

50
Computer Science Curriculum

Figure 13: JCreator jar files list

Figure 14: JCreator making set of jars available

After the instructor has demonstrated the process of downloading both the

java JDK and JCreator to the computer, the students will be divided into three groups.

One group will participate in the role play activity while the other two groups will

51
Computer Science Curriculum

begin their assignment for that day’s lesson. The assignment to be completed in class

is for the students to write information about themselves on the Blackboard Web site.

They will be following the prompts in Figure 15, but do not necessarily have to

answer all the prompts. They also may add information not necessarily asked for but

rather information they would like the instructor to know. All students will be

assigned the process of downloading the java JDK and JCreator to their home

computers.

Slide 1 Information

z On Blackboard, answer prompt “All About
Me”

z Write about yourself and your family.
z Why you are taking this course.
z What you hope to learn in this course.
z Other school activities.
z Activities outside of school.
z Favorite movie, book, song, etc.

Figure 15: "All About Me" Prompt

While group two and three are working at their computers on the “All About

Me” prompt, the instructor will lead the first group in the role play activity. The role

play to be used is written by Levine (2007). It is used to introduce beginning

programming students to classes, objects and methods. Each student is assigned a

role such as an acrobat, a blackboard, a calculator, a bamboozler, a lazy calculator or

a decider. They are given a paper that describes what they can and cannot do and

how they are to do it. For example, Levine (2003) writes an acrobat’s instructions as:

52
Computer Science Curriculum

When you are asked to Clap, you will be given a number. Clap your

hands that many times.

When you are asked to KneeBend, you will be given a number. Stand

up and sit down that many times. Note that if you are told “2”, then you will

stand up twice AND sit down twice.

When you are asked to Count, you will reply (verbally) with the total

number of exercises you have done. Note that Clap-ping four times counts as

four exercises, and KneeBend-ing twice counts as two. If you have done

these things (and only these things) then your reply should be “6”. (p.1)

The instructor has a script to follow that prompts the students through their

roles. The instructor can ask a student, by name, to construct himself or herself as an

acrobat. Then the instructor can call on the student to perform methods such as

“Acrobat, clap four”. The instructor can also ask for things that they do not know

how to do or an incorrect instruction such as asking a class, instead of an object, to

perform certain tasks. Cutler (2005) states how he just has to say “Acrobat clap”

during the school year and his students will understand that a mistake was made from

someone calling a method with the class name instead of the object name (p. 4).

After the students adjust to their roles, the instructor can also begin to introduce java

code. For example, when a student has been called to perform a method, the

instructor would write on the board “luke.clap(4)”. The role play activity helps the

students visualize writing programming and makes it fun in the process.

53
Computer Science Curriculum

4.5.3 – Lesson 3

The third day of the course will begin with problem solving any difficulties

the students encountered while downloading the java JDK, JCreator or the jar files.

The discussion will involve all of the students as they try to help troubleshoot

problems other students were having with the process.

The rest of the lesson will look like lesson 2 in that the other two groups will

be led through the role play activity by the instructor. Any group not involved in role

play, will be working on their post on the Blackboard Web site using the prompts

from “All About Me.”

4.5.4 – Lesson 4

The objective for lesson 4 is for the students to be introduced to the definitions

of objects, classes and methods. The lesson plans will review the student lesson

found in the textbook by Quesenberry (2006) which is being used for the course.

This lesson is A1 – Introduction to Object-Oriented Programming (OOP). In the

textbook, the purpose of this lesson is stated as follows: “The purpose of this lesson

is to give you a feel for object-oriented programming and to introduce its conceptual

foundation.” (p. 1). The students will be directed to the location on the Blackboard

Web site where to find this lesson as well as all lessons from this course. If the

student has chosen to purchase the hard copy of the textbook from the school store,

they will be directed to the lesson in that copy. A PowerPoint file (see Appendix G)

may be used as an aide for the instructor in leading the students through the

discussion.

54
Computer Science Curriculum

The homework for the evening will be to read the article by Rubinkam (2005)

on Kutztown, PA. The link will be available to the students on the Blackboard Web

site. The guidelines and directions outlined by N. Quesenberry (personal

communication, January 30, 2009) for this assignment are described in Appendix H.

These same guidelines and directions will be used throughout the semester for an

assignment pertaining to reading and responding to articles from the media.

4.5.5 – Lesson 5

The objective for lesson five is to introduce the students to a small program

and programming syntax (see Appendix I). The students will see how comments are

used in a program, why they are used and will be given examples of what types of

comments are useful. The syntax for class definition will be introduced as well as the

main method. The students will see how to configure JCreator and will work through

the steps at their computers with the guidance of the instructor. The instructions from

Litvin (2003) will be referenced to assist the students in configuring JCreator on their

home computers. The instructor will demonstrate the writing of a small program

called “Hello, World!” This program will instruct the students about class definition,

main method and will also introduce the println method (see Figure 16).

The assignment for lesson five is to write a small program named Wizard that

will print out the phrase “The Great Oz has spoken!” (see Figure 17). This will

ensure that the students have configured their home computers properly and can run

JCreator. Since it also will require them to type, compile and run the program, they

will experience how to find errors, correct them, rebuild and run the program

55
Computer Science Curriculum

successfully. The students will be required to hand in a printout of the program from

their home computers.

Figure 16: Lesson 5 program, Hello, World!

Figure 17: Lesson 5 assignment "The Great Oz has spoken!"

56
Computer Science Curriculum

4.5.6 – Lesson 6

The objective of lesson 6 is to connect what the students did in role play to

java programming and code. The students will participate in a discussion on what

each person was asked to do during role play. The instructor will guide the students

into seeing the connection on what was done during role play and how that is written

into java code. A PowerPoint file (see Appendix J) may be used as an aide for the

instructor in the discussion.

The next week’s assignments will be distributed to the students (see Table 2).

Lab time will be given so that the students may work at their computers on programs.

Students who have already completed the assignments without difficulty will be

asked to assist students who have not been able to complete the assignments due to

errors in programming. The instructor will also guide the students in finding errors.

Table 2: Introduction to Computer Science Course Daily Content and Assignment Schedule,
Week 2

LESSON CONTENT ASSIGNMENT

6 • Go over Role Play
• Lab time; answer

questions;
• Clarify concepts

• None

7 • DrawSquare Program • DrawHouse

8 • Lab time • Continue work on
DrawHouse

9 • Lab time • ICT Worksheet A1.1
• SmileyFace

10 • Review Differences
Between Objects and
Classes

• Quiz 1
• Worksheet, Benzene
• ICT Worksheet A2.1
• ICT Worksheet A2.2

57
Computer Science Curriculum

4.5.7 – Lesson 7

The objective of lesson 7 is to expand on what has already been learned about

objects, classes, and methods. The discussion will consist of the instructor and

students designing a program together, called DrawSquare (see Figure 18). The

students will be following along on their computers and writing the code as

instructed. The instructor will lead the discussion as outlined in Appendix K

(Quesenberry, 2006), explaining object-oriented programming and the use of JCreator

as this program is being developed. It is not expected, at this time, for the students to

understand all the coding instructions. The goal is to understand more about object-

oriented programming.

