
Regis University Regis University

ePublications at Regis University ePublications at Regis University

Regis University Student Publications
(comprehensive collection) Regis University Student Publications

Spring 2006

Audio Conferencing Participant List Manager 3.0 Audio Conferencing Participant List Manager 3.0

Maurice Olsen
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Olsen, Maurice, "Audio Conferencing Participant List Manager 3.0" (2006). Regis University Student
Publications (comprehensive collection). 306.
https://epublications.regis.edu/theses/306

This Thesis - Open Access is brought to you for free and open access by the Regis University Student Publications
at ePublications at Regis University. It has been accepted for inclusion in Regis University Student Publications
(comprehensive collection) by an authorized administrator of ePublications at Regis University. For more
information, please contact epublications@regis.edu.

https://epublications.regis.edu/
https://epublications.regis.edu/theses
https://epublications.regis.edu/theses
https://epublications.regis.edu/regiscollege_etds
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F306&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F306&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/306?utm_source=epublications.regis.edu%2Ftheses%2F306&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
School for Professional Studies Graduate Programs

Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

Audio Conferencing Participant List Manager 3.0

List Manager 3.0

Maurice Olsen

Regis University

School for Professional Studies

Master of Science in Computer Information Technology

Abstract

Global Crossing‘s conferencing division specializes in audio, video, and web-based

collaboration. The Conference Participant List Manger 3.0 application framework (LM)

allows call center operators to add, modify, delete, and report on audio conference call

participant information. LM communicates with the physical conferencing bridge device

through an API provided by the bridge vendor. The LM software framework consists of a

thin-client, web service, platform service, and a domain definition library. The

architecture implemented in the LM software project allows for ease of maintenance and

speed of enhancement delivery through the use of software design patterns.

1

Table of Contents

Executive Summary / Overview...4

Company Overview and Product Scope ...4

Audio Conferencing Bridge Definition ...4

Audio Conference Call Moderator and Participant Definitions..............................5

Global Crossing Conferencing Operator Roles..6

Project Definition and Scope...7

Participant List Manager Application Definition ..7

List Manager Application (Legacy Architectural Overview)8

List Manager Application (Proposed Architectural Overview)...........................9

Obstacles / Constraints..11

Summary..12

Chapter 1: Research and Methodology ...14

Reference and Research Approach...14

LM .NET / Citrix Requirement ..14

N-tier/MVC Architecture Overview ...15

Ready-Access Admin GUI Framework / .NET Assemblies19

Tiers / Software Namespaces ..20

Contribution to the Field...20

Summary..21

Chapter 2: —List Manager Domain Library“ Software Project.............22

—List Manager Domain Library“ (LMDL) Project Overview22

—List Manager Domain Library“ Project Methodology Implemented26

Summary..27

1

Chapter 3: —List Manager Web Service“ Software Project28

—List Manager Web Service“ (LMWS) Project Overview.....................................28

—List Manager Web Service“ Project Design Methodology...................................29

Factory Design Pattern..31

Socket Programming ...35

Summary..39

Chapter 4: —List Manager Thin-Client“ Software Project.....................40

—List Manager Thin-Client“ (LMTC) Project Overview.......................................40

—List Manager Thin-Client“ Project Design Methodology40

Summary..41

Chapter 5: —List Manager System Service“ Software Project43

—List Manager System Service“ (LMSS) Project Overview43

—List Manager System Service“ Project Design Methodology43

Summary..44

Chapter 6: Project History / Software Development Life Cycle46

Overview ..46

LM Project History ...46

LM Software Development Life Cycle..47

Requirements Phase ..49

Specification / Design / Implementation Phase...49

Certification Phase ..50

Deployment Phase ...54

Maintenance Phase ..55

Summary..56

: Lessons Learned ..58
Chapter 7
Lessons Learned Overview ...58

2

Call Center Supervisor Interview ...58

Pactolus API (New Audio Bridge Type) ...60

Scope Creep ...61

Software Certification ...62

Summary..63

Works Cited ..65

Annotated Bibliography ...66

Dialogs / Field restrictions...83

List Manager (Main) Dialog. ...83

List Manager (Add/Update) Dialog..87

List Manager (Copy To) Dialog...89

List Manager (Delete) Dialog ..90

List Manager (Report) Dialog ..92

List Manager (Report Headings) Dialog ..94

Dialog PROCESSES ...95

3

Executive Summary / Overview

Company Overview and Product Scope

Global Crossing Conferencing (GCC) is a division of Global Crossing, which

specializes in audio, video, and web-based conferencing for small, medium, and large

businesses. GCC has partnered with other conferencing-based companies to offer web-

based conferencing services. GCC‘s video and audio conferencing products have been

completely developed in-house, with the exception of the physical audio and video-based

bridge devices, which actually coordinate conference calls at a physical level. This

project will focus on the audio portion of a conference call, which happens to be the most

used conferencing service generating more revenue many times over web and video-

based conferencing within GCC.

Audio Conferencing Bridge Definition

In order to coordinate an audio-based conference call, there is one major piece of

hardware needed, an audio conferencing bridge. An audio conferencing bridge is a

physical device that accepts telephony connections from many different service providers

and combines all lines into a single call. Each telephony connection accepted by the

bridge is associated with a corresponding software-based port. Each port, which

corresponds to exactly one telephony connection is then conjoined into a single call all

participants are able to listen to, as well as interact with. Figure 1 below is a diagram

depicting the relationship between the end-user devices and the actual physical bridge.

The telephony network is the base of the audio conferencing bridge network and

telephony, cellular phones, regular phones, and VOIP supported computer systems are

4

allowed to connect to the physical bridge device. Once a conference call has begun, a

caller can invoke bridge commands directly by use of their phone key pad. These

operations include muting a call, un-muting a call, call transfer, and many others. It is

also important to note that these audio conferencing bridges are capable of supporting

conference calls in the hundreds of thousands and crossing international boundaries.

Cellular Phone

Telephony Network Node VOIP Supported

Cellular Phone

Audio Conferencing Bridge

Cellular Phone

Telephony Network Node VOIP Supported

Figure1: Audio conferencing bridge network architecture.

Audio Conference Call Moderator and Participant Definitions

There are two types of callers that are accepted into an audio conferencing bridge:

moderators and participants. A participant is defined by the assignment of a single caller

to a software-based port on the physical bridge. Participants have the ability to mute and

5

un-mute their line as well as signal a moderator for questions and comments. The

moderator is defined as having all qualities of a participant, plus having the ability to

mute all participant lines, hand-off the call to another participant, transfer the call, keep

the call open after the moderator has left the meeting, as well as signal a GCC operator to

help with call coordination and advanced call functions.

An audio conference call can be restricted to specific participants as well as an

open-call, which any participant could join either with or without GCC operator

intervention. If the call is to be restricted, it is common for a company to send GCC a

—conference call participant pre-list.“ This pre-list is uploaded to the bridge environment

prior to the starting of a call. When a participant calls into the bridge, a GCC operator

intercedes to confirm the participant is on the participant pre-list before the participant is

accepted into the conference call.

Global Crossing Conferencing Operator Roles

The GCC operator is a Global Crossing call center employee that has the ability to

intercede into any conference call to help facilitate the call from the time the call was

created on the audio bridge and concluding with when the last participant disconnects

from the audio bridge. The GCC operator is responsible for uploading conference call

participant pre-lists, adding, updating, and removing participants from a conference call,

and sending participant post-call reports to the end customer, which in this case is a

moderator of the call in every occasion.

6

Project Definition and Scope

GCC will be adding a new audio conferencing bridge to its product service line-

up and development is needed on existing applications to support the new audio

conferencing bridge within the GCC environment. This new bridge will require new

development in billing, operations, marketing, and many other facets of the organization.

This thesis will focus on part one of a two-part operations development initiative. The

operations part requires development in two major systems: reservations and participant

call management. The reservations system manages conference call creation and

maintenance. These operations include adding, updating, and removing conference calls,

restricting participant requests, and making any —notes to the operator“ regarding the call

to take place.

 The participant call management operations system is used for adding, updating,

and removing participants, as well as, participant reporting, participant pre-list uploading,

and participant prioritization setup. Participant prioritization setup is used to prioritize

participants according to importance during the question and answer session of a

conference call. The participant call management operations system will be the focus and

scope of this thesis project.

Participant List Manager Application Definition

 Currently, the GCC operator uses an in-house developed application to facilitate

participant additions, updates, and deletions, as well as, participant pre-list uploading and

call reporting; this application is called —List Manager.“ (LM) LM manages lists of

conference call participants and allows the operator to interact with the physical bridge

7

directly from their personal computer. LM gives the operator the ability to add, update,

and delete participants, as well as the ability to report on participant-based details after

the conference call, which includes fields: connect time, disconnect time, location,

company, first name, last name, and more. (Levin, 2005, p.2)

List Manager Application (Legacy Architectural Overview)

The original version of LM currently hosted in production supports a single

bridge type and is a two-tier application framework, which consists of a single forms

application installed on an operator personal computer and an Informix database back-

end. The current LM application communicates with the audio bridges through the use of

shared database tables. LM writes directly to a single database table, which then is picked

up by the bridge directly; any changes made to the database tables containing participant

information take effect immediately on all audio-based bridges currently available in

GCC.

The two-tier architecture that was originally implemented for LM requires

database specific drivers as well as database specific settings to be hosted on the

operator‘s personal computer. The installation for the original version of LM is quite

intensive for IT professionals to maintain because not only does the software have to be

upgraded on all personal computers hosting the LM application, but they also have to

configure software ports, database drivers and settings, as well as the LM application

itself on the personal computer to host the application environment. This architecture has

made it difficult to change database settings in anyway since all operator personal

computers would have to be updated with the new settings and if any architectural

8

changes are required on either the database server or in the application environment, IT

professionals have to repeat the long installation process to perform the update. There are

currently over five hundred operator personal computers that host the LM application and

updating all personal computers with changes has been both problematic and time

consuming for all involved.

List Manager Application (Proposed Architectural Overview)

A business need has arisen to add an additional bridge type to LM. Along with the

additional bridge, management wants to integrate this new application into an existing

.NET framework and completely do away with the stand-alone Delphi version of LM.

The new features applying to all bridge types supported will include enhanced reporting

capabilities, mass participant upload capabilities, and increased participant information

available to the operator through the LM GUI.

The new LM application, titled —List Manager 3.0,“ is a complete application

rewrite and will use a Model-View-Controller (MVC) implementation of n-tier

architecture for application design, but will have to keep the same look and feel as the

original version of LM to cut down on training requirements for the operators during

release. (Levin, 2005, p.4)

An architecture is needed that would provide ease of future application

enhancements as well as database server changes. In order to facilitate these

requirements, a thin-client will be developed containing only view and validation code,

while the bulk of the business model will be hosted inside of a web service on a central

server. The web service will accept all thin-client connections simultaneously and be able

9

to conduct database persisting as well as direct bridge communication through the new

bridge vendor‘s API. Abstracting the business model from the actual installed client on

the operator‘s personal computer will allow for database settings changes and additional

bridge types to be added without having to modify the operator‘s installed version of LM.

The only conditions that will require a new operator client installation is the addition or

change to the operator GUI.

In addition to the thin-client and web service, there is also a need to add a server

process hosted as a separate application from the web service that calls methods out of

the web service in a timed fashion to do audio-bridge and local database synchronization.

Although the currently supported bridge type talks directly to the same database tables as

the original version of LM, this is no longer completely true with the new Pactolus

bridge. (Pactolus is the name of the manufacturer of the new physical bridge type being

added to GCC.) Synchronization of participant lists will have to take place between

GCC‘s local conferencing database and the actual bridge. This synchronization process,

hosted as a server process, will look-up all conference calls being conducted in a given

time period, when the call is started by a moderator, the synchronization server process

will run every two minutes, constantly taking participants added to the bridge and

synchronizing these participants with GCC‘s local database. Although you would think

that LM would be able to update both the bridge and the database during the LM session,

this is not the case. In addition to the LM application, the GCC operator also has an

additional application, which can modify participants directly on the bridge and this

application is provided by the bridge vendor to conduct calls when the call begins, so LM

10

will not be the only point of change for participant lists, thus requiring a synchronization

process to ensure that the data is consistent across the complete architecture.

