ascertained that 

the column “note” was causing the syntax error. The student was using OLEDB 

connection to interact with the database. While “note” was allowed as a valid field 

name, it caused syntax errors when the SQL statement was passed through the 

OLEDB connection. The student proved this by renaming the “note” column to 

“message.” After this change, the symptom disappeared.  
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Table 3 – partner_note Database Table 

Column Name Data Type 
Prtnr_id Number 
Staff_signon Text 
Note_date Date/time 
Note Text 
Note_id Autonumber 
Updated_by Text 
Updated_on Date/time 

B. The Need for Good Test Design 
How you design your unit tests can make test-driven development a pain or a 

pleasure. Look at the form that is shown in Chapter VII.J – Staff Form. This form 

is relatively simple – there are only a couple of data entry fields. The student 

proceeded to create a suite of tests to exercise the user interface, the business 

logic layer supporting this form, and the dataset implementing the data access 

layer. All told, the student had 142 unit tests for the three layers (database layer, 

business-rule layer, and the user-interface layer). The student was new to test-

driven development at the time the 142 unit tests were created. The student was 

very content with the unit tests. He was content until he realized that he had 

another 20 forms that needed almost identical unit tests. The issue was that the 

142 tests were not reusable. So, do not forget to refactor your unit test code as 

well to avoid the brute force approach of unit testing. 

Eventually, the student created a set of classes and interfaces whereby any 

user interface, business logic layer, and data access layer can be quickly 

incorporated into the unit test bed. See Figure 3 – Test Infrastructure. The 
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CommonTests class defines a common set of unit tests that all layers have in 

common. It also defines a set of routines that facilitate testing. 

Figure 3 – Test Infrastructure 

Legend: 

class 

base class 
Extends 

CommonTests 

FormHas1Field FormHas2Fields FormHas3Fields ... FormHas30Fields 

FormMgrHas1Field FormMgrHas2Fields FormMgrHas3Fields ... FormMgrHas30Fields 

DBHas1Field DBHas2Fields DBHas3Fields ... DBHas30Fields 

The next layer of child classes is important as well to good unit test design. This 

next layer includes common utilities and tests for testing a user interface, the 

business rule layer, and the database layer.  Then, from there are child classes 

that implement the tests for one field, two fields, three fields, etc. The student 

agrees with Balena and Dimauro’s suggestion that you avoid deep class 

inheritance structures (58). The NUnit infrastructure prevents a cleaner solution 

to the problem of being able to create tests for any number of fields. The issue 

with the NUnit infrastructure is that it uses attributes to determine which class 

methods to invoke to run the tests. NUnit discovers the attributes by using 

reflection into the .NET assemblies. Attributes are defined as part of the method 

signature in the C# code as shown in Figure 4 – Method that has a "Test" 

attribute on line 5.  This design does not allow for more robust unit test designs 

using interfaces. 
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Figure 4 – Method that has a "Test" attribute 

1. #region SetField9Test 

2. /// <summary> 

3. /// This method tests the setter for field 9. 

4. /// </summary> 

5. [Test] 

6. [Category("Accessor/Mutators Tests")] 

7. public void SetField9Test() 

8. { 

9. SetTest(this.MetadataAttr.FieldGoodData, new


GetFieldData(this.GetField9Data), new

SetFieldData(this.SetField9Data), this.MetadataAttr.FieldName, 

this.MetadataAttr.FieldReadOnly); 


10. } 


11.#endregion SetField9Test 

C. The Ins and Outs of Data Binding 
There are two techniques that one can follow to move data between the 

application and the database. First, you can write the code to move the data, but 

this is repetitive. The second technique offered is to use data binding. Data 

binding “maps a property of an object to a property in the control” (Wagner, 218). 

Wagner suggests using data binding over hand writing the code (217-225). The 

student agrees with Wagner – let .NET worry about moving the data. Letting the 

.NET libraries move the data for you is much easier and saves time by not having 

to write the code yourself. However, there are a few pitfalls lurking in data 

binding. 

