
Models specifications were standardized by the Object Management Group 

(OMG) for Model Driven Architecture (MDA).  Both MDA and MDSD support the use 

of models for system development. The primary distinction between MDA and MDSD is 

that MDA is a set of guidelines for models; MDSD represents the entire software 

lifecycle from model to code generation.  —[Model Driven Architecture] MDA is not to 

be confused with Model-Driven Development (MDD), also known as Model-Driven 

Software Development (MDSD).  MDD is an approach to software development where 

extensive models are created before source code is written or generated.  MDA is the 

OMG implementation of MDD.  The MDA concept is implemented by a set of tools and 

standards that can be used within an MDD approach to software development.“ (SEI, 

2006).  So, MDA is a specialized subset of MDSD.  The original MDA standard does not 

directly address the transformation and generation phases.  OMG is addressing them in a 

separate initiative called QVT.  For MDSD, domain-specific transformations and 

generation are vital stages. 

Because MDSD is based on new technologies and new approaches, it also 

introduces new terminology. Domain Engineering models the overall business context 

and Application Engineering models the actual platform and system context.  The latter is 

much closer to traditional UML modeling. Domain-Specific Language (DSL) is the 

template modeling language, semantics, and syntax used for expressing key aspects of the 

domain.  See figure 2 for a sample of DSL. Platform Independent Model (PIM) is the 

model describing the business logic, undiluted by technical concerns. Platform Specific 

Model (PSM) is the model used to describe the actual platform implementation. 

6 



Figure 2: Sample DSL Transformation Rule (SEI, 2006) 

if (UMLClass) {


create Java class named <UMLClass.className>Bean.java 

create methods in <UMLClass.className>Bean.java for each operation in UMLClass 

create attributes in <UMLClass.className>Bean.java for each attribute in 

UMLClass 

create Java class named <UMLClass.className>.java for remote component 

interface 

create Java class named <UMLClass.className>Home.java for remote home interface 

create Java class named <UMLClass.className>Local.java for local component 

interface 

create Java class named <UMLClass.className>LocalHome.java for local home 

interface 

…


}


Model-Driven Software Development tools and techniques are the key to the 

entire MDSD approach. The tools drive the iterative development processes and act as a 

repository for the domain knowledge.  MDSD also has an established set of guidelines 

and processes for producing model to code transformation.  There are basically two 

flavors, RUP SE and Agile. 

Tools are the foundation for MDSD.  In order to fully perform Model-Driven 

Software Development, there are three tool types you need œ meta-modeling tool, 

specification tool generator, and model-based template interpreter and generator.  There 

are many commercial tools available, but many of them are very immature and quite 

expensive for the average company or entrepreneur.  Most tools range from $9,000 to 

over $250,000.  Most open source tools are listed on the Generative Modeling 

Technologies (GMT) website (http://www.eclipse.org/gmt). The most notable tool suite 

is from Jorn Bettin called openArchitectureWare (oAW).  Other vendors offering MDSD 

tools are Rational Software (Rational Software Architect œ RSA), Gentleware (Poseidon), 

and Borland (Together Control Central).  Some tool offerings represent a suite of 

7 

(http://www.eclipse.org/gmt)


integrated technologies, whereas others are suites of pieced together components to fulfill 

the entire MDSD modeling need.  XMI acts as the interoperability backbone between 

tools. 

The MDSD RUP SE approaches modeling from a system perspective.  This 

approach models the system from a top-down, incremental perspective with constant 

refinement of model granularity at each subsequent system level.  See figure 3 for the 

RUP SE architecture framework and table 5 for the RUP SE process flow. 

Figure 3: MDSD - RUP SE diagram (Balmelli, 2006) 

The Agile approach is more iterative in nature, and the steps are intentionally 

loosely coupled to allow for parallel and cyclical development.  See figure 4 for the Agile 

MDSD flow and table 6 for a summary of the process flow steps. 

So what kind of impact might one expect from MDSD?  According to 

studies conducted, MDSD techniques have the most significant impact on development 

velocity.  The Middleware Company performed a study in 2003 and claimed that a 35% 

reduction in development time was realized when employing MDA techniques 

(Middleware, 2003). 

8 



Figure 4: MDSD - Agile Diagram (Bettin, 2004c) 


They stated that slightly higher effort was required during the first modeled application 

due to ramp-up, but significant velocity gains were experienced during subsequent 

applications on the same platform.  Another study conducted by Jorn Bettin (Bettin, 

2002) developed a small ecommerce application using three methodologies: 1) manual 

coding/no modeling, 2) UML-based coding, and 3) MDSD and domain-specific 

modeling.  Using the manual coding technique as the baseline, the results indicated that 

9 



the UML-based coding approach actually increased overall effort by 5%, and the MDSD 

saved an astonishing 52% over manually coding the application. 

MDSD is revolutionary, but critics have raised many concerns surrounding 

MDSD limitations.  See table 2 for a brief summary. 

Table 2: MDSD Limitations 

1)	 Idealistic: Full MDSD approach may be too idealistic for some real world 
artifacts that are seen as necessary.  It supports implementation of models to 
executable code, but does not support database schema, code tuning, etc. 
(Wikipedia, 2006). 

2)	 Large Investment: Model driven tools and technology involve a large initial 
investment in configuration and potential transformation modification.  It is 
not well suited for one application being deployed on multiple platforms, or 
just a single application. (SEI, 2006). 

3)	 Specialized Skill set: Engineers are required to have a high level of expertise 
as modelers and architects. They are scarce market commodities (Wikipedia, 
2006). 

4)	 Lack of Standards: MDSD lacks mature and practical standards for model 
transformations (Bettin, 2004b). 

5)	 Tool Maturity and Interoperability: End to end MDSD requires a suite of 
tools.  Many of the tools are too immature to offer complete transformations. 
Most of the tools do not have standardized interoperability (Cook, 2004), do 
not support exchange markings and transformations (SEI, 2006), and are 
restricted to one level of transformation (SEI, 2006).  The lack of mature and 
adequate tooling support could become an adoption barrier to model driven 
techniques. (SEI, 2006). 