Obstacles / Constraints

There are a few notable constraints that will need to be reviewed as part of the

application design. According to the requirements documentation provided, the LM

application must keep the same look and feel as the original LM application to cut down

on training costs and operator confusion.

There must be a complete abstraction of business logic from the forms installed

client to be hosted on the operator‘s PC. Ensuring that the client no longer possesses

business logic will ensure that IT professionals and software engineers will be able to

update and upgrade the application framework and the database framework without

having to push out another client installation to all operator personal computers.

In addition to abstracting business logic from the operator personal computer

installation, a suitable installer compatible with Microsoft Systems Management Server

2.0. (SMS) is also required. SMS is an enterprise application, which allows IT

professionals to push out personal computer installations remotely as well as maintain a

Microsoft Windows network.

The new LM application must be written using .NET technologies and must be

capable of integrating into an existing .NET application framework by use of a .NET

assembly plug-in. This requirement will require two separate builds of LM, a standalone

application version to be installed on a personal computer, as well as a plug-in version,

which will be installed into an existing .NET application framework hosted on a Citrix

11

Metaframe server. The .NET plug-in version of LM must give the end-user the capability

to print and save reports back to the calling computer running the Citrix client.

There are two notable obstacles involved with this project that has to do with

application performance and real-time data synchronization. Since a synchronization

process will be necessary to provide data consistency throughout the environment, mainly

between the actual bridge and an Informix database, there is a question regarding the

frequency of the updates and how that will impact an operator‘s ability to conduct a real-

time conference call. The other notable obstacle is application performance and

scalability in a large environment. The web service will have to support up to seventy-

five simultaneous requests. Load testing will have to be performed and performance

statistics confirmed with a business analyst and a GCC operations call center supervisor

before application sign-off will be given.

Summary

Global Crossing‘s conferencing division (GCC) specializes in hosting and

conducting conference calls for small, medium, and large businesses. GCC develops

software to conduct and mange these conference calls, which take place on a physical

device called a conferencing bridge.

A business need has arisen, which will require the participant list manager

application (LM), an application that maintains conference call participant information, to

be rewritten to integrate with existing .NET systems, support additional features, as well

as support the new Pactolus bridge type. The new application architecture will be

12

designed using an MVC implementation of n-tier architecture to facilitate easy

application upgrades and changes.

13

Chapter 1: Research and Methodology

Reference and Research Approach

The annotated bibliography referenced at the end of this text, can be broken down

into two major categories of interest: architecture and implementation. In the sections to

follow, both categories will be examined and corresponding reference support for

methodologies and implementations presented and implemented within this project. The

remainder of this chapter will focus on the overall architectural methodologies

implemented throughout the List Manager .NET software solution. The specific

methodologies and implementations used per .NET software project are examined in

detail in the chapters to follow.

LM .NET / Citrix Requirement

Global Crossing Conferencing (GCC) has been migrating legacy applications to

.NET component applications as the possibility arises; the migration is almost always a

full application rewrite. GCC has found this migration important in delivering a higher

level of service to its end-users. GCC creates this higher level of service with a .NET

forms application, which resides on a Citrix Metaframe server. The Citrix Metaframe

server allows for multiple end-users from various physical sites to use a single entry point

to access multiple application instances. The .NET forms application hosted on the Citrix

Metaframe server is called the —Ready-Access Admin GUI.“ This front-end application

allows for other .NET enabled applications to be plugged into its infrastructure through

.NET assemblies. Through this requirement, GCC has defined the technology to be used

in this project, —.NET“. (Levin, 2005)

N-tier/MVC Architecture Overview

 Architectural research was performed to implement software design patterns within

an n-tier application framework. The —Model-View-Controller“ (MVC) design pattern

allows software to be designed and architected to fit the n-tier development methodology,

which abstracts user interface logic from business process, —This is a fundamental design

pattern for the separation of user interface logic from business logic.“ (Microsoft

Corporation, 2004)

—N-Tier architecture refers to the architecture of an application that has at least 3

"logical" layers -- or parts -- that are separate.“ (Yang, 2001) An n-tier architected

application framework consists of many tiers of software abstraction and is unlimited in

the tiers that could be defined. This logical abstraction of business concepts into tiers

promotes reusability of code components as well as ease of maintenance; Figure 2 below

is a diagram depicting a common n-tier framework implementation using MVC.

15

User Interface layer

View Controller

Model

Business Manager Layer

Service Layer

Data Access Layer

Figure 2: N-tier software architecture / MVC architecture overlap.

Notice that the —view“ and —controller“ portion of the MVC design pattern are

part of the user interface tier of an n-tier methodology and that the —model“ component of

MVC contains all subsequent tiers thereafter. There is a clear separation between the user

interface tier, business tier, service tier, and data access tier in that each tier‘s collection

of class components only has visibility to the direct subsequent descendant tier

components, but has no knowledge of any components in the tiers above it or below it.

Ultimately, the —user interface“ tier only has knowledge of the —business manager“ tier

components and the —business manager“ tier components only have knowledge of the

—service tier“ components and this pattern is replicated throughout all tiers following the

16

same rules; this methodology promotes class decoupling. The following sections in this

text will examine the purpose of each tier in this basic n-tier framework. N-tier

architecture represents an unset number of possible tiers in an application system, but the

MVC pattern focuses largely on the n-tier implementation presented and so does this

project, so the scope of the layers defined in this methodology will be limited to what was

actually implemented in LM.

The —user interface tier“ of n-tier architecture contains software components used

to present and validate views to the end user of the system. In the MVC design

methodology, the —view“ and —controller“ components are located within the —user

interface tier“ of n-tier architecture. End-users will submit data through end-user

graphical user interfaces, which are then translated into —view“ classes in the underlying

application code. The —view“ component then passes the data back to a corresponding

—controller“ component for data validation. If the data is valid, control is then passed to

the —model“ tier in MVC for business processing and data persisting.

The —model“ portion of the MVC design pattern is used for performing business

process related tasks, such as data persisting and manipulation. The —model“ in MVC is

partitioned into three subsequent layers: manager layer, service layer, and data access

layer. (Yang, 2001)

The component tier in MVC that actually does the business processing is the

—manager tier,“ which exists within the —model tier“ of MVC. The —manager tier“ accepts

17

domain tier objects or simple data types as arguments from the controller tier and makes

programmatic business decisions based on these incoming dynamic parameters.

The —service“ tier of n-tier architecture is often times the layer that performs the

actual processing from within the application, with the exception of data access, which is

delegated to the next and final layer in our n-tier architecture, the —data access“ layer. The

—service“ tier makes decisions on how and where data is to be persisted and also often

times will operate on that data before returning the results back up to the end-user of the

application.

The last and final tier this text will examine is the —data access“ tier. The —data

access“ tier handles the formulations of queries and the direct communication with the

database back-end. The —data access“ layer is responsible for formulating requests to be

sent to the database, receiving those requests, and handling any errors that might occur

while the request is being processed.

LM .NET Solutions / Projects

Microsoft Visual Studio 2005.NET, the IDE that was used to develop the LM

application components, allows a developer to have a single solution, which is a logical

ordering of code that may contain application projects beneath it. The LM application

framework was created using a single .NET Solution, called —ListManager.“ The

—ListManager“ solution contains four separate application projects:

1. List Manager Thin-Client (LMTC): Thin-client end-user application.

18

http:2005.NET

2.	 List Manager Domain Library (LMDL): .NET dynamic link library containing

class definitions for the application domain.

3.	 List Manager Web Service (LMWS): ASP.NET web service application to host

the LM API.

4.	 List Manager System Service (LMSS): System service application that runs

according to set time intervals that calls LMWS methods to synchronize back-end

data.

Each .NET project hosted under a single .NET solution will create its own binary

executables or dynamic link libraries to be used and defined by its own memory space

and physical files.

Ready-Access Admin GUI Framework / .NET Assemblies

.NET Assemblies are flat files, which are represented with a —.dll“ file extension.

(Jillellamudi, 2004) The —.dll“ file extension stands for —dynamic link library“ (DLL) and

this file type is Microsoft platform specific. Unlike traditional dynamic link libraries,

.NET assembly versions of the .dll do not have to be registered within the windows

registry for use; these libraries are often times directly referenced by the application or

hosted in the .NET Global Assembly Cache (GAC). The Microsoft .NET Framework

allows for entire forms, web, service, and API-based applications to be fully or partly

contained within a .NET assembly file; this technology allows a developer to write code

in a language such as C#, but embed the application into a larger framework that was

created in Visual Basic or C++. (Dietrich, 2004)

19

Tiers / Software Namespaces

Methodology tiers are translated from the design phase to the implementation or

coding phase of the project with the use of logical software namespaces; namespaces are

a logical ordering of code components. (Jones, 2003) Each tier implemented in the

software design process of a software project will have a corresponding namespace

definition, which implements the functionality of the corresponding classes that are

referenced by it. Software namespaces in general contain class definitions and other

namespace definitions within a software application. Namespaces can contain other

namespaces in so that a developer could model the —model“ namespace to correspond

with the —model“ tier in MVC. This —model“ namespace would then contain subsequent

namespaces that would relate to a —manager“ namespace, —service“ namespace, and —data

access“ namespace respectively.

Contribution to the Field

The LM application system and this thesis project contributes to the field of

computer science in that this project promotes and implements coding design

methodologies, which are current and aid in promoting object-oriented benefits, such as,

code re-use, ease of maintenance, and scalability of the application. The LM project is a

leading example of how a software application system should be designed in today‘s

advancing technological world. Not only does the LM application system boast the latest

in methodologies implemented, but this project also uses advanced concepts, such as

socket-level programming, dynamic class loading, and web service API hosting.

20

Summary

Research was conducted in a systematic way ensuring the use of credible sources

and more then a single source on related subject matter to confirm the methodology

represented. The annotated bibliography section of this project follows two major themes:

architecture and implementation. Architectural research was conducted on advanced

methodologies, such as design patterns and n-tier methodology using MVC.

Implementation research was conducted on advanced concepts such as socket-level

programming.

GCC has placed a requirement on this project that enforces the use of Microsoft

.NET development technologies to produce .net assembly-based applications, which can

be plugged into a larger .NET hosting application framework. (Levin, 2005) This

framework allows an end-user to enter this larger system from a single entry point and

navigate the end-user through a plethora of applications that all have separate memory

spaces, but appear to be operating as a single application to the end-user of the system.

The LM application system was designed using an MVC implementation of n-tier

architecture. N-tier architecture is the application design methodology, which abstracts

software concepts into separate logical layers implemented by logical software

namespaces.

LM will contribute to the field of computer science with the implementation of

good design methodologies and advanced concepts used. Good methodologies create

stable, scalable, and maintainable application systems.

21

Chapter 2: —List Manager Domain Library“ Software Project

—List Manager Domain Library“ (LMDL) Project Overview

The —List Manager Domain Library“ (LMDL) project defines application domain

properties-based classes, which are classes that define informative objects about the

application being created. These objects are used to communicate business entities down

through the tiers or software-based packages in our MVC application framework. In a

legacy 2-tier application system methodology, it was common to lump the application

domain classes into the software application to use the classes directly. In this project,

there was an opportunity to abstract the application domain properties classes out of the

software project and place them into their own physical and logical library. This library

then allows multiple external software applications to now use the same application

domain class definitions; this library helps to facilitate cross-application communications

through technologies like web services.