First of all, when one encounters a problem with data binding, the error is 

hard to debug. Data binding occurs automatically and the details are hidden from 

view because the .NET libraries control the moving of the data. This makes it 

impossible to debug. One cannot step through the .NET library code. One 

common symptom is where a control fails to receive any data from the database.   
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Figure 5 – oleDbDataAdapter_RowUpdating 

private void oleDbDataAdapter_RowUpdating(object sender, 

OleDbRowUpdatingEventArgs e) 


{ 

if ( e.StatementType == StatementType.Insert || 


e.StatementType == StatementType.Update ) 

{ 


if ( e.Row[IntakeDetail.EthnicityColNm].ToString() == "-1") 

{ 


ethnicity_is_null = true; 

e.Row[IntakeDetail.EthnicityColNm] = System.DBNull.Value; 


} 

else 

{ 


ethnicity_is_null = false; 

} 


if ( e.Row[IntakeDetail.LivingColNm].ToString() == "-1”) 

{ 


arrangement_is_null = true; 

e.Row[IntakeDetail.LivingColNm] = System.DBNull.Value; 


} 

else 

{ 


arrangement_is_null = false; 

}


 } 

}


When this occurs, the student found that a null value may have caused data 

binding to fail. Here is the situation. The database column was defined to allow 

nulls. Further, the data column in the .NET data set also allowed null values. 

Next, the student bound the data column to a control. The control stopped 

working at this point. The solution was to create two event handlers for handling 

the row updating (see Figure 5 – oleDbDataAdapter_RowUpdating) and row 

updated (see Figure 6 – oleDbDataAdapter_RowUpdated).  Plus, the list box 

control had to be updated to plug in a “-1” value when a null value was expected. 

These changes allowed the student to set a null value (really a “-1” in the control) 

and allow a null value to be inserted into the database. Note: the student had 
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spent more time figuring out what was required for these two methods than he 

would like to have spent. 

Figure 6 – oleDbDataAdapter_RowUpdated 

#region oleDbDataAdapter_RowUpdated 

private void oleDbDataAdapter_RowUpdated(object sender, 

OleDbRowUpdatedEventArgs e) 

{ 


if (e.StatementType == StatementType.Insert || 

e.StatementType == StatementType.Update ) 


{ 

if ( ethnicity_is_null ) 

{


   e.Row[IntakeDetail.EthnicityColNm] = -1; 

}


if ( arrangement_is_null ) 

{


   e.Row[IntakeDetail.LivingColNm] = -1; 

}


 e.Row.AcceptChanges(); 

} 


} 

#endregion oleDbDataAdapter_RowUpdated


Another area that caused the student to stumble with data binding was the 

student’s custom controls. The student created custom controls for check boxes, 

combo boxes, text boxes, group/radio button control, and a date-time picker. 

Each of these controls facilitated data binding. The technique that the student 

followed was to create a hidden text box, which is where the data binding 

property was bound. Then, changes to the text box would be propagated out to 

the primary control(s). For example, take the group box/radio buttons as shown 

in Figure 7 – Group Box with Radio Buttons. Behind the scenes there is a text 

box. When the contents of the text box changes, one of the radio buttons needs 

to be checked. Likewise, clicking on one of the radio buttons needs to update the 
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value stored in the text box since it is the control that is bound to the database. 

Once again the student fell into a data-binding trap. Initially, the student set the 

text box’s visible property to false, which in essence turned off data binding on 

the control. As a solution, the control’s visible property had to be set to true, yet 

place the control behind another control on the screen. In essences, the control 

was not visible. This allowed data binding to be turned on, which allowed the 

data to flow between the control and the database.  

Figure 7 – Group Box with Radio Buttons 

The student encountered a third data-binding pitfall – data binding did not 

occur when expected. The student found out the hard way that binding a control 

to the dataset does not mean that there is going to be data in the control. This is 

true even if the bound dataset is populated with data. This caused problems with 

unit testing. All of your unit tests will fail if you only instantiate the form that uses 

data binding. Why? There is not data in your controls because data binding has 

not been activated. The student discovered that data binding is turned on only 

when the form has been loaded. This caused a problem because the student had 

developed a validation routine that would fire against controls that had no data. 
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The solution was to disable the validation routines until the form was loaded. 