6)	 Code Manageability:  A modeler builds a model without the code 
management in mind.  So the generated code is often not readable or 
maintainable. (Mellor, Clark, Futagami, 2003) 

7)	 Resistance: There is a lot of industry inertia to overcome in order for MDSD 
to be adopted. 

10 



MDSD Interpreted 

On the surface, Model-Driven Software Development seems like a brand new 

paradigm.  But under the covers, it is shifting the iterative development process from 

UML/prototypes/coding over to abstraction/modeling/generation.  In essence, it pushes 

the development effort further up in the lifecycle. This shift alone could save money due 

to the early detection of software issues. 

There‘s no doubt that MDSD is a leap of faith for software engineers.  To release 

control of code, and exist in only a model capacity, is unnerving to most developers. 

Models have been viewed strictly as initial brainstorming and documentation up to this 

point.  This mindset is also the largest acceptance barrier for MDSD. 

MDSD advocates abstraction - the ultimate solution to reuse, standardization, and 

cost reductions.  Continuous abstraction leads the ability to represent complexity in a 

much more concise manor.  Abstraction supports design patterns, templates and other 

generally accepted software practices.  Domain Specific Language (DSL) takes 

abstraction one step further by capturing the unique needs of a domain and encapsulating 

into domain semantics. 

The models provide much needed context for software engineers.  Today, models 

are viewed as simple documentation.  In the MDSD paradigm, models are at the heart of 

software engineering.  The models represent how the system functions, integrates, and 

operates.  In addition, the models drill down to low level implementation details to clarify 

implementation details and data attribution. 

The maturity of MDSD is its own impediment. The prerequisite knowledge 

required to process MDSD represents a barrier for most developers.  Deep and intricate 

11 



UML/UML2 knowledge is required to perform MDSD proficiently.  The MDSD 

techniques are not agreed upon by experts in the field, which leaves developers thrashing 

and searching for guidelines.  The tools are complex and require large learning curves. 

Many of the tools are in developmental stages waiting for standardized techniques. 

The biggest benefit of Model-Driven Software Development is the integration of 

the analysis and design processes directly into the end-to-end development process. 

Analysis, design and code flow seamlessly.  —Model-driven development is still not 

widespread, but the potential is large.  A software development environment with off-the

shelf models and mapping functions […] will change the way in which we build systems. 

Instead of building and rebuilding systems as the application or the technology 

infrastructure changes œ an expensive proposal to be sure œ we‘ll select models, subset or 

extend them, then weave them together to build the system.“ (Mellor, Clark, Futagami, 

2003). 

MDSD APPLIED 

Does Model-Driven Software Development truly increase delivery velocity and 

reduce complexity? A case study was conducted to assess the engineering impacts 

associated with a real system using both traditional UML and OO coding, and MDSD 

system methodology.  The applied study compared and contrasted the methodologies 

from three primary viewpoints: delivery speed, system modeling complexity/abstraction, 

and code generation. 

Background 

The case study focused on a tracking system for First United Methodist Church 

(FUMC).  The church needed a system to manage organizational information for the 

12 



Children‘s Ministry.  (See appendix B for more details.)  Most of their informational 

needs centered around three areas: recording child demographic data, tracking attendance 

to church sponsored activities, and developing educational curriculums for Sunday school 

and confirmation. 

The FUMC technology requirements were straight-forward.  Most of the user 

interactions were simple data entry screens and event management. The customer‘s 

deployment requirements included a stand-alone application, multiple data entry stations, 

and a database backend.  The church primarily operates desktop applications using 

Microsoft technologies and MS Office desktop suite. In-house applications were 

developed in C# or Visual Basic to leverage Microsoft licensing.  MS Access was the 

primary database, and common data was stored on a network LAN for backup purposes. 

The case study was developed on Microsoft technologies and C# language. 

The actual case study focused on a specific piece of the entire system.  The rollout 

plan was intentionally planned in phases in order to prove the initial technology, the 

MDSD approach, and then the incremental deliveries to follow.  The initial phase, and 

the focus of the thesis work, was narrowed to the subsystem which focused on the 

recording of child (called Constituents) demographic data.  Due to the nature of this 

application, the two most important architectural layers were the presentation layer (user 

experience) and the domain layer (persistence). 

Framework 

The case study was conducted like an experiment.  See table 3 for the experiment 

framework. The subsystem for child demographic data was fully created using both 

13 



traditional UML with C# manual coding and MDSD techniques with generated code. 

The case study —controls“ were the UML models and the methodology approach. 

Table 3: Case Study Setup 
Experimental Design 
Title Model-Driven Software Development Techniques 

Problem Statement 1) Enterprise software is growing in complexity 
2) Architecture intricacies create longer software cycles and drive up costs 
3) Traditional development methodologies lead to silo development efforts 

Hypothesis MDSD can speed up software delivery while reducing costs and increasing 
software reuse 

Experiment Procedures
  - Materials 1) Software system for FUMC Children's Ministry to track Constituent 

demographic data 
2) MDSD technique 
3) Poseidon 5.0 
4) UML/UML2 
5) Visio 2003 
6) Visual Studio 2005 / C# code

  - Controls 1) Business models and Data models 
2) RUP SE approach 
3) UML model granularity 
4) N-tier architecture layers

  - Variables 1) Development Tools
  - Poseidon for MDSD development 
  - Visio 2003 and VS2005/C# for traditional development 

2) Code Generation 

Data Collection
  - Metrics Track development effort by phase
  - Observations Code quality/completeness 

Modeling complexity 

MDSD Conclusion Software Velocity 
Software Complexity 
Software Reuse 
Overall 

The models were developed with roughly the same granularity.  RUP SE was the 

methodology, with some MDSD Agile techniques used as augmentation.  The study 

—variables“ were the tool suites and generation techniques.  The tools were Visio and 

14 



Visual Studio C# for the traditional approach, and Poseidon 5.0 for the MDSD tool.  The 

—results“ were measured in terms of code and time effort.  Generated code comparison 

was done using the model‘s domain objects.  Code completeness was compared using 

both C# and Java since Poseidon was more Java compatible.  The estimated percentage 

code complete was based upon previous C# coding experience. The tracking metrics 

measured the execution of each development phase within RUP SE. The expectations 

from the applied study were to observe how MDSD techniques impact software delivery 

and code deliverables. 