LMDL defines twelve separate classes and two additional software namespaces to

be used within the LM application framework, but this text will focus on two core class

definitions that define the majority of data used within the LM framework and a domain

exception class definition, which facilitates exception handling between the thin-client,

web service, and system service. Separating the application domain class definitions into

its own .NET assembly allows a developer to import these classes into any other external

software project that could use an application domain class definition of a moderator,

participant, or any of the other ten domain class definitions available in the LMDL. This

methodology and approach supports code-reuse in that these class definitions at the very

least would not have to be created in both the web service and thin-client application

software projects.

 The LM application framework defines application domain classes,

—CResvChairInfo“ and —CResvPartInfo.“ The —CResvChairInfo“ class defines private

members and public methods that correspond to conference call moderator specific

details and —CResvPartInfo“ corresponds to conference call participant specific details.

Each one of these classes define members that correspond with details that a participant

or moderator would have in regards to a conference call, such as, first name, last name,

address, priority, reservation numbers, etc. In essence, LMDL will allow the passing of

one complex object that contains all information that corresponds to a moderator or

participant respectively and this information can then be used throughout the entire

framework without any further data manipulation or parameter passing.

Figure 3 below is a diagram depicting all the private members to both the

—CResvChairInfo“ class and the —CResvPartInfo“ class; these two classes are the heart of

the List Manager solution and are used in every project for object-to-object

communications.

23

Figure 3: —CResvChairInfo“ and —CResvPartInfo“ domain class excerpts

Take note that the participant fields and chair person fields referenced in the LM

requirements documentation (Levin, 2005) mirror many of the fields of the

—CResvPartInfo“ class and the —CResvChairInfo“ class respectively defining the data,

which our application will be displaying, manipulating, and storing. One of the great

benefits to object-oriented design and development is the ability to mirror business

processes during implementation. This relationship between the requirements and these

two data classes clearly depicts the business model mirroring that is being transferred

over into the implementation phase of this software project.

In addition to the two core class definitions that define the majority of data being

passed, manipulated, and persisted in the LM application system, there is also a class

24

definition used for handling exceptions and transmitting these exceptions from the web

service to the thin-client and from the web service to the system service, called

—CListManagerSoapException.“ The —CListManagerSoapException“ class definition

accepts a string of arguments representing the error message, error number, error source,

and whether to log the error or not; take note that instead of having multiple logging

entries in the exception handler portions of code, the exception is responsible for the

logging, thus requiring only a single block of code to perform error logging throughout

the application framework. (Application logging is done on the web service tier and is not

performed on any applications connecting to the web service because the exception is

generated from within the web service itself; additional exception handling has been

implemented to handle exceptions that occur from the calling clients.) Figure 4 below is a

sample code excerpt of the —CListManagerSoapException“ class depicting the logging

method call; the List Manager Web Service uses the open source Apache product,

—Log4NET,“ to facilitate the logging feature of the web service.

25

Figure 4: —CListManagerSoapException“ code excerpt depicting logging calls and fault choices.

Figure 5: —CListManagerSoapException“ generates the above log message recorded in a flat text file.

The above —CListManagerSoapException“ code excerpt generates the above log

file as depicted in figure 5. When a Soap exception is thrown, the exception could have

been generated on the calling client or on the hosting web service. In figure 4, the

—ServerFault“ boolean parameter captures the source of the exception, whether client or

server generated. If —ServerFault“ is —true,“, indicating a server-based web service error,

then logging is performed, otherwise the exception is not recorded to the log file, but still

generated and displayed ultimately as an end-user calling client dialog.

—List Manager Domain Library“ Project Methodology Implemented

Each software project within the LM application solution conforms to its own

implementation of MVC methodology and this implementation is defined both by logical

separation of code into software namespaces as well as the decoupling of objects to

conform to the methodology as discussed in chapter 1 of this text.

LMDL produces a single dynamic link library file, which extends an application‘s

capabilities through the use of a public API offered by the compiled version of the

LMDL. This library‘s sole purpose is to provide domain definition classes to other

software applications. The domain definition classes do not process data, so a full MVC

26

implementation for the LMDL doesn‘t make sense; a standard namespace structure is

used to simply break-up the domain application class definitions into logical parts.

Summary

The —List Manager Domain Library“ (LMDL) project defines application domain

properties-based classes, which are classes that contain informative information about the

software application domain. LMDL ultimately produces a single dynamic link library,

which can be accessed by multiple external software projects to minimize duplicate

coding in all tiers of the LM application framework.

LMDL contains properties-based classes and does not contain view or business-

based logic, so using the MVC design pattern doesn‘t make much sense. MVC is used to

abstract business logic from view logic and neither exists in this software project.

27

Chapter 3: —List Manager Web Service“ Software Project

 —List Manager Web Service“ (LMWS) Project Overview

The —List Manager Web Service“ (LMWS) software project handles all the

business processing for the —List Manager .NET solution.“ LMWS is an ASP.NET web

service that offers a public API to calling clients. This public API offers methods to

persist data well as retrieve data from different types of data sources. All the data for the

LM application system is built and transformed within this application process and then

sent back to the calling client in the form of a SOAP response.

The legacy version of LM, now being replaced by this current project, uses a 2-

tier methodological approach to application development. All the business logic, view,

and validation code was placed in a thick-client and this thick-client communicated with

the database back-end directly. The legacy version of LM required customized IBM

Informix drivers to be installed on all clients to run the legacy LM application. This

configuration overhead produced numerous headaches for information technologists

attempting to maintain the environment either from a software perspective or from a

systems deployment perspective.

The method used to combat the custom configuration necessary on all clients

running the LM GUI software and make the software more maintainable was to abstract

the business logic out of the thick-client solution and place it into a separate web service

application hosted in a centralized environment, but available to a decentralized end-user

group. The methodology chosen to abstract the business logic out of the thick client

28

enables a software engineer to add additional supporting bridge types to the web service

code and not ever have to modify the new thin-client installed within the Citrix

environment as well as on end-user personal computers. The next sections of this text

will focus on the methodology used to create LMWS as well as advanced concepts

implemented unique to this specific project.

—List Manager Web Service“ Project Design Methodology

LMWS implements many layers of the MVC design pattern, but still customized

for this specific project‘s purpose. A web service does not have a —view“ and therefore

the —view“ pattern in MVC has been omitted out of this software design. There is a single

service file, which acts as the controller of the web service and this service file accepts

requests from calling clients and funnels those requests through the business model layer

of the application. Figure 6 shown below depicts the architectural breakdown of the

LMWS and the relationship between the LMWS and the List Manager Thin-Client.

Participant List Manager 3.0 Framework

Thin Client Component: Web Service Component:
User Interface / Validation Business Model Processing

Controller

Business Manager

Services

Data Access

View

Controller

Business Manager

Services: Make Web Service Calls

-Pass domain data

*

-Return domain data

*

29

Figure 6: LM web service and thin-client n-tier methodology.

Maintainability and ease of updating the List Manager .NET solution in any one

of its components is a key concept for this project because the new bridge type vendor

will be releasing bug fixes and new API methods on a frequency of about once a month.

Since API changes will be frequent, it is important to allow for application updates to be

added as easily as possible. Physical and logical n-tier architecture breaks down the

application into smaller self-contained pieces, so that software engineering can update

components of the application and not have to update the entire application itself. The

—Factory“ design pattern adds another level to this concept by allowing components

within the application framework to be updatable without having to deploy an entirely

new version of code. Figure 7 below depicts the LMWS class diagram broken down into

layers; take not of the factory design pattern and interface design patterns used. The

following section illustrates the use of the —Factory“ design pattern.

30

CResvChairInfoManager

Manager Tier

Services Tier

Data Access Tier

+ getService()

CServiceFactory

«interface»
IService

Controller Tier

LMWebConnect

CResvPartInfoManager CResvRptInfoManager

CResvChairInfoService CResvPartInfoService CResvRptInfoService

«interface»
IResvChairInfoService

«interface»
IResvPartInfoService

«interface»
IResvRptInfoService

«interface»
IDao

CResvChairInfoDao CResvPartInfoDao CResvRptInfoDao

«interface»
IResvChairInfoDao

«interface»
IResvPartInfoDao

«interface»
IResvRptInfoDao

+getService()

CDaoFactory

Figure 7: LM web service class diagram

Factory Design Pattern

 The implementation of the MVC methodology, as depicted in figure 7, creates a

level of abstraction and class decoupling so that software engineering can easily add new

functionality to the web service as well as maintain existing code easily. In order to

further promote ease of maintenance and add the ability to add further software

components later to the application without having to do a full regression test, the LMWS

project implements the —factory design pattern.“ (FDP)

FDP is a design pattern that allows for —dynamic class loading.“ (Trott &

Shalloway, 2002) Dynamic class loading is a coding technique used to dynamically load

31

classes at runtime. The benefit to this feature is the ability to provide the application with

additional software component definitions through a properties file, which is read by the

application during runtime. In essence, a developer could add new functionality and

replace existing functionality of the application without having to recompile the entire

web service application itself. This gives the certification department the ability to test

certain components of an application without having to regression test the entire

application every time an application change is made or feature added.

The LMWS implements the factory pattern at the —service“ and —data access“

tiers. The majority of business model processing is done at the —service“ and —data

access“ tiers of the application. If software engineering wanted to create the ability to add

an additional audio conferencing bridge type later, all a developer would have to do is

replace or add an existing —service“ tier class definition with a new definition that has

implementation code to call the new —data access“ class, which then communicates with

the new audio conferencing bridge.

The LMWS combines different design patterns together to produce the

appropriate factory behavior specific to this application. The Interface design pattern is

used to abstract the public method definitions used in object-to-object communication.

(Trott & Shalloway, 2002) In the case of LMWS, the factory classes return an interface to

the class invoking instantiation through the factory. By creating interfaces to our

—service“ and —data access“ classes, we create a legal contract between a class and its

corresponding interface. This contract determines what return types are allowed from a

class‘s public methods as well as what type of parameters can be passed into a class‘s

32

corresponding public methods. This enables a developer to change a specific class‘s

implementation and as long as the developer doesn‘t violate the contract between a class

definition and its corresponding interface, there will not be any concern about affecting

other classes, which instantiate and use this class‘s method definitions.

Figure 8 below illustrates the use of FDP in LMWS; this is one of two

factory classes available in the factory namespace and each factory corresponds to a

specific tier in our n-tier architecture. The —CServiceFactory“ class and the

—CDaoFacotory“ class service the —service“ and —data access“ tiers respectively. Each

factory returns a custom generic interface, which is inherited by all interfaces in that

corresponding tier.

In figure 8 below, the —CServiceFactory“ class accepts a string type, representing

the class name to dynamically load at runtime. The —getService“ method returns a generic

—IService“ interface; all interfaces created in the —Service“ tier will need to inherit the

generic —IService“ interface, so that the factory will be able to return an object of any

type from that respective tier.

33

Figure 8: Factory design pattern implemented in LM web service.

The factory classes in LM acquire their —service names“ from the —web.config“

parameters file. (The —web.config“ parameters file is a generic parameters file used in all

Microsoft ASP.NET-based projects to provide application settings at runtime.) The

entries in the —web.config“ file are referenced by specific classes in the LMWS at

application runtime and these parameters are depicted in Figure 8 below.

Figure 9: —Web.config“ factory parameters.

The above —web.config“ excerpt in figure 9 illustrates the naming convention

used to attain classes in code; take note that the key names stipulated by the value of —add

34

key=“ string reference the actual interface name definition. The value returned by any

one of these keys is the specific location to the class definition file itself. By not hard-

coding these parameters in code, the developer now has the ability to recompile these

classes and reinsert them for bug fixes and updates without affecting the rest of the

surrounding code aiding in to fulfill the application requirement for ease of updates and

maintenance.

Socket Programming

The LMWS communicates with the audio conferencing bridge through an XML-

based API and this API is hosted on a physical bridge itself. The bridge makes its API

available through exposing of a software-based socket. This socket accepts serialized

XML requests regarding the operation of the bridge and the conference calls that the

bridge is currently hosting. Figure 10 below is a code excerpt from LMWS depicting a

block of socket communication code.