Figure 18: Lesson 5 Program DrawSquare and output

58
Computer Science Curriculum

The students will receive two handouts for this lesson. The first handout lists

the DrawingTool class specifications from the Institute of Computer Technology

(ICT) curriculum that will be used in developing the program. This handout lists

some of the features of the class, such as the object DrawingTool, constructor

methods, accessor methods, and modifier methods. The second handout is for the

students’ assignment. The assignment is for the students to create a program, called

DrawHouse (see Figure 19), which does what the name implies (see Figure 20).

Figure 19: Assignment DrawHouse code

59
Computer Science Curriculum

Figure 20: Assignment DrawHouse output

4.5.8 – Lesson 8

Since the majority of class time on lesson 7 was spent with discussion and

demonstration, lesson 8 will be lab time for the students to continue to work on their

projects of developing the program DrawHouse. During this time, the instructor will

be available to help the students. The instructor will also encourage students to help

each other and encourage them to try the optional piece of the assignment which is to

add a door and windows.

4.5.9 – Lesson 9

Lesson 9 will be another day of lab time where the students will extend their

understanding of the DrawingTool and SketchPad objects. They will use the lab time

to complete the next worksheet assignment from the ICT curriculum. Two questions

on this worksheet give the students code. They are to read through the code and draw

60
Computer Science Curriculum

the figure generated by following the code directions. The remaining three questions

have the students write code (see Figure 21).

4.5.10 – Lesson 10

The first part of lesson 10 will be a discussion, as outlined in Appendix L,

about the differences and similarities between objects and classes (Quesenberry,

2006). The remaining class time will be used for lab work. During this time, the

students will be completing a program that draws the abbreviated symbol for the

chemical benzene (see Figure 22). There will be two worksheets from the CIT

curriculum for the students to complete for homework. The first worksheet reviews

objects and classes and contains short-answer questions. The second worksheet also

contains short-answer questions and reviews object-oriented programming.

Figure 21: SmileyFace Assignment Code & Output

61
Computer Science Curriculum

Figure 22: Lesson 10 Benzene Program

4.5.11 – Lesson 11

At the start of the third week, the students will be given the assignments in a

table format (see Table 3). This week, the course will begin using the Karel J. Robot

class (Bergin, 1997). There are many advantages in using Karel J. Robot for teaching

object-oriented programming. The visual feedback helps the students see their

mistakes and successes. The variety of robot tasks helps the students in

understanding major concepts such as inheritance, polymorphism, abstraction,

encapsulation, object-oriented programming design, recursion, and iteration. The

students enjoy using the programming as it filters out java details so they can focus

62
Computer Science Curriculum

on the major concepts. As the semester goes on, the instructor can spiral back

through those topics introducing more and more detail as required.

Lesson 11 begins with a PowerPoint presentation to the students (see

Appendix M) about the Karel J. Robot World. The textbook for Karel J. Robot

comes with Problem Sets for each chapter. For homework, the students will answer

the questions from the Problem Set for Chapter 1.

Table 3: Introduction to Computer Science Course Daily Content and Assignment Schedule,
Week 3

LESSON CONTENT ASSIGNMENT

11 • Karel J. Robot, Chapter 1 • Karel J. Robot Chap 1
Questions

12 • Karel J. Robot, Chapter 2 • Initials
• Karel J. Robot Chap 2, #1 &

#2
13 • Lab time • Karel J. Robot Chap 2, #5

(newspaper) & #7(grocery)
14 • Lab time • Karel J. Robot Chap 2, #6

(mountain)
• Karel J. Robot Chap 2, #9

(Figure 8)
15 • A1 to A2 of ICT, Karel J.

Robot
• Unit Test 1

4.5.12 – Lesson 12

The objective for lesson 12 is to understand the Karel J. Robot language and

to write programs that instruct robots to perform simple obstacle avoidance and

beeper transportation tasks. A PowerPoint presentation will be used to instruct the

students in this goal (see Appendix N). After the presentation, the instructor will lead

the students in writing a program to “draw” the letter “H” using beepers (see Figure

23). The assignments for the students will be to answer questions one and two from

67
Computer Science Curriculum

begin the use of classes to be introduced in Chapter 3 of the Karel J. Robot textbook

(Bergin, 1997).

Figure 28: Lesson 14 Karel J. Robot Figure8 Assignment

The remaining lessons will be developed along a similar structure keeping in

mind the objectives of the course. Key cognitive strategies will to be used to promote

a high level of student learning. This can be accomplished through in-depth

preparation of lesson plans, leading discussions with the students that promote

students thinking on a higher level, and providing opportunity for exploration and

experiencing achievement. Through balancing instruction, lab time, fun exercises

and assignments that apply learned concepts to the “real world” situations and

providing opportunities for communication of understanding through written and

verbal forms, the lessons can instill a thorough understanding of the basic concepts,

principles, and techniques of computer science.

68
Computer Science Curriculum

4.6 – Assessments

Every Friday, with the exception of the first week of the course or when there

is a unit test, a brief quiz will be administered to the students. Questions on the quiz

will highlight the key concepts discussed through the week. The types of questions

may be true or false, multiple choice or short answer. The quiz will take the students

no more than half of the 51-minute class to complete.

Unit tests will take the entire class time. The types of questions may be

multiple choice, short answer or long response. The concepts of the first unit are

more about understanding the basics of object-oriented programming than about

programming structure. Therefore, the first quiz and test will not be at as high a level

of thinking as subsequent quizzes and tests through the course. The format will

model the Advanced Placement exam in that there will be multiple choice questions

and free response questions. The College Board has released some exam questions so

that the instructor can write questions similar to those found on the AP exam. Test-

taking strategies for each type of question will be discussed through the course.

The Institute of Computer Technology curriculum (Quesenberry, 2006), the

textbook used for the Introduction to Computer Science course, also provides

multiple forms of tests. The tests are electronic so that the instructor can make

changes to better assess what has been discussed in the course for the unit. The

answer keys are also provided.

The quiz for the first unit (see Appendix 0) is shorter than the typical quiz

since not as much content has been covered in the first two weeks of the course. (See

Appendix P for the answer key). The questions are short answer format.

69
Computer Science Curriculum

The unit test (see Appendix Q and Appendix R for test and answer key) has

more content as more discussions and more programming practice has been

completed at this time of the course. The questions are still not at the depth of those

that will be seen on future unit tests in the course. The programming questions as

released by College Board (2006) are questions that may be used on later tests. The

following is a sample question from the released College Board questions (p. 24):

Consider the following code segment.

Int k = 1;

While (k < 20)

{

If ((k % 3) = = 1)

System.out.print(k + “ “);

K++;

}

What is printed as a result of executing this code segment?

(A) 2 5 8 11 14 17

(B) 3 6 9 12 15 18

(C) 1 4 7 10 13 16 19

(D) 1 3 5 7 9 11 13 15 17 19

(E) 2 4 6 8 10 12 14 16 18 20

Attending Advanced Placement conferences helps an instructor by facilitating

the receiving and sharing of many aspects regarding the teaching of a computer

70
Computer Science Curriculum

science course, such as writing and grading assessments. Being an active member of

the Advanced Placement discussion board for computer science also facilitates

knowledge in this area. With all of the resources available to the instructor including

the textbook, College Board, and other educators, assessments can be written for the

Introduction to Computer Science course that will be thought-provoking, promote

critical thinking and adequately measure the students’ achievement in the course.