Constraints 

During the setup for the applied study, tools proved to be a significant roadblock. 

Many MDSD tools were evaluated: System Architect (Rational), eGen (Gentastic), 

openArchitectureWare (GMT), Visio Enterprise Architect, and Poseidon (Gentleware). 

Most of the MDSD tools on the market produce Java code; none of the evaluated tools 

could produce C#.  Poseidon was the ultimate choice because it had the ability to produce 

template based C# code. It can produce full Java code, which was used for side-by-side 

code comparison.  UML2.0 and OCL could not be fully exploited due to the in-depth 

knowledge required for those technologies within the tools 

Results 

The study‘s results were surprising.  The modeling effort was very inconsistent.  

In the traditional coding mode, the new models and code base were pulled forward from 

an existing infrastructure and application.  The traditional UML modeling was relatively 

quick, basically refactoring of objects.  Domain Specific Language (DSL) was not 

available in traditional UML models.  Platform Independent Model (PIM) and Platform 

15 



Specific Model (PSM) were modeled using Visio based notation, which is not .NET 

compatible. 

With the MDSD approach, the study attempted to export XMI (from the 

traditional models) to use for infrastructure baselining, but that capability was not 

available using Visio.  The models started from scratch.  DSL was not utilized because 

the functionality could not be located within the Poseidon tool.  PIM context and analysis 

diagrams were slow, but the design level modeling went very fast.  Much of the Poseidon 

tool is tailored around class diagramming.  Due to the fact that Poseidon is not .NET 

platform compatible, the PSM model could not be developed or transformed.  Some J2EE 

functionality was exploited due to better compatibility within Poseidon.  Overall, the 

MDSD modeling effort was made much more difficult due to the tool deficiencies.  The 

UML complexity involved to transform granular MDSD models to code was also more 

difficult. 

The tracking metrics demonstrated increased velocity.  For the entire system 

vertical slice, the traditional approach took 24.25 development hours of effort for models 

and manually created code. The MDSD approach was a total of 11 development hours, 

representing about a third of the original effort.  Most of the MDSD gains were realized 

in the coding phase.  Traditional coding took 12.25 hours, whereas MDSD code 

generation was 1.5 hours.  The traditional coding approach would have been more than 

triple in effort had it not been for the pulling forward of an existing infrastructure and 

code base.  So, the net gains would have been even greater. 

Code completeness was contrary to the generation results.  The generated C# code 

was simply stub code; Java code was a bit more robust, but would require much more 

16 



UML modeling to generate more robust code. Since UML diagrams were one of the 

study‘s constants, the models were left relatively the same, even when generating Java.  

So, some of the code completeness deficiencies were due to the UML modeling depth. 

The C# code was about 25% complete for the domain classes, and only 10% complete for 

the remaining system classes.  The Java code was better.  It was near 30% complete for 

the domain classes and 15% complete for the remaining system classes.  Performing a 

simple extrapolation given the code effort and the code completeness, the total coding 

effort would have been somewhere near 6 hours for more robust domain classes.  This 

represents half the traditional coding effort.  Thus, the case study approximated the same 

results as Jorn Bettin‘s code study (Bettin, 2002). 

MDSD ANALYZED


Critical Assessment


Does Model-Driven Software Development live up to the hype?  A brief SWOT 

analysis (strength-weakness-opportunity-threat) critiques the MDSD approach. 

MDSD has two primary strengths.  Complexity is reduced through better model 

abstraction and encapsulation.  This leads to higher system component visibility and 

reuse.  The case study displayed trends that indicated that MDSD would identify reuse 

opportunities much more quickly than traditional coding methods.  Automatic code 

generation increases delivery and creates code uniformity.  However, the case study also 

demonstrated that much of the code still has to be handcrafted due to the tool 

deficiencies. 

MDSD weaknesses include a highly specialized modeling skillset, tool 

immaturity and difficulty of use, and code refinement challenges.  The UML, UML2.0 

17 



and OCL depth of knowledge required to manipulate the models properly to produce the 

desired code behavior is significant.  It could potentially require years of experience to 

get code to generate precisely from well-formed MDSD models.  Until colleges and 

universities change their focus away from traditional methodologies and coding, people 

will not be properly tooled for MDSD modeling. 

The tool maturity was the most difficult part of the case study.   The tools are 

large, and somewhat difficult to understand and operate. Some of the core concepts like 

DSL, transformations, tool standards, and XMI export are not yet fully supported.  Lastly, 

the level of code granularity is not mature.  As an example, none of the tools had a way 

to specify screen layouts and other human factors requirements. In the author‘s opinion, 

these all represent significant roadblocks and financial impacts for software companies. 

There are many opportunities for MDSD.  First, MDSD modeling gives visibility 

to the enterprise software implementations.  Engineers can leverage all previously 

modeled systems and designs by simply reviewing the model abstractions.  The net is 

increased software velocity and design consistency.  Second, the code produced from 

MDSD generation is highly standardized and very uniform.  That translates to lower 

maintenance costs because developers can more quickly identify with the code base. 

Last, the conversion of developers from procedural languages to object oriented 

technologies can be bridged by using MDSD. 