Figure 10: —CResvPactolusBridgeConnDao“ class excerpt: image 1

35

Figure 10 above depicts the class variable declarations used for the

—CResvPactolusBridgeConnDao,“ which is a —data access“ tier class used to

communicate with the new bridge. The —webBroker“ declarations accept values from a

properties object, which is loaded from an —app.config“ file at runtime. The —webBroker“

parameters contain values, which allow the LMWS to communicate with the bridge, such

as IP address and application port number. The parameters in the second half of the above

class declaration contain XML-based tags used to develop the SOAP envelope necessary

to transfer XML messages to the receiving server.

Figure 11 below illustrates the —createClientHashKey“ method, which is also

from the —CResvPactolusBridgeConnDao,“ class definition. The —createClientHashKey“

method generates a somewhat random value, which is used to identify the calling

requests from other requests submitted simultaneously.

36

Figure 11: —CResvPactolusBridgeConnDao“ class excerpt: image 2

Figure 11 illustrates the use of a homegrown hash key generator, which attempts

to obtain a client IP address along with a computer name to formulate a hash key, which

can be sent to the receiving server within the SOAP envelope. If a client name and IP

address cannot be determined, the use of a random number generator is used to formulate

the hash key.

Figure 12 below illustrates the —deleteParticipant“ method, which is invoked to

delete a participant from the new bridge type. Take note that an XML string is formulated

37

using the class variables declared in Figure 11 as well as the specific tags necessary to

perform the participant deletion; a participant is uniquely identified by the XML tag,

—<participantID>.“

Figure 12: —CResvPactolusBridgeConnDao“ class excerpt: image 3

After the XML string has been formulated, the socket is opened to the destination

server and the XML string is transferred and a response received. If an error occurs in the

bridge communication process, a —CListManagerSoapException“ object is thrown and

the error logged on the web server hosting the web service.

38

Summary

The List Manager Web Service (LMWS) contains all the business logic for the

List Manager .NET solution; this business logic includes preparing data and contacting of

data sources. LMWS allows for the changing of data source information on a single

server and also allows for application patches and updates, without affecting the calling

client applications.

LMWS was modeled using the MVC design pattern and implements advanced

concepts such as, socket programming and dynamic class loading. LMWS secures its

communication with the calling client with Microsoft Kerberos technology, which is an

encryption method only available from within a Microsoft Active Directory network.

39

Chapter 4: —List Manager Thin-Client“ Software Project

—List Manager Thin-Client“ (LMTC) Project Overview

The —List Manager Thin-Client“ (LMTC) project within the —List Manager .NET

solution“ contains all the source code to produce an LM thin-client. The LM thin-client

application displays views, performs data validation, and prepares the data to be sent to

the List Manager Web Service for business processing. LMTC can be used on any

workstation that supports the .NET framework 2.0 runtime environment and requires zero

configuration outside of a dynamic parameter that can be set in the application

configuration file to change the web service address currently being used. Please refer to

appendix B of this text for screenshots and application process information for the

LMTC. (Olsen, 2006)

—List Manager Thin-Client“ Project Design Methodology

LMTC was built using the MVC design methodology, but does not include the

—data access“ tier because data access is an action of the List Manager web service.

LMTC ends with the service tier, which is used to transform the data into the appropriate

application domain object, which is then used within the service layer to send and receive

data communication with the LMWS.

The LMTC implements the factory design pattern and the interface design pattern

in the exact same way that LMWS implements these design patterns. Chapter 3 of this

text details the technical implementation used for the factory and interface patterns. The

LMTC implements dynamic class loading and interface abstraction at the service tier of

the application. Allowing the —service“ tier of LMTC to be extensible gives the ability to

modify the web service interface without affecting the —view“ or —controller“ portions of

the LMTC application. Figure 13 below is a figure detailing the architectural breakdown

of LMTC; the methods and attributes of these classes have been omitted for readability.

CResvChairInfoManager

Controller Tier

Business Manager Tier

+getService()

CServiceFactory

DlgCopy

User Interface Tier

DlgEmailAddr DlgReport DlgRptHeadings DlgUpdatePart DlgMainForm

CDlgCopyController CDlgEmailAddrController CDlgReportController CDlgRptHeadingsController CDlgUpdatePartController CDlgMainFormController

CResvPartInfoManager CResvRptInfoManager

Services Tier

CResvChairInfoService CResvPartInfoService CResvRptInfoService

«interface»
IService

«interface»
IResvChairInfoService

«interface»
IResvPartInfoService

«interface»
IResvRptInfoService

Figure 13: LM thin-client class diagram.

Summary

The LMTC software project produces both a single executable that can be

deployed to end-user personal computers as well as single dynamic link library, which

can be plugged into a larger .NET application framework. LMTC‘s primary goal is to

41

display graphical user interfaces to end-users, collect data, and send that data off to be

processed by the List Manager web service.

LMTC implements a complete MVC design for n-tier architecture encompassing

both a —view,“ —controller,“ and —model“ tier components in its implementation. Dynamic

class loading was added to the —service“ tier of the application to be able to expand and

change the web service interface without having to fully regression test the other

components of the application. Refer to appendix B of this text for screen captures, data

modeling, and process flows for LMTC. (Olsen, 2006)

42

Chapter 5: —List Manager System Service“ Software Project

—List Manager System Service“ (LMSS) Project Overview

The —List Manager System Service“ (LMSS) project produces a Microsoft

Windows system service library, which is referenced by the windows subsystem to

perform an ongoing task, in this case, making calls to the LMWS to perform data

synchronization with the bridge API and local database instance. Since a web service

only runs when a client submits a request and then completes after the request has been

fulfilled, it cannot fulfill the requirement on its own to synchronize data at a given time-

interval at least not in an acceptable fashion.

 A platform system service runs all the time and can run based on time intervals,

but this is not the only benefit to creating a platform system service to do data

synchronization. The platform system service can be setup to restart itself after an

application failure as well as a system failure and this does not have to be done

programmatically, but is set within the platform configuration control panel. These

normal behaviors that are inherited with the creation of a platform system service both

make it reliable and robust.

—List Manager System Service“ Project Design Methodology

MVC is a software design pattern that abstracts end-user views from the

underlying business model. LMSS does not contain end-user views, but does conform to

n-tier architecture with the implementation of an application controller, manager, and

service tiers. The LMSS controller tier is made up of a single service class, which makes

calls to the descendant manger tier. The manager tier then passes the calling arguments to

the service tier where the web service calls are actually made to synchronize data. Figure

14 below depicts the n-tier architectural make-up of LMSS.

+syncPactolusBridgeData()
+onStop()
+onStart()
+onPause()

-Timer
LMBridgeConnService

+syncPactolusBridgeData()

CResvBridgeSyncService

+syncPactolusBridgeData()

«interface»
IResvBridgeSyncService

Controller Tier

Business Manager Tier

Services Tier

«interface»
IService

+syncPactolusBridgeData()

CResvBridgeSyncManager

+getService()

CServiceFactory

Figure 14: LMSS architectural class diagram

Figure 14 depicts the tiers implemented within the LMSS application. A view tier

is omitted because this application is a background process without user dialogs. The data

access tier is omitted because the web service handles all data access from within the List

Manager .NET solution. The omission of the business modeling in LMSS allows LMSS

to completely focus on timed-interval API calls and nothing else.

Summary

The —List Manager System Service“ LMSS project is a platform system service

that runs at all times on the platform that hosts it. A system platform service is an ideal

choice for this type of process because it allows the application to recover from both

44

system and application level failures without any additional coding; the parameters are

set in the platform system control panel.

LMSS does not conform to the MVC design pattern rules because by definition it

does not abstract user views from the business model. LMSS does however conform to

n-tier architecture and does implement a —manager,“ —service,“ and —controller“ tiers. The

—service“ tier is the location of the web service calls, which actually make the web

requests to synchronize data and the —controller“ tier handles the timed-interval process,

while the —manager“ tier just directs the timed-interval requests from the —controller“ tier

to the —service“ tier.

45

Chapter 6: Project History / Software Development Life Cycle

Overview

GCC is pursuing an extension of their audio conferencing bridge product lines to

be used to host audio conference calls world wide. This product extension requires

changes throughout the entire business sector, including billing, operations, marketing,

and many other facets of the organization. The project manager of this project manages

all facets of the project from idea conception to the product maintenance phase of the

project. The following sections of text will focus on the history of LM and the life cycles

utilized to implement the LM software project. Although the LM project is a subproject

of a larger initiative to integrate a new audio conferencing bridge type within the GCC

business environment, the scope of this text is the LM software project itself and focuses

on the methodologies used to create the LM application framework. The following

sections will look at the history of the LM project and the business methodologies used to

see this project through to completion.

LM Project History

The software project conception date for LM is March 15, 2005. (Levin, 2005)

The conception date is determined by the date in which software engineering receives the

appropriate requirement documentation necessary to formulate an implementation of a

software project. The requirements documentation is ultimately the company‘s sign-off

as a whole that the business is going to invest the funding necessary to implement the

conceived business idea. The ultimate project deliverable date is October 13, 2006 and

this is the ultimate production release date being communicated to GCC end customers,

although software engineering has an ultimate project deliverable date of July 15, 2006,

which is determined as the date, in which the software needs to be fully functional in the

GCC certification environment.

LM Software Development Life Cycle

The LM software project uses the —object-oriented life cycle“ (OOLC) approach

to software design. OOLC follows a waterfall life cycle model, but implements iterations

throughout the life cycle that span hard boundaries. Although it is not uncommon for the

design and implementation phases to overlap, a software engineer and supporting

business team must defend against the —CABTAB“ approach to development, —Code a

bit, test a bit.“ (Schach, 2002) There is an inherent danger in using the object-oriented life

cycle in that the methodology can break down into unorganized patterns of development

and testing. This lack of discipline within a software project can potentially hide large

architectural design flaws until they are encountered later on in the project, instead of

right up front in the design phase.

The LM software project was carefully placed into the OOLC methodology,

taking special care to ensure that methodologies implemented are in fact beneficial to the

LM project itself and not just extra time taken for sake of practice. Figure 15 below

figure depicts the software development life cycle used within the LM project. Take note

of the iterative approach applied to the water fall boundaries.

47

Requirements Phase Specification Phase Design Phase Implementation Phase Certification Phase Deployment Phase Maintenance Phase

Formulate Requirements

Formulate Spec based on Req.

Design RPM GUIs

Code RPM GUIs

Present RPM Development()

Certify LM Framework

Code Bug Fixes

Deploy LM Framework

Iterate Process For Maintenance Phase()

Figure 15: Object-Oriented Life Cycle used in LM

Figure 15 depicts the object-oriented software development life cycle used in the

LM software project. Notice that our OOLC implementation mimics the traditional

waterfall life cycle approach with specific points of iteration. The following sections of

text describe the different phases of the OOLC used in LM as well as the relationships

and iterations between the phases.

48

Requirements Phase

During the requirements phase of LM, a business analyst conducts interviews

with business personnel as well as technical personnel to define the LM application

requirements; a full version of the requirements documentation is available in Appendix

A of this text. (Levin, 2005) After information was collected and requirements

documentation written, the documentation was turned over to software engineering for

requirements acceptance. During the requirements acceptance phase of the project,

software engineering collaborates internally and externally through the business analyst

to clarify any specific points in the requirements documentation as well as to determine a

certification release date.

Specification / Design / Implementation Phase

The specification, design, and implementation phase of this project are

collectively implemented in iteration. The specification phase of the software life cycle

defines the graphical user interface and end-user functionality of the software application

through the —Rapid Prototyping Model.“ (RPM)

(RPM) was used to define the specification phase of this project. RPM is a

methodology, which defines methods to produce a working subset of an application to

demonstrate the functionality of the system. (Schach, 2002) The end-user thin-client

graphical user interface was the first portion of the application framework created.