However, showing the form, which fires the form-load event, has its own set of 

issues with unit testing as discussed previously. 

D. Testing in the Weeds 
“TDD is performed from the bottom up by sequentially applying a series of 

simple solutions to small problems that eventually evolves into a design” (Stott, 

55). This sounds good, but does it actually work? The student purposely followed 

the test-driven development mantra of “red-green-refactor” only to find that the 

student had developing something that was fully tested, but sometimes was not 

needed. The unit tests exercised a small chunk of code or building block. As 

more and more of the building blocks are put together, one is suppose to end up 

with a working system that meets the users’ expectations. This student criticizes 

this approach to system development. The reason being is this: just because you 

have hundreds of building blocks does not mean that you will end up with a 

working system. For that matter, you may not even end up with a system! The 

student found himself making good progress building unit tests and system code 

only to eventually find out that he wandered off track days beforehand. As you 

can imagine, this is very frustrating. The student had to remember to step out of 

the test-driven mindset, look up over the weeds, and consider the big picture. 

Only by doing this top-down assessment was the student able to stay on course 

in building a system that was well tested. 

E. Securing the Application 
The Rijndael cipher was used to store the encrypted user passwords and 

women partner’s social security numbers in the database. One problem 
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encountered using the Rijndael cipher pertained to the fact that it is a block 

cipher. Errors encountered with the cipher occurred when the plaintext length 

passed to the cipher was shorter than the block size. See Table 4 – Padding 

Solution for the Rijndael Cipher for how the student solved this issue. 

Table 4 – Padding Solution for the Rijndael Cipher 

Mode Code Explanation 
Encrypt symmetricKey.Padding = 

PaddingMode.Zeros; 
If the plain text is shorter that the 
block size, pad the plain text with 
zeros up to the correct block size. 

Decrypt Regex.Replace(plainText, 
@"\0", ""); 

After decrypting the cipher text, 
make sure to remove the zeros 
that may have been added when 
encrypting the plain text. 

F. In the Dark with Failed Tests 
When the unit tests failed in the NUnit, sometimes the error message was 

enough to know what was needed to fix the error. These types of failed tests 

were the most desirable ones – ones that can be fixed quickly without hindering 

the progress on the project. Further, these types of errors did not require digging 

around the code to discover the issue. 

The next type of failed tests was more of a nuisance. The student 

encountered some failed tests were the fix was not readily apparent. This type of 

failed tests required the student to step through code to debug the issue. 

Remember: the unit tests are not part of the production code, so one cannot step 

through the production application to identify the issue with the test. The student 

ended up creating a non-production form, which used a menu bar. The menu 

options called the various unit tests. By doing so, the student was able to set the 

project containing the unit test forms as the startup project and run the 
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application, which then loaded the test form.  See Chapter VII.H – Form Used to 

Organize Unit Tests for a sample screen snapshot of the unit test form. With the 

form running, the student was then able to walk through the unit test code using 

the Visual Studio debugger to locate the issue. 

The last type of failed tests was the most troublesome. Every once in a while, 

one or more tests would fail when the student ran the entire suite of unit tests, yet 

these same tests would pass when ran individually.  The student knew that the 

unit tests are suppose to be independent from one another, but there is nothing 

in place to enforce this golden rule of test-driven development. To the student’s 

knowledge, there are no tests that were dependent on one another. However, 

there were two situations encountered by the student. First of all, there was a 

dependency within the unit tests and the setup and/or teardown methods. The 

setup and teardown methods were used to return the test back to an initial state. 

The student was in the dark when these types of failed unit tests were 

encountered. Because the combination of interactions was not known, using the 

previous technique of placing the unit test on the unit test form did not to work. A 

second situation that appeared regularly occurred where the constructor of the 

class encountered an exception. When this occurs within NUnit, NUnit attempts 

to call the constructor again – this causes the exception to be thrown again. In 

the end, the entire set of tests would fail with the only feedback is that the test 

had failed. 