Threats represent a major area for MDSD.  First, the inertia that stands in front of 

this approach is gigantic.  The resistance to model centric engineering both inside and 

outside the software industry is almost insurmountable.  Today‘s mainstream workplace 

mindset equates coding to productivity, not models.  Without the tools generating robust 

18 



code, MDSD will never be fully adopted.  Developers will fallback to traditional coding 

to get their deliverables, and leave MDSD modeling stranded.  Reverse engineering 

techniques could help, but again the tools need to be mature enough to properly represent 

the original source code.  The second major threat to MDSD is the —all or nothing“ aspect 

to the approach.  Model-driven software development doesn‘t lend itself to hybrid 

enterprise solutions œ some systems traditional, some model driven.  This negates some 

the MDSD reusability strength. System assets that are not visible to the models cannot be 

leveraged. 

Conclusions 

Can Model-Driven Software Development provide reduced costs while at the 

same time speeding up software delivery?  In the author‘s opinion, Model-Driven 

Software Development is the correct vision for the software industry, and a natural next 

step in software progression.  It‘s not idealistic, it‘s real.  Engineers and customers will 

ultimately see benefit from simplified systems and consistent system behaviors.  It will 

speed up software deliveries.  But, it is also the author‘s opinion that MDSD will not 

receive mainstream adoption. The transition will be too slow due to the developer 

resistance and immaturity of tools.  Software engineering should be enabling for 

corporations, not inhibiting. Speed to market and development responsiveness are too 

large of expectations in most corporations to overcome the MDSD perceptions. 

The case study was the key contributor in reaching this conclusion.  See table 4 

for a summary of the case study summary.  It confirmed that MDSD is good, but still has 

a lot of room for advancement.  The case study demonstrated the code delivery velocity, 

but the tradeoff was an increased effort surrounding models and code management.  More 

19 



fully defined UML models would have certainly altered the results of the case study for 

Java code generation, but not in C# code.  The ramp-up time required for full MDSD 

modeling is significant.  Cost savings would only be realized in the long run.  Overall, the 

case study did not fully meet the original thesis expectations.  However, it did clarify the 

current conditions and future direction of MDSD. 

Table 4: Case Study Result Summary 
MDSD 
Summary 

Software Velocity 

Pros Cons 
1) faster code delivery 1) longer modeling cycles 

Software Complexity 
1) less complex to create code 
2) representation of domain specific 
need through DSL 
3) coding abstracted away through 
models/code generation 
4) nice visualization capabilities 

1) less code complete 
2) higher modeling complexity 
3) higher prerequisite modeling 
knowledge required 

Software Reuse 
1) able to leverage modeled classes 
multiple time 

1) must model everything in order to 
have visibility 

Overall 
1) Conceptually much cleaner 
2) Clear abstract and reuse 
capabilities 
3) Extremely quick code generation 

1) Tools are very immature, causing 
deficiencies in MDSD processes 

Future Research 

The road to success is always under construction. Model-Driven Software 

Development reflects the possibilities that lie ahead for the software industry.  MDSD 

shows potential, but will encounter huge resistance.  It will be interesting to witness the 

direct correlation between MDSD tools maturity versus industry adoption.  If the tools 

can develop more fully and the knowledge can become more conventional to IT, then 

MDSD will alter the face of the software industry. 

20 



ANNOTATED BIBLIOGRAPHY


Balmelli, L. (2006) Model-Driven Systems Development. Retrieved Dec 27, 2006,
 from http://www.research.ibm.com/journal/sj/453/balmelli.html 

Discusses the IBM approach to MDSD, which seems to make a lot of 
sense to me. Called Rational Unified Process for Systems Engineering (RUP SE). 
Probably used for Applied Case Study.  This article seemed to —speak“ to me 
more than others on process. (5*) 

Bettin, Jorn. (2002) Measuring the Potential of Domain-Specific Modelling Techniques. 
Retrieved Dec 2, 2006, from 
http://www.dsmforum.org/events/DSVL02/bettin.pdf 

The article addresses the metrics of MDSD directly compared to a fully 
—manual“ software development and with —traditional“ UML-based software 
development. These metrics will be highly useful for the Critical Analysis section 
of the Thesis.  The example metrics seem valid for the small example, but would 
be concerned how they translate to other applications. (4*) 

Bettin, Jorn. (2004). Model Driven Transformation?. MDSD Introduction. Retrieved 
Dec 30, 2006. http://www.modeldriventransformation.com/ 

The first half of this article is good with terminology, but the second half 
is not relevant. Terminology and approaches in this domain space are used very 
interchangeably.  Due to the theoretical nature, some of the articles are confusing 
in respect to what arena they are trying to address.   I think a terminology or 
glossary will be necessary in order to clarify concepts more precisely.  At 
minimum, a section is needed to discuss the various approaches, distinctions, and 
their differentiations. (MDA,MDD, MDSD, Software Factories).  Many of Jorn‘s 
articles are repeats (3*) 

Bettin, Jorn. (2004) What is MDSD? MDSD Introduction. Retrieved Dec 4, 2006,
 from http://www.mdsd.info/mdsd_cm/page.php?page=intro 

Might be good reference to cite for a glossary in the paper if one is 
needed.  This series of websites from Jorn Bettin are all excerpts from his 
textbook Model-Driven Software Development. They provide good basis, but the 
textbook is more comprehensive.   Probably use the text though, better fully 
compiled source. (2*) 

Bettin, Jorn. (2004) Model-Driven Software Development: An emerging paradigm for 
Industrialized Software Asset Development.  Retrieved Dec 1, 2006,

 from http://www.softmetaware.com/mdsd-and-isad.pdf 
This article presents some of the reasons that MDSD is becoming an 

emergent technology.  The —why is this important“ perspective.  Again, it‘s 
excerpts from his textbook.  It provides a good foundation for the MDSD 