4.7 – Grading Rubrics

Grading rubrics in computer science can be difficult and time-consuming for

the instructor. Programming is the most important part of the computer science

curriculum. Therefore, programming assignments are weighted 40% of the total

grade (see Appendix A for assessment percentages). Educators have posted their

programming rubrics on the College Board Web site to share with other AP

Computer Science instructors. The rubrics range from the relatively simple and fast-

grading format to the more detailed format.

The rubric favored for the Introduction to Computer Science course is a rubric

with more details. Carter (2009) writes about this rubric from Sarah Fix of the Career

Center in Winston-Salem, North Carolina. There is a total of 20 points in this rubric

divided equally between four categories. The categories are correctness, design, style

and documentation, and efficiency. Each category further subdivides into a zero to

five rating based on what is to be graded with that particular category. For example,

efficiency is graded a five for “the algorithm of choice used and correctly

implemented” down to a zero for “grossly inefficient, unnecessary repetition of steps,

etc.” Carter (2009) explains how the students submit their program as a MicroSoft

71
Computer Science Curriculum

Word document. Then the grading is completed using Word’s “Track Changes”, the

scoring is typed in at the end of the document and sent back to the student.

This grading rubric makes everything clear for the students. The students will

understand what it takes to write good code by each of the categories and the

subdivisions. The instructor’s comments will help the students know how to make

corrections and improve on the next program they will write.

There may be programs where a more condensed rubric is all that is

necessary. The rubric can be created to fit the exact dynamics of the program. A

program that has the students calculating the solving of a quadratic equation may be

an 8-point rubric, with one point each for heading, prompts for input, correct

calculations, one point for each of three outputs, correct layout of output, and use of

the square root function and the power function. The instructor may adjust rubrics of

assignments as deemed necessary.

Grading of the Advanced Placement Computer Science exam is often a topic

at College Board workshops and conferences. The speaker teaches those that attend

what to look for in a program and how to grade it by the Advanced Placement

standards. The more the instructor of the Introduction to Computer Science course

can do to help the students adjust to the format of the AP exam, the more comfortable

the students will become with their skills by understanding what is required to score

high on the rubric scale.

4.8 – Motivation and Building Confidence

Motivation can play a key part in a student’s success in a course. Generally,

students who elect to enroll in a high school computer science course, do so as their

72
Computer Science Curriculum

choice. They may have an interest in computer science, believe that they will be

good at computer science or suppose that there will be little work and a lot of fun.

All of that can be true. But when the course challenges them at a level they were not

expecting, the students can be disillusioned, lose confidence and therefore lose

interest in the course. It is important for the instructor to take steps to avoid this from

happening.

Motivation starts with the instructor believing that every student can be

successful. Words of encouragement to the students such as “You can do it!” and “I

will be there to help” and “I believe in you” can go a long way in steering students

toward success. Supportive statements such as these and the actions taken by the

instructor help the students feel that they are not alone in the struggles to get through

some more difficult concepts.

In the classroom, the instructor encouraging students to ask questions without

the risk of embarrassment can promote more students’ participation in discussions

and consequently, feelings of accomplishments. Even an incorrect answer can be

turned into a positive experience by using the answer as a catalyst for other ideas or

different ways to approach the problem. Saying things such as “You are partially

correct, which gives me a great idea” and “Who else has considered this viewpoint

and would like to expand on that” can help a student see that the answer wasn’t

entirely wrong. Rather, the answer may aide another into something they may not

have considered before hearing the student’s response. This builds confidence in the

students and helps them realize that every answer is a “good” answer.

73
Computer Science Curriculum

It’s important for the instructor to be aware of students who are in need of

help. Students who are already invested in the course and love programming are also

the students who are the first to seek assistance. It’s very easy for an instructor to

become surrounded by students who have questions but could probably answer those

questions on their own or given some brief hints. The students who are quiet and

unsure of their abilities are also the students who are not at the head of the line

seeking the instructor’s help. They are not quite sure how to ask for that assistance

and do not want to ask in front of students for fear of feeling stupid.

Subtle ways of offering assistance to the quiet student can be employed so as

not to make the student feel they are not capable. First, the instructor’s routine while

the students are working in the computer lab should be moving around to all areas of

the computer lab. The instructor should not spend long periods of time with any

student, but rather make brief observations or assistance with many students

throughout the class time. Students become quickly aware of instructors favoring

only the “smart kids”. With this process, it won’t be as obvious when the instructor

visits a student at his or her computer that truly is in need of assistance. Then the

instructor can offer suggestions of “try this and see what happens” and “I’ll come

back to see what you have done with this” shows the student the instructor has

confidence in them. And they’ll feel great knowing that they’ve achieved positive

results with only a little help. For a student, it is so gratifying to see that program run

successfully on that computer screen. In what other course can a student achieve

instant gratification after completing an assignment?

74
Computer Science Curriculum

A group of participants from an Advanced Placement Computer Science

summer institute posted tips on AP Central (2004) for teaching success in the

computer science classroom. The suggestions are very helpful for an instructor to

motivate the students and help the students view computer science as interesting and

fun. One suggestion is to never touch the student’s mouse. Rather, let the student be

in the driver’s seat. Most students are visual learners and letting them physically

work through the process will not only help them understand the material better, but

also help them remember it better. Secondly, lecture as little as possible and let the

students practice hands-on computer skills. Another suggestion is to set up the

classroom using the golden rule of programming. With one instructor in a computer

lab of 25 students, it is difficult to be all places at all times. The students need to

learn to help each other. Therefore, the golden rule is to ask another student first

before seeking the help of the instructor. These are just a sample of ten suggestions

posted on AP Central (2004).

Enrollment of girls in computer science courses is a problem at the high

school level and at the college level. And thus, there are few women employed in the

computer science industry. The participants at the AP institute (AP Central, 2004)

suggested a very simple strategy to help girls feel like they belong in the computer

science classroom. Their suggestion was to not refer to the class as “you guys”.

Using this phrase makes the girls feel like a computer science course is only meant

for boys. Treating the girls equally by avoiding phrases such as this and assisting all

students equally will help the girls feel like they are on an even level with others in

the course.

75
Computer Science Curriculum

Building motivation and confidence in students is something every instructor

has to deal with in every discipline. Since the enrollment in the school’s computer

science courses have dropped in the last few years, there is a particular need to build

motivation and confidence in the Introduction to Computer Science course to keep the

students interested and to encourage them to enroll in the Intermediate Computer

Science course, the next computer science course in the sequence at the instructor’s

school. The above strategies will ensure that the students will experience success

and feel confident in their abilities to continue on to the next computer science

course.

76
Computer Science Curriculum

Chapter 5 – Project History

This project began as a result of the need to better prepare the students in the

computer science program at the instructor's school for the Advanced Placement (AP)

Computer Science Course and the exam administered each May. In addition, the

need to increase enrollment in these courses was a factor in developing this

curriculum. For a school the size of this school (approximately 3,500 students) and

for a school that places a strong focus on the Advanced Placement curriculum, there

should be a stronger interest from the students to enroll in the computer science

courses. The need for a new curriculum for the Introduction to Computer Science

Course was established.

5.1 – Goal Evaluation

The project will be evaluated by the following criteria:

1. 	All proposals of teaching methods will be supported through research.

2. 	Lesson plans and assignments align with course objectives, particularly the

course objectives of the Advanced Placement Computer Science curriculum.