Creating a working end-user interface, which can be demonstrated to the end-users of the

system, allows them to envision what the application is going to look like; it is at this

time that end-user feedback is collected on the new application model and any glaring

49

problems are corrected. The specification phase is married to the design and

implementation phases in that both modeling diagrams and code was written to

implement the RPM for the specification phase of this project.

Iteration using RPM was very beneficial in that many great features were added to

the system, which made sense, but maybe more business benefits were seen through the

reduction of legacy features no longer being used by the end-user base. Although the

additional enhancements and the reduced features may cancel themselves out in this

project, GCC has always prided themselves in creating software that is tailored to end-

user needs making the software more usable and efficient for the ultimate users of the

software project.

The design phase is defined by architectural diagrams depicting the state of the

final application framework to be created. These diagrams include business diagrams,

UML modeling diagrams, and any other documentation related to the final blue print of

the application to be created.

The implementation phase of the software life cycle is the coding phase of the

application creation process and is defined by source code compiled to generate a

working application framework. The implementation phase is where the bulk of the work

is performed to create the application system.

Certification Phase

During the certification phase of the software development life cycle, certification

plans are written to test the functionality of the LM application framework; all test plans

used for the LM project were performed through the LM thin-client application, which is

50

truly the controller of the entire system spanning three physical boundaries. The

certification department for GCC allotted eight weeks for certification testing on the new

LM application framework. This time period included both acceptance testing and pilot

testing. Figure 16 below depicts one of the certification plans written by a GCC

operations supervisor, testing the application functionality and depicting the bugs found

in the application during the first certification iteration.

No Test Status Expected

Results

Notes

1 Search for Reservation

Number

Pass

2 Search for Reservation

Number with list

Preloaded

Pass

3 Load an excel Prelist

(must follow loading

rules)

Pass

4 Update one entry using

Update button

Pass The change is

accepted.

5 Update one entry using

double-click

Pass

6 Add one entry using

Add button

Pass All information

appears

7 Delete one entry using

Delete button

Pass Receive message

requesting if I

wish to delete.

51

Deleted after

pressing yes.

8 Delete several entries

using CTRL and mouse

TBD Receive message

requesting if I

wish to delete

including the

amount of lines.

Deleted after

pressing yes.

Deletion occurs.

Total number of lines being deleted does

not show on warning message.

Mentioned to Maurice, he will look into it.

9 Delete several entries

using click and drag.

TBD Receive message

requesting if I

wish to delete

including the

amount of lines.

Deleted after

pressing yes.

Deletion occurs.

Total number of lines being deleted does

not show on warning message.

Mentioned to Maurice, he will look into it.

10 Copy existing list to

second unused

reservation

Pass Should copy

Complete total

lines from

existing list as

unattended.

11 Able to clear

reservation using Clear

button

Pass Screen should

appear blank.

12 Able to reopen session

from Recent

Reservation Numbers

Pass Should reappear

by simply

highlighting the

52

line.

13 Able to sort by First

Name

Pass

14 Able to sort by Last

Name

Pass

15 Able to Sort by

Company Name

Pass

16 Able to Sort by

Location

Pass

17 Able to Sort by Phone

No

Pass

18 Able to Sort by

Attended

Pass

19 Able to Sort by Priority Pass

20 Report Menu defaults to

Attended

Fail I attempted to open the menu while my

Conference Details read Attended, as well

as Complete List. When opening the

reports menu, Report Type was appearing

by Complete Participant List by default

21 Report Menu defaults to

Portrait

Pass

Changing Headings

22 Able to select all fields Pass

23 Sort By Defaults to Last

Name

Pass

24 Change Sort by to

Location

Pass

53

25 Change Sort by to

Company

Pass

26 Change Sort By to Last

Name

Pass

27 Viewing the list by

Complete List

Pass

28 Update Participant to

appear as attended

Pass

29 Viewing the list by

Attended List

Pass

30 Viewing the list by No

Show List

Pass

31 Previewing List shows

Total Lines

Pass

32 Email list Pass

Figure 16: LM certification test plan. (Caporale, 2006)

The above certification plan in figure 16 was used by the pilot test group to conduct

repetitive tests on processes and functionality within LM. When a bug was found, it was

so noted along with any details for the developer to help duplicate the issue. The

developer would release a fixed version of the software and the entire process would start

again.

Deployment Phase

The deployment phase of LM involves all software components of the LM

framework to be deployed to production systems. Production deployment took place on

54

October 13, 2006 and included deployments for all systems in the LM project as well as

all other facets of the business that needed modification to support the new Pactolus-

based bridge type.

Recall from previous chapters in the text, that the LM application framework is

four separate physical components. The List Manager Domain Library (LMDL) consists

of a single dynamic link library, which will be deployed with software projects that

require it, so no development routine was devised to deploy the LMDL. The LM Web

Service application (LMWS) will be deployed by software engineering by deploying the

appropriate web service and its dependencies through a publication wizard available

through the IDE; software engineering is granted access temporary to production systems

during deployment windows on October 13, 2006. The LM Thin-Client (LMTC) and LM

System Service (LMSS) applications will be deployed using a universal installer created

by software engineering through InstallShield DevStudio technology. InstallShield

DevStudio is a development tool that allows software engineers to encapsulate their

software into standard platform installer routines, which will allow for application

deployment in a heterogeneous environment as well as increase compatibility with

products like Microsoft Systems Management Server (SMS); a systems administrator will

use the LMTC installer and LMSS installer to deploy these components of the framework

to their respective destinations.

Maintenance Phase

The maintenance phase of LM consists of routine changes for the first six months

of operation to update the Pactolus bridge type API with additional supporting methods

55

to increase system performance. The LM application framework was designed using

MVC methodology and implemented the Factory design pattern to aid with ease of

application maintenance. In the maintenance phase of this application framework,

additional features and updates can be made to components within the LM application

framework without having to perform full regression testing. The concepts implemented

in this project promote component decoupling, minimizing the impact to processes in the

code, which are not being modified.

Summary

The LM application framework uses OOLC methodology of application

development. The OOLC methodology is an iterative version of the waterfall life cycle

model. The OOLC used in this text implemented the requirements, specification, design,

implementation, certification, deployment, and maintenance phases of the waterfall life

cycle, iterating the specification, design, and methodology phases using RPM.

The requirements phase consisted of interviews, research, and requirements

documentation acceptance. The specification, design, and implementation phases utilized

an RPM modeling iterative approach for development. The certification phase was

defined by acceptance testing and pilot testing. The deployment phase consisted of

deploying all four application components to production systems using a combination of

web publishing available through the Microsoft .NET IDE and universal installer-based

packaging. The maintenance phase consists of feature enhancements, API enhancements,

and any other changes to the system. The maintenance phase is just another iteration of

56

the software development life cycle starting with the requirements phase to define the

changes or additions to be made to the LM application framework.

57

Chapter 7: Lessons Learned

Lessons Learned Overview

The LM project has posed many challenges, both technical and inter-personal.

This project from initial thought to completion took nine months. From the initial

requirements phase to the production rollout phase, the LM project has been riddled with

changing requirements due to a lack of understanding by the business sector of the new

processes that need to be implemented. The following sections of this text will examine

specific problematic issues of the LM project and what could be done differently in future

projects to avoid these challenges.

Call Center Supervisor Interview

During the initial requirements phase of the LM project, interviews were

conducted with a single GCC operations supervisor, which is an individual that manages

the GCC operator end-user base. These interviews ranged from enhanced feature requests

to customer care processes on how they intend to use LM with the new Pactolus bridge

type.

The GCC operations supervisor interview went well, with the exception of a

specific interview question, —Are there any systems besides List Manager that will

modify participant details on the bridge?“ The GCC operations supervisor stated that the

LM application was to be the only application that will modify participant information on

the bridge. The call center supervisor assumed that this new Pactolus bridge type will

follow the same business processes as the legacy bridge type already in use.

The new Pactolus bridge type vendor informed GCC‘s business analysts that their

understanding of the technical process of participant information modification on the

bridge is not correct. Pactolus only allows participant modifications from their

proprietary API before a conference call actually starts. Modifications to participant

information after the call starts will take place utilizing a specific Pactolus operations

console. (The Pactolus operations console allows a customer care representative to

perform conference call operations during a call, but is not functional until a conference

call begins and is disabled when the call has ended.) The GCC operatations supervisor‘s

intentions were to not have the GCC operator add, modify, or remove participants using

this operations console and force a business process to use the LM application for all

participant modifications. The LM application has an enhanced GUI specific to customer

care business needs and reporting capabilities, which are not possible using the Pactolus

bridge console application, so it seemed reasonable to the GCC operations supervisor at

the time. This single process change increased development time by twenty-five percent,

since an additional system service application had to be written to perform data

synchronization utilizing the List Manager Web Service application. (Refer to Chapter 6

of this text for a complete application definition of the List Manger System Service

application.)

The cause for this unforeseen issue was inadequate documentation by the Pactolus

bridge vendor. The business analysts wrote requirements for the LM application based on

the documentation available at the time, which did not clearly define the relationships

between the Pactolus operations console and GCC‘s new List Manager application.

59

The issue has been documented by the project team and future audio conferencing

bridge vendors will be asked to detail any processes between the bridge operation console

and home-grown development preformed against the new bridge vendor‘s proprietary

API.

Pactolus API (New Audio Bridge Type)

The new Pactolus audio conferencing bridge vendor builds a customized API for

its larger customers and the API given to Global Crossing was largely determined by

business analysts working for Global Crossing. There were two notable issues with the

Pactolus API: incorrect/incomplete API technical documentation provided by Pactolus

and not all requirements written for Pactolus by Global Crossing business analysts

encompassed all technical processes needed to build a scalable application using the

Pactolus API.

Pactolus released new versions of its API on a monthly basis while GCC was

already in its development phase. GCC was given a complete API guide from Pactolus to

develop code against, although their API was not fully completed yet and new versions of

the code were being released to GCC from Pactolus on a monthly basis. Pactolus API

releases and changes caused major headaches for the entire project team. Many technical

process changes to LM took place over the course of nine months of development and

some of these process changes required changes in implementation and application

design mid-way through development. Countless hours were wasted due to poor

documentation and inconsistent API releases.

60

In the future, software engineering will be pushing for accurate documentation up

front and will make a critical point of it to the vendor. Although the ultimate project

deadline was met and delays were not incurred, the cost of labor for doing this project

exceeded expectations, although didn‘t put the project at risk of failure.

Scope Creep

Interviews were conducted with a customer care supervisor detailing general

feature enhancements to the LM application, not including the new Pactolus bridge type

enhancements. After the requirements were accepted by software engineering, software

engineering preformed —rapid application development“ (RAD) to produce user

interfaces with no additional back-end functionality. Once the RAD development was

completed, customer care supervisor sign-off was accepted.

During the implementation phase, numerous versions of the LM thin-client were

demoed for all GCC operations supervisors and although they were satisfied with the

general content agreed upon, additional recommendations were made for feature

enhancements. The additional feature enhancements were relatively easy for software

engineering to perform, so the department committed on changing the requirements to

include some additional enhancements. Shortly after software engineering committed to

the additional feature enhancements, the Pactolus process flaws were noted as defined in

the above section, —Customer Care Supervisor Interview.“ These unforeseen technical

process issues in conjunction with the additional feature enhancements, which software

engineering committed to, pushed the time limits and work was performed around the

clock for a short period of time to ensure that the project did not fall behind schedule.

61

In the future, software engineering will be more reluctant to commit additional

feature enhancements unless absolutely necessary. Although the additional requirement

changes did not take that much additional development time, it was almost part of a

system of events that could have put the LM project at risk.

Software Certification

Global Crossing‘s software certification department has went through reductions

in workforce since the start of the LM project and application end-users are now being

asked to perform the duties that were once performed by software certification engineers.

Although the end-user base is an excellent test bed for application certification to some

degree, the end-user base is not trained in software certification test plans and therefore,

there was a lack of structure during the certification process of this project.