21 

http://www.research.ibm.com/journal/sj/453/balmelli.html
http://www.dsmforum.org/events/DSVL02/bettin.pdf
http://www.modeldriventransformation.com/
http://www.mdsd.info/mdsd_cm/page.php?page=intro
http://www.softmetaware.com/mdsd-and-isad.pdf


approach. It also looks at the economics of software development.  Very nice 
reference articles on metrics of software.  Has a nice reference diagram for the 
Traditional-to-MDSD transition (pp. 22) (3*) 

Bettin, Jorn. (2004) Model-Driven Software Development Activities.  The Process View of 
an MDSD Project. Retrieved Dec 6, 2006, from 
http://www.softmetaware.com/mdsd-process.pdf 

This article provides a high level overview of the essential software design 
and development activities in sequential order.  I will utilize for the applied study. 
(3*) 

Cook, Steve. (2004) Model-Driven Architecture and Domain Specific Modeling. 
Retrieved Nov 11, 2006, from http://www.bptrends.com/publicationfiles/04
04%20COL%20MDSD%20Frankel%20-%20Bettin%20
%20Cook.pdf#search='model%20driven%20software%20development%20isbn' 

The article is primarily grounded from an MDA perspective, but branches 
out to embrace the MDSD approach. It discussed the need for more generators. 
Discusses some of the economic aspects of future MDSD growth.  It also contains 
an excerpt from Jorn Bettin‘s textbook and replicated from the Softmetaware.com 
articles above.  The section from Steve Cook‘s response article provides a good 
counter-discussion to MDSD and MDA. (3*) 

Eclipse.  Eclipse MDDi Project. (2006) Eclipse Model Driven Development Integration. 
The Eclipse Foundation.  Retrieved Dec 17, 2006, from 
http://www.eclipse.org/proposals/eclipse-mddi/ 

This article seemed overwhelming at first.  It describes the integration of 
model driven technologies into a single platform. The project is still developing, 
so a bit evolving. (3*) 

Hailpern, B., Tarr, P. (2006) Model-driven development: The good, the bad and the ugly. 
Retrieved Jan 12, 2006, from 
http://www.research.ibm.com/journal/sj/453/hailpern.html 

This article presents an overview of MDD, and then does an analysis.  A 
very concise article on the warts, stigma, and challenges for MDD. (5*) 

Mellor S, Clark A, Futagami, T. (2003) Model-Driven Development.  Retrieved Dec 2,
 2006, from http://doi.ieeecomputersociety.org/10.1109/MS.2003.1231145 

Article discusses pros and cons of models/modelers, and model 
transformations (2*) 

OOPSLA Conference 2004. Model-Driven Software Development: Introduction & Best 
Practices. (n.d.). Retrieved Nov 12, 2006, from 
http://www.oopsla.org/2004/ShowEvent.do?id=101 

Throughout all of the research, the two names below continued to be 
published and referenced by other authors as authority: 
—Jorn Bettin, SoftMetaWare:  Jorn Bettin is a software consultant with a special 
interest in techniques to optimise the productivity of software development teams 

22 

http://www.softmetaware.com/mdsd-process.pdf
http://www.bptrends.com/publicationfiles/04-
http://www.eclipse.org/proposals/eclipse-mddi/
http://www.research.ibm.com/journal/sj/453/hailpern.html
http://doi.ieeecomputersociety.org/10.1109/MS.2003.1231145
http://www.oopsla.org/2004/ShowEvent.do?id=101


and in designing large-scale component systems. Prior to co-founding 
SoftMetaWare in 2002 he spent 13 years as a consultant and mentor in the IT 
industry in Germany, New Zealand, and Australia. He has implemented 
automated, model-driven development in several software organisations, has 
worked in methodology leadership roles in an IBM product development lab, and 
enjoys leading international teams dispersed across several locations.“ 
—Markus Voelter, Independent Consultant:  Markus works as an independent 
consultant on software technology and engineering. He focuses on the 
architecture of large, distributed systems. Over the last years, Markus has worked 
on several model-driven software development projects in the enterprise and 
embedded world. Examples include banking, automotive and radio astronomy. 
Markus is a regular speaker at the relevant national and international conferences. 
For example, he has presented at ECOOP, OOP, OOPSLA, ACCU. Markus is the 
(co-)author of several patterns, many magazine articles, as well as Wiley's "Server 
Component Patterns" book“ (1*) 

SEI Software Engineering Institute. (2006). Model Driven Architecture MDA. Carnegie 
Mellon University, 19 January, 2006. Author: G 
Lewis.http://www.sei.cmu.edu/isis/guide/technologies/mda.htm 

Good quote to show the relationship between MDA, MDD, and MDSD. 
This article is a concise source for MDA approach, definitions and 
differentiations.  But only MDA.  It quickly runs through the MDA background 
and standards.  This will be useful for the MDA foundational aspects. The article 
discusses some of the MDA restrictions, immaturity, and future.  It‘s a good 
counter discussion. (3*) 

Stahl, T., & Volter, M. (2006). Model-Driven Software Development: Technology, 
Engineering, Management.  Hoboken, NJ: John Wiley & Sons, Inc.. 

This reference text addresses the entire practice of MDSD.  Since the 
concepts are relatively new, section 1 discusses the theories behind the MDSD 
approach. The authors seem to make it a point to differentiate and separate 
themselves from the CASE tools and Model Driven Architecture from OMG. 
The second section goes into a deep dive on the specifics of MDSD models and 
generation.  This section is very architecture framework in nature.  This should be 
the most useful area as it relates to the case study. It appears that the authors 
assume the average IT professional has access to model generators and code 
generators in order to show their ideas in action.  That is simply not reality and 
could prove to be a roadblock for the applied study.  The final two sections won‘t 
be utilized much.  Section 3 focuses on the software development lifecycle this is 
needed to support MDSD techniques.  The final section discusses management 
required for MDSD, such as pilot programs, roles, and organizational structure. 
This text might be too focused on building —the perfect architecture“ and theories. 
It assumes a thorough understanding of MDA approach and standards, as well as 
UML notation. This is a bit ironic since the authors try so hard to differentiate 
MDSD from MDA. (5*) 

Uhl, Axel. (2003) Model Driven Architecture is Ready for Prime Time. IEEE Software. 