The biggest discovery made to help combat this last type of failed tests was 

the ability to attach to a running process. See Chapter VII.I — Attaching to 
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another Process. The beauty of this is that you can attach to the NUnit process 

and watch it invoke your tests.  By doing this, you can see the code as it 

executes and see the order of the various tests as they are called. Before the 

student discovered this ability to attach to a process, the student would have to 

guess at the sequence of events that caused the tests to fail. Debugging the 

NUnit process can be challenging. The best thing to do is to set break points in 

your code.  Then wait for the debugger to stop in your code to debug your unit 

tests. The student installed a copy of the NUnit source code and tried to debug 

the NUnit process. This proved to be very challenging because the NUnit 

application runs in one application domain while your unit tests runs in another. 

One benefit of multiple application domains is that the application running in one 

application domain is completely protected from the other application in the 

second application domain that may fail (Troelsen, 463). Because of complete 

isolation, the two applications have to use the .NET remoting protocol in order to 

communicate back and forth (Troelsen, 463).  Debugging the .NET remoting 

interaction between NUnit and the unit tests is very difficult. Before abandoning 

stepping through the NUnit source code in the debugger, the student found that a 

complete copy of unit tests is created in the temporary directory called the 

shadow copy. The student found the location for the shadow copy and 

discovered about 500 copies of the application or about 9 month’s worth of unit 

testing that was sitting on the disk drive. Running the Disk Cleanup process from 

Microsoft cleaned up these shadowed copies. 
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With the discovery of being able to attach to a process in order to debug it, 

the student came into the light and was able to quickly identify all issues with the 

failed unit tests. 

G. Work That Project!!! 
The student’s initial project time line included the software development for 

Women Partnering, the thesis/research, and the two classes required for 

graduation. A summary view of the initial time line is shown in Figure 8 – Initial 

Project Schedule. Everything was to be complete by year’s end of 2004.  

Figure 8 – Initial Project Schedule 

The actual project timeline as shown in Figure 9 – Actual Project Schedule 

tells a completely different story. The project was definitely not a smooth one 

where everything executes according to plan. On the contrary, this project 

encountered numerous problems.  
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Figure 9 – Actual Project Schedule 

The student wished that he could have worked on this project from beginning 

to end without having any delays. This project officially started in March 2004 and 

was planned to finish in September 2006. The project was not too large or too 

difficult to cause the project to be a 2 and ½ year project. The student’s 

commitment to the project was the one thing that really caused the project to take 

so long. Not working on the project for a week or two, left the student trying to 

figure out where he left off. So, the student now knows to take better notes. This 

is necessary so that if there is a project delay the student can return to the 

project running and not waste days figuring out where he left off.  

Beyond the sometimes spotty effort to keep the project moving, the student’s 

next biggest issue causing delay was the student’s lack of experience with 

programming in a Window’s environment. The change to event-driven 

programming proved to be rather challenging for the student who has over ten 

years programming in an UNIX server environment. The challenge was in 

learning about the events and when the events where raised by the Windows 

environment and/or by the program itself. A further challenge was becoming 
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immersed into the Active Data Objects .NET. This set of libraries is feature rich 

and different enough to the student that there was a steep learning curve. 

The student initially started with trying to build the system using C++ and the 

WIN32 API. As this proved to be a significant learning curve, the switch was 

made to C++ and the .NET environment. Here the learning curve was not so 

steep. However, because of the lack of documentation and examples of using 

C++ in the .NET environment, the student again switched to a different set of 

development tools. This time it was C# and the .NET environment. The student 

found the transition over to C# from his C++ background was actually pretty 

easy. More important though was the wealth of documentation and programming 

examples available to the student. These flatten the learning curve even further. 

Yet, each time the student switched languages, the project was delayed further. 
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Chapter V. Conclusion 
A. What Should Have Been Done Differently 

The student should have done a couple of things differently on this project. 