The consequences of end-user base testing have been an increased reliance on a

job well done by the software engineering department and an increased reliance on the

end-user base for certification testing. Pilot test groups are groups of end-users that have

agreed to invest time in testing the new application being certified. Pilot groups test

applications after the application has already been released from certification and

therefore generally have high expectations when they receive the software to be certified,

even though they are now receiving the software one iteration before pilot testing.

In order to combat the problems with end-user base testing, software engineering

has had to re-educate GCC operations to note that the software they will be testing will in

fact have bugs in it and will not be ready for production as they would normally

anticipate. In addition to changing customer care‘s expectations, software engineering

62

will be providing the end-user base in future projects with software certification test plans

for the application being presented. Although it is always beneficial to have an individual

or department write test plans for an application from an objective perspective, under the

current circumstances, this is the best solution GCC can implement until funding

becomes available to replace lost certification resources.

Summary

The LM application has endured many obstacles and unforeseen issues, both

technical and inter-personal. Changing technical and business requirements were

common throughout the List Manager Application Life-Cycle and additional processes

will be put into place for software engineering and business to combat changing

requirements from the end-user base as well as from technical vendors.

The majority of technical obstacles revolved around the Pactolus API; the

Pactolus API allows an application to control an audio conferencing bridge

programmatically. New releases of the API were deployed monthly and functionality

written in the original documentation was subject to change, impacting any code written

against the API.

New business processes noted by the project team will combat these issues with

future vendors. These new processes detail the relationship between the audio bridge

operations console and a connecting API thin-client.

GCC‘s certification department has gone through recent turnover and customer

care pilot users are being asked to enter the project one phase earlier then normal to

perform certification testing. GCC‘s software engineering department has gone through

63

challenges to change customer care‘s expectations of the software received from a

certification released version to a version that still has some bugs in it. In the future,

software engineering is going to aid customer care in application certification by writing

the test plans necessary for the pilot users to do good solid testing.

64

Works Cited

Anonymous. (2004). User interface process (UIP) application blockœ version 2.0.

Microsoft Corporation.

Caporale, Cliff. (2006). Certification Plan: List Manager. Global Crossing, Inc.

Dietrich, Hans. (2004). Step by Step: Calling C++ DLLs from VC++ and VB œ Part 3.

The Code Project.

Jillellamudi, Ramakrishna. (2004). Introduction to .NET Assemblies. DNZone.com

Jones, Bradley. (2003). Microsoft .NET Glossary. Developer.com.

Levin, Daria. (2005). Requirement: List Manager. Global Crossing, Inc.

Olsen, Maurice (2006) List Manager Technical Specification Document.

Global Crossing, Inc.

Schach, Stephen. (2002). Object-oriented and classical software engineering.

McGraw-Hill Companies, Inc.

Yang, James. (2001). What is n-tier architecture?

Developer Fusion.

http:Developer.com

Annotated Bibliography

Aitken, Peter. (2002). Creating windows services in .NET

DevX.com. Date Accessed: 10/29/2006. Retrieved from:

http://www.devx.com/dotnet/article/7001

Reason: Referenced for creating a windows service on the server-tier to access the web

service for syncing capabilities of data in timed- intervals.

Aitken, Peter. (2006). Multithreading in .NET 2.0: The ThreadPool class. DevSource.

Date Accessed: 10/15/2006. Retrieved from:

http://www.devsource.com/article2/0,1895,2019360,00.asp

Reason: Researched multi-threading concepts to implement multi-threading in the web

service tier for enhanced performance of DB uploads.

Allen, Paul. (2001). Realizing e-business with components.

London, England: Pearson Education Limited.

Reason: Referenced to enforce MVC design pattern in multi-tier physical application

architecture.

Anonymous. (2005). Reflection and dynamic class loading.

Microsoft Corporation. Date Accessed: 10/18/2006. Retrieved from:

http://msdn2.microsoft.com/en-us/library/ms227224.aspx

66

http:DevX.com
http://www.devx.com/dotnet/article/7001
http://www.devsource.com/article2/0,1895,2019360,00.asp
http://msdn2.microsoft.com/en-us/library/ms227224.aspx

Reason: Referenced to implement dynamic class loading in both the client and the web

service tier of the application infrastructure.

Anonymous. (2006). Windows identity class.

Microsoft Corporation. Date Accessed: 10/27/2006. Retrieved from:

http://msdn2.microsoft.com/en-us/library/system.security.principal.windowsidentity.aspx

Reason: Referenced to gather user login information for logging purposes on the web

service tier.

Anonymous. (2006). How to create a setup project for a windows service in Visual C#

.NET and in Visual C# 2005

Microsoft Corporation. Date Accessed: 10/29/2006. Retrieved from:

http://support.microsoft.com/kb/816169/

Reason: Referenced for creating an installer for a windows service on the server-tier.

Anonymous. (2004). User interface process (UIP) application blockœ version 2.0

Microsoft Corporation. Date Accessed: 10/29/2006. Retrieved from:

http://msdn2.microsoft.com/en-us/library/ms979213.aspx

Reason: Referenced for creating MVC designed applications in .NET.

Anonymous. (2003). A guide to building enterprise applications on the .NET framework.

Microsoft Corporation. Date Accessed: 10/29/2006. Retrieved from:

http://msdn2.microsoft.com/en-us/library/ms954601.aspx

67

http://msdn2.microsoft.com/en-us/library/system.security.principal.windowsidentity.aspx
http://support.microsoft.com/kb/816169/
http://msdn2.microsoft.com/en-us/library/ms979213.aspx
http://msdn2.microsoft.com/en-us/library/ms954601.aspx

Reason: Referenced to help design an enterprise application framework using service

oriented architecture.

Anonymous. (2006). How to automate Excel by using Visual C# to fill or to obtain data

in a range by using arrays.

Microsoft Corporation. Date Accessed: 10/20/2006. Retrieved from:

http://support.microsoft.com/kb/302096/

Reason: Referenced to implement Microsoft Excel report generation and data importing

for the forms client application.

Bourisaw, Mark. (2004). Generating Microsoft Excel reports in .NET

C# Corner. Date Accessed: 10/29/2006. Retrieved from: http://www.c-

sharpcorner.com/UploadFile/bourisaw/ExcelReportsInNet11092005001455AM/ExcelRe

portsInNet.aspx?ArticleID=3e6ed057-5306-4c8e-84fd-0fde37848b2c

Reason: Referenced to implement Microsoft Excel report generation and data importing

for the forms client application.

Chappell, David, & Kirk, Steve. (2002). Application design guidelines: From n-tier to

.NET. Microsoft Corporation. Date Accessed: 10/29/2006. Retrieved from:

http://msdn2.microsoft.com/en-us/library/ms978384.aspx

Reason: Referenced to aid in building a multi-tier architected application framework.

Chariter, Robert. (2002). Creating an extensible windows service

68

http://support.microsoft.com/kb/302096/
http://www.c-
http://msdn2.microsoft.com/en-us/library/ms978384.aspx

15 seconds. Date Accessed: 10/27/2006. Retrieved from:

http://www.internet.com/icom_cgi/print/print.cgi?url=http://www.15seconds.com/Issue/0

21007.htm

Reason: Referenced for creating a windows service on the server-tier to access the web

service for syncing capabilities of data in timed- intervals.

Chong, Frederick, & Clark, Jim, & Morris, Max, & Welsh, Dave. (9/2005). Web service

solution design: Developing a solution design for web services in the northern electronics

scenario. Microsoft Corporation. Date Accessed: 10/27/2006. Retrieved from:

http://msdn2.microsoft.com/en-us/library/ms954617.aspx

Reason: Referenced to study and architect a web service that models the business

scenarios that the web service will support.

Dietrich, Hans. (2004). Step by Step: Calling C++ DLLs from VC++ and VB œ Part 3.

The Code Project. Date Accessed: 11/20/2006. Retrieved from:

http://www.codeproject.com/dll/XDllPt3.asp

Reason: Supporting reference for calling .NET assemblies from a heterogeneous .NET

programming language environment.

Janczuk, Tomasz. (2006). Protect your web services through the extensible policy

framework in WSE 3.0. Microsoft Corporation. Date Accessed: 10/19/2006. Retrieved

from:

69

http://www.internet.com/icom_cgi/print/print.cgi?url=http://www.15seconds.com/Issue/0
http://msdn2.microsoft.com/en-us/library/ms954617.aspx
http://www.codeproject.com/dll/XDllPt3.asp

http://msdn.microsoft.com/webservices/default.aspx?pull=/msdnmag/issues/06/02/wse30/

default.aspx

Reason: Referenced to develop a secure web service methodology.

Jones, Bradley. (2003). Microsoft .NET Glossary.

Developer.com. Date Accessed: 11/18/2006. Retrieved from:

http://www.dnzone.com/ShowDetail.asp?NewsId=698

Reason: Referenced for .NET assembly research and reference.

Jillellamudi, Ramakrishna. (2004). Introduction to .NET Assemblies.

DNZone.com. Date Accessed: 11/18/2006. Retrieved from:

http://www.dnzone.com/ShowDetail.asp?NewsId=698

Reason: Referenced for .NET assembly research and reference.

Kurniawan, Budi. (2002). Using .NET sockets

ONDotNet.com. Date Accessed: 10/26/2006.

Retrieved from: http://www.ondotnet.com/pub/a/dotnet/2002/10/21/sockets.htm

Reason: .NET socket programming is one of the technical aspects needed to enable

server-to-server communication.

Meier J.D., Mackman Alex, Dunner Michael, and Vasireddy Srinath. (2006). Building

secure ASP.NET applications: Authentication, authorization, and secure communication.

Microsoft Corporation. Date Accessed: 10/13/2006. Retrieved from:

70

http://msdn.microsoft.com/webservices/default.aspx?pull=/msdnmag/issues/06/02/wse30/
http:Developer.com
http://www.dnzone.com/ShowDetail.asp?NewsId=698
http:DNZone.com
http://www.dnzone.com/ShowDetail.asp?NewsId=698
http:ONDotNet.com
http://www.ondotnet.com/pub/a/dotnet/2002/10/21/sockets.htm

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnnetsec/html/SecNetch10.asp

Reason: Authentication and security web service research and design.

Mitchell, Scott. (2004). An extensive examination of web services: Part 9

4 Guys from Rolla.com. Date Accessed: 10/17/2006. Retrieved from:

http://aspnet.4guysfromrolla.com/articles/071404-1.aspx

Reason: Referenced to develop a secure web service methodology.

Panchal, Nimesh. (2003). Implementing MVC design patterns in .NET

C# Corner. Date Accessed: 10/27/2006.

Retrieved from: http://www.c-sharpcorner.com/Code/2003/Feb/MVCDesign.asp

Reason: Referenced for creating MVC designed application in .NET

Parmar, Chandrakant P. (2005). Understanding threading in .NET Framework. C#

Corner. Date Accessed: 10/17/2006. Retrieved from: http://www.c-

sharpcorner.com/Code/2005/April/Thread.asp

Reason: Researched multi-threading concepts to implement multi-threading in the web

service tier for enhanced performance of DB uploads.

Patil, Vishal Kumar. (2005). CodeSnip: Handling SOAP exceptions in web services.

ASP Alliance. Date Accessed: 10/19/2006. Retrieved from:

http://aspalliance.com/727_CodeSnip_Handling_SOAP_Exceptions_in_Web_Services

71

http://msdn.microsoft.com/library/default.asp?url=/library/en-
http:Rolla.com
http://aspnet.4guysfromrolla.com/articles/071404-1.aspx
http://www.c-sharpcorner.com/Code/2003/Feb/MVCDesign.asp
http://www.c-
http://aspalliance.com/727_CodeSnip_Handling_SOAP_Exceptions_in_Web_Services

Reason: Referenced to develop a methodology to handling exceptions thrown by the web

service tier.

Poddar, Saumendra. (2003). Introduction to .NET web services.

The Code Project. Date Accessed: 10/27/2006Retrieved from:

https://secure.codeproject.com/dotnet/intro2websvc.asp

Reason: Referenced to aid in creating a .NET web service.