23 



Retrieved Nov 30, 2006 from http://computer.org/software 
This article discusses the advancements and maturity in software 

engineering.  MDA is the next logical step in the maturity cycle, as well as 
counterpoint anchored more in today‘s reality rather than theoreticals. (4*) 

Wikipedia. (2006) Model-Driven Architecture. Wikimedia Foundation, Inc., 
Retrieved Dec 17, 2006, from 
http://en.wikipedia.org/wiki/Model_Driven.Architecture 

This article gives good context for the MDA approach as a building block 
toward MDSD.  Good definition. (2*) 

24 

http://computer.org/software
http://en.wikipedia.org/wiki/Model_Driven.Architecture


REFERENCE LIST


Balmelli, L. (2006) Model-Driven Systems Development. Retrieved Dec 27, 2006,
 from http://www.research.ibm.com/journal/sj/453/balmelli.html 

Bettin, Jorn. (2002) Measuring the Potential of Domain-Specific Modelling Techniques. 
Retrieved Dec 2, 2006, from 
http://www.dsmforum.org/events/DSVL02/bettin.pdf 

Bettin, Jorn. (2004a) What is MDSD? MDSD Introduction. Retrieved Dec 4, 2006,
 from http://www.mdsd.info/mdsd_cm/page.php?page=intro 

Bettin, Jorn. (2004b) Model-Driven Software Development Activities.  Retrieved Dec 1,
 2006, from http://www.softmetaware.com/mdsd-process.pdf 

Bettin, Jorn. (2004c) Model-Driven Software Development: An emerging paradigm for 
Industrialized Software Asset Development.  Retrieved Dec 1, 2006,

 from http://www.softmetaware.com/mdsd-and-isad.pdf 

Cook, Steve. (2004) Model-Driven Architecture and Domain Specific Modeling. 
Retrieved Nov 11, 2006, from http://www.bptrends.com/publicationfiles/04
04%20COL%20MDSD%20Frankel%20-%20Bettin%20
%20Cook.pdf#search='model%20driven%20software%20development%20isbn' 

Children‘s Ministry. (2004)  First United Methodist Church in Colorado Springs Online. 
Retrieved Nov 4, 2006, from http://fumc-cs.org/education/kcity.html. 

Eclipse.  Eclipse MDDi Project. (2006) Eclipse Model Driven Development Integration. 
The Eclipse Foundation.  Retrieved Dec 17, 2006, from 
http://www.eclipse.org/proposals/eclipse-mddi/ 

Hailpern B., Tarr P. (2006) Model-driven development: The good, the bad and the ugly. 
Retrieved Jan 12, 2006, from 
http://www.research.ibm.com/journal/sj/453/hailpern.html 

OOPSLA Conference 2004. Model-Driven Software Development: Introduction & Best 
Practices. (n.d.). Retrieved Nov 12, 2006, from 
http://www.oopsla.org/2004/ShowEvent.do?id=101 

Middleware. The Middleware Company. (2003). Model Driven Development for J2EE 
Utilizing a Model Driven Architecture (MDA) Approach œ Productivity Analysis. 
Retrieved Dec 3, 2006. 
http://www.compuware.com/dl/MDAComparisonTMCfinal.pdf 

25 

http://www.research.ibm.com/journal/sj/453/balmelli.html
http://www.dsmforum.org/events/DSVL02/bettin.pdf
http://www.mdsd.info/mdsd_cm/page.php?page=intro
http://www.softmetaware.com/mdsd-process.pdf
http://www.softmetaware.com/mdsd-and-isad.pdf
http://www.bptrends.com/publicationfiles/04-
http://fumc-cs.org/education/kcity.html
http://www.eclipse.org/proposals/eclipse-mddi/
http://www.research.ibm.com/journal/sj/453/hailpern.html
http://www.oopsla.org/2004/ShowEvent.do?id=101
http://www.compuware.com/dl/MDAComparisonTMCfinal.pdf


Mellor S, Clark A, Futagami, T. (2003) Model-Driven Development.  Retrieved Dec 2,
 2006, from http://doi.ieeecomputersociety.org/10.1109/MS.2003.1231145 

SEI Software Engineering Institute. (2006). Model Driven Architecture MDA. Carnegie 
Mellon University, 19 January, 2006. Author: G 
Lewis.http://www.sei.cmu.edu/isis/guide/technologies/mda.htm 

Stahl, T., & Volter, M. (2006). Model-Driven Software Development: Technology, 
Engineering, Management.  Hoboken, NJ: John Wiley & Sons, Inc.. 

Volter, M, Bettin, J. (2004) Patterns for Model-Driven Software Development. 
Retrieved Nov 17, 2006, from http://www.voelter.de/data/pub/MDDPatterns.pdf 

Wikipedia. (2006) Model-Driven Architecture. Wikimedia Foundation, Inc., 
Retrieved Dec 17, 2006, from 
http://en.wikipedia.org/wiki/Model_Driven.Architecture 

26 

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1231145
http://www.voelter.de/data/pub/MDDPatterns.pdf
http://en.wikipedia.org/wiki/Model_Driven.Architecture


GLOSSARY 


Application Engineering. MDSD models for the actual platform and system context 
including PSM and deployment specifications 

Constituent. A term used for a child who is not yet confirmed and not a church member. 

Domain. A bounded area of knowledge.  Domains can relate to knowledge about vertical 
industries (business domains and also to software implementation technologies 
(technical domains). 

Domain Engineering.  MDSD models for the overall business context including 
analysis, design, and domain specific concepts. 

Domain-Specific Language (DSL).  MDSD template modeling language, semantics, 
and syntax used for expressing key aspects of the domain. 