First, communication between the student and Women Partnering was not 

always the greatest. The student would go off and work on the project for weeks 

and months at a time without communicating what was going on with the project. 

To make matters even worst, there were periods of time that the project was not 

actively worked on. When this happened, there were no communications with 

Women Partnering at all. The student needs to communicate what is going on 

with the project at all times, and communicate what is going on with external 

influences that caused delays in the project. The communications with the users 

is critical to TDD’s success. As an extreme programming methodology, TDD 

relies on quick, short iterations, which pulls the users into the process and 

flushes out the system that they want. The lack of communications hampered the 

student following a pure TDD approach. 

A second item that should have been done differently was that the student 

should not have initially committed to delivering the system on an aggressive 

schedule. This is true especially with the student’s lack of experience in a 

Window’s development. The student is very thankful for Women Partnering’s 

patience. Women Partnering allowed the student to work through the learning 

curve and deliver a system to them long after when first committed. The student 

wished he had taken Window’s programming classes as part of his course work 

to help ease the student into Window’s programming. At the very least, the 
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classes could have helped set a realistic schedule for a Window’s based 

programming project. 

In hindsight, coming up with a master plan before wandering off building unit 

tests would have been wiser. While the unit test is suppose to capture a 

requirement in TDD, there are still many other design factors that are not covered 

directly by requirements. For example, one design factor that should have been 

considered throughout the project was class design. All too often with the 

student’s experience with TDD was that he would just go off and build unit tests 

and functional code to support the tests – not giving any focus to overall class 

design. Class reuse, class inheritance, and consideration for class interfaces fell 

by the wayside because focus was placed on getting the unit tests created. 

Perhaps, the student should have considered class design more frequently 

during the refactoring step.  

B. Did the project meet initial expectations? 
Expectations in the beginning of a project often times do not match what is 

built. This is a pretty natural occurrence. As a project starts up, you are working 

with ideas and visions. Some thoughts may even contradict each other, because 

input is taken from all stakeholders. As the software development lifecycle 

progresses, the ideas and visions are transformed into a working system. There 

are two perspectives if the project meets the initial expectations: 1) from the 

perspective of Women Partnering; 2) from the perspective of the student. 

Women Partnering’s initial expectations have been met. They wanted to get 

away from a primarily paper-based system. The built system eliminates many 

different forms as well as several different spreadsheets. The information needed 
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by Women Partnering is now readily available to them – making them more 

efficient in helping women in the community. Further, Women Partnering’s 

expectation for a system that is well tested has been fully met.  

As for the student’s expectations, the initial expectations contrast significantly 

to what was delivered. As pointed out before, the student initially started with 

trying to build the system using C++/WIN32 API, but switch over to C++/.NET 

and eventually finished the application in C#/.NET. The programming languages 

prior to C#/.NET proved to have steep learning curves. The student is very 

thankful for a .NET feature called language independence. This allowed the easy 

transition from C++ over to C#. The student was able to run C# classes that 

inherited from C++ classes. Additionally, one .NET assembly written in C++ 

worked seamlessly with another .NET assembles written in the C# language. 

Language independence allowed the student to ease over to writing C# without 

having to completely scrap his previous work in C++.  The student was able to 

test drive C# little by little until the student was comfortable enough to convert all 

classes over to the C# language.  

C. What would be the next stage of evolution for the project if continued? 
The next stage of the project can be to add in the ability to manage the 

classes offered by Women Partnering and by Sister’s of St. Francis of Colorado 

Springs, Colorado. The classes help the women partners learn skills to better 

their lives. The student sees opportunity for setting up class schedules combined 

with teacher schedules and to eventually allow for women to enrollment in the 

classes by visiting web pages.  

http:C#/.NET
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Second, the ability to press the F1 key and receive help would be valuable. 

The student initially planned to deliver help with the project, but this was removed 

from scope in order to align this project’s completion with finishing his Master’s 

degree. So, for a next step in the system, help pages should be integrated with 

system. The student started to include help pages into the application. The 

compiled help pages are part of the installation package for the system. There 

are only 2 entries in the help index, so the bulk of the help pages would have to 

be flushed out. 