Prosise, Jeff. (2003). Build secure web services with SOAP headers and extensions.

Codeguru.com. Date Accessed: 10/19/2006. Retrieved from:

http://www.codeguru.com/columns/experts/article.php/c5479/

Reason: Referenced to implement and pass custom SOAP headers for security

implementation.

Ramana, G.V. (2006). How to get Window NT logged user name using ASP.NET.

The Code Project. Date Accessed: 10/10/2006. Retrieved from:

http://www.codeproject.com/useritems/How_to_NT_User_Name.asp

Reason: Referenced to gather user login information for logging purposes on the web

service tier.

Richter, Charles. (1999). Designing flexible object-oriented system with UML.

Indianapolis, Indiana: Macmillan Technical Publishing.

Reason: Referenced for UML class diagramming and use-case modeling.

72

https://secure.codeproject.com/dotnet/intro2websvc.asp
http:Codeguru.com
http://www.codeguru.com/columns/experts/article.php/c5479/
http:ASP.NET
http://www.codeproject.com/useritems/How_to_NT_User_Name.asp

Schach, Stephen. (2002). Object-oriented and classical software engineering.

New York, New York: McGraw-Hill Companies, Inc.

Reason: Referenced to implement object-oriented life cycle approach in application

development.

Smon, Uros. (2001). Multithreading in .NET.

The Code Project. Date Accessed: 10/27/2006. Retrieved from:

http://www.codeproject.com/dotnet/multithread.asp

Reason: Researched multi-threading concepts to implement multi-threading in the web

service tier for enhanced performance of DB uploads.

Spano, John. (2005). Multithreading in VB.NET

DevCity.NET. Date Accessed: 10/27/2006. Retrieved from:

http://www.devcity.net/Articles/160/1/article.aspx

Reason: Researched multi-threading concepts to implement multi-threading in the web

service tier for enhanced performance of DB uploads.

Strawmyer, Mark. (2006). Multithreading in .NET applications.

Developer.com. Date Accessed: 10/27/2006. Retrieved from:

http://www.developer.com/net/asp/article.php/2202491

Reason: Researched multi-threading concepts to implement multi-threading in the web

service tier for enhanced performance of DB uploads.

73

http://www.codeproject.com/dotnet/multithread.asp
http:DevCity.NET
http://www.devcity.net/Articles/160/1/article.aspx
http:Developer.com
http://www.developer.com/net/asp/article.php/2202491

Trott, James R., & Shalloway, Alan. (2002). Design patterns explained: A new

perspective on object-oriented design.

Indianapolis, Indiana: Addison-Wesley.

Reason: Referenced for Factory design pattern modeling with the web and client tier.

Turner, Richard. (2005). Performance of ASP.NET web services, enterprise services, and

.NET Remoting. Microsoft Corporation Date Accessed: 10/28/2006. Retrieved from:

http://msdn.microsoft.com/webservices/choosing/default.aspx?pull=/library/en-

us/dnwebsrv/html/asmxremotesperf.asp

Reason: Web service performance was a concern for the technical team and research was

conducted to design a scalable and efficient methodology.

Yang, James. (2001). What is n-tier architecture?

 Developer Fusion. Date Accessed:11/14/2006. Retrieved from:

http://www.developerfusion.co.uk/show/3058/2/

Reason: Referenced for n-tier architecture methodology.

74

http://msdn.microsoft.com/webservices/choosing/default.aspx?pull=/library/en-
http://www.developerfusion.co.uk/show/3058/2/

Appendix A

Project Name Document Name

Event Bridge Replacement Requirement: List Manager
Author Origin Date Last Updated Status
Daria Levin 3/15/2005 2/26/2007 Draft
Interviewees: Cliff Caporale; Bhattacharjee, Raja

Requirement Description

Modification History
Sign-off Date: Date that users and developers signed off on the requirement.

Date Name	
What has been changed and in which section of the
document the changes were made.

4.26.06 	 D. Levin Updated to reflect that we will also remove the Text File button. Also
added two notes to the issues section based on Maurice‘s analysis.

Synopsis
As part of the Event bridge replacement project, we are building an API between
List Manager and Pactolus to pull and report in participant information. We are
also adding functionality to List Manager to support new Pactolus only fields.

Description
Note to tester: List Manager will be migrated to a .net environment. Please test in
Citrix and local PC to make sure functionality is the same. The .net changes will
otherwise be seamless.
List Manager functionality and GUI changes
1. List Manager should pull data from Pactolus for a current conference (just as

Allegro does today)
2. List Manager must pull the following new fields from Pactolus back to List

Manager and must accommodate the following new columns in the main
screen:

• Fax Number
• email
• Other Information Note
• Number of people in room
• Custom Field label 1
• Custom Field label 2
• Custom Field label 3

75

• Custom Field label 4
• Connect time*
• Disconnect time*
• Priority (this comes in the pre-list)

* MRS must flag whether these two fields are required for a given call.
NOTE: These new fields will not apply to Allegro. We propose adding a message
to MRS if a user is checking off a 6th service stating: —For more than six
selections, the call cannot be booked on Allegro.“
3. We need a character limit increase in List Manager (Pactolus supports: first

name: 20 characters, last name: 30 characters, remaining fields all 30
characters)

4. If Customer Care is printing a list from a call conducted on Pactolus, the
report screen will look different (for a call conducted on Allegro, there will be
no change other than the two new print button options). The Report screen
will have the following changes:
4.1. the Sort By group box must display all possible fields as checkboxes:

1. First Name
2. Last Name
3. Company name
4. Location
5. email address
6. Caller's Phone Number
7. Fax Number
8. Other Information Note
9. Number of people in room
10.Custom Field label 1
11.Custom Field label 2
12.Custom Field label 3
13.Custom Field label 4
14. Priority
15. Connect time*
16. Disconnect time*

76

Must contain 16
new checkboxes

Remove RTF
and Text File.
Add Excel and

email

Must contain
Portrait &

Landscape only

Reserved MRS
Settings button

4.2. the user should be able to check one ore more checkboxes to select
which columns should print on the report

4.3.The DialogChange Headings box (that opens when you click
ChangeHeadings button) should accommodate all 16 fields above.

Must contain all
16 fields

4.4. The Print Style group box should only contain the Portrait or Landscape
options (the radio buttons above will determine what columns print).

5. The Report screen must have two new buttons: —Excel“ and —e-mail“

77

5.1. If Excel is clicked, List Manager will export a comma delimited file (good
for large reports)

5.2. If e-mail is clicked, a box opens with a field to enter one e-mail address.
5.2.1. By default, the window must be pre-populated with lists@cfer.com.
5.2.2. The user must have the ability to overwrite the default e-mail with

another.
5.3.Remove the RTF button
5.4.Remove the Text File button
5.5.The four button changes above (two new buttons and two removed) must

apply to both Allegro and Pactolus calls.

6. The Report screen must have a buttons labeled —Reserved MRS Settings“
6.1.List manager should pull all reserved settings from the Participant List

window
6.2.When the Reserved Settings button is clicked, a window opens containing

all of the 16 possible settings (listed above) and display what was
selected in MRS for this reservation via Read-only checkboxes

7. Remove the PR Firm field from the list manager main screen (never used)

List Manager API changes
8. List Manager must send pre-list information to Pactolus using the following

method (fields in blue are new fields we‘re adding to MRS with this release).

From AddParticipantToConferenceRequest

Pactolus API Field
Name Required

Transfer
to

Pactolus?
(Y/N)

Corresponding MRS
Field Name/Setting

serviceProviderID Yes Y 1000
customConferenceID1 Yes N Reservation #
Moderator Yes FALSE
dialOut Yes No

initializeMutedflag Yes
subscriberFlag Yes

companyName No
Caller's company name
(from Event profile)

FirstName Yes
Caller's first Name (from
Event profile - splitting first

78

http:lists@cfer.com

& Last name)

MiddleName No No

LastName Yes

Caller's last Name (from
Event profile - splitting first
& Last name)

emailAddress No e-mail address
phoneNumber1 No Caller's Phone Number
phoneExt1 No N
phoneType1 No N
phoneNumber2 No N
phoneExt2 No N
phoneType2 No N
faxNumber No Caller's Fax Number
location No City State/Province
partyPasscode No N

Priority No
Determined and

contained in pre-list
custom1 No Custom Field
custom2 No Custom Field
custom3 No Custom Field
custom4 No Custom Field

nbrPeopleInRoom No
Number of people in
room

Constraints/Assumptions/Issues
• 	 There is no change to the Allegro experience in List Manager other than

seeing the new columns on the main screen and the three button changes in
the Report options.

• 	 OPAL will not show any of the new fields. Customers tend to view OPAL
during an ongoing conf to see who‘s on and use it to help the Comm line with
Q&A. Leaderview will eventually replace Opal. We can tell customers they will
only view current 5 columns (plus priority) through OPAL. A complete list will
be sent after the call. (better than not using OPAL at all if call is on Pactolus)

• 	 If we correct the prelist data (from the original value), Pactolus doesn‘t keep
any history of what the original entry was. This is better since it eliminates the
need to correct duplicates.

• 	 Can we make changes to the list from List Manager during the call? No, the
changes won‘t be reflected in the GUI. We can only refresh the info by
logging out and then back into the conference. What does this mean for us?
Any changes that need to be made during the call will be made directly from
Pactolus. Any other changes we will make in List Manager at the end of the
call, not during.

79

• 	 Customer Care accesses LM from Citrix to correct and input info, but they
print from the desktop application. For some reason, the desktop version
does not accept corrections.

• 	 We must keep text file capabilities in case OPAL is down. We can remove
RTF. Updated 4/26/06: we can also remove text file since the Excel report will
use the same purpose (in fact, the text files are transferred to Excel today).

• 	 4/26/06: The —Next“ button in —List Manager“ is supposed to take you to the
next reservation number, but this functionality appears to have never been
implemented because the —Next“ button is never enabled. It will be removed.

Development Owner
The principal Developer(s) who coded this requirement.

Analysis

END.

80

List Manager Process / Certification Guide

Appendix B

<List Manager Technical Specification Document>

Maurice Olsen: 8/23/2006
Page 81 of 101

List Manager Process / Certification Guide

Table of Contents

1...Dialogs / Field restrictions83

1.1 ...List Manager (Main) Dialog. 83

1.2 ..List Manager (Add/Update) Dialog. 87

1.3 .. List Manager (Copy To) Dialog89

1.4 ..List Manager (Delete) Dialog90

1.5 ... List Manager (Report) Dialog92

1.6 ..List Manager (Report Headings) Dialog94

2 Dialog PROCESSES ..95

Maurice Olsen: 8/23/2006
Page 82 of 101

List Manager Process / Certification Guide

Dialogs / Field restrictions

List Manager (Main) Dialog.

Field Name: —List Type“ Drop-Down
Maximum Length: N/A
Input Type: Drop-Down
Special Considerations: This field is always enabled and allows the user to change the participant
list on the fly from —Attended,“ to —No Show,“ or —Complete List.“

Field Name: —Resv No“ TextBox

Maximum Length: Unlimited

Input Type: TextBox: Numeric (ONLY) Exception thrown otherwise.

Special Considerations: This field becomes disabled to the user when the —Find“ button is selected.

In order to reactivate this field, the —Clear“ button must be de-pressed.

Field Name: —Resv Start“ TextBox
Maximum Length: N/A

Maurice Olsen: 8/23/2006
Page 83 of 101

List Manager Process / Certification Guide

Input Type: TextBox
Special Considerations: This control is always disabled and displays the reservation‘s start time
when List Manager has been populated. This field is converted from UTC to the current time zone of
the conference.

Field Name: —Resv End“ TextBox
Maximum Length: N/A
Input Type: TextBox
Special Considerations: This control is always disabled and displays the reservation‘s end time
when List Manager has been populated. This field is converted from UTC to the current time zone of
the conference.