Meta Object Facility (MOF). An approach adopted by OMG that is a UML metamodel, 
or the model that describes the UML itself 

Model Driven Development (MDD).  A term used interchangeably with MDSD/MDA. 

Model Driven Architecture (MDA).  Adopted by the Object Management Group 
(OMG) in 2001. MDA is an approach to software development that provides a set 
of guidelines for structuring specifications expressed as models.  It is model 
driven because it provides a means for using models to direct the course of 
understanding, design, construction, and modification. (Wikipedia, 2006). 

Object Constraint Language (OCL). A language used for declaring and describing 
UML model rules. 

Query/Views/Transformations (QVT).A standard developed by OMG, compatible with 
MDA, to process model transformations from source to target. 

Platform Independent Model (PIM). The model describing the business logic, 
undiluted by technical concerns. 

Platform Specific Model (PSM). The model used to describe the actual platform
 implementation details. 

Unified Modeling Language (UML). An object modeling language and specification 
often utilized in software engineering. 

XML Metadata interchange (XMI). A standard for exchanging metadata models and 
information using XML as the basis.  Allows for interoperability between models. 

27 



APPENDIX A œ MDSD APPROACH 
Table 5: MDSD - RUP SE approach (Balmelli, 2006) 

RUP SE Steps 

Overall Process 
1)	 Models: RUP SE has four types of architectural models: Context, Analysis, 

Design, and Implementation.  Each represents a more granular drill down of 
the system development. (IBM, 2006). 

2)	 Viewpoints: A viewpoint is a subset of the architecture model that addresses a 
certain set of engineering concepts (IBM, 2006). 

3)	 Views: Views are the intersections between Models and Viewpoints.  Views 
contain the artifacts to fulfill the viewpoint. (IBM, 2006). 

4)	 Each model and viewpoint is a separate diagram that is comprised of view 
artifacts. 

5)	 Each subsequent granularity level had direct built-in relationships maintained 
from the parent diagram. 

Domain Engineering Process 
1)	 The context level model is the top level model which shows the entire system 

as a single entity and its external entities. 
2)	 The analysis model level represents the architectural perspective of the 

system, the internal elements, and subsystems. 
3)	 The design level shows the actual system‘s software specifications.  This is 

most closely related to traditional UML modeling.  The analysis and design 
levels represent the Platform Independent Model (PIM). 

Application Engineering Process 
1)	 The implementation model level which refines the PIM into the Platform 

Specific Model (PSM) with the modeling of chosen domain technologies. 

Code Generation Process 
1)	 Generate the code from PSM - Rational SA will perform the model-to-text 

code generation. 
2)	 Manual code œ Create any hand crafted code that cannot be represented in 

models. 
3)	 Iterate over models to refine granularity and refactor code changes. 

28 



Table 6: MDSD - Agile approach (Bettin, 2004b) (Stahl, Voelter, 2006) 


29 



Agile Steps 

Overall Process 
1)	 If possible, extract the existing infrastructure from a running application or a 

prototype as a baseline. 
2)	 Develop the initial infrastructure with one initial application simultaneously 

(Iterative Dual-Track Development).  The development will switch focus 
between infrastructure (normally one step ahead) and domain-specific 
application development. 

3)	 Validate each iteration, refinement, and application against the metamodel and 
models. 

4)	 With every step, elaborate on the domain-specific knowledge and modeling 
and generate code to validate results.  When necessary, re-extract the platform 
infrastructure. 

Domain Engineering Process 
1)	 Domain analysis and design - Develop the product platform model and 

implement it into metamodel tool.  Implement all domain specific notation 
and constraints into the metamodel. 

2)	 DSL - Build the domain-specific language (DSL).  The DSL is a template, 
and resembles pseudo-code by nature.  It acts as the reference model standard 
for all classes within the domain.  This piece is probably the most critical for 
Model-Driven Software Development.  It will later be validated and iterated 
with an actual reference implementation. 

3)	 PIM - Refine the domain-specific metamodel into an architecture-centric 
model.  Normally this is specified in UML and OO terms.  This model 
encompasses some of the core architectural concepts and stereotypes that are 
required within the system.  This model also represents the Platform 
Independent Model (PIM) and is a technology-independent representation of 
layered architecture. 

4)	 Transformers œ Create generator templates that will convert the UML/XMI to 
skeleton implementation model. 

Application Engineering Process 
1) 	 PSM - Transform the PIM into a Platform Specific Model (PSM) through the 

use of DSL, Transformers and rules.  This model will include the some 
specific technology entities like J2EE or .NET.  In addition to target platform 
UML, it includes configuration files, deployment information, and other 
domain specific artifacts. 

2)	 Technical Subdomains - Partition the system into distinct technical 
subdomains to keep the models simple.  Make existing or legacy system 
integrations separate technical subdomains to achieve model-driven 
integration. 

3)	 Code Separation - Segregate generated code from hand-crafted code in models 
4)	 Interfaces - Model fully externalized interface definitions.  This support 

component based architecture. 

Code Generation Process 
1)	 Generate the code from PSM œ This step is purely mechanical.  No additional 

information is included. 
2)	 Manual code œ Create any hand crafted code that cannot be represented in 

MDSD or DSL. 
3)	 Reincarnate as many code changes back into the model as soon as possible. 

30 



31




APPENDIX B œ CASE STUDY NARRATIVE 

Business Problem 

First United Methodist Church was founded as the first church in Colorado Springs in 
1871.  The Children‘s Ministry is primarily focused on religious development of children 
who range in grades from kindergarten through sixth. 

The following excerpt from FUMC website provides information on the mission of the 
Children‘s Ministry. 

FIRST UNITED METHODIST CHURCH œ CHILDREN‘S MINISTRY 

First United Methodist Church has a long-term vision of transformed lives through children's Sunday 
school. We want our children to experience the love of Christ, to embrace Christ personally, and to 
develop into young adults with a mature and solid faith. To do this, we are providing a fun and purposeful 
learning environment that will help them remember their Sunday school experience all the days of their 
lives. Studies have shown that children retain better what they learn when they experience it in multiple 
ways. 