3. 	The number of students taking computer science courses has increased. (This

will not be available within the scope of this project. Interest in course work

normally would take at least two years to build.)

4. 	The percentage of students receiving a score of 4 or higher on the Advanced

Placement Computer Science exam has increased. (This is beyond the scope

of this project and cannot be determined.)

77
Computer Science Curriculum

Chapter 6 – Lessons Learned and Next Evolution of the Project

The development of a curriculum is a long and arduous process. It is also one

with great rewards along the way. This project is only one small step, albeit a very

important step, in the beginning of that development process. The students'

experiences, reactions, learning styles, and progress will all play a part in predicting

the next direction of this project.

6.1 - What I Learned From the Project Experience

I have learned many things from this project experience. Drawing on my

prior experience of developing curriculum for high school mathematics courses and

putting that together with what I have learned in computer science design in my

courses at Regis University, I have merged the two together to analyze what is best

for the students enrolling in the Introduction to Computer Science course at the

instructor's school. I have learned how to research and design a course that best

meets the needs of the students, that there is a multitude of resources available for

educators to assist them in this process, and that analysis of the current situation at

hand is important in discerning what will work for the instructor, the students and the

learning environment. What I have learned can be applied to the development of

other mathematics courses and can assist me in aiding new teachers through this

process.

6.2 – What I Would Have Done Differently

One of the processes I would have done differently is to have observed other

high school computer science courses. For this project, I am not actually teaching the

78
Computer Science Curriculum

course nor are there plans in the future for me to teach the course. Therefore, it was

not feasible for release time in the current school day to view computer science

courses at other schools. Release time would be granted, however, if teaching a

course such as this for the first time. Additional conversations with those educators

in other schools would also be beneficial to hear what they have found to be

successful in meeting the needs of their students.

Also of benefit would be attending an Advanced Placement conference.

These conferences are taught throughout the country several times during the school

year. Having attended these for the Advanced Placement Calculus BC course, I have

found them to be extremely valuable in providing insight into a variety of areas such

as teaching methodologies, assignments that help the students understand the

material, assessments, and grading.

6.3 – Did the Project Meet Initial Expectations?

 The initial expectations of the curriculum being developed and supported

through research were met. Because of the research completed, the curriculum

developed has a strong foundation on which to begin the course semester. The lesson

plans, assignments, and assessments have been constructed with the understanding of

the students' needs and the objectives for the course. Many tools are in place to build

confidence in the students. The textbook to be used is easy for the students to read

and understand. The Integrated Development Environment and other software, such

as Karel J. Robot (Bergin, 2007), to be used in the course are designed for the

beginning computer programming student. With increased confidence within the

students, their interest in the computer science will increase as well. The instructor's

79
Computer Science Curriculum

knowledge of key cognitive strategies will aide in asking the students the appropriate

questions which will lead the students in thinking on a higher level. With these items

firmly in place, the instructor can begin teaching the course with confidence that the

students will be provided a sound learning environment.

6.4 – What Would Be the Next Stage Of Evolution for the Project If Continued?

The next stage of evolution for the project would begin on the first day of the

course. The instructor would be observing how the students comprehend the material

being taught. Conversations would continue between the instructor and his or her

students to give the students the opportunity to express their thoughts on how the

learning environment is working for them. Adjustments can be made through the

first unit. These adjustments may include spending more time on a particular content

or perhaps spending less time if the students feel things are moving along too slow.

The instructor or students may feel additional explanation or practice may be

warranted and change the number of days spent on a particular content area. More

importantly, the time spent covering the first unit would also indicate how the

subsequent units will need to be written. The instructor will be analyzing

assignments and assessments to see if the students are mastering the content.

If time permits during the semester, the instructor may be able to veer away

from curriculum that is not included in the capstone course, Advanced Placement

Computer Science, and develop units that have a computer science base but not

required in the AP curriculum. These items may include game development, systems

analysis and design, or web design. Items such as these may help the students find

computer science more enjoyable and easier to understand.

80
Computer Science Curriculum

At the end of the first unit, the instructor may develop a survey utilizing

Google docs, an account that the instructor's school has in place for all instructors,

where the students could respond to questions concerning the results of learning that

has taken place through the first unit's curriculum. Some questions that could be

asked are the following: Did you feel you performed as well as you expected in this

past unit? Why or why not? Did the instructor spend an adequate amount of time on

the material? Is the time too little or too much? Would more individual assistance

from the instructor be helpful? Would more lab exercises, role play activities,

programming assignments be helpful? The students could complete the survey

privately at their computers in the computer lab or at home. The instructor could then

quickly and efficiently compile the results and make adjustments to the next unit

accordingly.

When one full semester of the course has been taught, all worksheets, notes,

including reading material, instructions and assignments will be compiled into a

notebook. The printing service for the district will bind these with a cover to be sold

to the students of future courses through the school store. All of the instructor’s

notes, lesson plans, PowerPoint slides, assessments and answer keys will be

organized into a three-ring binder for the instructor’s use. After each year this course

is taught, the student and instructor’s books will be updated.

6.5 – Recommendations

One recommendation is for the instructor to always “try things out” first, if at

all possible. If there is a decision to be made on software, take some time to use it on

the computer before using it with the students. It may not be what the instructor had

81
Computer Science Curriculum

in mind. It is better to find this out before purchasing the software or having the

technology department load it onto all of the computers and then finding out it does

not support the instructor’s objectives.

Secondly, the instructor should always work through programs before

assigning them to the students. This is invaluable in finding problems that may arise

during instruction or questions or problems that the students may run into while doing

the programming themselves. As an added bonus, it is a great way for the instructor

to become more knowledgeable about programming, too!

The most important recommendations for the instructor is to make use of the

educational opportunities and support available for computer science instructors. The

amount of material and support can be overwhelming, at times, and often confusing.

There is so much information that it becomes difficult to discern what is best for the

instructor and the instructor’s students. But an instructor should never stop learning

and reevaluating what they do. Reexamining the curriculum and changing it is a vital

way to keep things fresh, exciting and up-to-date to fit the needs of the students.

The educational community believes very strongly in professional learning

communities (PLCs). Some schools have built time into the weekly schedule for

educators to meet and discuss ways to meet students’ needs. Even if time is not built

in by the school, it is important to make this time. This can include attending classes

or conferences, researching through books, magazines or the internet, visiting other

schools or participating in online discussion boards. All ideas from other sources are

valuable to research and consider. They are from experienced educators that have, at

one time, been new to the computer science education field, and are willing to share

82
Computer Science Curriculum

what they have learned. Do not be afraid to try something new. If it doesn’t work for

your students, then change it. Be creative and believe in what you do and the students

will respond. Remember, that if an instructor enjoys and is excited about what is

taught, then the students will enjoy the class, be excited and learn as a result.

6.6 – Summary

The purpose of this project was to develop curriculum for the Introduction to

Computer Science course at the instructor's school. The curriculum that would be

implemented, should the instructor ever be asked to teach the course, would prepare

the students for the Advanced Placement Computer Science course and would instill

confidence in the students that they have the ability to complete said course

successfully.