Field Name: —Chair Person“ TextBox
Maximum Length: N/A
Input Type: TextBox
Special Considerations: This control is always disabled and displays the chair person‘s full name
when List Manager has been populated.

Field Name: —Total Lines“ TextBox
Maximum Length: N/A
Input Type: TextBox
Special Considerations: This control is always disabled and shows the total number of participants
in the participants data grid when List Manager has been populated.

Field Name: —Company No“ TextBox
Maximum Length: N/A
Input Type: TextBox
Special Considerations: This control is always disabled and shows the chair person company Id
when List Manager has been populated.

Field Name: —Company“ TextBox
Maximum Length: N/A
Input Type: TextBox
Special Considerations: This control is always disabled and shows the chair person company when
List Manager has been populated.

Field Name: —Phone Number“ TextBox
Maximum Length: N/A

Maurice Olsen: 8/23/2006
Page 84 of 101

List Manager Process / Certification Guide

Input Type: TextBox
Special Considerations: This control is always disabled and shows the chair person phone number
when List Manager has been populated.

Field Name: —Recent Reservation Numbers“ ListBox
Maximum Length: N/A
Input Type: ListBox
Special Considerations: This control holds a user-selectable list of reservation numbers that were
used during this session of List Manager. When List Manager is closed, the list is cleared.

Field Name: —Find“ button
Maximum Length: N/A
Input Type: Button
Special Considerations: This button will populate the List Manager application with the current
reservation number. When selected, —Resv No“ control becomes disabled.

Field Name: —Clear“ button
Maximum Length: N/A
Input Type: Button
Special Considerations: This button will clear the List Manager application of previous reservation
information. When selected, —Resv No“ control becomes enabled; —Load,“ —Report,“ —Add,“ and
—Update“ controls are disabled.

Field Name: —Copy“ button
Maximum Length: N/A
Input Type: Button
Special Considerations: This button will prompt the —copy to“ dialog.

Field Name: —Report“ button
Maximum Length: N/A
Input Type: Button
Special Considerations: This button will prompt the report dialog.

Field Name: —Load“ button
Maximum Length: N/A
Input Type: Button
Special Considerations: This button will prompt an open/save dialog to select a flat .xls file to
import into the List Manger application.

Field Name: —Add“ button

Maurice Olsen: 8/23/2006
Page 85 of 101

List Manager Process / Certification Guide

Maximum Length: N/A
Input Type: Button
Special Considerations: This button will prompt the add/update dialog with a blank template
allowing the user to add a participant to the participant data grid.

Field Name: —Update“ button
Maximum Length: N/A
Input Type: Button
Special Considerations: This button will prompt the add/update dialog with the participant info.
that was selected from the participant data grid.

Field Name: —Delete“ button
Maximum Length: N/A
Input Type: Button
Special Considerations: This button will delete a participant from the participant data grid and
database.

Field Name: —Exit“ button
Maximum Length: N/A
Input Type: Button
Special Considerations: This button will exit the application completely.

Maurice Olsen: 8/23/2006
Page 86 of 101

List Manager Process / Certification Guide

List Manager (Add/Update) Dialog.

Field Name: —First Name“ TextBox
Maximum Length: 30
Input Type: TextBox
Special Considerations: This field stores the first name of the participant to attend. This field is
required for the —Append“ button to be enabled.

Field Name: —Last Name“ TextBox
Maximum Length: 30
Input Type: TextBox
Special Considerations: This field stores the last name of the participant to attend. This field is
required for the —Append“ button to be enabled.

Field Name: —Company“ TextBox
Maximum Length: 30
Input Type: TextBox
Special Considerations: This field stores the company name of the participant to attend.

Field Name: —Sir Name“ RadioGroup
Maximum Length: 30
Input Type: RadioGroup
Special Considerations: This field stores the sir name of the participant to attend.

Field Name: —Type“ Drop-Down
Maximum Length: 30
Input Type: Drop-Down

Maurice Olsen: 8/23/2006
Page 87 of 101

List Manager Process / Certification Guide

Special Considerations: This field stores either —Attendee“ or —Moderator.“

Field Name: —Company“ TextBox
Maximum Length: 30
Input Type: TextBox
Special Considerations: This field stores the company name of the participant to attend.

Field Name: —Location“ TextBox
Maximum Length: 30
Input Type: TextBox
Special Considerations: This field stores the location of the participant to attend.

Field Name: —Phone No“ TextBox
Maximum Length: 30
Input Type: TextBox
Special Considerations: This field stores the phone number of the participant to attend.

Field Name: —Resv No“ TextBox
Maximum Length: N/A
Input Type: TextBox
Special Considerations: This field is always disabled and shows the current reservation number to
be modified.

Field Name: —Priority“ TextBox

Maximum Length: 1

Input Type: TextBox (Numeric ONLY)

Special Considerations: This field saves the priority of the participant to attend.

Field Name: —Title“ TextBox
Maximum Length: 10
Input Type: TextBox
Special Considerations: This field saves the title of the participant to attend.

Field Name: —Attended“ Checkbox
Maximum Length: N/A
Input Type: Checkbox
Special Considerations: If checked, the participant will show as attended the conference, otherwise,
the participant status is updated as a —No Show.“

Maurice Olsen: 8/23/2006
Page 88 of 101

List Manager Process / Certification Guide

Field Name: —Append / Update“ button
Maximum Length: N/A
Input Type: Button
Special Considerations: This button will display —Append“ to add a participant to the existing
participant list or —Update“ if an existing participant is to be updated.

Field Name: —Cancel“ button
Maximum Length: N/A
Input Type: Button
Special Considerations: This button will close the add/update dialog without applying any changes.

List Manager (Copy To) Dialog

Maurice Olsen: 8/23/2006
Page 89 of 101

List Manager Process / Certification Guide

Field Name: —Resv No“ TextBox
Maximum Length: N/A
Input Type: TextBox (Numeric ONLY)
Special Considerations: This field corresponds to the destination reservation number that the
current participant list will be uploaded to.

Field Name: —Copy“ button
Maximum Length: N/A
Input Type: Button
Special Considerations: This button will copy the current reservation participant list to another
reservation number. When the —Copy“ button is selected, the destination reservation number is
checked to verify that the destination reservation number is of the same company as the source
reservation number. If the companies differ, a warning is thrown, but the user is allowed to proceed
with the copy anyway.

Field Name: —Cancel“ button
Maximum Length: N/A
Input Type: Button
Special Considerations: This button will close the add/update dialog without applying any changes.

List Manager (Delete) Dialog

Field Name: —Yes“ button

Maurice Olsen: 8/23/2006

Page 90 of 101

List Manager Process / Certification Guide

Maximum Length: N/A
Input Type: Button
Special Considerations: This button will delete the selected participant from the participant data
grid and DB.

Field Name: —No“ button
Maximum Length: N/A
Input Type: Button
Special Considerations: This button will close the deletion dialog without changes to the
participant list.

Maurice Olsen: 8/23/2006
Page 91 of 101

List Manager Process / Certification Guide

List Manager (Report) Dialog

Field Name: —Report Type“ RadioGroup
Maximum Length: N/A
Input Type: RadioGroup
Special Considerations: If —Complete Participant List“ is selected, the spreadsheet is generated
with the complete participant list. If —Attended Participant List“ is selected, the spreadsheet is
generated with ONLY the attended participant list. If —No Show Participant List“ is selected, the
spreadsheet is generated with ONLY the no show participant list.

Field Name: —Print Style“ RadioGroup
Maximum Length: N/A
Input Type: RadioGroup
Special Considerations: If —Portrait“ is selected, the spreadsheet is generated with the portrait view.
If —Landscape“ is checked, the spreadsheet will be generated in a landscape view.

Field Name: —Preview“ Checkbox
Maximum Length: N/A
Input Type: Checkbox
Special Considerations: If checked, causes the excel spreadsheet to be opened through the —Export
To Excel File“ process.

Field Name: —Email Report“ Checkbox
Maximum Length: N/A
Input Type: Checkbox

Maurice Olsen: 8/23/2006
Page 92 of 101

List Manager Process / Certification Guide

Special Considerations: If checked, the user will be prompted for an email address during the
—Export To Excel File“ process.

Field Name: —Report Title“ TextBox
Maximum Length: None
Input Type: TextBox
Special Considerations: This field saves the user-selected —Report Title“ for generating a report.

Field Name: —Change Headings…“ button
Maximum Length: N/A
Input Type: Button
Special Considerations: This button will display the —Change Headings“ dialog.

Field Name: —Cancel“ button
Maximum Length: N/A
Input Type: Button
Special Considerations: This button will close the —Report“ dialog without generating a report.

Field Name: —Export To Excel File“ button
Maximum Length: N/A
Input Type: Button
Special Considerations: This button will export the participant list to an excel spreadsheets with the
selected options from the —Report“ dialog.

Field Name: —Print“ button
Maximum Length: N/A
Input Type: Button
Special Considerations: This button will print the excel spreadsheet report to the default printer.

Maurice Olsen: 8/23/2006
Page 93 of 101

List Manager Process / Certification Guide

List Manager (Report Headings) Dialog

Field Name: —Sort By“ RadioButton(s)
Maximum Length: N/A
Input Type: RadioButton
Special Considerations: These radio buttons cause the report to be sorted by the corresponding

field. Only one radio button can be selected at a time.

Field Name: —Field Enabled“ CheckBox(s)

Maximum Length: N/A

Input Type: CheckBox

Special Considerations: These checkboxes enable the corresponding field textboxes and radio

buttons.

Field Name: —Field Names / Labels“ TextBox(s)

Maximum Length: 30

Input Type: TextBox

Special Considerations: These fields save corresponding field titles for excel reports.

Field Name: —Apply“ button

Maximum Length: N/A
Input Type: Button
Special Considerations: This button will change the field headings for the report, but NOT change
anything in the DB.

Field Name: —Cancel“ button
Maximum Length: N/A
Input Type: Button

Maurice Olsen: 8/23/2006
Page 94 of 101

List Manager Process / Certification Guide

Special Considerations: This button will close the —Report Headings“ dialog without generating a
report.

Dialog PROCESSES

—Find“ Process: (Populates List Manager with reservation info.)

Enter Resv No: ‚ Select —Find“ Button. ‚ END.

—Copy“ Process: (Copies current participant list to new reservation number.)

Find Process + ‚ Select —Copy“ Button. (Prompt —Copy“ Dialog) ‚ Enter Resv No: ‚ Select —Copy“ Button.
‚ Return to —Main“ Dialog. ‚ END.

—Load“ Process: (Loads a flat file into the participant list data grid and DB.)

Find Process + ‚ Select —Load“ Button. (Prompt Open/Save Dialog) ‚ Enter Open Location.‚ Select —Open“
Button. ‚ Return to —Main“ Dialog. ‚ END.

—Add / Update“ Process: (Add / Update an existing participant within the participant data grid / DB)

Find Process + ‚ Select —Add / Update“ Button. (Prompt Add / Update Dialog) ‚ Enter Participant
Information‚ Select —Append / Update“ Button. ‚ Return to —Main“ Dialog. ‚ END.

—Delete“ Process: (Delete an existing participant from the participant data grid / DB)

Find Process + ‚ Select participant to delete from participant data grid. ‚ Select —Delete“ Button. (Prompt —Are
you sure“ MessageBox) ‚ Select —Yes“ Button‚ Return to —Main“ Dialog. ‚ END.

—Report“ Process: (Generate a report in the form of an excel spreadsheet with chair / participant info.)

Find Process + ‚ Select —Report“ Button. (Prompt Report Dialog) ‚ Select Reporting Options‚ Select —Export
To Excel“ Button. ‚ Return to —Main“ Dialog. ‚ END.

END.

Maurice Olsen: 8/23/2006
Page 95 of 101

	Audio Conferencing Participant List Manager 3.0
	Recommended Citation

	Microsoft Word - 45E33385-64BB-284396.doc