Another possible next step would be to network together the various support 

agencies with which Women Partnering works with. This would allow for 

information sharing, which would allow the support agencies (including Women 

Partnering) to be able to help the women faster than they do today. There would 

be no need for women to fill out applications at each support agency visited. 

Instead, their information will be available on-line with the description of the help 

that they require. 

D. Conclusion 
Test-Driven Development was used to build a small-to-medium sized system 

for Women Partnering. The student followed the process of writing the unit tests 

before any functional code was written. The student admired the focus on the 

interfaces captured in unit tests. While this process worked great for developing a 

system, the student deviated from TDD by creating a couple of documents that 

are usually associated with a waterfall, plan-based methodology. For example, 

the student deviated from TDD by creating a data dictionary and entity 

relationship diagrams. These other tools allowed to the student to view the 
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system from other points of view, which is exactly what the Zachman Framework 

forces you to do. The student learned aspects from the data dictionary and entity 

relationship diagrams that may not have been discovered using a pure TDD 

approach. 

It has been refreshing using TDD as the methodology for building Women 

Partner’s system. The student spent more time programming than writing 

requirement specifications, design documents, and other artifacts associated with 

the more traditional waterfall methodologies. The student is no different than 

other programmers in that he prefers programming over writing documentation. 

However, the student feels that TDD is not the software methodology that should 

be used on all software development projects. Rather, TDD is just another tool 

that software developers have available to them. Today’s software developers 

need to be flexible and be able to use the correct tool for the particular project at 

hand. Using the wrong tool can cause the project to fail. TDD works well where 

the requirements are not well understood, where the users have a hard time 

articulating the requirements, where the environment is dynamic with frequently 

changing requirements, where the team size is smaller, and most importantly 

where the users are willing to be engaged throughout the entire project.  

E. Recommendation 
The student suggests that software developers remain flexible in their tool 

choice in order to better serve there projects and avoid project failure. Test-

Driven Development should not be used on all projects. Similarly, the Zachman 

Framework should not be used on all projects. Today’s software developers must 

be cross-trained on many methodologies and be able to adapt their approach to 
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their particular project’s needs in order to be successful with today’s larger, 

complex development projects. 
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Chapter VII. Appendixes 

A. Intellisense Works in C# 

Here the cursor is on line 69 in a C# source file. Microsoft’s Intellisense pops 

up a tool tip that shows the parameters for the OleDbDataAdapter’s Fill method. 

This is very helpful for someone who doesn’t remember or is learning the 

parameters as they type. 
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B. Intellisense Not Working in C++ 

In this example, the cursor is on line 16 of the C++ file. Microsoft’s Intellisense 

fails to display the parameters for the OleDbDataAdapter’s Fill method. See 

Chapter VII.A – Intellisense Works in C# for an example for where the 

Intellisense does work.  
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C. Example NUnit Screen 

NUnit is a unit test tool, which is able to run the unit tests and report the 

status of the test. Shown here, there is one test that failed. All others have 

passed. 
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E. Testing Status in NUnit  

This example screen shows the NUnit screen where there are six failed tests. 
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F. Form Incorrectly Painted 

Because of issues with events, the form was not properly painted. The text 

describes how to resolve this issue. 
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G. Fully Painted User Interface 

As the NUnit runs your tests, the user forms are displayed with all the fields 

being populated. Without following the steps as outlined in this paper, the fields 

are not displayed correctly when the user form is run by the unit test. 
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H. Form Used to Organize Unit Tests 

This form was used by the student to organize all unit tests, so that he could 

run any test without having to run the NUnit tool. This was necessary to be able 

to debug the unit tests from within the Visual Studio Environment (i.e. without 

having to attach to the NUnit process).  
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I. Attaching to another Process 

Sometimes, it was necessary to attach to the NUnit process in order to watch 

the interactions between unit tests. 
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J. Staff Form 

This form is just one of the forms created by the student. 
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