83
Computer Science Curriculum

References

AP Central. AP Computer Science AB Syllabus 3. Retrieved October 28, 2008, from
http://apcentral.collegeboard.com/apc/public/repository/Comp_Sci_AB_Syllabus
_3.pdf

AP Central. (2004). Ten Tips for Teaching Success. Retrieved February 17, 2009,
from
http://apcentral.collegeboard.com/apc/members/courses/teachers_corner/45470.h
tml

Barnes, D., & Kolling, M. (2003). Objects First With Java, A Practical Introduction
Using BlueJ. London: Pearson Education Limited.

Barth, R., DuFour, R., Eaker, R., Eason-Watkins, B., Fullan, M., Lezotte, L., Reeves,
D., Saphier, J., Schmoker, M., Sparks, D., & Stiggins, R. (2005). On Common
Ground. Bloomington, IN: National Educational Service.

Bergin, J., Stehlik, M., Roberts, J., & Pattis, R. (1997). Karel++, A Gentle
Introduction to the Art of Object-Oriented Programming. New York: John
Wiley & Sons, Inc.

BlueJ – The interactive java environment[computer software]. (2009). Retrieved
February 1, 2009, from http://www.bluej.org/index.html

Carter, D. (2009). Program Assignment Grading. Retrieved February 17, 2009, from
http://apcentral.collegeboard.com/apc/members/courses/teachers_corner/45331.h
tml

Ciezki, R. (2008). Computer Science AB Course Perspective. Retrieved October 28,
2008, from
http://apcentral.collegeboard.com/apc/public/courses/descriptions/4346.html

College Board. (2009). Computer Science A and Computer Science AB Course
Descriptions. Retrieved January 19, 2009, from
http://apcentral.collegeboard.com/apc/public/repository/ap09_compsci_coursede
sc.pdf

College Board. (2006). The 2004 AP Computer Science A and Computer Science AB
Released Exams. New York: College Board.

Conley, D. T. (2005). College Knowledge. San Francisco, CA: Jossey-Bass.

Conley, D. T. (2007, March). Toward a More Comprehensive Conception of College
Readiness. Eugene, OR: Educational Policy Improvement Center.

84
Computer Science Curriculum

Cross, J. (2008, June). jGRASP Update New Technology. Retrieved January 21,
2009, from
http://apcentral.collegeboard.com/apc/Pageflows/TeachersResource/viewResourc
eDetail.do?source=tr&resourceId=4486

Evan, A., Huberman, M., Means, B., Mitchell, K., Shear, L. & Shkolnik, J., et al.
(2006, August). Evaluation of the Bill & Melinda Gates Foundation’s High
School Grants Initiative, Bill & Melinda Gates Foundation. Retrieved January 6,
2009, from
http://www.gatesfoundation.org/learning/Documents/Year4EvaluationAIRSRI.pd
f

Friesen, J. (2005, August). Java Tech: The Sweet Song of the BlueJ, Part2.
Retrieved January 20, 2009, from
http://today.java.net/pub/a/today/2005/08/30/bluej.html

Levine, D. (2003). Role Playing in an Object-Oriented World. Retrieved February
16, 2009, from http://www.cs.sbu.edu/dlevine/RolePlay/roleplay.html

Lewis, J., Loftus, W., & Cocking, C. (2004). Java Software Solutions for AP ™
Computer Science. Boston: Addison-Wesley.

Litvin, M., & Litvin, G. (2001). Java Methods, An Introduction to Object-Oriented
Programming. Andover: Skylight Publishing.

Litvin, M., & Litvin, G. (2003). How to Use JCreator LE. Retrieved February 21,
2009, from http://www.skylit.com/javamethods/faqs/jcreator4.html

North, K. (2008). The "Write" Tool for Introductory Computer Science Courses.
Retrieved October 28, 2008, from
http://apcentral.collegeboard.com/apc/members/courses/teachers_corner/22778.h
tml

Quesenberry, N. (2006). Java Curriculum for Advanced Placement ™ Computer
Science, Version 2.0 Revision. Institute of Computer Technology (ICT).

Rubinkam, M. (2005, August 9). Students charged with computer trespass. USA
Today, Retrieved February 19, 2009, from
http://www.usatoday.com/tech/news/2005-08-09-kutztown-hackers_x.htm

Slater, D. (2008). Karel J. Robot UPDATE NEEDED – NEW RELEASE. Retrieved
February 8, 2009, from
http://apcentral.collegeboard.com/apc/Pageflows/TeachersResource/viewResourc
eDetail.do?source=tr&resourceId=4026

85
Computer Science Curriculum

Taft, D. (2007). Girls Ask Alice for Programming Skills. Retrieved February 8,
2009, from http://www.eweek.com/c/a/Application-Development/Girls-Ask-
Alice-for-Programming-Skills/

Trees, F. (2009). Sharing Strategies for Teaching AP CS. Retrieved January 19,
2009, from the AP Central Web site:
http://apcentral.collegeboard.com/apc/members/courses/teachers_corner/45322.h
tml

Trees, F., Cutler, R., Wittry, D., Kmoch, J., Hromcik, J., Litvin, M., Nevison, C.,
Astrachan, O., Carter, D. (2005). The Teaching Series: Special Focus in
Computer Science, Object-Oriented Design. College Board.

Xinox Software. JCreator[computer software]. Retrieved February 15, 2009, from
http://www.jcreator.com/

86
Computer Science Curriculum

Appendix A

(NAME OF SCHOOL)

INTRODUCTION TO COMPUTER SCIENCE

(INSTRUCTOR’S NAME)

COURSE OJBECTIVES, GRADING AND CLASSROOM EXPECTATIONS

OFFICE: (Room number)

OFFICE PHONE #: (phone number)

OFFICE HOURS: (off periods)

e-mail: (instructor’s email address)

Blackboard Web Site: (web address)

Powerschool Login: (web address)

COURSE DESCRIPTION: Introduction to Computer Science is a one-semester

course that serves as an introduction to Computer Science to students of all grades.

This course covers programming techniques using the java language and the Object

Oriented Programming paradigm. Topics include classes, object-oriented

programming, primitive data types, object behavior, libraries and APIs, simple input

and output, loops, decisions, recursion and Strings. Students will be introduced to the

Karel J. Robot class written by Joseph Bergin and use it to solve problems throughout

the semester. Techniques of problem solving will be stressed heavily as well as ethics

as they relate to technology.

All topics will be practiced in the programming language java. This course is
taught in a computer lab where each student works on an individual PC computer
using JCreator. This course meets 5 days a week for 51 minutes each day.

The prerequisites are CP Algebra I or Integrated I.

MATERIALS:
All materials are available on the Blackboard Web site listed above. An

optional purchase of the workbook is available in the school store for $4.00.

TEXT: Quesenberry, Nancy. Java Curriculum for Advanced Placement (TM)
Computer Science, version 2.0 revision. Institute of Computer Technology (ICT),
2006.

ASSESSMENT: Grades are made up of programming assignments (40%), quizzes
(25%) a final exam (20%) and other activities (15%). Other activities include relevant
discussions on Blackboard, worksheets, research and role-playing. Quizzes include
multiple-choice questions and free response questions that are in the AP format.

The points from all these items will be averaged together and the following
grading scale will be used: 90-100% (A), 80-89% (B), 70-79% (C), 60-69% (D), 0-
59% (F)

87
Computer Science Curriculum

TEACHING METHODS: This course will be taught to promote the key cognitive
strategies needed to prepare students for college-level work. These strategies used to
promote a high level of student learning include: a thorough understanding of the
basic concepts, principles, and techniques of computer science, conceptual
understanding of computer science concepts, applying learned concepts to “real
world” situations, efficient problem solving strategies, and evaluating the validity of
solutions.