First United Methodist Church is investing in a multi-dimensional learning environment for our kids. Your 
child will learn the principles of the Christian faith through art, music & movement, cooking, drama, video, 
puppets, stories, science, computers, and yes - even games! (Children‘s Ministry, 2004) 

FUMC Children‘s Ministry has experienced turnover in leadership over the past five 
years.   During that turnover, much of the information concerning the constituency has 
been lost.  In addition, many of the processes and procedures have been lost, revamped, 
or pieced together.  The ministry has managed most of their data needs through the use of 
manual processes, spreadsheets, and word documents. This disconnected approach is 
cumbersome and difficult to process data efficiently.  It often takes hours to pull together 
basic information and reporting.  They need a solution for managing administrative 
information. 

User Goals/Purpose 

The new Director, Cheryl Ledford, has realized the need to standardize and automate 
portions of the ministry.  She is looking to revitalize the Children‘s Ministry through 
automation.  Her vision is to reinstate the constituency information, improve the 
attendance, and begin a curriculum program leading to confirmation.  As part of that 
vision, she is in need of three main tracking systems: children, attendance, and courses. 
Automation would result in providing new opportunities to provide superior services to 
children, parents, volunteers, and teachers.  The primary goals would be higher data 
visibility and accessibility, management of information, and data integration with other 
church software. 

32 



Business Impact


By providing a single, integrated tracking system, the ministry can streamline processes 
and provide more accurate information.  Ultimately they will begin to grow the children‘s 
department within the church.  Additionally, by having the information more accessible, 
FUMC should have the ability for timely and concise reporting. 

Vision œ Approaches/Solutions 

Once the basic system requirements and design work are complete, FUMC will be faced 

with the opportunity to evaluate alternate paths to complete this project. The Buy versus

Build options should need to be considered and compared against delivery speed.

There are commercial software packages on the market that could track this information.

Preliminary software investigations have determined that FellowshipOne

(http://www.fellowshipone.com) or Church Windows (http://www.churchwindows.com) 

may represent good buy options.

The system rollout will be implemented in multiple phases.


-	 Phase 1 will be a basic proof of concept to demonstrate the basic system needs 
and software layers.  Additionally this phase acts as the proof of concept for 
Model-Driven Software Development using the constituent data. 

-	 Phase 2 will continue build out the architectural layers from Phase 1, to embody 
and more robust system. 

-	 Phase 3 will include additional layers for security processing and possible barcode 
scanning for check in. 

-	 Phase 4 will provide a layer for processing with interface with other church 
software packages. 

33 

(http://www.fellowshipone.com)
(http://www.churchwindows.com)


APPENDIX C œ CASE STUDY EXHIBITS 

Business Models 

Figure 5: Entity Relationship Diagram 

Church 

Ministry 

Constituent 

Assistant 

Church Activity 

Program/Curriculum 

Course 

funds [1:n] 

has [1:n] 

attends [M:N] 

organizes [1:n] 

involve [M:N] 

establishes [1:n] 

has [0:n] 

includes [0:n] 

teaches [M:N] 

Sunday School 
Choir 
Hand Bells 
Acoly te  
P lays  

Attendance 

tracks [1:n] Event Schedule 

Person 

has a [1:M] 

has [1:n] 

is a [1:M] 

34 



Data Models


Figure 6: Logical Data Model 

Figure 7: Physical Data Model - Constituent related tables


35 



User Experience Mockups


Figure 8: UI Mockup - Main Menu 

36 



Figure 9: UI Mockup - Constituent Screen


37 



APPENDIX D œ MDSD MODEL EXHIBITS


RUP SE Context Models


Figure 10: Use Case - Overall Context 

38 



Figure 11: Use Case - Manage <<Constituent>>


39 



Figure 12: Analysis Diagram: Manage Constituent œ Class Participants


Figure 13: Analysis Diagram: Manage Constituent œ Sequence Flow 

40 



Software Models


Figure 14: PIM - Presentation Layer 

41 



Figure 15: PIM - Business Layer 


42 



Figure 16: PIM - Data Access Layer 


43 



Figure 17: PIM - Domain Layer


44




APPENDIX E œ CASE STUDY METRICS 


Effort Tracking


Tasks Subtask Date Actual 
Analysis
 Interview 11/1/2006 0.75
 Context 11/1/2006 1
 Requirements 11/3/2006 1 

Traditional UML and C# coding approach 
Modeling  
 Use Cases 11/3/2006 1
 Use Cases 12/18/2006 1
 Use Cases 1/18/2007 1
 Analysis diagrams 1/21/2007 1
 Analysis diagrams 1/29/2007 2
 Analysis diagrams 1/30/2007 2
 Analysis diagrams 1/31/2007 1.5
 Design diagrams 2/1/2007 1.5
 Design diagrams 2/2/2007 1 
Code Coding 2/3/2007 3
 Coding 2/3/2007 3
 Coding 2/3/2007 2.5
 Coding 2/3/2007 1.25 Total code = 12.25 

 Coding 2/3/2007 2.5 
complete with initial draft 
code for constituent 

Total 24.25 

MDSD approach 
Modeling Use Cases 2/5/2007 1
 Use Cases 2/6/2007 1
 Use Cases 2/7/2007 0.5
 Analysis diagrams 2/7/2007 2
 Analysis diagrams 2/8/2007 1
 Design diagrams 2/12/2007 2
 Design diagrams 2/13/2007 1
 Design diagrams 2/15/2007 1 

Code Code Generation 2/16/2007 1.5 

shell code stubs only for 
all methods, minimal 
documentation with 
documentation blocks 

Total 11 

estimated 25% code 
complete with domain 
object generation 

45 