Students will learn through lectures, demonstrations, discussions,
programming assignments, quizzes, exams and other activities. The students have a
quiz every Friday on any previous material in either the multiple-choice format or the
free-response format of the AP exams.

CLASSROOM BEHAVIORS & EXPECTATIONS:
1. 	Bring all needed material to class. Textbook, paper, pencils and notebook

are to be brought to class everyday.
2. 	Be in your seat and ready to work when the bell rings and remain in class

the full period.
3. 	Obtain permission before speaking or leaving your seat.
4. 	Respect…

yourself. Always do your best, believe in yourself, and do your own
work.

your classmates. Listen to, appreciate the differences in, and support
each other.

your teachers. 	We have chosen this profession because of our
passion to help you.

5. 	Seek extra help when needed and take responsibility for material missed.
6. 	Listen carefully when instructions or presentations are being given, taking

good notes.
7. 	Respect the property of other people and the school.
8. 	Ask questions and be an active participant in the day's activity.
9. 	Exercise integrity. I expect that you will always function honestly and with

integrity on every test and every assignment, as well as with every person
in the class. Every time you take a quiz or a test you are taking two
assessments. The first has to do with the mathematics; the second has to do
with your character. If you can only pass one of them, make it the second.

HOMEWORK:
Homework will be assigned daily. Homework is due the next class period after it is
assigned unless otherwise stated.

Answers only are not acceptable. SHOW ALL OF YOUR WORK.

It is VERY important to consistently do your homework. Always come to class with
any questions from each assignment. We will go over questions after presentation of
new material.

88
Computer Science Curriculum

ABSENCES AND LATE WORK:
For every excused absence, you will be allowed two days to complete any

make-up work. It is the student's responsibility, not the teacher's, to find out what
was missed during the absence. A student can do this by asking another student in
class, by looking at the assignment sheet or by checking the web site.

If you miss the day before a test or quiz, be prepared to take the exam as
scheduled. If you miss the day of the test, be prepared to take the test the day you
return to school. If you missed several days before a test, you will need to come in
during a free period to make it up; this will need to be done within one week of the
absences.

If you have not been absent but failed to turn in an assignment, late work will
be accepted one week past the due date for half credit. Any work not made up will
be graded as a 'zero'. If you have a pre-arranged absence, you need to see me before
you are gone and the work that I give you will be due when you return. This includes
all tests, quizzes, programming problems and homework.

GETTING HELP:
My off periods are listed on the front. Come see me if you need help or if you

have any questions. Don’t hesitate to ask your peers for help. Please don’t wait until
you’re lost before you come for help.

Teacher's Signature:__

89
Computer Science Curriculum

Appendix B

Student and Parent Signature Confirming Understanding of Course Objectives

(NAME OF SCHOOL)
INTRODUCTION TO COMPUTER SCIENCE, (INSTRUCTOR’S NAME)

COURSE OBJECTIVES, GRADING AND CLASSROOM EXPECTATIONS

I have read and understand the course objectives, grading and expectations for
Introduction to Computer Science.

Student's printed name:__

Parent's Signature:___

Student's Signature:___

90
Computer Science Curriculum

Appendix C

Downloading the SUN Java JDK (Java Development Kit) and Java API

Documentation

1. Go to http://java.sun.com and find the download page.

2. Click on “Java SE Development Kit (JDK) 6 Update 12” (this may change over

time).

3. Select the correct download of Java SE for your machine. 	For Windows, select the

Windows (all language) download of JDK.

4. Click on Continue. 	Click on the file name. Click RUN. Follow installation

instructions.

5. By default, it should be in “Java” within “Program Files” on your C: drive.

6. Go to http://java.sun.com/javase/downloads/index.jsp and download the Java SE 6

Documentation.

7. 	Select English and the agree box. Click Continue.

8. 	Click on the file name as was done in Step 4 above. Click Save.

9. 	Save in C:\Program Files\Java\jdk1.6.0_12.

91
Computer Science Curriculum

Appendix D

Downloading JCreator, the IDE (Integrated Development Environment)

1. Go to http://www.jcreator.com/download.htm and go to the download page.

2. Click on Download. 	There are installation instructions on the JCreator web site.

Use these instructions to configure default properties. Save these instructions for

help in later setting up workspaces and projects. When JCreator is launched,

follow the Setup wizard and set the paths to C:\...\jdk.1.6.0_12\ and

C:\...\jdk1.6.0_12\docs.

3. Go to the Blackboard Web site. 	Click on the tab marked “Course Notes”. Click on

the link for “Installation Directions”. Right click on the jar file and select “Save

Target As”. Save to a folder on the computer or save to the desktop.

4. 	In order to use libraries (packages) in JCreator, open a workspace with a project.

Go to Project/Project Settings and click on the Required Libraries tab. To add a

library, click New, click on the Classes tab and enter a name of your choice for the

set of jars in the dialog box. Click on Add and choose Add Archive. Browse to

the location that you saved the jar files in Step 3. Double click on the file until the

file or folder is in the list. Repeat until all of the jar files from Blackboard are in

the list. Check the box next to the folder name to make it available in any project.

92
Computer Science Curriculum

Appendix E

Lesson 1- Course Objectives and Classroom Expectations PowerPoint

Slide 1

2/21/2009

Introduction to Computer ScienceIntroduction to Computer Science

Instructor’s Name

Intro To Comp Sci, (school calendar
year) 1

Slide 2

2/21/2009

About the Course
z Covers programming techniques using the Java

language and the Object Oriented Programming
paradigm.

z Topics include:
z Classes.
z Object-Oriented programming.
z Primitive data types.
z Object behavior.
z Libraries and APIs.
z Simple input and output.
z Loops, decisions, recursion and Strings.

z Introduced to the Karel J Robot class.
z Techniques of problem solving will be stressed

heavily as well as ethics as they relate to technology.

Intro To Comp Sci, (school calendar

year) 2

118

Slide 12 Behaviors

z These are some of the behaviors from
the DrawingTool class:

forward
turnLeft
getColor

Slide 13 Behaviors (continued)

z An object’s behavior is determined by
instructions within its methods.

z The instructions execute in the order
they appear.

Slide 14 Behaviors (continued)

z Type in program:

public void draw()
{

myPencil.forward(100);
myPencil.turnLeft(90);
myPencil.forward(100);
myPencil.turnLeft(90);
myPencil.forward(100);
myPencil.turnLeft(90);
myPencil.forward(100);

}

Computer Science Curriculum

119

Slide 15 Behaviors (continued)

z When we call the method “forward” and pass
the distance:
z The object draws a line of the specified length.

z When we call the method “turnLeft” and pass
the degrees:
z The object turns left that number of degrees.

z A value we pass to an object’s method is
called an argument.

Slide 16 Behaviors (continued)

z forward and turnLeft carries out a
request by the user but does not respond
to the sender.

z getColor method returns a value to the
sender.
z e.g., we want to know the current color that

is being used for drawing.

Slide 17 Summary of class DrawSquare

z Includes two methods.
z DrawSquare

z Used to construct new instances of this class.
z draw()

z Where most of the action for this class takes
place.

z Contains only those instructions directly related
to the actual drawing of the square.

Computer Science Curriculum

120

Slide 18 Driver

z Click on the driver tab.
z Type into program:

DrawSquare squareOne = new DrawSquare();

squareOne.draw();

z squareOne is created (instantiated).
z Sending a message to the object

squareOne to draw.

Slide 19 Compiling & Running a Program

z Compiling – converting a program into
bytecode language the Java interpreter
understands.

z Compilation errors - usually due to syntax
rules.

z Run-time errors – those caught by the
compiler that stops the running of the program.
(e.g., dividing by zero).

z Logical errors – program runs but results are
not what is expected (e.g., numbers should
have been added instead of multiplied).

Slide 20 Compile & Run Program

z Click Build File or F7.
z Click Run File or F5.

Computer Science Curriculum

 –

121
Computer Science Curriculum

Appendix L

Lesson Plan for Day 10

Summary of A2 of the ICT Textbook (Quesenberry, 2006)

Slide 1 Lesson 10 Objects & Classes

z Objective: to summarize and understand
the similarities and differences between
objects and classes.

Slide 2 Similarities

z An object has attributes as defined by its
class.

z An object’s behavior is restricted by the
methods that are included in its class.

z Objects and classes have attributes and
methods in common.

122

Slide 3 A Class

z Purpose of a class is to guide the
creation of objects.

z It is a model of an object type.
z It is an abstract idea, a general concept.
z It is written by a programmer.
z It is named by a class name.

Slide 4 A Class (continued)

z The attributes for an object are defined in
a class.

z All of the attributes are fixed. They do
not change before, during or after
execution of a program.

z Methods are defined in the class of the
object.

Slide 5 Object

z Is created and eventually destroyed.
z Must be explicitly declared and

constructed by the executing program.
z Rather than general concept, objects are

specific and real instances of that
concept.

z Objects from the same class all share
common characteristics.

Computer Science Curriculum

123
Computer Science Curriculum

Slide 6 Object (continued)

z Attributes of an object will change.
z Methods are invoked on objects.
z Does not have the same name as a

class name.
z Many objects of a class can be created.

 –

124
Computer Science Curriculum

Appendix M

Lesson Plan for Day 11

Summary of Chapter 1 (Bergin, 1997)

Slide 1 Lesson 11 Karel J. Robot Ch1

z Objective: to understand the Karel J.
Robot world, its capabilities, tasks and
situations.

Slide 2 Karel J. (the Robot)

z Robot World.
z A flat plane of streets (east-west) and

avenues (north-south).
z “A” in avenue

points north
and “V”
points south.

Avenues

S
treets

Corner (many
robots may occupy)

125

Slide 3 Karel’s World (continued)

z Contains Beepers & Walls.
z Beepers.
z Emits a quiet beeping sound.
z May be picked up, carried and placed again.
z May place several on a corner and they

don’t interfere with Robot movement.

Slide 4 Robot Capabilities

z Move forward in the direction its facing.
z Turn.
z Sense surroundings.
z Hear beepers (on same corner).
z Determine direction it is facing.

z Pick up, carry, and put down beepers.
z Detect a wall ½ block away.
z Turn itself off.

Slide 5 Karel-Werke

z Factory – Builds the robots.
z Standard model.
z Write a spec for a new model.

z Extension of an existing base model.

z Factory – Delivers the robots.

“factories”
(auf Deutsch)

Computer Science Curriculum

126
Computer Science Curriculum

Slide 6 Tasks & Situations

z Examples:
z Move to a corner (3rd St. & 5th Ave.).
z Run a race.
z Escape from a maze.
z Find a beeper and

deliver it to the origin.

 –

–

127
Computer Science Curriculum

Appendix N

Lesson Plan for Day 12

Summary of Chapter 2 (Bergin, 1997)

Slide 1 Lesson 12 Karel J. Robot Ch2

z Objective: to understand the Karel J.
Robot language and to write programs
that instruct robots to perform simple
obstacle avoidance and beeper
transportation tasks.

Slide 2 Karel Primitive Instructions

z Basic tools with which all problems are
solved (analogies: carpentry, geometry).
z move()
z turnLeft()
z putBeeper()
z pickBeeper()
z turnOff()

128

Slide 3 OOP -ness

z object.method1();
z object.method2();

z Where a method acts on the object.
z Objects are typically nouns (e.g. karel).
z Methods are typically verbs (e.g. move) and

represent behavior.

karel.move();

Slide 4 move()

z forward only, one block.
z“Error Shutoff” if trying to move

into a wall (a duh! Look first!).

Slide 5 turnLeft()

zStay at same corner.
zTurn 90 degree to the left.
zCannot cause an error shutoff.

Computer Science Curriculum

129

Slide 6 pickBeeper()

zPicks up beeper on current
corner and places in beeper
bag.
zAttempted on beeper-less

corners causes an error shutoff.

Slide 7 putBeeper()

zTake beeper from beeper bag
and put down on current corner.
zAttempted with an empty beeper

bag causes an error shutoff.

Slide 8 turnOff()

zRobot turns off and is incapable
of executing another instruction
until restarted.
zThe last instruction executed on

a robot object.

Computer Science Curriculum

130

Slide 9 Description

urRobot class (the “Model-T” Robot)

Public class urRobot
{

void move(){…}
void turnOff(){…}
void turnLeft(){ }
void pickBeeper(){…}
void putBeeper(){…}

}

“primitive”

You can’t/don’t
need to define
this class – it is
in a library for
you to use

Slide 10 Sample Program

import kareltherobot.*;

Public class SampleTest implements Directions
{

public static void main(String args[])
{

urRobot karel = new urRobot(2, 1, East, 0);
karel.move();
karel.move();
karel.turnLeft();
karel turnOff();

}
}

Slide 11 Error Classification

z 4-types.
z Lexical error (compiler catches).
zWord not in its dictionary.

z Syntax error (compiler catches).
zIncorrect grammar, punctuation,

incorrect location of a statement.

Computer Science Curriculum

131
Computer Science Curriculum

Slide 12 Error Classification (continued)

z Execution error (run-time environment
catches).
z Can’t perform what you ask (at run-time).

z Intent error (logic – guess who catches
this one!).
z Program terminates successfully – junk

output, however.

Which is the hardest type of error to correct? Why?

Slide 13

Slide 14

Now You Try a Short Program

z On Paper – 10 minutes:

z Start a robot (HBot) at position (1, 1) (a.k.a.
the “origin”) facing North and having an
infinite number of beepers.

z Have the robot “print” (using beepers) the
letter H (with 3-beeper sides and a 1-beeper
bar).

z When done, the robot should be facing North
back at the origin (leaving the world in its
original state of being).

Programming the HBot together

z Let’s go into JCreator and write the
HBot.

z Start a new project called HBot.
z Name a class HBot.

132

Slide 15 HBot (continued)

zBefore public class, type:

import kareltherobot.*;

Slide 16 HBot (continued)

z Add:

implements Directions after public class HBot

z It should now look like this:

public class HBot implements Directions

Slide 17 HBot (continued)

z Type into the HBot class:

public void task()
{

World.setVisible(true);
Robot karel = new Robot(1, 1, North, 7)

}

z Add instructions.

Computer Science Curriculum

Computer Science Curriculum
133

Appendix O

Quiz 1, Unit 1

INTRO TO COMP SCI NAME___________________________
QUIZ #1

1. Define rachel as an Acrobat.

2. Tell rachel to clap 5 times.

3. 	 Beginning at the point in the box and facing up, draw the figure generated by the
following code segment:

 myPencil.forward(100);

 myPencil.turnLeft(120);

 myPencil.forward(100);

 myPencil.turnLeft(120);

 myPencil.forward(100);

Computer Science Curriculum
134

Appendix P

Quiz 1, Unit 1 – Answer Key

INTRO TO COMP SCI
QUIZ #1

NAME___________________________

ANSWERS

1. Define rachel as an Acrobat.

 Acrobat rachel = new Acrobat()

 3 pts

2. Tell rachel to clap 5 times.

 rachel.clap(5)

 3 pts

3. 	 Beginning at the point in the box and facing up, draw the figure generated by the
following code segment:

 myPencil.forward(100);

 myPencil.turnLeft(120);

 myPencil.forward(100);

 myPencil.turnLeft(120);

 myPencil.forward(100);

4 pts

135
Computer Science Curriculum

Appendix Q

Test, Unit 1

INTRO TO COMP SCI NAME___________________________
TEST, UNIT #1

For #1-6, True or False:

1. A constructor must have the same name as its class.

2. An object may be made up of other objects.

3. Only one object may be created from a particular class.

4. We invoke a method.

5. A class is a type of object.

6. A constructor can only be called when an object is first created.

For #7-8, choose the best response.

7. Object is to class as

a. line segment is to triangle

b. house is to blueprint

c. blueprint is to house

d. bicycle is to car

e. car is to bicycle

8. Which statement would we use to create an object from a class called Flower:

a. Flower pretty;

b. Flower pretty = Flower();

c. Flower pretty = new Flower;

d. Flower pretty = new Flower();

136
Computer Science Curriculum

e. new Flower() = pretty;

9. Carefully inspect the following program and correct all errors.

Public void draw()
{

myPencil.forward(100);

myPencil.TurnLeft(90);

myPencil.forward(100;

 my.Pencil.turnLeft(90);

myPenicl.forward(100);

myPencil.turnLeft(90)

myPencil.forward(100);

}

10. What is the difference between an object and a class?

11. What does a constructor do?

137
Computer Science Curriculum

12.	 Assume the following object declarations and initializations. This code will create a
DrawingTool object called crayon and a SketchPad object called board. The board will
have dimensions of 300 X 300. The crayon is constructed to be used with the board.
The drawing will begin at the center of the board at the point (0,0) and faces up.

Starting in the center of the box, draw the figure generated by the following code
segment:

crayon.turnRight(45);

crayon.forward(40);

crayon.turnRight(90);

crayon.forward(40);

crayon.turnLeft(90);

crayon.forward(20);

crayon.setDirection(-90);

crayon.forward(30);

crayon.turnRight(135);

crayon.forward(20);

crayon.turnLeft(90);

crayon.forward(40);

crayon.turnRight(90);

crayon.forward(40);

crayon.up();

crayon.move(10,10);

crayon.down();

crayon.drawCircle(2);

Computer Science Curriculum
138

13.	 Write a program which will create a robot at the origin facing north with 1
beeper. The robot should move to pick up the beeper as seen in the drawing
below. Then it should place beepers at the two empty circles and end up at the
origin facing north and turn off. Try to use the least number of statements
possible.

public class Test1 implements Directions
{

public static void main(String[] args)
{

 // your code goes here….

}
}

139
Computer Science Curriculum

Appendix R

Test, Unit 1 – Answer Key

INTRO TO COMP SCI NAME________40 points_______________
TEST, UNIT #1

For #1-6, True or False: ANSWERS
1. A constructor must have the same name as its class. True (1 pt)

2. An object may be made up of other objects. False (1 pt)

3. Only one object may be created from a particular class. False (1 pt)

4. We invoke a method. True (1 pt)

5. A class is a type of object. False (1 pt)

6. A constructor can only be called when an object is first created. True (1 pt)

For #7-8, choose the best response.

7. Object is to class as

a. line segment is to triangle

b. house is to blueprint b (2 pts)

c. blueprint is to house

d. bicycle is to car

e. car is to bicycle

8. Which statement would we use to create an object from a class called Flower:

a. Flower pretty;

b. Flower pretty = Flower();

c. Flower pretty = new Flower;

d. Flower pretty = new Flower(); d (2 pts)

e. new Flower() = pretty;

140
Computer Science Curriculum

9.	 Carefully inspect the following program and correct all errors.

Public void draw()
{

myPencil.forward(100);
myPencil.TurnLeft(90); t in Turn should be lowercase
myPencil.forward(100; parenthesis missing after 100
my.Pencil.turnLeft(90); no “dot” between my & Pencil
myPenicl.forward(100); Pencil is misspelled
myPencil.turnLeft(90);
myPencil.forward(100) missing semi-colon

 } (5 pts)

10. What is the difference between an object and a class?

 - A class defines attributes and methods; objects’ attributes and methods are
defined by a class.

- A class cannot be altered during program execution; objects are created and
destroyed and have attributes that can change in value and methods that can execute
during program execution.

- A class is named by a class name; object is most often referenced using an
identifier and is an instance of that class..

 (3 pts)

11. What does a constructor do?

A constructor’s main task is to instantiate new objects. (2 pts)

141
Computer Science Curriculum

12.	 Assume the following object declarations and initializations. This code will create a
DrawingTool object called crayon and a SketchPad object called board. The board will
have dimensions of 300 X 300. The crayon is constructed to be used with the board.
The drawing will begin at the center of the board at the point (0,0) and faces up.

Starting in the center of the box, draw the figure generated by the following code
segment:

crayon.turnRight(45);

crayon.forward(40);

crayon.turnRight(90);

crayon.forward(40);

crayon.turnLeft(90);

crayon.forward(20);

crayon.setDirection(-90);

crayon.forward(30);

crayon.turnRight(135);

crayon.forward(20);

crayon.turnLeft(90);

crayon.forward(40);

crayon.turnRight(90);

crayon.forward(40);

crayon.up();

crayon.move(10,10);

crayon.down();

crayon.drawCircle(2);

 (10 pts)

142
Computer Science Curriculum

13.	 Write a program which will create a robot at the origin facing north with 1
beeper. The robot should move to pick up the beeper as seen in the drawing
below. Then it should place beepers at the two empty circles and end up at the
origin facing north and turn off. Try to use the least number of statements
possible.

public class Test1 implements Directions
{
 public static void main(String[] args)

{
// your code goes here….

Robot karel = new Robot(1, 1, North, 1);

 karel.move();

karel.move();

 karel.move();

 karel.turnLeft();

karel.turnLeft();

 karel.turnLeft();

karel.move();

 kerel.pickBeeper();

 karel.turnLeft();

karel.turnLeft();

 karel.move();

karel.turnLeft();

karel.move();

 karel.turnLeft();

karel.move();

 karel.move();

 karel.move();

karel.putBeeper();

 karel.turnLeft();

karel.move();

karel.move();

 karel.move();

 karel.turnLeft();

 karel.move();

 karel.move();

 karel.putBeeper();

karel.move();

 karel.turnLeft();

 karel.move();

 karel.move();

 karel.move();

 karel.move();

 karel.move();

 karel.turnLeft();

 karel.turnLeft();

 karel.turnOff();

}
}

(10 pts)

